Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete r...
Saved in:
Published in | The Journal of clinical investigation Vol. 120; no. 4; pp. 1310 - 1323 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9738 1558-8238 1558-8238 |
DOI | 10.1172/JCI39987 |
Cover
Abstract | In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL. |
---|---|
AbstractList | In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL. In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multi-drug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL. In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL. In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological accroach into treatments for patients with refractory ALL. |
Audience | Academic |
Author | Bornhauser, Beat C. Niggli, Felix K. Bourquin, Jean-Pierre Ziegler, Urs Stanulla, Martin Schäfer, Beat W. Cario, Gunnar Schmitz, Maike Bonapace, Laura Schrappe, Martin |
AuthorAffiliation | 1 Department of Oncology, University Children’s Hospital, University of Zurich, Switzerland. 2 Department of Pediatrics, University Hospital Schleswig Holstein, Kiel, Germany. 3 Center for Microscopy and Image Analysis, University of Zurich |
AuthorAffiliation_xml | – name: 1 Department of Oncology, University Children’s Hospital, University of Zurich, Switzerland. 2 Department of Pediatrics, University Hospital Schleswig Holstein, Kiel, Germany. 3 Center for Microscopy and Image Analysis, University of Zurich |
Author_xml | – sequence: 1 givenname: Laura surname: Bonapace fullname: Bonapace, Laura – sequence: 2 givenname: Beat C. surname: Bornhauser fullname: Bornhauser, Beat C. – sequence: 3 givenname: Maike surname: Schmitz fullname: Schmitz, Maike – sequence: 4 givenname: Gunnar surname: Cario fullname: Cario, Gunnar – sequence: 5 givenname: Urs surname: Ziegler fullname: Ziegler, Urs – sequence: 6 givenname: Felix K. surname: Niggli fullname: Niggli, Felix K. – sequence: 7 givenname: Beat W. surname: Schäfer fullname: Schäfer, Beat W. – sequence: 8 givenname: Martin surname: Schrappe fullname: Schrappe, Martin – sequence: 9 givenname: Martin surname: Stanulla fullname: Stanulla, Martin – sequence: 10 givenname: Jean-Pierre surname: Bourquin fullname: Bourquin, Jean-Pierre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20200450$$D View this record in MEDLINE/PubMed |
BookMark | eNqN09tq3DAQAFBTUppNWugXFNFCLw9OJVm27JdCWHrZEgj09ipkabxWqpU2lhy6X9Ffrswm22wbaLHBYJ8ZeTSjo-zAeQdZ9pjgE0I4ff1xviiapub3shkpyzqvaVEfZDOMKckbXtSH2VEIFxgTxkr2IDukmGLMSjzLfi6cHlU03iHfITlGv-7lcpNrWIPT4CJyoAa_jj6YgNI9wOVoBtCo8wNSvbG6914jqcYIyG5W6963VoZoFLIwfoeVkUiBtQFFj_wVDMqvAC3tqLzyQ2Le6JQ0ZY_SKXiY3e-kDfDo-nmcfX339sv8Q352_n4xPz3LFcc45gWTsuyowk1NuqrhWreMy0ZXLdO41KWmrCpbTpTWpGkp1lqRmgMoXvGq5bw4zt5s867HdgVapUoHacV6MCs5bISXRux_caYXS38laM0qzFhK8OI6weAvRwhRrEyYCpUO_BgEL0vCEqb_lkVBWM0JTvLpH_LCj4NL-yBSv1JjaVUm9GyLltKCMK7z6f_UlFKcUkbqpq7opPI71BIcpGLS8HQmvd7zJ3f4dOnUQXVnwKu9gGQi_IhLOYYgFp8__b89_7Zvn9-yPUgb--DtOI1o2IdPbndw17qb2U7g5Rak-Q1hgG5HCBbTsRE3x-Z39TuqTJTTkmkXjP074BfpUBh4 |
CitedBy_id | crossref_primary_10_1038_leu_2012_88 crossref_primary_10_1186_s12885_015_1535_z crossref_primary_10_18632_oncotarget_2054 crossref_primary_10_1089_ars_2011_4078 crossref_primary_10_15252_embj_2020106700 crossref_primary_10_1039_C5OB00779H crossref_primary_10_1016_j_bbcan_2016_03_003 crossref_primary_10_2174_1389450120666191021110208 crossref_primary_10_1007_s00761_011_2152_3 crossref_primary_10_1016_j_semnephrol_2012_06_011 crossref_primary_10_1016_j_yexcr_2012_02_006 crossref_primary_10_3390_biom10010100 crossref_primary_10_1016_j_canlet_2018_03_046 crossref_primary_10_1002_jcb_23314 crossref_primary_10_1016_j_ejmech_2018_12_059 crossref_primary_10_3389_fcell_2019_00040 crossref_primary_10_4049_jimmunol_1701681 crossref_primary_10_1007_s00018_016_2193_2 crossref_primary_10_1016_j_bcp_2023_115707 crossref_primary_10_1182_blood_2012_11_468702 crossref_primary_10_1038_cddis_2012_92 crossref_primary_10_1593_neo_101524 crossref_primary_10_2217_imt_2015_0015 crossref_primary_10_1158_0008_5472_CAN_14_1851 crossref_primary_10_1002_pauz_201200469 crossref_primary_10_1016_j_bbcan_2020_188430 crossref_primary_10_1016_j_bcp_2018_02_007 crossref_primary_10_1172_JCI74985 crossref_primary_10_1002_emmm_201201283 crossref_primary_10_1155_2014_502676 crossref_primary_10_3389_fphar_2018_00384 crossref_primary_10_1182_blood_2014_06_583062 crossref_primary_10_1007_s11899_010_0051_0 crossref_primary_10_1101_pdb_top073585 crossref_primary_10_1089_ars_2010_3485 crossref_primary_10_4161_cc_21336 crossref_primary_10_1016_j_bone_2013_01_034 crossref_primary_10_3109_10428194_2013_855307 crossref_primary_10_1016_j_toxicon_2019_04_012 crossref_primary_10_1038_cddis_2015_16 crossref_primary_10_1038_cdd_2014_204 crossref_primary_10_1182_blood_2011_04_346528 crossref_primary_10_1158_1535_7163_MCT_12_0954 crossref_primary_10_1126_scitranslmed_aad2986 crossref_primary_10_1016_j_bbamcr_2013_06_001 crossref_primary_10_4161_auto_26452 crossref_primary_10_4103_ijc_IJC_567_19 crossref_primary_10_1038_onc_2014_458 crossref_primary_10_1038_cdd_2013_45 crossref_primary_10_1182_bloodadvances_2019000796 crossref_primary_10_3109_10428194_2015_1088650 crossref_primary_10_1126_science_1250256 crossref_primary_10_1515_hsz_2018_0105 crossref_primary_10_1002_iub_2411 crossref_primary_10_1016_j_freeradbiomed_2019_01_008 crossref_primary_10_1038_cddis_2013_155 crossref_primary_10_1038_bcj_2014_96 crossref_primary_10_1371_journal_pone_0155893 crossref_primary_10_3389_fonc_2017_00128 crossref_primary_10_1016_j_tcb_2011_03_007 crossref_primary_10_3390_cancers10120490 crossref_primary_10_4161_cbt_26428 crossref_primary_10_1158_1078_0432_CCR_14_0259 crossref_primary_10_1128_MCB_01383_13 crossref_primary_10_3390_cells3020418 crossref_primary_10_1155_2013_348212 crossref_primary_10_18632_oncotarget_11085 crossref_primary_10_3109_08880018_2011_613094 crossref_primary_10_1016_j_jormas_2023_101565 crossref_primary_10_1007_s10495_010_0561_1 crossref_primary_10_3390_cancers14205072 crossref_primary_10_1016_j_jep_2024_118658 crossref_primary_10_1038_cddis_2014_61 crossref_primary_10_1182_blood_2010_07_298356 crossref_primary_10_1038_s41392_018_0018_5 crossref_primary_10_1097_PAT_0b013e32834b1b34 crossref_primary_10_1155_2019_3618510 crossref_primary_10_1016_j_prp_2019_152652 crossref_primary_10_18632_oncotarget_10548 crossref_primary_10_1002_adhm_202202506 crossref_primary_10_1038_aps_2017_100 crossref_primary_10_1111_cpr_12167 crossref_primary_10_3109_10428194_2010_506570 crossref_primary_10_1155_2017_3982906 crossref_primary_10_1039_C7FO01040K crossref_primary_10_1007_s10750_017_3291_3 crossref_primary_10_1016_j_healun_2014_12_008 crossref_primary_10_1042_BJ20120972 crossref_primary_10_2147_COPD_S265728 crossref_primary_10_1007_s11010_016_2853_4 crossref_primary_10_4161_auto_7_2_14212 crossref_primary_10_1007_s10495_018_1480_9 crossref_primary_10_1038_icb_2016_120 crossref_primary_10_1016_j_semcancer_2013_05_006 crossref_primary_10_1016_j_bcp_2014_12_018 crossref_primary_10_1089_ars_2022_0110 crossref_primary_10_1016_j_bcp_2020_113915 crossref_primary_10_3109_10428194_2011_580023 crossref_primary_10_1371_journal_pone_0076235 crossref_primary_10_1016_j_canlet_2023_216518 crossref_primary_10_1002_ijc_32865 crossref_primary_10_1038_ng_3362 crossref_primary_10_1002_jcp_31087 crossref_primary_10_1016_j_critrevonc_2011_08_004 crossref_primary_10_3892_mmr_2014_2234 crossref_primary_10_2174_1389557522666220905090732 crossref_primary_10_1007_s12032_016_0743_y crossref_primary_10_1016_j_semcdb_2014_07_002 crossref_primary_10_1007_s12253_011_9433_4 crossref_primary_10_7717_peerj_2026 crossref_primary_10_12677_ACM_2024_142401 crossref_primary_10_18632_oncotarget_2318 crossref_primary_10_1080_01635581_2013_815234 crossref_primary_10_1016_j_neubiorev_2024_105788 crossref_primary_10_18632_oncotarget_2572 crossref_primary_10_1016_j_jbc_2024_107581 crossref_primary_10_4161_auto_22923 crossref_primary_10_1038_leu_2017_10 crossref_primary_10_2217_ijh_13_43 crossref_primary_10_1016_j_jcmgh_2016_04_002 crossref_primary_10_1016_j_ijpddr_2016_10_003 crossref_primary_10_1038_cddis_2010_53 crossref_primary_10_1371_journal_pone_0178606 crossref_primary_10_1016_j_canlet_2011_06_016 crossref_primary_10_1007_s40265_019_01163_4 crossref_primary_10_1186_s12885_019_6195_y crossref_primary_10_3390_molecules191220295 crossref_primary_10_1038_cr_2011_152 crossref_primary_10_1016_j_tice_2022_101910 crossref_primary_10_1038_srep21992 crossref_primary_10_1155_2012_435342 crossref_primary_10_1182_blood_2014_03_564534 crossref_primary_10_1002_jcb_24829 crossref_primary_10_1016_j_ctrv_2010_02_005 crossref_primary_10_1038_cdd_2014_143 crossref_primary_10_1016_j_bbamcr_2014_09_023 crossref_primary_10_14348_molcells_2021_0193 crossref_primary_10_1016_j_toxlet_2012_01_019 crossref_primary_10_1186_s12989_020_00372_0 crossref_primary_10_1007_s10495_021_01687_9 crossref_primary_10_1016_j_biocel_2015_06_016 crossref_primary_10_1038_ncomms6637 crossref_primary_10_1186_s13046_015_0186_x crossref_primary_10_1016_j_critrevonc_2011_03_009 crossref_primary_10_3390_cancers15020445 crossref_primary_10_1038_bcj_2017_61 crossref_primary_10_1038_cdd_2016_8 crossref_primary_10_3390_cancers13225622 crossref_primary_10_1002_jcp_28903 crossref_primary_10_3389_fonc_2021_617937 crossref_primary_10_1038_s43018_020_0037_3 crossref_primary_10_3109_07853890_2014_941921 crossref_primary_10_3390_cells8020103 crossref_primary_10_4161_auto_22145 crossref_primary_10_1182_blood_2012_04_425033 crossref_primary_10_1111_j_1365_2141_2010_08312_x crossref_primary_10_1182_blood_2011_07_366203 crossref_primary_10_3390_cancers9120161 crossref_primary_10_18632_oncotarget_1018 crossref_primary_10_1586_ehm_10_39 crossref_primary_10_1016_j_ejca_2014_03_011 crossref_primary_10_1039_C9RA08049J crossref_primary_10_1016_j_biopha_2023_115165 crossref_primary_10_1007_s00018_016_2200_7 crossref_primary_10_1038_cddis_2010_86 crossref_primary_10_3390_biomedicines9101353 crossref_primary_10_1038_leu_2010_170 crossref_primary_10_1038_s41419_022_04974_8 crossref_primary_10_1007_s10549_011_1930_3 crossref_primary_10_1182_blood_2010_07_296913 crossref_primary_10_3390_ijms21197334 crossref_primary_10_1016_j_phymed_2016_09_003 crossref_primary_10_1200_JCO_2017_77_3648 crossref_primary_10_1016_j_bbamcr_2010_11_024 crossref_primary_10_1016_j_preteyeres_2013_08_001 crossref_primary_10_1038_leu_2012_276 crossref_primary_10_1016_j_canlet_2017_10_047 crossref_primary_10_1016_j_gene_2019_04_040 crossref_primary_10_1038_cddiscovery_2016_96 crossref_primary_10_1089_dna_2014_2602 crossref_primary_10_3390_cancers10100360 crossref_primary_10_1038_onc_2013_256 crossref_primary_10_1186_s12885_015_1929_y crossref_primary_10_1517_13543776_2012_644274 crossref_primary_10_1017_S1462399410001572 crossref_primary_10_1038_s42003_022_04248_1 crossref_primary_10_18632_oncotarget_477 crossref_primary_10_1016_j_ymthe_2019_01_012 crossref_primary_10_1186_s12967_017_1223_7 crossref_primary_10_1111_jcmm_12855 crossref_primary_10_7554_eLife_05682 crossref_primary_10_1182_blood_2016_09_738070 crossref_primary_10_3390_cancers12082185 crossref_primary_10_1593_neo_11610 crossref_primary_10_1182_blood_2010_11_320309 crossref_primary_10_1038_onc_2017_59 crossref_primary_10_1002_ptr_7483 crossref_primary_10_1016_j_kint_2015_11_021 crossref_primary_10_1513_AnnalsATS_201507_450MG crossref_primary_10_3389_fsurg_2022_905897 crossref_primary_10_1016_j_biopha_2019_108714 crossref_primary_10_1007_BF03262418 crossref_primary_10_3390_biomedicines10071596 crossref_primary_10_3892_ol_2016_5367 crossref_primary_10_1016_j_jff_2016_05_018 crossref_primary_10_4161_auto_7_11_17661 crossref_primary_10_12677_ACM_2024_141266 crossref_primary_10_1016_j_cellsig_2020_109770 crossref_primary_10_1111_ejh_12753 crossref_primary_10_1371_journal_pone_0132829 crossref_primary_10_18632_oncotarget_11028 crossref_primary_10_1016_j_bcp_2017_03_006 crossref_primary_10_1371_journal_pone_0150696 crossref_primary_10_1096_fj_11_182519 crossref_primary_10_3390_cells8070674 crossref_primary_10_3390_cancers11101599 crossref_primary_10_1111_j_1582_4934_2011_01341_x crossref_primary_10_1016_j_critrevonc_2017_02_004 crossref_primary_10_1016_j_semcancer_2013_08_008 crossref_primary_10_1016_j_resinv_2016_03_008 crossref_primary_10_1186_s13046_018_0976_z crossref_primary_10_1038_s41416_020_0824_8 crossref_primary_10_3390_ijms18091959 crossref_primary_10_1080_15548627_2018_1476812 crossref_primary_10_1016_j_taap_2012_11_001 crossref_primary_10_1111_j_1440_1754_2011_02212_x crossref_primary_10_1111_jfbc_13366 crossref_primary_10_1007_s00018_011_0667_9 crossref_primary_10_1182_blood_2011_09_378141 crossref_primary_10_1007_s13277_016_4943_z crossref_primary_10_1007_s13277_016_5395_1 crossref_primary_10_1177_1087057114546550 |
Cites_doi | 10.1038/ncb1192 10.1182/blood-2006-12-060970 10.1182/blood-2008-02-137943 10.1056/NEJMoa033513 10.1172/JCI20039 10.1038/sj.emboj.7601689 10.1016/j.cub.2007.01.027 10.2353/ajpath.2008.070876 10.1074/jbc.M303723200 10.1016/j.molcel.2004.12.030 10.1182/blood-2006-07-034173 10.1016/j.cell.2007.12.018 10.1016/j.ccr.2007.07.001 10.1126/science.1096645 10.1038/cdd.2009.46 10.1172/JCI30235 10.1073/pnas.0808597105 10.1016/j.ccr.2006.10.006 10.4049/jimmunol.174.10.6477 10.1182/blood-2004-05-2023 10.1038/nchembio.83 10.1038/nrm2529 10.1002/j.1460-2075.1996.tb01007.x 10.1016/S1097-2765(00)00136-2 10.1074/jbc.M610023200 10.1016/j.cell.2008.10.044 10.1182/blood-2003-09-3022 10.1073/pnas.0408345102 10.1016/j.cell.2007.10.048 10.1038/nature03579 10.1016/j.ceb.2005.09.009 10.1016/j.cell.2008.12.004 10.1016/j.cell.2009.07.006 10.1016/j.cell.2005.07.002 10.1172/JCI37948 10.1016/j.devcel.2007.09.007 10.1371/journal.pone.0007124 10.1182/blood-2007-09-114314 10.1016/j.cub.2009.08.042 10.1056/NEJMra052603 10.1038/nchembio711 10.1158/1078-0432.CCR-08-0999 10.1073/pnas.2436255100 10.1038/82732 10.1016/j.molcel.2006.02.009 10.1016/j.ccr.2006.09.006 10.1007/978-1-60327-017-5_6 10.1038/sj.onc.1209034 10.1158/0008-5472.CAN-07-1919 10.1038/sj.cdd.4402149 10.1016/j.ccr.2007.05.008 10.1158/0008-5472.CAN-06-4244 10.1182/blood-2006-01-0261 10.1182/blood-2007-02-073213 10.1073/pnas.0709443104 10.1182/blood.V110.11.585.585 10.1016/j.ccr.2006.08.027 10.1016/j.ccr.2006.03.027 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 American Society for Clinical Investigation Copyright American Society for Clinical Investigation Apr 2010 Copyright © 2010, American Society for Clinical Investigation |
Copyright_xml | – notice: COPYRIGHT 2010 American Society for Clinical Investigation – notice: Copyright American Society for Clinical Investigation Apr 2010 – notice: Copyright © 2010, American Society for Clinical Investigation |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7RV 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS S0X 7X8 7T5 H94 5PM |
DOI | 10.1172/JCI39987 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SIRS Editorial MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial elibrary ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
EndPage | 1323 |
ExternalDocumentID | PMC2846044 2005995061 A241898625 20200450 10_1172_JCI39987 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X .55 .XZ 08G 08P 29K 354 36B 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAWTL AAYOK AAYXX ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CITATION CS3 D-I DIK DU5 E3Z EBD EBS EJD EMB EMOBN EX3 F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR IHW INH IOF IOV IPO ISR ITC KQ8 L7B LK8 M1P M5~ M7P NAPCQ OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UKHRP VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZY1 ~H1 .GJ 2WC 3O- 3V. 53G 88A AAKAS ADZCM AFFNX AI. CGR CUY CVF ECM EIF FEDTE HVGLF H~9 INR J5H M0L MVM N4W NPM OHT PKN UHU VH1 ZGI ZXP PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 7T5 H94 5PM |
ID | FETCH-LOGICAL-c700t-34aa5f2c0981f697ddb47a9d6b4d05d5d2465b71cdd19b20ddc187eec7676b773 |
IEDL.DBID | 7X7 |
ISSN | 0021-9738 1558-8238 |
IngestDate | Thu Aug 21 14:30:35 EDT 2025 Thu Sep 04 22:07:41 EDT 2025 Fri Sep 05 11:41:30 EDT 2025 Fri Jul 25 19:29:37 EDT 2025 Tue Jun 17 22:07:03 EDT 2025 Fri Jun 13 00:01:43 EDT 2025 Tue Jun 10 21:04:52 EDT 2025 Fri Jun 27 05:48:45 EDT 2025 Fri Jun 27 05:41:57 EDT 2025 Thu May 22 21:24:44 EDT 2025 Wed Feb 19 01:51:23 EST 2025 Tue Jul 01 00:54:14 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c700t-34aa5f2c0981f697ddb47a9d6b4d05d5d2465b71cdd19b20ddc187eec7676b773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Authorship note: Laura Bonapace and Beat C. Bornhauser contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2846044 |
PMID | 20200450 |
PQID | 200558265 |
PQPubID | 42166 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2846044 proquest_miscellaneous_755142842 proquest_miscellaneous_733148710 proquest_journals_200558265 gale_infotracmisc_A241898625 gale_infotracgeneralonefile_A241898625 gale_infotracacademiconefile_A241898625 gale_incontextgauss_ISR_A241898625 gale_incontextgauss_IOV_A241898625 gale_healthsolutions_A241898625 pubmed_primary_20200450 crossref_primary_10_1172_JCI39987 crossref_citationtrail_10_1172_JCI39987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Ann Arbor |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2010 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | B20 B21 Ting (B37) 1996; 15 B22 B23 B24 B25 B26 B27 Miao (B34) 2009; 559 B28 B29 Shultz (B39) 2005; 174 B30 B31 B32 B33 B35 B36 B38 B1 B4 Schrauder (B3) 2007; 110 B5 B6 B7 B8 B9 Samraj (B59) 2006; 25 B40 B41 B43 B44 B45 B46 B47 B48 B49 Qu (B42) 2003; 112 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B16 B17 B18 B19 Schrappe (B2) 2004; 83 17097560 - Cancer Cell. 2006 Nov;10(5):375-88 16116473 - Oncogene. 2006 Jan 12;25(2):186-97 15070701 - Blood. 2004 Apr 15;103(8):3185-91 12736248 - J Biol Chem. 2003 Jul 18;278(29):27053-8 17483364 - Cancer Res. 2007 May 1;67(9):4482-90 17431417 - Cell Death Differ. 2007 Jul;14(7):1247-50 17446862 - EMBO J. 2007 May 16;26(10):2527-39 18040043 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19512-7 18191218 - Cell. 2008 Jan 11;132(1):27-42 18971948 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10 19632174 - Cell. 2009 Jul 23;138(2):229-32 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9 11163212 - Mol Cell. 2000 Dec;6(6):1389-99 14657337 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15077-82 11101870 - Nat Immunol. 2000 Dec;1(6):489-95 15572593 - Blood. 2005 Mar 15;105(6):2519-26 15879151 - J Immunol. 2005 May 15;174(10):6477-89 17227835 - Blood. 2007 May 15;109(10):4441-9 19609750 - Methods Mol Biol. 2009;559:79-93 15596714 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18030-5 17306544 - Curr Biol. 2007 Mar 6;17(5):418-24 18083103 - Cell. 2007 Dec 14;131(6):1137-48 16543145 - Mol Cell. 2006 Mar 17;21(6):749-60 17652622 - Blood. 2007 Nov 15;110(10):3662-72 15124702 - Ann Hematol. 2004;83 Suppl 1:S121-3 17537996 - Blood. 2007 Sep 15;110(6):2084-91 15131264 - Science. 2004 Jun 4;304(5676):1500-2 17613433 - Cancer Cell. 2007 Jul;12(1):9-22 18931344 - Blood. 2009 Jan 8;113(2):299-305 18408713 - Nat Chem Biol. 2008 May;4(5):313-21 19771169 - PLoS One. 2009;4(9):e7124 18187572 - Am J Pathol. 2008 Feb;172(2):454-69 16574952 - Blood. 2006 Aug 1;108(3):1045-9 8947041 - EMBO J. 1996 Nov 15;15(22):6189-96 19088047 - Clin Cancer Res. 2008 Dec 15;14(24):8295-301 16179260 - Cell. 2005 Sep 23;122(6):927-39 19818615 - Curr Biol. 2009 Nov 3;19(20):1741-6 16697956 - Cancer Cell. 2006 May;9(5):351-65 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42 19109899 - Cell. 2008 Dec 26;135(7):1311-23 15694340 - Mol Cell. 2005 Feb 4;17(3):393-403 15558033 - Nat Cell Biol. 2004 Dec;6(12):1221-8 17074751 - J Biol Chem. 2006 Dec 22;281(51):39128-34 17692808 - Cancer Cell. 2007 Aug;12(2):171-85 14638851 - J Clin Invest. 2003 Dec;112(12):1809-20 18946037 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16677-82 15902208 - Nature. 2005 Jun 2;435(7042):677-81 18451169 - Cancer Res. 2008 May 1;68(9):3413-20 16226444 - Curr Opin Cell Biol. 2005 Dec;17(6):596-603 16407512 - N Engl J Med. 2006 Jan 12;354(2):166-78 19109884 - Cell. 2008 Dec 26;135(7):1161-3 19390558 - Cell Death Differ. 2009 Jul;16(7):1018-29 19036706 - Blood. 2009 Feb 19;113(8):1710-22 19425170 - J Clin Invest. 2009 May;119(5):1359-72 17097561 - Cancer Cell. 2006 Nov;10(5):389-99 17380207 - J Clin Invest. 2007 Apr;117(4):1049-57 17981138 - Dev Cell. 2007 Nov;13(5):705-16 17010674 - Cancer Cell. 2006 Oct;10(4):331-42 |
References_xml | – ident: B11 doi: 10.1038/ncb1192 – ident: B50 doi: 10.1182/blood-2006-12-060970 – ident: B9 doi: 10.1182/blood-2008-02-137943 – ident: B4 doi: 10.1056/NEJMoa033513 – volume: 112 start-page: 1809 year: 2003 ident: B42 publication-title: J Clin Invest. doi: 10.1172/JCI20039 – ident: B14 doi: 10.1038/sj.emboj.7601689 – ident: B19 doi: 10.1016/j.cub.2007.01.027 – ident: B45 doi: 10.2353/ajpath.2008.070876 – ident: B52 doi: 10.1074/jbc.M303723200 – ident: B30 doi: 10.1016/j.molcel.2004.12.030 – ident: B7 doi: 10.1182/blood-2006-07-034173 – ident: B44 doi: 10.1016/j.cell.2007.12.018 – ident: B21 doi: 10.1016/j.ccr.2007.07.001 – ident: B12 doi: 10.1126/science.1096645 – ident: B49 doi: 10.1038/cdd.2009.46 – ident: B57 doi: 10.1172/JCI30235 – ident: B41 doi: 10.1073/pnas.0808597105 – ident: B22 doi: 10.1016/j.ccr.2006.10.006 – volume: 174 start-page: 6477 year: 2005 ident: B39 publication-title: J Immunol. doi: 10.4049/jimmunol.174.10.6477 – ident: B32 doi: 10.1182/blood-2004-05-2023 – ident: B17 doi: 10.1038/nchembio.83 – ident: B13 doi: 10.1038/nrm2529 – volume: 15 start-page: 6189 year: 1996 ident: B37 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01007.x – ident: B26 doi: 10.1016/S1097-2765(00)00136-2 – ident: B28 doi: 10.1074/jbc.M610023200 – ident: B18 doi: 10.1016/j.cell.2008.10.044 – ident: B40 doi: 10.1182/blood-2003-09-3022 – ident: B24 doi: 10.1073/pnas.0408345102 – ident: B47 doi: 10.1016/j.cell.2007.10.048 – ident: B20 doi: 10.1038/nature03579 – ident: B27 doi: 10.1016/j.ceb.2005.09.009 – ident: B36 doi: 10.1016/j.cell.2008.12.004 – ident: B35 doi: 10.1016/j.cell.2009.07.006 – ident: B15 doi: 10.1016/j.cell.2005.07.002 – ident: B46 doi: 10.1172/JCI37948 – ident: B38 doi: 10.1016/j.devcel.2007.09.007 – ident: B53 doi: 10.1371/journal.pone.0007124 – ident: B33 doi: 10.1182/blood-2007-09-114314 – ident: B48 doi: 10.1016/j.cub.2009.08.042 – ident: B1 doi: 10.1056/NEJMra052603 – ident: B56 doi: 10.1038/nchembio711 – ident: B10 doi: 10.1158/1078-0432.CCR-08-0999 – ident: B43 doi: 10.1073/pnas.2436255100 – ident: B16 doi: 10.1038/82732 – volume: 83 start-page: S121 year: 2004 ident: B2 publication-title: Ann Hematol. – ident: B31 doi: 10.1016/j.molcel.2006.02.009 – ident: B5 doi: 10.1016/j.ccr.2006.09.006 – volume: 559 start-page: 79 year: 2009 ident: B34 publication-title: Methods Mol Biol. doi: 10.1007/978-1-60327-017-5_6 – volume: 25 start-page: 186 year: 2006 ident: B59 publication-title: Oncogene. doi: 10.1038/sj.onc.1209034 – ident: B8 doi: 10.1158/0008-5472.CAN-07-1919 – ident: B25 doi: 10.1038/sj.cdd.4402149 – ident: B51 doi: 10.1016/j.ccr.2007.05.008 – ident: B54 doi: 10.1158/0008-5472.CAN-06-4244 – ident: B55 doi: 10.1182/blood-2006-01-0261 – ident: B58 doi: 10.1182/blood-2007-02-073213 – ident: B6 doi: 10.1073/pnas.0709443104 – volume: 110 start-page: 585 year: 2007 ident: B3 publication-title: Blood. doi: 10.1182/blood.V110.11.585.585 – ident: B23 doi: 10.1016/j.ccr.2006.08.027 – ident: B29 doi: 10.1016/j.ccr.2006.03.027 – reference: 17227835 - Blood. 2007 May 15;109(10):4441-9 – reference: 19109884 - Cell. 2008 Dec 26;135(7):1161-3 – reference: 15070701 - Blood. 2004 Apr 15;103(8):3185-91 – reference: 17483364 - Cancer Res. 2007 May 1;67(9):4482-90 – reference: 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9 – reference: 19425170 - J Clin Invest. 2009 May;119(5):1359-72 – reference: 19771169 - PLoS One. 2009;4(9):e7124 – reference: 19632174 - Cell. 2009 Jul 23;138(2):229-32 – reference: 12736248 - J Biol Chem. 2003 Jul 18;278(29):27053-8 – reference: 17981138 - Dev Cell. 2007 Nov;13(5):705-16 – reference: 15694340 - Mol Cell. 2005 Feb 4;17(3):393-403 – reference: 15558033 - Nat Cell Biol. 2004 Dec;6(12):1221-8 – reference: 19088047 - Clin Cancer Res. 2008 Dec 15;14(24):8295-301 – reference: 18946037 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16677-82 – reference: 16697956 - Cancer Cell. 2006 May;9(5):351-65 – reference: 17010674 - Cancer Cell. 2006 Oct;10(4):331-42 – reference: 18187572 - Am J Pathol. 2008 Feb;172(2):454-69 – reference: 15879151 - J Immunol. 2005 May 15;174(10):6477-89 – reference: 16179260 - Cell. 2005 Sep 23;122(6):927-39 – reference: 14638851 - J Clin Invest. 2003 Dec;112(12):1809-20 – reference: 17537996 - Blood. 2007 Sep 15;110(6):2084-91 – reference: 17431417 - Cell Death Differ. 2007 Jul;14(7):1247-50 – reference: 16574952 - Blood. 2006 Aug 1;108(3):1045-9 – reference: 17306544 - Curr Biol. 2007 Mar 6;17(5):418-24 – reference: 18408713 - Nat Chem Biol. 2008 May;4(5):313-21 – reference: 19109899 - Cell. 2008 Dec 26;135(7):1311-23 – reference: 17446862 - EMBO J. 2007 May 16;26(10):2527-39 – reference: 17380207 - J Clin Invest. 2007 Apr;117(4):1049-57 – reference: 18971948 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10 – reference: 15572593 - Blood. 2005 Mar 15;105(6):2519-26 – reference: 15124702 - Ann Hematol. 2004;83 Suppl 1:S121-3 – reference: 18451169 - Cancer Res. 2008 May 1;68(9):3413-20 – reference: 18931344 - Blood. 2009 Jan 8;113(2):299-305 – reference: 15131264 - Science. 2004 Jun 4;304(5676):1500-2 – reference: 17097561 - Cancer Cell. 2006 Nov;10(5):389-99 – reference: 16407512 - N Engl J Med. 2006 Jan 12;354(2):166-78 – reference: 18083103 - Cell. 2007 Dec 14;131(6):1137-48 – reference: 11101870 - Nat Immunol. 2000 Dec;1(6):489-95 – reference: 19390558 - Cell Death Differ. 2009 Jul;16(7):1018-29 – reference: 19609750 - Methods Mol Biol. 2009;559:79-93 – reference: 15902208 - Nature. 2005 Jun 2;435(7042):677-81 – reference: 16543145 - Mol Cell. 2006 Mar 17;21(6):749-60 – reference: 8947041 - EMBO J. 1996 Nov 15;15(22):6189-96 – reference: 14657337 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15077-82 – reference: 18040043 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19512-7 – reference: 16116473 - Oncogene. 2006 Jan 12;25(2):186-97 – reference: 17613433 - Cancer Cell. 2007 Jul;12(1):9-22 – reference: 16226444 - Curr Opin Cell Biol. 2005 Dec;17(6):596-603 – reference: 17074751 - J Biol Chem. 2006 Dec 22;281(51):39128-34 – reference: 18191218 - Cell. 2008 Jan 11;132(1):27-42 – reference: 15596714 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18030-5 – reference: 19036706 - Blood. 2009 Feb 19;113(8):1710-22 – reference: 17692808 - Cancer Cell. 2007 Aug;12(2):171-85 – reference: 11163212 - Mol Cell. 2000 Dec;6(6):1389-99 – reference: 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42 – reference: 19818615 - Curr Biol. 2009 Nov 3;19(20):1741-6 – reference: 17097560 - Cancer Cell. 2006 Nov;10(5):375-88 – reference: 17652622 - Blood. 2007 Nov 15;110(10):3662-72 |
SSID | ssj0014454 |
Score | 2.4782522 |
Snippet | In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1310 |
SubjectTerms | Acute lymphocytic leukemia Apoptosis Apoptosis - drug effects Apoptosis Regulatory Proteins - chemistry Apoptosis Regulatory Proteins - physiology Autophagy Autophagy (Cytology) Beclin-1 Biomedical research Care and treatment Cell death Chemotherapy Corticosteroids Cytotoxicity Development and progression Dexamethasone - therapeutic use Dosage and administration Drug resistance Drug Resistance, Multiple Drug Resistance, Neoplasm Glucocorticoids - therapeutic use Humans Intracellular Signaling Peptides and Proteins - antagonists & inhibitors Kinases Leukemia Leukemia in children Lymphoblastic leukemia in children Lymphocytic leukemia in children Membrane Proteins - chemistry Membrane Proteins - physiology Myeloid Cell Leukemia Sequence 1 Protein Nuclear Pore Complex Proteins - physiology Observations Physiological aspects Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology Protein-Serine-Threonine Kinases - antagonists & inhibitors Proto-Oncogene Proteins c-bcl-2 - chemistry Pyrroles - pharmacology RNA-Binding Proteins - physiology TOR Serine-Threonine Kinases Xenograft Model Antitumor Assays |
Title | Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20200450 https://www.proquest.com/docview/200558265 https://www.proquest.com/docview/733148710 https://www.proquest.com/docview/755142842 https://pubmed.ncbi.nlm.nih.gov/PMC2846044 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWglRAXxDdpSzEI0VPUJBvb6xMqpVW3qAUVivYWObazhC5JaZJDfwV_mZnEiTaoqpD2svJLNuuxPTPO8xtC3nKpuObM-jpkGSQoWuOcM74W0popi8Gn4dnhk1N-dB4fz9nccXMqR6vs18R2oTalxj3yXdz9YBALs_eXv30sGoUvV10FjbtkPYRABCs3iPmQb0GqwJwIc-hLMZk67Vlw2bs_dQ6eGXl0K97o3zV5xSmNCZMrHujwIXngQke619n6Eblji8fk3ol7Of6E_MEyHO0xBVpmVDUoGaAW135f57amhcWCXXVZ5RWFz5VFGrA1FAJXqnuNY6p0U1u6vAY7lykE1_BzdGmbC_srVxQ3-italxSpn9Bzlrakd8hhAVbmBm5aYUgKY-kpOT88-LZ_5Lt6C2CZIKj9SawUyyIdyGmYcSmMSWOhpOFpbAJmmIlizlIRamNCmUaBMTqcCmu14IKnQkyekbWiLOwLQsHpRVLHZpLpNGYiUCHHGh8yspjRyNQjO32_J9qJkWNNjGXSJiUiSo73Z62FPPJ6QF52Ahw3YF6h6ZLu6OgwZ5M9CE-mEnI25pE3LQIVLwqk1CxUU1XJ7PP3_wB9PRuBdhwoK-GJtXLHGOB_o5LWCPluhFx0OuI3AbdGQJjgetS82Y_IxC0wVTJMB4_QoRUvRM5cYcumSrAaJ6SjYXALBONltJVHnncjfOjjKMD1k8HFYjT2BwDqko9bivxHq08ON-RBHG_c-tyb5H5HxEAS1BZZq68a-xLiuzrdbmfxNln_cHD65Qy-fZx9-gunhlVM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviDtlgxkE7Claktpx8zChMTa121rQ2NDegmO7pVCSsSRC_RX8Iv4b5yRO1KBp4mVS3_zFdXKOz8U-F0JeBaEMVMCNozw-AQdFKdxz2lEiNLrPGeg0zB0ejYPBKTs442cr5E-dC4NhlbVMLAW1ThWekW_h6QcHW5i_Pf_pYNMovFytO2hI21lBb5cVxmxex6FZ_AIPLtsevgdyv_b9_b2T3YFjmwzAclw3d3pMSj7xlRv2vUkQCq1jJmSog5hpl2uufRbwWHhKay-MfVdr5fWFMUoEIoiF6MG8N8gqw_OTDll9tzf-eNxcYzDGbRlozwlFr2-r34LRsPVNzcA2wEi-JX34r1ZYUovtkM0lHbh_l9yxxivdqbjtHlkxyX1yc2Sv5x-Q39gIpEyUoOmEygKLFsjpwqk77eY0MdgyLE-zWUbhd2EwENloCqYzVXWVZSpVkRs6XwCnpTGY9_B3dG6K7-bHTFK8ashonlIMPgXaGVqG3YMXDbB0pmHSDI1i4OaH5PRaiPGIdJI0MU8IBbXrh4rp3kTFjAtXegF2GQl9gz5VGHfJZv3dI2XLoWNXjnlUukXCjw52hyWFuuRFgzyvSoBcgtlA0kVV8mojNaIdMJD6IXiNvEtelgisuZFgUM9UFlkWDT98_g_Qp-MWaNOCJimsWEmbSAHvjbW8Wsg3LeS0qmR-GXC9BQQRo1rDazVHRlbEZVGzIbuENqP4IEbtJSYtsgj7gYJD7LlXQNBiR1p1yeOKw5tv7LsowTk8LFq83wCwMnp7JJl9LSukw4SBy9jTK9e9QW4NTkZH0dFwfLhGbldhIRiStU46-UVhnoG1mcfP7Z6m5Mt1i5G_hwiWyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJk28IO6UDWYQsKeoSWrHzcOExrZq3ViZBkN7C47tjEJJxpII9Vfwu_hXnJM4UYOmiZdJffNn18k5Ppf4XAh5FYQyUAE3jvJ4Ag6KUnjmtKNEaPSQM9BpmDt8NAn2T9nBGT9bIn-aXBgMq2xkYiWodabwG3kfv35wsIV5P7FREce7o7cXPx1sIIUXrU03DWm7LOitqtqYzfE4NPNf4M3lW-NdIP1r3x_tfdrZd2zDAdia6xbOgEnJE1-54dBLglBoHTMhQx3ETLtcc-2zgMfCU1p7Yey7WitvKIxRIhBBLMQA1r1FVgQoffADV97tTY5P2isNxrgtCe05oRgMbSVcMCD639QUpmBU34Ju_FdDLKjIbvjmgj4c3SV3rCFLt2vOu0eWTHqfrB7Zq_oH5Dc2BamSJmiWUFliAQN5PnearrsFTQ22DyuyfJpT-F0aDEo2moIZTVVTcZlKVRaGzubAdVkMpj78HZ2Z8rv5MZUUrx1yWmQUA1GBjoZWIfjgUQMsm2pYNEcDGTj7ITm9EWI8IstplponhIIK9kPF9CBRMePClV6AHUdC36B_FcY9stm890jZ0ujYoWMWVS6S8KODnXFFoR550SIv6nIgV2A2kHRRncjaSpBoG4ylYQgeJO-RlxUC62-kyMrnsszzaPzh83-APp50QJsWlGSwYyVtUgU8N9b16iDfdJDndVXzq4DrHSCIG9UZXms4MrLiLo_aw9kjtB3FiRjBl5qszCPsDQrOsedeA0HrHWnVI49rDm_fse-iNOcwWXR4vwVglfTuSDr9WlVLhwUDl7Gn1-57g6yCOInejyeHa-R2HSGC0VnrZLm4LM0zMDyL-Lk90pR8uWkp8hevZpsP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+autophagy-dependent+necroptosis+is+required+for+childhood+acute+lymphoblastic+leukemia+cells+to+overcome+glucocorticoid+resistance&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Bonapace%2C+Laura&rft.au=Bornhauser%2C+Beat+C&rft.au=Schmitz%2C+Maike&rft.au=Cario%2C+Gunnar&rft.date=2010-04-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.volume=120&rft.issue=4&rft.spage=1310&rft_id=info:doi/10.1172%2FJCI39987&rft.externalDocID=A241898625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon |