Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance

In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete r...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 120; no. 4; pp. 1310 - 1323
Main Authors Bonapace, Laura, Bornhauser, Beat C., Schmitz, Maike, Cario, Gunnar, Ziegler, Urs, Niggli, Felix K., Schäfer, Beat W., Schrappe, Martin, Stanulla, Martin, Bourquin, Jean-Pierre
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.04.2010
Subjects
Online AccessGet full text
ISSN0021-9738
1558-8238
1558-8238
DOI10.1172/JCI39987

Cover

Abstract In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
AbstractList In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multi-drug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological accroach into treatments for patients with refractory ALL.
Audience Academic
Author Bornhauser, Beat C.
Niggli, Felix K.
Bourquin, Jean-Pierre
Ziegler, Urs
Stanulla, Martin
Schäfer, Beat W.
Cario, Gunnar
Schmitz, Maike
Bonapace, Laura
Schrappe, Martin
AuthorAffiliation 1 Department of Oncology, University Children’s Hospital, University of Zurich, Switzerland. 2 Department of Pediatrics, University Hospital Schleswig Holstein, Kiel, Germany. 3 Center for Microscopy and Image Analysis, University of Zurich
AuthorAffiliation_xml – name: 1 Department of Oncology, University Children’s Hospital, University of Zurich, Switzerland. 2 Department of Pediatrics, University Hospital Schleswig Holstein, Kiel, Germany. 3 Center for Microscopy and Image Analysis, University of Zurich
Author_xml – sequence: 1
  givenname: Laura
  surname: Bonapace
  fullname: Bonapace, Laura
– sequence: 2
  givenname: Beat C.
  surname: Bornhauser
  fullname: Bornhauser, Beat C.
– sequence: 3
  givenname: Maike
  surname: Schmitz
  fullname: Schmitz, Maike
– sequence: 4
  givenname: Gunnar
  surname: Cario
  fullname: Cario, Gunnar
– sequence: 5
  givenname: Urs
  surname: Ziegler
  fullname: Ziegler, Urs
– sequence: 6
  givenname: Felix K.
  surname: Niggli
  fullname: Niggli, Felix K.
– sequence: 7
  givenname: Beat W.
  surname: Schäfer
  fullname: Schäfer, Beat W.
– sequence: 8
  givenname: Martin
  surname: Schrappe
  fullname: Schrappe, Martin
– sequence: 9
  givenname: Martin
  surname: Stanulla
  fullname: Stanulla, Martin
– sequence: 10
  givenname: Jean-Pierre
  surname: Bourquin
  fullname: Bourquin, Jean-Pierre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20200450$$D View this record in MEDLINE/PubMed
BookMark eNqN09tq3DAQAFBTUppNWugXFNFCLw9OJVm27JdCWHrZEgj09ipkabxWqpU2lhy6X9Ffrswm22wbaLHBYJ8ZeTSjo-zAeQdZ9pjgE0I4ff1xviiapub3shkpyzqvaVEfZDOMKckbXtSH2VEIFxgTxkr2IDukmGLMSjzLfi6cHlU03iHfITlGv-7lcpNrWIPT4CJyoAa_jj6YgNI9wOVoBtCo8wNSvbG6914jqcYIyG5W6963VoZoFLIwfoeVkUiBtQFFj_wVDMqvAC3tqLzyQ2Le6JQ0ZY_SKXiY3e-kDfDo-nmcfX339sv8Q352_n4xPz3LFcc45gWTsuyowk1NuqrhWreMy0ZXLdO41KWmrCpbTpTWpGkp1lqRmgMoXvGq5bw4zt5s867HdgVapUoHacV6MCs5bISXRux_caYXS38laM0qzFhK8OI6weAvRwhRrEyYCpUO_BgEL0vCEqb_lkVBWM0JTvLpH_LCj4NL-yBSv1JjaVUm9GyLltKCMK7z6f_UlFKcUkbqpq7opPI71BIcpGLS8HQmvd7zJ3f4dOnUQXVnwKu9gGQi_IhLOYYgFp8__b89_7Zvn9-yPUgb--DtOI1o2IdPbndw17qb2U7g5Rak-Q1hgG5HCBbTsRE3x-Z39TuqTJTTkmkXjP074BfpUBh4
CitedBy_id crossref_primary_10_1038_leu_2012_88
crossref_primary_10_1186_s12885_015_1535_z
crossref_primary_10_18632_oncotarget_2054
crossref_primary_10_1089_ars_2011_4078
crossref_primary_10_15252_embj_2020106700
crossref_primary_10_1039_C5OB00779H
crossref_primary_10_1016_j_bbcan_2016_03_003
crossref_primary_10_2174_1389450120666191021110208
crossref_primary_10_1007_s00761_011_2152_3
crossref_primary_10_1016_j_semnephrol_2012_06_011
crossref_primary_10_1016_j_yexcr_2012_02_006
crossref_primary_10_3390_biom10010100
crossref_primary_10_1016_j_canlet_2018_03_046
crossref_primary_10_1002_jcb_23314
crossref_primary_10_1016_j_ejmech_2018_12_059
crossref_primary_10_3389_fcell_2019_00040
crossref_primary_10_4049_jimmunol_1701681
crossref_primary_10_1007_s00018_016_2193_2
crossref_primary_10_1016_j_bcp_2023_115707
crossref_primary_10_1182_blood_2012_11_468702
crossref_primary_10_1038_cddis_2012_92
crossref_primary_10_1593_neo_101524
crossref_primary_10_2217_imt_2015_0015
crossref_primary_10_1158_0008_5472_CAN_14_1851
crossref_primary_10_1002_pauz_201200469
crossref_primary_10_1016_j_bbcan_2020_188430
crossref_primary_10_1016_j_bcp_2018_02_007
crossref_primary_10_1172_JCI74985
crossref_primary_10_1002_emmm_201201283
crossref_primary_10_1155_2014_502676
crossref_primary_10_3389_fphar_2018_00384
crossref_primary_10_1182_blood_2014_06_583062
crossref_primary_10_1007_s11899_010_0051_0
crossref_primary_10_1101_pdb_top073585
crossref_primary_10_1089_ars_2010_3485
crossref_primary_10_4161_cc_21336
crossref_primary_10_1016_j_bone_2013_01_034
crossref_primary_10_3109_10428194_2013_855307
crossref_primary_10_1016_j_toxicon_2019_04_012
crossref_primary_10_1038_cddis_2015_16
crossref_primary_10_1038_cdd_2014_204
crossref_primary_10_1182_blood_2011_04_346528
crossref_primary_10_1158_1535_7163_MCT_12_0954
crossref_primary_10_1126_scitranslmed_aad2986
crossref_primary_10_1016_j_bbamcr_2013_06_001
crossref_primary_10_4161_auto_26452
crossref_primary_10_4103_ijc_IJC_567_19
crossref_primary_10_1038_onc_2014_458
crossref_primary_10_1038_cdd_2013_45
crossref_primary_10_1182_bloodadvances_2019000796
crossref_primary_10_3109_10428194_2015_1088650
crossref_primary_10_1126_science_1250256
crossref_primary_10_1515_hsz_2018_0105
crossref_primary_10_1002_iub_2411
crossref_primary_10_1016_j_freeradbiomed_2019_01_008
crossref_primary_10_1038_cddis_2013_155
crossref_primary_10_1038_bcj_2014_96
crossref_primary_10_1371_journal_pone_0155893
crossref_primary_10_3389_fonc_2017_00128
crossref_primary_10_1016_j_tcb_2011_03_007
crossref_primary_10_3390_cancers10120490
crossref_primary_10_4161_cbt_26428
crossref_primary_10_1158_1078_0432_CCR_14_0259
crossref_primary_10_1128_MCB_01383_13
crossref_primary_10_3390_cells3020418
crossref_primary_10_1155_2013_348212
crossref_primary_10_18632_oncotarget_11085
crossref_primary_10_3109_08880018_2011_613094
crossref_primary_10_1016_j_jormas_2023_101565
crossref_primary_10_1007_s10495_010_0561_1
crossref_primary_10_3390_cancers14205072
crossref_primary_10_1016_j_jep_2024_118658
crossref_primary_10_1038_cddis_2014_61
crossref_primary_10_1182_blood_2010_07_298356
crossref_primary_10_1038_s41392_018_0018_5
crossref_primary_10_1097_PAT_0b013e32834b1b34
crossref_primary_10_1155_2019_3618510
crossref_primary_10_1016_j_prp_2019_152652
crossref_primary_10_18632_oncotarget_10548
crossref_primary_10_1002_adhm_202202506
crossref_primary_10_1038_aps_2017_100
crossref_primary_10_1111_cpr_12167
crossref_primary_10_3109_10428194_2010_506570
crossref_primary_10_1155_2017_3982906
crossref_primary_10_1039_C7FO01040K
crossref_primary_10_1007_s10750_017_3291_3
crossref_primary_10_1016_j_healun_2014_12_008
crossref_primary_10_1042_BJ20120972
crossref_primary_10_2147_COPD_S265728
crossref_primary_10_1007_s11010_016_2853_4
crossref_primary_10_4161_auto_7_2_14212
crossref_primary_10_1007_s10495_018_1480_9
crossref_primary_10_1038_icb_2016_120
crossref_primary_10_1016_j_semcancer_2013_05_006
crossref_primary_10_1016_j_bcp_2014_12_018
crossref_primary_10_1089_ars_2022_0110
crossref_primary_10_1016_j_bcp_2020_113915
crossref_primary_10_3109_10428194_2011_580023
crossref_primary_10_1371_journal_pone_0076235
crossref_primary_10_1016_j_canlet_2023_216518
crossref_primary_10_1002_ijc_32865
crossref_primary_10_1038_ng_3362
crossref_primary_10_1002_jcp_31087
crossref_primary_10_1016_j_critrevonc_2011_08_004
crossref_primary_10_3892_mmr_2014_2234
crossref_primary_10_2174_1389557522666220905090732
crossref_primary_10_1007_s12032_016_0743_y
crossref_primary_10_1016_j_semcdb_2014_07_002
crossref_primary_10_1007_s12253_011_9433_4
crossref_primary_10_7717_peerj_2026
crossref_primary_10_12677_ACM_2024_142401
crossref_primary_10_18632_oncotarget_2318
crossref_primary_10_1080_01635581_2013_815234
crossref_primary_10_1016_j_neubiorev_2024_105788
crossref_primary_10_18632_oncotarget_2572
crossref_primary_10_1016_j_jbc_2024_107581
crossref_primary_10_4161_auto_22923
crossref_primary_10_1038_leu_2017_10
crossref_primary_10_2217_ijh_13_43
crossref_primary_10_1016_j_jcmgh_2016_04_002
crossref_primary_10_1016_j_ijpddr_2016_10_003
crossref_primary_10_1038_cddis_2010_53
crossref_primary_10_1371_journal_pone_0178606
crossref_primary_10_1016_j_canlet_2011_06_016
crossref_primary_10_1007_s40265_019_01163_4
crossref_primary_10_1186_s12885_019_6195_y
crossref_primary_10_3390_molecules191220295
crossref_primary_10_1038_cr_2011_152
crossref_primary_10_1016_j_tice_2022_101910
crossref_primary_10_1038_srep21992
crossref_primary_10_1155_2012_435342
crossref_primary_10_1182_blood_2014_03_564534
crossref_primary_10_1002_jcb_24829
crossref_primary_10_1016_j_ctrv_2010_02_005
crossref_primary_10_1038_cdd_2014_143
crossref_primary_10_1016_j_bbamcr_2014_09_023
crossref_primary_10_14348_molcells_2021_0193
crossref_primary_10_1016_j_toxlet_2012_01_019
crossref_primary_10_1186_s12989_020_00372_0
crossref_primary_10_1007_s10495_021_01687_9
crossref_primary_10_1016_j_biocel_2015_06_016
crossref_primary_10_1038_ncomms6637
crossref_primary_10_1186_s13046_015_0186_x
crossref_primary_10_1016_j_critrevonc_2011_03_009
crossref_primary_10_3390_cancers15020445
crossref_primary_10_1038_bcj_2017_61
crossref_primary_10_1038_cdd_2016_8
crossref_primary_10_3390_cancers13225622
crossref_primary_10_1002_jcp_28903
crossref_primary_10_3389_fonc_2021_617937
crossref_primary_10_1038_s43018_020_0037_3
crossref_primary_10_3109_07853890_2014_941921
crossref_primary_10_3390_cells8020103
crossref_primary_10_4161_auto_22145
crossref_primary_10_1182_blood_2012_04_425033
crossref_primary_10_1111_j_1365_2141_2010_08312_x
crossref_primary_10_1182_blood_2011_07_366203
crossref_primary_10_3390_cancers9120161
crossref_primary_10_18632_oncotarget_1018
crossref_primary_10_1586_ehm_10_39
crossref_primary_10_1016_j_ejca_2014_03_011
crossref_primary_10_1039_C9RA08049J
crossref_primary_10_1016_j_biopha_2023_115165
crossref_primary_10_1007_s00018_016_2200_7
crossref_primary_10_1038_cddis_2010_86
crossref_primary_10_3390_biomedicines9101353
crossref_primary_10_1038_leu_2010_170
crossref_primary_10_1038_s41419_022_04974_8
crossref_primary_10_1007_s10549_011_1930_3
crossref_primary_10_1182_blood_2010_07_296913
crossref_primary_10_3390_ijms21197334
crossref_primary_10_1016_j_phymed_2016_09_003
crossref_primary_10_1200_JCO_2017_77_3648
crossref_primary_10_1016_j_bbamcr_2010_11_024
crossref_primary_10_1016_j_preteyeres_2013_08_001
crossref_primary_10_1038_leu_2012_276
crossref_primary_10_1016_j_canlet_2017_10_047
crossref_primary_10_1016_j_gene_2019_04_040
crossref_primary_10_1038_cddiscovery_2016_96
crossref_primary_10_1089_dna_2014_2602
crossref_primary_10_3390_cancers10100360
crossref_primary_10_1038_onc_2013_256
crossref_primary_10_1186_s12885_015_1929_y
crossref_primary_10_1517_13543776_2012_644274
crossref_primary_10_1017_S1462399410001572
crossref_primary_10_1038_s42003_022_04248_1
crossref_primary_10_18632_oncotarget_477
crossref_primary_10_1016_j_ymthe_2019_01_012
crossref_primary_10_1186_s12967_017_1223_7
crossref_primary_10_1111_jcmm_12855
crossref_primary_10_7554_eLife_05682
crossref_primary_10_1182_blood_2016_09_738070
crossref_primary_10_3390_cancers12082185
crossref_primary_10_1593_neo_11610
crossref_primary_10_1182_blood_2010_11_320309
crossref_primary_10_1038_onc_2017_59
crossref_primary_10_1002_ptr_7483
crossref_primary_10_1016_j_kint_2015_11_021
crossref_primary_10_1513_AnnalsATS_201507_450MG
crossref_primary_10_3389_fsurg_2022_905897
crossref_primary_10_1016_j_biopha_2019_108714
crossref_primary_10_1007_BF03262418
crossref_primary_10_3390_biomedicines10071596
crossref_primary_10_3892_ol_2016_5367
crossref_primary_10_1016_j_jff_2016_05_018
crossref_primary_10_4161_auto_7_11_17661
crossref_primary_10_12677_ACM_2024_141266
crossref_primary_10_1016_j_cellsig_2020_109770
crossref_primary_10_1111_ejh_12753
crossref_primary_10_1371_journal_pone_0132829
crossref_primary_10_18632_oncotarget_11028
crossref_primary_10_1016_j_bcp_2017_03_006
crossref_primary_10_1371_journal_pone_0150696
crossref_primary_10_1096_fj_11_182519
crossref_primary_10_3390_cells8070674
crossref_primary_10_3390_cancers11101599
crossref_primary_10_1111_j_1582_4934_2011_01341_x
crossref_primary_10_1016_j_critrevonc_2017_02_004
crossref_primary_10_1016_j_semcancer_2013_08_008
crossref_primary_10_1016_j_resinv_2016_03_008
crossref_primary_10_1186_s13046_018_0976_z
crossref_primary_10_1038_s41416_020_0824_8
crossref_primary_10_3390_ijms18091959
crossref_primary_10_1080_15548627_2018_1476812
crossref_primary_10_1016_j_taap_2012_11_001
crossref_primary_10_1111_j_1440_1754_2011_02212_x
crossref_primary_10_1111_jfbc_13366
crossref_primary_10_1007_s00018_011_0667_9
crossref_primary_10_1182_blood_2011_09_378141
crossref_primary_10_1007_s13277_016_4943_z
crossref_primary_10_1007_s13277_016_5395_1
crossref_primary_10_1177_1087057114546550
Cites_doi 10.1038/ncb1192
10.1182/blood-2006-12-060970
10.1182/blood-2008-02-137943
10.1056/NEJMoa033513
10.1172/JCI20039
10.1038/sj.emboj.7601689
10.1016/j.cub.2007.01.027
10.2353/ajpath.2008.070876
10.1074/jbc.M303723200
10.1016/j.molcel.2004.12.030
10.1182/blood-2006-07-034173
10.1016/j.cell.2007.12.018
10.1016/j.ccr.2007.07.001
10.1126/science.1096645
10.1038/cdd.2009.46
10.1172/JCI30235
10.1073/pnas.0808597105
10.1016/j.ccr.2006.10.006
10.4049/jimmunol.174.10.6477
10.1182/blood-2004-05-2023
10.1038/nchembio.83
10.1038/nrm2529
10.1002/j.1460-2075.1996.tb01007.x
10.1016/S1097-2765(00)00136-2
10.1074/jbc.M610023200
10.1016/j.cell.2008.10.044
10.1182/blood-2003-09-3022
10.1073/pnas.0408345102
10.1016/j.cell.2007.10.048
10.1038/nature03579
10.1016/j.ceb.2005.09.009
10.1016/j.cell.2008.12.004
10.1016/j.cell.2009.07.006
10.1016/j.cell.2005.07.002
10.1172/JCI37948
10.1016/j.devcel.2007.09.007
10.1371/journal.pone.0007124
10.1182/blood-2007-09-114314
10.1016/j.cub.2009.08.042
10.1056/NEJMra052603
10.1038/nchembio711
10.1158/1078-0432.CCR-08-0999
10.1073/pnas.2436255100
10.1038/82732
10.1016/j.molcel.2006.02.009
10.1016/j.ccr.2006.09.006
10.1007/978-1-60327-017-5_6
10.1038/sj.onc.1209034
10.1158/0008-5472.CAN-07-1919
10.1038/sj.cdd.4402149
10.1016/j.ccr.2007.05.008
10.1158/0008-5472.CAN-06-4244
10.1182/blood-2006-01-0261
10.1182/blood-2007-02-073213
10.1073/pnas.0709443104
10.1182/blood.V110.11.585.585
10.1016/j.ccr.2006.08.027
10.1016/j.ccr.2006.03.027
ContentType Journal Article
Copyright COPYRIGHT 2010 American Society for Clinical Investigation
Copyright American Society for Clinical Investigation Apr 2010
Copyright © 2010, American Society for Clinical Investigation
Copyright_xml – notice: COPYRIGHT 2010 American Society for Clinical Investigation
– notice: Copyright American Society for Clinical Investigation Apr 2010
– notice: Copyright © 2010, American Society for Clinical Investigation
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7RV
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0X
7X8
7T5
H94
5PM
DOI 10.1172/JCI39987
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SIRS Editorial
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList MEDLINE

ProQuest Central Student
MEDLINE - Academic
AIDS and Cancer Research Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-8238
EndPage 1323
ExternalDocumentID PMC2846044
2005995061
A241898625
20200450
10_1172_JCI39987
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-~X
.55
.XZ
08G
08P
29K
354
36B
5GY
5RE
5RS
7RV
7X7
88E
8AO
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAWTL
AAYOK
AAYXX
ABOCM
ABPMR
ABUWG
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
AEAQA
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
IOF
IOV
IPO
ISR
ITC
KQ8
L7B
LK8
M1P
M5~
M7P
NAPCQ
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OK1
OVD
OVIDX
OVT
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPM
S0X
SJFOW
SV3
TEORI
TR2
TVE
UKHRP
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZY1
~H1
.GJ
2WC
3O-
3V.
53G
88A
AAKAS
ADZCM
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
H~9
INR
J5H
M0L
MVM
N4W
NPM
OHT
PKN
UHU
VH1
ZGI
ZXP
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
7T5
H94
5PM
ID FETCH-LOGICAL-c700t-34aa5f2c0981f697ddb47a9d6b4d05d5d2465b71cdd19b20ddc187eec7676b773
IEDL.DBID 7X7
ISSN 0021-9738
1558-8238
IngestDate Thu Aug 21 14:30:35 EDT 2025
Thu Sep 04 22:07:41 EDT 2025
Fri Sep 05 11:41:30 EDT 2025
Fri Jul 25 19:29:37 EDT 2025
Tue Jun 17 22:07:03 EDT 2025
Fri Jun 13 00:01:43 EDT 2025
Tue Jun 10 21:04:52 EDT 2025
Fri Jun 27 05:48:45 EDT 2025
Fri Jun 27 05:41:57 EDT 2025
Thu May 22 21:24:44 EDT 2025
Wed Feb 19 01:51:23 EST 2025
Tue Jul 01 00:54:14 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c700t-34aa5f2c0981f697ddb47a9d6b4d05d5d2465b71cdd19b20ddc187eec7676b773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Authorship note: Laura Bonapace and Beat C. Bornhauser contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2846044
PMID 20200450
PQID 200558265
PQPubID 42166
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2846044
proquest_miscellaneous_755142842
proquest_miscellaneous_733148710
proquest_journals_200558265
gale_infotracmisc_A241898625
gale_infotracgeneralonefile_A241898625
gale_infotracacademiconefile_A241898625
gale_incontextgauss_ISR_A241898625
gale_incontextgauss_IOV_A241898625
gale_healthsolutions_A241898625
pubmed_primary_20200450
crossref_primary_10_1172_JCI39987
crossref_citationtrail_10_1172_JCI39987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Ann Arbor
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 2010
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References B20
B21
Ting (B37) 1996; 15
B22
B23
B24
B25
B26
B27
Miao (B34) 2009; 559
B28
B29
Shultz (B39) 2005; 174
B30
B31
B32
B33
B35
B36
B38
B1
B4
Schrauder (B3) 2007; 110
B5
B6
B7
B8
B9
Samraj (B59) 2006; 25
B40
B41
B43
B44
B45
B46
B47
B48
B49
Qu (B42) 2003; 112
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B16
B17
B18
B19
Schrappe (B2) 2004; 83
17097560 - Cancer Cell. 2006 Nov;10(5):375-88
16116473 - Oncogene. 2006 Jan 12;25(2):186-97
15070701 - Blood. 2004 Apr 15;103(8):3185-91
12736248 - J Biol Chem. 2003 Jul 18;278(29):27053-8
17483364 - Cancer Res. 2007 May 1;67(9):4482-90
17431417 - Cell Death Differ. 2007 Jul;14(7):1247-50
17446862 - EMBO J. 2007 May 16;26(10):2527-39
18040043 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19512-7
18191218 - Cell. 2008 Jan 11;132(1):27-42
18971948 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10
19632174 - Cell. 2009 Jul 23;138(2):229-32
16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9
11163212 - Mol Cell. 2000 Dec;6(6):1389-99
14657337 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15077-82
11101870 - Nat Immunol. 2000 Dec;1(6):489-95
15572593 - Blood. 2005 Mar 15;105(6):2519-26
15879151 - J Immunol. 2005 May 15;174(10):6477-89
17227835 - Blood. 2007 May 15;109(10):4441-9
19609750 - Methods Mol Biol. 2009;559:79-93
15596714 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18030-5
17306544 - Curr Biol. 2007 Mar 6;17(5):418-24
18083103 - Cell. 2007 Dec 14;131(6):1137-48
16543145 - Mol Cell. 2006 Mar 17;21(6):749-60
17652622 - Blood. 2007 Nov 15;110(10):3662-72
15124702 - Ann Hematol. 2004;83 Suppl 1:S121-3
17537996 - Blood. 2007 Sep 15;110(6):2084-91
15131264 - Science. 2004 Jun 4;304(5676):1500-2
17613433 - Cancer Cell. 2007 Jul;12(1):9-22
18931344 - Blood. 2009 Jan 8;113(2):299-305
18408713 - Nat Chem Biol. 2008 May;4(5):313-21
19771169 - PLoS One. 2009;4(9):e7124
18187572 - Am J Pathol. 2008 Feb;172(2):454-69
16574952 - Blood. 2006 Aug 1;108(3):1045-9
8947041 - EMBO J. 1996 Nov 15;15(22):6189-96
19088047 - Clin Cancer Res. 2008 Dec 15;14(24):8295-301
16179260 - Cell. 2005 Sep 23;122(6):927-39
19818615 - Curr Biol. 2009 Nov 3;19(20):1741-6
16697956 - Cancer Cell. 2006 May;9(5):351-65
15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42
19109899 - Cell. 2008 Dec 26;135(7):1311-23
15694340 - Mol Cell. 2005 Feb 4;17(3):393-403
15558033 - Nat Cell Biol. 2004 Dec;6(12):1221-8
17074751 - J Biol Chem. 2006 Dec 22;281(51):39128-34
17692808 - Cancer Cell. 2007 Aug;12(2):171-85
14638851 - J Clin Invest. 2003 Dec;112(12):1809-20
18946037 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16677-82
15902208 - Nature. 2005 Jun 2;435(7042):677-81
18451169 - Cancer Res. 2008 May 1;68(9):3413-20
16226444 - Curr Opin Cell Biol. 2005 Dec;17(6):596-603
16407512 - N Engl J Med. 2006 Jan 12;354(2):166-78
19109884 - Cell. 2008 Dec 26;135(7):1161-3
19390558 - Cell Death Differ. 2009 Jul;16(7):1018-29
19036706 - Blood. 2009 Feb 19;113(8):1710-22
19425170 - J Clin Invest. 2009 May;119(5):1359-72
17097561 - Cancer Cell. 2006 Nov;10(5):389-99
17380207 - J Clin Invest. 2007 Apr;117(4):1049-57
17981138 - Dev Cell. 2007 Nov;13(5):705-16
17010674 - Cancer Cell. 2006 Oct;10(4):331-42
References_xml – ident: B11
  doi: 10.1038/ncb1192
– ident: B50
  doi: 10.1182/blood-2006-12-060970
– ident: B9
  doi: 10.1182/blood-2008-02-137943
– ident: B4
  doi: 10.1056/NEJMoa033513
– volume: 112
  start-page: 1809
  year: 2003
  ident: B42
  publication-title: J Clin Invest.
  doi: 10.1172/JCI20039
– ident: B14
  doi: 10.1038/sj.emboj.7601689
– ident: B19
  doi: 10.1016/j.cub.2007.01.027
– ident: B45
  doi: 10.2353/ajpath.2008.070876
– ident: B52
  doi: 10.1074/jbc.M303723200
– ident: B30
  doi: 10.1016/j.molcel.2004.12.030
– ident: B7
  doi: 10.1182/blood-2006-07-034173
– ident: B44
  doi: 10.1016/j.cell.2007.12.018
– ident: B21
  doi: 10.1016/j.ccr.2007.07.001
– ident: B12
  doi: 10.1126/science.1096645
– ident: B49
  doi: 10.1038/cdd.2009.46
– ident: B57
  doi: 10.1172/JCI30235
– ident: B41
  doi: 10.1073/pnas.0808597105
– ident: B22
  doi: 10.1016/j.ccr.2006.10.006
– volume: 174
  start-page: 6477
  year: 2005
  ident: B39
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.174.10.6477
– ident: B32
  doi: 10.1182/blood-2004-05-2023
– ident: B17
  doi: 10.1038/nchembio.83
– ident: B13
  doi: 10.1038/nrm2529
– volume: 15
  start-page: 6189
  year: 1996
  ident: B37
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01007.x
– ident: B26
  doi: 10.1016/S1097-2765(00)00136-2
– ident: B28
  doi: 10.1074/jbc.M610023200
– ident: B18
  doi: 10.1016/j.cell.2008.10.044
– ident: B40
  doi: 10.1182/blood-2003-09-3022
– ident: B24
  doi: 10.1073/pnas.0408345102
– ident: B47
  doi: 10.1016/j.cell.2007.10.048
– ident: B20
  doi: 10.1038/nature03579
– ident: B27
  doi: 10.1016/j.ceb.2005.09.009
– ident: B36
  doi: 10.1016/j.cell.2008.12.004
– ident: B35
  doi: 10.1016/j.cell.2009.07.006
– ident: B15
  doi: 10.1016/j.cell.2005.07.002
– ident: B46
  doi: 10.1172/JCI37948
– ident: B38
  doi: 10.1016/j.devcel.2007.09.007
– ident: B53
  doi: 10.1371/journal.pone.0007124
– ident: B33
  doi: 10.1182/blood-2007-09-114314
– ident: B48
  doi: 10.1016/j.cub.2009.08.042
– ident: B1
  doi: 10.1056/NEJMra052603
– ident: B56
  doi: 10.1038/nchembio711
– ident: B10
  doi: 10.1158/1078-0432.CCR-08-0999
– ident: B43
  doi: 10.1073/pnas.2436255100
– ident: B16
  doi: 10.1038/82732
– volume: 83
  start-page: S121
  year: 2004
  ident: B2
  publication-title: Ann Hematol.
– ident: B31
  doi: 10.1016/j.molcel.2006.02.009
– ident: B5
  doi: 10.1016/j.ccr.2006.09.006
– volume: 559
  start-page: 79
  year: 2009
  ident: B34
  publication-title: Methods Mol Biol.
  doi: 10.1007/978-1-60327-017-5_6
– volume: 25
  start-page: 186
  year: 2006
  ident: B59
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1209034
– ident: B8
  doi: 10.1158/0008-5472.CAN-07-1919
– ident: B25
  doi: 10.1038/sj.cdd.4402149
– ident: B51
  doi: 10.1016/j.ccr.2007.05.008
– ident: B54
  doi: 10.1158/0008-5472.CAN-06-4244
– ident: B55
  doi: 10.1182/blood-2006-01-0261
– ident: B58
  doi: 10.1182/blood-2007-02-073213
– ident: B6
  doi: 10.1073/pnas.0709443104
– volume: 110
  start-page: 585
  year: 2007
  ident: B3
  publication-title: Blood.
  doi: 10.1182/blood.V110.11.585.585
– ident: B23
  doi: 10.1016/j.ccr.2006.08.027
– ident: B29
  doi: 10.1016/j.ccr.2006.03.027
– reference: 17227835 - Blood. 2007 May 15;109(10):4441-9
– reference: 19109884 - Cell. 2008 Dec 26;135(7):1161-3
– reference: 15070701 - Blood. 2004 Apr 15;103(8):3185-91
– reference: 17483364 - Cancer Res. 2007 May 1;67(9):4482-90
– reference: 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9
– reference: 19425170 - J Clin Invest. 2009 May;119(5):1359-72
– reference: 19771169 - PLoS One. 2009;4(9):e7124
– reference: 19632174 - Cell. 2009 Jul 23;138(2):229-32
– reference: 12736248 - J Biol Chem. 2003 Jul 18;278(29):27053-8
– reference: 17981138 - Dev Cell. 2007 Nov;13(5):705-16
– reference: 15694340 - Mol Cell. 2005 Feb 4;17(3):393-403
– reference: 15558033 - Nat Cell Biol. 2004 Dec;6(12):1221-8
– reference: 19088047 - Clin Cancer Res. 2008 Dec 15;14(24):8295-301
– reference: 18946037 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16677-82
– reference: 16697956 - Cancer Cell. 2006 May;9(5):351-65
– reference: 17010674 - Cancer Cell. 2006 Oct;10(4):331-42
– reference: 18187572 - Am J Pathol. 2008 Feb;172(2):454-69
– reference: 15879151 - J Immunol. 2005 May 15;174(10):6477-89
– reference: 16179260 - Cell. 2005 Sep 23;122(6):927-39
– reference: 14638851 - J Clin Invest. 2003 Dec;112(12):1809-20
– reference: 17537996 - Blood. 2007 Sep 15;110(6):2084-91
– reference: 17431417 - Cell Death Differ. 2007 Jul;14(7):1247-50
– reference: 16574952 - Blood. 2006 Aug 1;108(3):1045-9
– reference: 17306544 - Curr Biol. 2007 Mar 6;17(5):418-24
– reference: 18408713 - Nat Chem Biol. 2008 May;4(5):313-21
– reference: 19109899 - Cell. 2008 Dec 26;135(7):1311-23
– reference: 17446862 - EMBO J. 2007 May 16;26(10):2527-39
– reference: 17380207 - J Clin Invest. 2007 Apr;117(4):1049-57
– reference: 18971948 - Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10
– reference: 15572593 - Blood. 2005 Mar 15;105(6):2519-26
– reference: 15124702 - Ann Hematol. 2004;83 Suppl 1:S121-3
– reference: 18451169 - Cancer Res. 2008 May 1;68(9):3413-20
– reference: 18931344 - Blood. 2009 Jan 8;113(2):299-305
– reference: 15131264 - Science. 2004 Jun 4;304(5676):1500-2
– reference: 17097561 - Cancer Cell. 2006 Nov;10(5):389-99
– reference: 16407512 - N Engl J Med. 2006 Jan 12;354(2):166-78
– reference: 18083103 - Cell. 2007 Dec 14;131(6):1137-48
– reference: 11101870 - Nat Immunol. 2000 Dec;1(6):489-95
– reference: 19390558 - Cell Death Differ. 2009 Jul;16(7):1018-29
– reference: 19609750 - Methods Mol Biol. 2009;559:79-93
– reference: 15902208 - Nature. 2005 Jun 2;435(7042):677-81
– reference: 16543145 - Mol Cell. 2006 Mar 17;21(6):749-60
– reference: 8947041 - EMBO J. 1996 Nov 15;15(22):6189-96
– reference: 14657337 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15077-82
– reference: 18040043 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19512-7
– reference: 16116473 - Oncogene. 2006 Jan 12;25(2):186-97
– reference: 17613433 - Cancer Cell. 2007 Jul;12(1):9-22
– reference: 16226444 - Curr Opin Cell Biol. 2005 Dec;17(6):596-603
– reference: 17074751 - J Biol Chem. 2006 Dec 22;281(51):39128-34
– reference: 18191218 - Cell. 2008 Jan 11;132(1):27-42
– reference: 15596714 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18030-5
– reference: 19036706 - Blood. 2009 Feb 19;113(8):1710-22
– reference: 17692808 - Cancer Cell. 2007 Aug;12(2):171-85
– reference: 11163212 - Mol Cell. 2000 Dec;6(6):1389-99
– reference: 15295046 - N Engl J Med. 2004 Aug 5;351(6):533-42
– reference: 19818615 - Curr Biol. 2009 Nov 3;19(20):1741-6
– reference: 17097560 - Cancer Cell. 2006 Nov;10(5):375-88
– reference: 17652622 - Blood. 2007 Nov 15;110(10):3662-72
SSID ssj0014454
Score 2.4782522
Snippet In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1310
SubjectTerms Acute lymphocytic leukemia
Apoptosis
Apoptosis - drug effects
Apoptosis Regulatory Proteins - chemistry
Apoptosis Regulatory Proteins - physiology
Autophagy
Autophagy (Cytology)
Beclin-1
Biomedical research
Care and treatment
Cell death
Chemotherapy
Corticosteroids
Cytotoxicity
Development and progression
Dexamethasone - therapeutic use
Dosage and administration
Drug resistance
Drug Resistance, Multiple
Drug Resistance, Neoplasm
Glucocorticoids - therapeutic use
Humans
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Kinases
Leukemia
Leukemia in children
Lymphoblastic leukemia in children
Lymphocytic leukemia in children
Membrane Proteins - chemistry
Membrane Proteins - physiology
Myeloid Cell Leukemia Sequence 1 Protein
Nuclear Pore Complex Proteins - physiology
Observations
Physiological aspects
Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology
Protein-Serine-Threonine Kinases - antagonists & inhibitors
Proto-Oncogene Proteins c-bcl-2 - chemistry
Pyrroles - pharmacology
RNA-Binding Proteins - physiology
TOR Serine-Threonine Kinases
Xenograft Model Antitumor Assays
Title Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/20200450
https://www.proquest.com/docview/200558265
https://www.proquest.com/docview/733148710
https://www.proquest.com/docview/755142842
https://pubmed.ncbi.nlm.nih.gov/PMC2846044
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWglRAXxDdpSzEI0VPUJBvb6xMqpVW3qAUVivYWObazhC5JaZJDfwV_mZnEiTaoqpD2svJLNuuxPTPO8xtC3nKpuObM-jpkGSQoWuOcM74W0popi8Gn4dnhk1N-dB4fz9nccXMqR6vs18R2oTalxj3yXdz9YBALs_eXv30sGoUvV10FjbtkPYRABCs3iPmQb0GqwJwIc-hLMZk67Vlw2bs_dQ6eGXl0K97o3zV5xSmNCZMrHujwIXngQke619n6Eblji8fk3ol7Of6E_MEyHO0xBVpmVDUoGaAW135f57amhcWCXXVZ5RWFz5VFGrA1FAJXqnuNY6p0U1u6vAY7lykE1_BzdGmbC_srVxQ3-italxSpn9Bzlrakd8hhAVbmBm5aYUgKY-kpOT88-LZ_5Lt6C2CZIKj9SawUyyIdyGmYcSmMSWOhpOFpbAJmmIlizlIRamNCmUaBMTqcCmu14IKnQkyekbWiLOwLQsHpRVLHZpLpNGYiUCHHGh8yspjRyNQjO32_J9qJkWNNjGXSJiUiSo73Z62FPPJ6QF52Ahw3YF6h6ZLu6OgwZ5M9CE-mEnI25pE3LQIVLwqk1CxUU1XJ7PP3_wB9PRuBdhwoK-GJtXLHGOB_o5LWCPluhFx0OuI3AbdGQJjgetS82Y_IxC0wVTJMB4_QoRUvRM5cYcumSrAaJ6SjYXALBONltJVHnncjfOjjKMD1k8HFYjT2BwDqko9bivxHq08ON-RBHG_c-tyb5H5HxEAS1BZZq68a-xLiuzrdbmfxNln_cHD65Qy-fZx9-gunhlVM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviDtlgxkE7Claktpx8zChMTa121rQ2NDegmO7pVCSsSRC_RX8Iv4b5yRO1KBp4mVS3_zFdXKOz8U-F0JeBaEMVMCNozw-AQdFKdxz2lEiNLrPGeg0zB0ejYPBKTs442cr5E-dC4NhlbVMLAW1ThWekW_h6QcHW5i_Pf_pYNMovFytO2hI21lBb5cVxmxex6FZ_AIPLtsevgdyv_b9_b2T3YFjmwzAclw3d3pMSj7xlRv2vUkQCq1jJmSog5hpl2uufRbwWHhKay-MfVdr5fWFMUoEIoiF6MG8N8gqw_OTDll9tzf-eNxcYzDGbRlozwlFr2-r34LRsPVNzcA2wEi-JX34r1ZYUovtkM0lHbh_l9yxxivdqbjtHlkxyX1yc2Sv5x-Q39gIpEyUoOmEygKLFsjpwqk77eY0MdgyLE-zWUbhd2EwENloCqYzVXWVZSpVkRs6XwCnpTGY9_B3dG6K7-bHTFK8ashonlIMPgXaGVqG3YMXDbB0pmHSDI1i4OaH5PRaiPGIdJI0MU8IBbXrh4rp3kTFjAtXegF2GQl9gz5VGHfJZv3dI2XLoWNXjnlUukXCjw52hyWFuuRFgzyvSoBcgtlA0kVV8mojNaIdMJD6IXiNvEtelgisuZFgUM9UFlkWDT98_g_Qp-MWaNOCJimsWEmbSAHvjbW8Wsg3LeS0qmR-GXC9BQQRo1rDazVHRlbEZVGzIbuENqP4IEbtJSYtsgj7gYJD7LlXQNBiR1p1yeOKw5tv7LsowTk8LFq83wCwMnp7JJl9LSukw4SBy9jTK9e9QW4NTkZH0dFwfLhGbldhIRiStU46-UVhnoG1mcfP7Z6m5Mt1i5G_hwiWyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJk28IO6UDWYQsKeoSWrHzcOExrZq3ViZBkN7C47tjEJJxpII9Vfwu_hXnJM4UYOmiZdJffNn18k5Ppf4XAh5FYQyUAE3jvJ4Ag6KUnjmtKNEaPSQM9BpmDt8NAn2T9nBGT9bIn-aXBgMq2xkYiWodabwG3kfv35wsIV5P7FREce7o7cXPx1sIIUXrU03DWm7LOitqtqYzfE4NPNf4M3lW-NdIP1r3x_tfdrZd2zDAdia6xbOgEnJE1-54dBLglBoHTMhQx3ETLtcc-2zgMfCU1p7Yey7WitvKIxRIhBBLMQA1r1FVgQoffADV97tTY5P2isNxrgtCe05oRgMbSVcMCD639QUpmBU34Ju_FdDLKjIbvjmgj4c3SV3rCFLt2vOu0eWTHqfrB7Zq_oH5Dc2BamSJmiWUFliAQN5PnearrsFTQ22DyuyfJpT-F0aDEo2moIZTVVTcZlKVRaGzubAdVkMpj78HZ2Z8rv5MZUUrx1yWmQUA1GBjoZWIfjgUQMsm2pYNEcDGTj7ITm9EWI8IstplponhIIK9kPF9CBRMePClV6AHUdC36B_FcY9stm890jZ0ujYoWMWVS6S8KODnXFFoR550SIv6nIgV2A2kHRRncjaSpBoG4ylYQgeJO-RlxUC62-kyMrnsszzaPzh83-APp50QJsWlGSwYyVtUgU8N9b16iDfdJDndVXzq4DrHSCIG9UZXms4MrLiLo_aw9kjtB3FiRjBl5qszCPsDQrOsedeA0HrHWnVI49rDm_fse-iNOcwWXR4vwVglfTuSDr9WlVLhwUDl7Gn1-57g6yCOInejyeHa-R2HSGC0VnrZLm4LM0zMDyL-Lk90pR8uWkp8hevZpsP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+autophagy-dependent+necroptosis+is+required+for+childhood+acute+lymphoblastic+leukemia+cells+to+overcome+glucocorticoid+resistance&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Bonapace%2C+Laura&rft.au=Bornhauser%2C+Beat+C&rft.au=Schmitz%2C+Maike&rft.au=Cario%2C+Gunnar&rft.date=2010-04-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.volume=120&rft.issue=4&rft.spage=1310&rft_id=info:doi/10.1172%2FJCI39987&rft.externalDocID=A241898625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon