Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association
Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunc...
Saved in:
| Published in | PLoS genetics Vol. 10; no. 11; p. e1004798 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.11.2014
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7404 1553-7390 1553-7404 |
| DOI | 10.1371/journal.pgen.1004798 |
Cover
| Abstract | Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome. |
|---|---|
| AbstractList | Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome. Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome. We have systematically measured the effect of normal genetic variation present in a human population on the binding of a specific chromatin protein (CTCF) to DNA by measuring its binding in 51 human cell lines. We observed a large number of changes in protein binding that we can confidently attribute to genetic effects. The corresponding genetic changes are often clustered around the binding motif for CTCF, but only a minority are actually within the motif. Unexpectedly, we also find that at most binding sites on the X chromosome, CTCF binding occurs equally on both the X chromosomes in females at the same level as on the single X chromosome in males. This finding suggests that in general, CTCF binding is not subject to global dosage compensation, the process which equalizes gene expression levels from the two female X chromosomes and the single male X. Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome. Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome. |
| Audience | Academic |
| Author | Dunham, Ian Ding, Zhihao Lee, Bum-Kyu Durbin, Richard Battenhouse, Anna Birney, Ewan Yang, Fengtang Crawford, Gregory E. Lieb, Jason D. Louzada, Sandra Timmer, Sander W. Ni, Yunyun Iyer, Vishwanath R. |
| AuthorAffiliation | 1 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom 3 The European Molecular Biology Laboratory, The European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom 2 Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America 5 Department of Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America 4 Institute for Genome Sciences and Policy, and Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, United States of America Georgia Institute of Technology, United States of America |
| AuthorAffiliation_xml | – name: Georgia Institute of Technology, United States of America – name: 1 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom – name: 4 Institute for Genome Sciences and Policy, and Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, United States of America – name: 5 Department of Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America – name: 2 Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America – name: 3 The European Molecular Biology Laboratory, The European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom |
| Author_xml | – sequence: 1 givenname: Zhihao surname: Ding fullname: Ding, Zhihao – sequence: 2 givenname: Yunyun surname: Ni fullname: Ni, Yunyun – sequence: 3 givenname: Sander W. surname: Timmer fullname: Timmer, Sander W. – sequence: 4 givenname: Bum-Kyu surname: Lee fullname: Lee, Bum-Kyu – sequence: 5 givenname: Anna surname: Battenhouse fullname: Battenhouse, Anna – sequence: 6 givenname: Sandra surname: Louzada fullname: Louzada, Sandra – sequence: 7 givenname: Fengtang surname: Yang fullname: Yang, Fengtang – sequence: 8 givenname: Ian surname: Dunham fullname: Dunham, Ian – sequence: 9 givenname: Gregory E. surname: Crawford fullname: Crawford, Gregory E. – sequence: 10 givenname: Jason D. surname: Lieb fullname: Lieb, Jason D. – sequence: 11 givenname: Richard surname: Durbin fullname: Durbin, Richard – sequence: 12 givenname: Vishwanath R. surname: Iyer fullname: Iyer, Vishwanath R. – sequence: 13 givenname: Ewan surname: Birney fullname: Birney, Ewan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25411781$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk11v0zAUhiM0xLbCP0AQCQnBRYudb3OBVMo2KhUmtoG4sxz7OHXl2CVOBvv3OG03NQiJoUhOYj_n9fF7jo-DA2MNBMFTjCY4zvGble0aw_RkXYGZYISSnBQPgiOcpvE4T1BysPd9GBw7t0IoTguSPwoOozTBOC_wUeC-dMy0qmWtuobwDAy0irvQynB2NTsN3ysjlKnCC7gGpsOF5X68hB8dGA7hiZTAWxcyI8IPyv80YNrwkxWwUfg-ni0bW1tnawinzlmu_DbWPA4eSqYdPNm9R8HX05Or2cfx4vxsPpsuxjwjRTuWmYSswBkDDLKUORZJQkpgMSlkIgjPylgKkCnknpIiSzlBaZaJEngZs0jGo-D5VnetraM7vxzFWZHiOE5R5In5lhCWrei6UTVrbqhlim4mbFNR1nhDNFCvjwQWaV7kOEkgKwkigrCcybTIeMy8VrrV6sya3fxkWt8JYkT7kt2mQPuS0V3JfNy7XZZdWYPg3sKG6UEywxWjlrSy1zSJ4oL4Co-CVzuBxvrCuJbWynHQmhmwXX_eKEd5VGz2erFFK-aPpIy0XpH3OJ3GJPL5YEQ8NfkL5R8BteK-C6Xy84OA14MAz7Twq61Y5xydX178B_v5_uz5tyH7co9d-m5tl87qrm84NwSf7ft9Z_TtnfDA2y3AG-tcA5Lyzf2wvf1K_6uayR_B92qC3_2XNOo |
| CitedBy_id | crossref_primary_10_1101_gr_183749_114 crossref_primary_10_1038_nrg_2017_17 crossref_primary_10_1101_gr_232587_117 crossref_primary_10_1038_s41467_021_21823_y crossref_primary_10_1038_s41588_024_01668_z crossref_primary_10_1038_srep37324 crossref_primary_10_1214_16_AOAS952 crossref_primary_10_1186_s13059_024_03165_2 crossref_primary_10_1016_j_semcdb_2022_04_022 crossref_primary_10_1371_journal_pgen_1005079 crossref_primary_10_1098_rstb_2016_0355 crossref_primary_10_1038_s41467_022_29625_6 crossref_primary_10_1126_science_aad9417 crossref_primary_10_1371_journal_pgen_1006105 crossref_primary_10_1038_s41588_018_0278_6 crossref_primary_10_1371_journal_pgen_1005875 crossref_primary_10_1038_ng_3467 crossref_primary_10_1038_s41467_017_01037_x crossref_primary_10_1016_j_cell_2016_07_012 crossref_primary_10_1186_s13059_018_1531_0 crossref_primary_10_1186_s13059_019_1855_4 crossref_primary_10_1016_j_celrep_2015_07_024 crossref_primary_10_1186_s13072_015_0050_4 crossref_primary_10_7554_eLife_76500 crossref_primary_10_1038_s41467_025_55900_3 crossref_primary_10_1016_j_coisb_2017_01_003 crossref_primary_10_1038_nrg3891 crossref_primary_10_7554_eLife_39595 crossref_primary_10_1016_j_ajhg_2018_04_002 crossref_primary_10_1016_j_xgen_2023_100327 crossref_primary_10_3389_fcell_2019_00328 crossref_primary_10_1093_nar_gkw691 crossref_primary_10_1093_bfgp_ely002 crossref_primary_10_1016_j_cell_2016_03_041 crossref_primary_10_3389_fcell_2019_00241 crossref_primary_10_1038_s41467_017_01586_1 crossref_primary_10_1093_nar_gkaa123 |
| Cites_doi | 10.1038/nature09534 10.1016/S1097-2765(04)00029-2 10.1371/journal.pgen.1000529 10.1101/gr.082800.108 10.1126/science.1186176 10.1016/j.cell.2011.11.058 10.1126/science.1183621 10.1093/bioinformatics/btp352 10.1371/journal.pgen.1002639 10.1073/pnas.0506580102 10.1038/35013100 10.1038/nature08903 10.1016/j.cell.2011.06.026 10.1038/nmeth.1313 10.1016/j.cell.2007.05.009 10.1186/1756-8935-3-19 10.1016/j.neuron.2011.05.027 10.1093/bioinformatics/btp324 10.1126/science.1065982 10.1101/gr.100479.109 10.1016/j.cell.2013.07.007 10.1038/ng2142 10.1038/nature11247 10.1111/j.2517-6161.1995.tb02031.x 10.1101/gr.121541.111 10.1126/science.1242429 10.1371/journal.pbio.0060065 10.1016/j.ajhg.2009.11.004 10.1074/jbc.R111.324962 10.1101/gad.399506 10.1073/pnas.1530509100 10.1093/nar/gkp335 10.1073/pnas.0903103106 10.1093/bioinformatics/btr064 10.1126/science.1242463 10.1371/journal.pone.0060482 10.1101/gad.1422906 10.1038/nature12531 10.1038/nature08872 10.1016/j.cell.2007.12.014 10.1038/ng.759 10.1038/nature03479 10.1038/nature12615 10.1016/j.cell.2013.02.029 10.1101/gr.131201.111 10.1038/ng1955 10.1126/science.1184655 10.1093/hmg/dds270 10.1101/gr.127597.111 10.1038/emboj.2008.1 10.1093/bioinformatics/btq033 10.1093/bioinformatics/btr092 10.1371/journal.pgen.1002599 10.1038/nature10808 10.1016/S0092-8674(00)81967-4 10.1126/science.1242510 10.1016/j.gde.2012.02.007 10.1016/j.cell.2009.06.001 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2014 Public Library of Science 2014 Ding et al 2014 Ding et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ding Z, Ni Y, Timmer SW, Lee B-K, Battenhouse A, Louzada S, et al. (2014) Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association. PLoS Genet 10(11): e1004798. doi:10.1371/journal.pgen.1004798 |
| Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Ding et al 2014 Ding et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ding Z, Ni Y, Timmer SW, Lee B-K, Battenhouse A, Louzada S, et al. (2014) Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association. PLoS Genet 10(11): e1004798. doi:10.1371/journal.pgen.1004798 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pgen.1004798 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Quantitative Genetics of CTCF Binding |
| EISSN | 1553-7404 |
| ExternalDocumentID | 1685133502 oai_doaj_org_article_d650d1d5787144e6b909d9a7af586c3a 10.1371/journal.pgen.1004798 PMC4238955 A392479109 25411781 10_1371_journal_pgen_1004798 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA130075 – fundername: NCI NIH HHS grantid: R01 CA130075 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ 7X8 5PM ADTOC UNPAY - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c698t-f6fe6816ae1efbf71d449bea398f4d9c6b3fdef5e7681fd65c90566dbecb3a2f3 |
| IEDL.DBID | M48 |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Fri Nov 26 17:13:39 EST 2021 Tue Oct 14 18:26:16 EDT 2025 Sun Oct 26 04:06:17 EDT 2025 Tue Sep 30 16:57:23 EDT 2025 Fri Sep 05 10:10:04 EDT 2025 Mon Oct 20 22:35:40 EDT 2025 Mon Oct 20 16:45:42 EDT 2025 Thu Oct 16 15:02:09 EDT 2025 Thu Oct 16 13:51:55 EDT 2025 Thu Oct 16 15:28:39 EDT 2025 Thu May 22 20:50:04 EDT 2025 Mon Jul 21 05:49:41 EDT 2025 Wed Oct 01 01:46:09 EDT 2025 Thu Apr 24 23:13:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c698t-f6fe6816ae1efbf71d449bea398f4d9c6b3fdef5e7681fd65c90566dbecb3a2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: ID GEC JDL VRI RD EB. Performed the experiments: AB SL FY BKL. Analyzed the data: ZD YN SWT ID RD EB. Contributed reagents/materials/analysis tools: GEC JDL. Wrote the paper: ZD YN SWT ID RD VRI EB. The authors have declared that no competing interests exist. Current address: Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004798 |
| PMID | 25411781 |
| PQID | 1627072898 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1685133502 doaj_primary_oai_doaj_org_article_d650d1d5787144e6b909d9a7af586c3a unpaywall_primary_10_1371_journal_pgen_1004798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238955 proquest_miscellaneous_1627072898 gale_infotracmisc_A392479109 gale_infotracacademiconefile_A392479109 gale_incontextgauss_ISR_A392479109 gale_incontextgauss_ISN_A392479109 gale_incontextgauss_IOV_A392479109 gale_healthsolutions_A392479109 pubmed_primary_25411781 crossref_citationtrail_10_1371_journal_pgen_1004798 crossref_primary_10_1371_journal_pgen_1004798 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | CE Grant (ref54) 2011; 27 LA Hindorff (ref1) 2009; 106 GR Abecasis (ref2) 2010; 467 S Heinz (ref11) 2013; 503 TE Reddy (ref10) 2012; 22 BK Lee (ref33) 2012; 22 L Carrel (ref36) 2005; 434 E Heard (ref32) 2006; 20 M Kasowski (ref45) 2013; 342 W Chao (ref42) 2002; 295 AC Bell (ref24) 1999; 98 W Stedman (ref26) 2008; 27 G McVicker (ref40) 2013; 342 AP Boyle (ref5) 2008; 132 RS Spielman (ref15) 2007; 39 M Merkenschlager (ref19) 2013; 152 S Cuddapah (ref30) 2009; 19 JR Hesselberth (ref4) 2009; 6 SB Montgomery (ref31) 2010; 464 BE Stranger (ref47) 2012; 8 L Song (ref7) 2011; 21 H Li (ref48) 2009; 25 BE Stranger (ref14) 2007; 39 JF Degner (ref17) 2012; 482 E Splinter (ref21) 2006; 20 H Kilpinen (ref44) 2013; 342 TL Bailey (ref55) 2009; 37 R McDaniell (ref8) 2010; 328 A Barski (ref3) 2007; 129 J Jee (ref57) 2011; 27 BL Browning (ref49) 2009; 85 D Schmidt (ref41) 2012; 148 BN Howie (ref50) 2009; 5 H Li (ref46) 2009; 25 Y Benjamini (ref52) 1995; 57 TM Yusufzai (ref20) 2004; 13 SM Gribble (ref58) 2013; 8 Y Jeon (ref43) 2012; 22 S John (ref6) 2011; 43 JE Phillips (ref29) 2009; 137 Y Jeon (ref39) 2011; 146 (ref37) 2012; 489 JK Pickrell (ref16) 2010; 464 M Kasowski (ref9) 2010; 328 AH Horakova (ref38) 2012; 21 BK Lee (ref18) 2012; 287 K Stefflova (ref13) 2013; 154 MT Maurano (ref12) 2012; 8 BL Sopher (ref22) 2011; 70 S van de Nobelen (ref25) 2010; 3 JD Storey (ref34) 2003; 100 AC Bell (ref23) 2000; 405 A Subramanian (ref56) 2005; 102 D Schmidt (ref27) 2010; 20 D Schmidt (ref28) 2010; 328 S Shivaswamy (ref51) 2008; 6 T Lappalainen (ref35) 2013; 501 AR Quinlan (ref53) 2010; 26 20378774 - Science. 2010 May 21;328(5981):1036-40 20220758 - Nature. 2010 Apr 1;464(7289):768-72 17873874 - Nat Genet. 2007 Oct;39(10):1217-24 23498937 - Cell. 2013 Mar 14;152(6):1285-97 18351804 - PLoS Biol. 2008 Mar 18;6(3):e65 19458158 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 20299548 - Science. 2010 Apr 9;328(5975):232-5 22090374 - Genome Res. 2012 Jan;22(1):9-24 24136359 - Science. 2013 Nov 8;342(6159):747-9 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 20220756 - Nature. 2010 Apr 1;464(7289):773-7 17206142 - Nat Genet. 2007 Feb;39(2):226-31 16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67 18243105 - Cell. 2008 Jan 25;132(2):311-22 21349863 - Bioinformatics. 2011 Apr 15;27(8):1152-4 21689595 - Neuron. 2011 Jun 23;70(6):1071-84 18219272 - EMBO J. 2008 Feb 20;27(4):654-66 24136358 - Science. 2013 Nov 8;342(6159):750-2 21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8 19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61 17512414 - Cell. 2007 May 18;129(4):823-37 22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77 21750106 - Genome Res. 2011 Oct;21(10):1757-67 24121437 - Nature. 2013 Nov 28;503(7477):487-92 14759373 - Mol Cell. 2004 Jan 30;13(2):291-8 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 10458613 - Cell. 1999 Aug 6;98(3):387-96 22424802 - Curr Opin Genet Dev. 2012 Apr;22(2):62-71 19543373 - PLoS Genet. 2009 Jun;5(6):e1000529 24037378 - Nature. 2013 Sep 26;501(7468):506-11 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 25919664 - PLoS Genet. 2015 Apr;11(4):e1005177 10839546 - Nature. 2000 May 25;405(6785):482-5 22952237 - J Biol Chem. 2012 Sep 7;287(37):30906-13 21059229 - Epigenetics Chromatin. 2010 Nov 08;3(1):19 16951251 - Genes Dev. 2006 Sep 1;20(17):2349-54 11743158 - Science. 2002 Jan 11;295(5553):345-7 19305407 - Nat Methods. 2009 Apr;6(4):283-9 19056695 - Genome Res. 2009 Jan;19(1):24-32 24136355 - Science. 2013 Nov 8;342(6159):744-7 21258342 - Nat Genet. 2011 Mar;43(3):264-8 22300769 - Genome Res. 2012 May;22(5):860-9 15772666 - Nature. 2005 Mar 17;434(7031):400-4 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 22244452 - Cell. 2012 Jan 20;148(1-2):335-48 22457641 - PLoS Genet. 2012;8(3):e1002599 22955616 - Nature. 2012 Sep 6;489(7414):57-74 20299549 - Science. 2010 Apr 9;328(5975):235-9 22307276 - Nature. 2012 Feb 16;482(7385):390-4 20219941 - Genome Res. 2010 May;20(5):578-88 19563753 - Cell. 2009 Jun 26;137(7):1194-211 23596509 - PLoS One. 2013;8(4):e60482 22532805 - PLoS Genet. 2012;8(4):e1002639 21729784 - Cell. 2011 Jul 8;146(1):119-33 23911320 - Cell. 2013 Aug 1;154(3):530-40 |
| References_xml | – volume: 467 start-page: 1061 year: 2010 ident: ref2 article-title: A map of human genome variation from population-scale sequencing publication-title: Nature doi: 10.1038/nature09534 – volume: 13 start-page: 291 year: 2004 ident: ref20 article-title: CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00029-2 – volume: 5 start-page: e1000529 year: 2009 ident: ref50 article-title: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000529 – volume: 19 start-page: 24 year: 2009 ident: ref30 article-title: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains publication-title: Genome Res doi: 10.1101/gr.082800.108 – volume: 328 start-page: 1036 year: 2010 ident: ref28 article-title: Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding publication-title: Science doi: 10.1126/science.1186176 – volume: 148 start-page: 335 year: 2012 ident: ref41 article-title: Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages publication-title: Cell doi: 10.1016/j.cell.2011.11.058 – volume: 328 start-page: 232 year: 2010 ident: ref9 article-title: Variation in transcription factor binding among humans publication-title: Science doi: 10.1126/science.1183621 – volume: 25 start-page: 2078 year: 2009 ident: ref48 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 8 start-page: e1002639 year: 2012 ident: ref47 article-title: Patterns of cis regulatory variation in diverse human populations publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002639 – volume: 102 start-page: 15545 year: 2005 ident: ref56 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 405 start-page: 482 year: 2000 ident: ref23 article-title: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene publication-title: Nature doi: 10.1038/35013100 – volume: 464 start-page: 773 year: 2010 ident: ref31 article-title: Transcriptome genetics using second generation sequencing in a Caucasian population publication-title: Nature doi: 10.1038/nature08903 – volume: 146 start-page: 119 year: 2011 ident: ref39 article-title: YY1 tethers Xist RNA to the inactive X nucleation center publication-title: Cell doi: 10.1016/j.cell.2011.06.026 – volume: 6 start-page: 283 year: 2009 ident: ref4 article-title: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting publication-title: Nat Methods doi: 10.1038/nmeth.1313 – volume: 129 start-page: 823 year: 2007 ident: ref3 article-title: High-resolution profiling of histone methylations in the human genome publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 3 start-page: 19 year: 2010 ident: ref25 article-title: CTCF regulates the local epigenetic state of ribosomal DNA repeats publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-3-19 – volume: 70 start-page: 1071 year: 2011 ident: ref22 article-title: CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA publication-title: Neuron doi: 10.1016/j.neuron.2011.05.027 – volume: 25 start-page: 1754 year: 2009 ident: ref46 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 295 start-page: 345 year: 2002 ident: ref42 article-title: CTCF, a candidate trans-acting factor for X-inactivation choice publication-title: Science doi: 10.1126/science.1065982 – volume: 20 start-page: 578 year: 2010 ident: ref27 article-title: A CTCF-independent role for cohesin in tissue-specific transcription publication-title: Genome Res doi: 10.1101/gr.100479.109 – volume: 154 start-page: 530 year: 2013 ident: ref13 article-title: Cooperativity and rapid evolution of cobound transcription factors in closely related mammals publication-title: Cell doi: 10.1016/j.cell.2013.07.007 – volume: 39 start-page: 1217 year: 2007 ident: ref14 article-title: Population genomics of human gene expression publication-title: Nat Genet doi: 10.1038/ng2142 – volume: 489 start-page: 57 year: 2012 ident: ref37 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 57 start-page: 289 year: 1995 ident: ref52 article-title: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing publication-title: Journal of the Royal Statistical Society Series B-Methodological doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 21 start-page: 1757 year: 2011 ident: ref7 article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity publication-title: Genome Res doi: 10.1101/gr.121541.111 – volume: 342 start-page: 747 year: 2013 ident: ref40 article-title: Identification of genetic variants that affect histone modifications in human cells publication-title: Science doi: 10.1126/science.1242429 – volume: 6 start-page: e65 year: 2008 ident: ref51 article-title: Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060065 – volume: 85 start-page: 847 year: 2009 ident: ref49 article-title: Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.11.004 – volume: 287 start-page: 30906 year: 2012 ident: ref18 article-title: Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation publication-title: J Biol Chem doi: 10.1074/jbc.R111.324962 – volume: 20 start-page: 2349 year: 2006 ident: ref21 article-title: CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus publication-title: Genes Dev doi: 10.1101/gad.399506 – volume: 100 start-page: 9440 year: 2003 ident: ref34 article-title: Statistical significance for genomewide studies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1530509100 – volume: 37 start-page: W202 year: 2009 ident: ref55 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 106 start-page: 9362 year: 2009 ident: ref1 article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903103106 – volume: 27 start-page: 1017 year: 2011 ident: ref54 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – volume: 342 start-page: 744 year: 2013 ident: ref44 article-title: Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription publication-title: Science doi: 10.1126/science.1242463 – volume: 8 start-page: e60482 year: 2013 ident: ref58 article-title: Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome publication-title: PLoS One doi: 10.1371/journal.pone.0060482 – volume: 20 start-page: 1848 year: 2006 ident: ref32 article-title: Dosage compensation in mammals: fine-tuning the expression of the X chromosome publication-title: Genes Dev doi: 10.1101/gad.1422906 – volume: 501 start-page: 506 year: 2013 ident: ref35 article-title: Transcriptome and genome sequencing uncovers functional variation in humans publication-title: Nature doi: 10.1038/nature12531 – volume: 464 start-page: 768 year: 2010 ident: ref16 article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing publication-title: Nature doi: 10.1038/nature08872 – volume: 132 start-page: 311 year: 2008 ident: ref5 article-title: High-resolution mapping and characterization of open chromatin across the genome publication-title: Cell doi: 10.1016/j.cell.2007.12.014 – volume: 43 start-page: 264 year: 2011 ident: ref6 article-title: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns publication-title: Nat Genet doi: 10.1038/ng.759 – volume: 434 start-page: 400 year: 2005 ident: ref36 article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females publication-title: Nature doi: 10.1038/nature03479 – volume: 503 start-page: 487 year: 2013 ident: ref11 article-title: Effect of natural genetic variation on enhancer selection and function publication-title: Nature doi: 10.1038/nature12615 – volume: 152 start-page: 1285 year: 2013 ident: ref19 article-title: CTCF and cohesin: linking gene regulatory elements with their targets publication-title: Cell doi: 10.1016/j.cell.2013.02.029 – volume: 22 start-page: 860 year: 2012 ident: ref10 article-title: Effects of sequence variation on differential allelic transcription factor occupancy and gene expression publication-title: Genome Res doi: 10.1101/gr.131201.111 – volume: 39 start-page: 226 year: 2007 ident: ref15 article-title: Common genetic variants account for differences in gene expression among ethnic groups publication-title: Nat Genet doi: 10.1038/ng1955 – volume: 328 start-page: 235 year: 2010 ident: ref8 article-title: Heritable individual-specific and allele-specific chromatin signatures in humans publication-title: Science doi: 10.1126/science.1184655 – volume: 21 start-page: 4367 year: 2012 ident: ref38 article-title: The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome publication-title: Hum Mol Genet doi: 10.1093/hmg/dds270 – volume: 22 start-page: 9 year: 2012 ident: ref33 article-title: Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells publication-title: Genome Res doi: 10.1101/gr.127597.111 – volume: 27 start-page: 654 year: 2008 ident: ref26 article-title: Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators publication-title: EMBO J doi: 10.1038/emboj.2008.1 – volume: 26 start-page: 841 year: 2010 ident: ref53 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 27 start-page: 1152 year: 2011 ident: ref57 article-title: ACT: aggregation and correlation toolbox for analyses of genome tracks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr092 – volume: 8 start-page: e1002599 year: 2012 ident: ref12 article-title: Widespread site-dependent buffering of human regulatory polymorphism publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002599 – volume: 482 start-page: 390 year: 2012 ident: ref17 article-title: DNase I sensitivity QTLs are a major determinant of human expression variation publication-title: Nature doi: 10.1038/nature10808 – volume: 98 start-page: 387 year: 1999 ident: ref24 article-title: The protein CTCF is required for the enhancer blocking activity of vertebrate insulators publication-title: Cell doi: 10.1016/S0092-8674(00)81967-4 – volume: 342 start-page: 750 year: 2013 ident: ref45 article-title: Extensive variation in chromatin states across humans publication-title: Science doi: 10.1126/science.1242510 – volume: 22 start-page: 62 year: 2012 ident: ref43 article-title: New and Xisting regulatory mechanisms of X chromosome inactivation publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2012.02.007 – volume: 137 start-page: 1194 year: 2009 ident: ref29 article-title: CTCF: master weaver of the genome publication-title: Cell doi: 10.1016/j.cell.2009.06.001 – reference: 22457641 - PLoS Genet. 2012;8(3):e1002599 – reference: 18219272 - EMBO J. 2008 Feb 20;27(4):654-66 – reference: 22307276 - Nature. 2012 Feb 16;482(7385):390-4 – reference: 22090374 - Genome Res. 2012 Jan;22(1):9-24 – reference: 18243105 - Cell. 2008 Jan 25;132(2):311-22 – reference: 14759373 - Mol Cell. 2004 Jan 30;13(2):291-8 – reference: 10839546 - Nature. 2000 May 25;405(6785):482-5 – reference: 21349863 - Bioinformatics. 2011 Apr 15;27(8):1152-4 – reference: 25919664 - PLoS Genet. 2015 Apr;11(4):e1005177 – reference: 20299549 - Science. 2010 Apr 9;328(5975):235-9 – reference: 16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 22532805 - PLoS Genet. 2012;8(4):e1002639 – reference: 24136358 - Science. 2013 Nov 8;342(6159):750-2 – reference: 23596509 - PLoS One. 2013;8(4):e60482 – reference: 21750106 - Genome Res. 2011 Oct;21(10):1757-67 – reference: 19056695 - Genome Res. 2009 Jan;19(1):24-32 – reference: 22244452 - Cell. 2012 Jan 20;148(1-2):335-48 – reference: 20220756 - Nature. 2010 Apr 1;464(7289):773-7 – reference: 24136355 - Science. 2013 Nov 8;342(6159):744-7 – reference: 20299548 - Science. 2010 Apr 9;328(5975):232-5 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 24136359 - Science. 2013 Nov 8;342(6159):747-9 – reference: 24121437 - Nature. 2013 Nov 28;503(7477):487-92 – reference: 18351804 - PLoS Biol. 2008 Mar 18;6(3):e65 – reference: 19305407 - Nat Methods. 2009 Apr;6(4):283-9 – reference: 22424802 - Curr Opin Genet Dev. 2012 Apr;22(2):62-71 – reference: 23911320 - Cell. 2013 Aug 1;154(3):530-40 – reference: 21729784 - Cell. 2011 Jul 8;146(1):119-33 – reference: 19458158 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 – reference: 17873874 - Nat Genet. 2007 Oct;39(10):1217-24 – reference: 16951251 - Genes Dev. 2006 Sep 1;20(17):2349-54 – reference: 21258342 - Nat Genet. 2011 Mar;43(3):264-8 – reference: 19563753 - Cell. 2009 Jun 26;137(7):1194-211 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61 – reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4 – reference: 17206142 - Nat Genet. 2007 Feb;39(2):226-31 – reference: 22952237 - J Biol Chem. 2012 Sep 7;287(37):30906-13 – reference: 22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77 – reference: 19543373 - PLoS Genet. 2009 Jun;5(6):e1000529 – reference: 11743158 - Science. 2002 Jan 11;295(5553):345-7 – reference: 20219941 - Genome Res. 2010 May;20(5):578-88 – reference: 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 – reference: 24037378 - Nature. 2013 Sep 26;501(7468):506-11 – reference: 22300769 - Genome Res. 2012 May;22(5):860-9 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 21689595 - Neuron. 2011 Jun 23;70(6):1071-84 – reference: 21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8 – reference: 10458613 - Cell. 1999 Aug 6;98(3):387-96 – reference: 17512414 - Cell. 2007 May 18;129(4):823-37 – reference: 21059229 - Epigenetics Chromatin. 2010 Nov 08;3(1):19 – reference: 20378774 - Science. 2010 May 21;328(5981):1036-40 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 23498937 - Cell. 2013 Mar 14;152(6):1285-97 – reference: 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 |
| SSID | ssj0035897 |
| Score | 2.3386672 |
| Snippet | Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to... Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1004798 |
| SubjectTerms | Alleles Biology and Life Sciences CCCTC-Binding Factor Chromosomes Chromosomes, Human, X - genetics Female Females Gender Gene expression Genomes Genomics Genotype & phenotype Humans Linkage Disequilibrium Males Physiological aspects Protein Binding Protein research Proteins Quantitative genetics Quantitative Trait Loci Repressor Proteins - genetics Repressor Proteins - metabolism RNA polymerase RNA, Untranslated - genetics RNA, Untranslated - metabolism Studies Transcription factors |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZQJQQviPsCAwxC4ilbnIsvj6OiGkgMARvqm-X4wiaVpCKt0P49x3YSFoG0PvDafEnb8x0ff27PBaHXHNxGZ8ymHPbqtASFkNZU0ZSDdM65b5gWfnD7eEKPz8oPy2p5ZdSXzwmL7YGj4Q4NSAhDjHcs0P6W1iITRiimXMWpLoI0yrgYDlMxBhcVj2NVqqpIGRzr-6K5gpHDnqODNRDkcwRKJvhkUwq9-8cIPVuv2u5f8vPvLMpb22atLn-p1erKFrW4i-702hIfxe90D92wzX10M06bvHyAus9b1YSaMohwGD6Xr1_scOvw_HS-wPVFKHDBvqcTPCVscnjItMZ93gdWjcHDUJUN9nN0whOWqT73iX1d-8Ni9Yfyh-hs8e50fpz2MxdSTQXfpI46SzmhyhLraseIKUtRW1UI7kojNK0LZ6yrLBxTiANytAAJRQ24Ql2o3BWP0KxpG7uHcEZNXllnS17TUhuqgEViNLDGqctcnaBiMLrUfUNyPxdjJcO_bAwOJtFu0lMle6oSlI53rWNDjmvwbz2fI9a30w4vgJPJ3snkdU6WoBfeG2SsTR2DgjwCdQlvQjKRoFcB4VtqND5n57vadp18_-nbDqCvJ7uAvkxAb3qQa8FmWvXFFGB5389rgtyfICF66MnlPe_gg-k6SSj3I3-qLE_Qy8Hppb_LZ-M1tt16TM4yBkd1sO7juAhG--ZVSQjjJEFssjwmBEyvNBfnoa85RAsuqipBB-NC2oniJ_-D4qfoNmjhMpaZ7qPZ5ufWPgO9uamfh9DyG0wvfhU priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfMMCAwxC8JQuzofjPHaFMhAU2NapPEVOYsNEl1QkBY1X_nHuHLda-BDlAakPUXNOnJ_P5_PH_Y6QRwLUJvdi5QoYq90QPAQ345K7AlxnXyBhmllwez3me5Pw5TSabpBsGQtjEYQ54qyqzU4-XgCWGNJX71g4d5C0qN1C7bMgZsti_TlI4sZ_GCfisaEdwuWxBqOQzpFNHoG_3iObk_HbwXtDpBoFbhyYhZj2OvRCG1_3p6d2xi9D878y5j2s6u881V8PXF5YlHN5-lXOZmdGs9Fl8n2JQ3uI5VN_0WT9_NtPFJH_F6gr5JJ1humgfcpVsqHKa-R8mx7z9Dqp3y1kaYLgwCTT5_altNJ0eDgc0d1jE5FD99UX8HbpKxyV6YE9Gk5bWuaayrKgT20WmIZi6jfzhKmLtMAnVV2dKHpGR2-QyejZ4XDPtUki3JwnonE114oLxqViSmc6ZkUYJpmSQSJ0WCQ5zwJdKB0pmFcxXfAoT8Dn4wXobhZIXwc3Sa-sSrVFqMcLP1JahSLjYV5wyYqIFbng8NOezhwSLJs-zS2DOibymKVmWzCGmVSLW4rophZdh7irUvOWQeQv8ruoVStZ5P82f0Abp7ZZU_gOr4DqgbmFGbHiWeIlRSJjqSOobiAdch91Mm2DaVdWLB2AOwwvYV7ikIdGAjlASjxk9EEu6jp98eZoDaGD8TpC-x2hJ1ZIV4BZLm30ByCPKtqR3O5IgrnLO7e3UNGX0NUp4wJzFEWe75AHy66XYik8PliqaoEyfuzFvkB0b7VdcYWvH4WMxYI5JO500k4DdO-Uxx8NETuYN5FEkUP6q-68VhPf_tcCd8hFcNTDNgZ2m_Sazwt1F5zhJrtnrdkPpXe4VA priority: 102 providerName: Unpaywall |
| Title | Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25411781 https://www.proquest.com/docview/1627072898 https://pubmed.ncbi.nlm.nih.gov/PMC4238955 https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004798&type=printable https://doaj.org/article/d650d1d5787144e6b909d9a7af586c3a http://dx.doi.org/10.1371/journal.pgen.1004798 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7404 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M48 dateStart: 20050701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TgheEN8LjGIQEk-Z4iT-yANCbVk1kFbGWFH3FDmJvU0qSWlaQf97zs4HRAxRKVKk5Oy65_P5Lr67H0KvBYhN6nHlCtir3RAsBDdhkrkCTGdfmIJp9oPbyYQdT8OPMzrbQQ1ma83A8kbXzuBJTZfzw5_fN-9gwb-1qA2cNI0OF8Byc-of8kjsoj3YqyID5nAStucKARUV3AqlgcvB3a-T6f7VS2ezsjX9W83dW8yL8iaz9O_oytvrfCE3P-R8_sfWNb6H7tY2Jx5UQnIf7aj8AbpVoVBuHqLy81rmNtcMNB-GcZm8xhIXGo_OR2OcXNvEF2xqPUEvdvPDTQQ2ruNBsMwz3ICtrLDB17E9zNz0ygT8lcU3heVvUXiEpuOj89GxW2MxuCmLxMrVTCsmCJOKKJ1oTrIwjBIlg0joMItSlgQ6U5oqcF-IzhhNIzCtWAYikgTS18Fj1MuLXO0j7LHMp0qrUCQsTDMmSUZJlgoGl_Z04qCgYXqc1oXKDV7GPLanbxwclopvsZmquJ4qB7ltq0VVqOM_9EMzny2tKbNtHxTLy7hetTH8Dy-D4YFWA8dTsSTyoiySXGoKww2kg14YaYirnNVWWcQDsDrhR4gXOeiVpTClNnITy3Mp12UZf_j0dQuiL5NtiM46RG9qIl0Az1JZJ1kA502drw7lQYcStEraeb1vBLxhXRkTJgwUEPV8B71shD42rUyUXq6KtaHxucfBhQfuPqkWQctfn4aEcEEcxDvLozMB3Tf59ZWtdw5aRESUOuiwXUhbTfHTbTj2DN0BGzis0ksPUG-1XKvnYGeukj7a5TPeR3uD4fvhGO7Do8npWd9-telbtQLPppPTwcUvMYGELA |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfMMCAwxC8JQuzofjPHaFMhAU2NapPEVOYsNEl1QkBY1X_nHuHLda-BDlAakPUXNOnJ_P5_PH_Y6QRwLUJvdi5QoYq90QPAQ345K7AlxnXyBhmllwez3me5Pw5TSabpBsGQtjEYQ54qyqzU4-XgCWGNJX71g4d5C0qN1C7bMgZsti_TlI4sZ_GCfisaEdwuWxBqOQzpFNHoG_3iObk_HbwXtDpBoFbhyYhZj2OvRCG1_3p6d2xi9D878y5j2s6u881V8PXF5YlHN5-lXOZmdGs9Fl8n2JQ3uI5VN_0WT9_NtPFJH_F6gr5JJ1humgfcpVsqHKa-R8mx7z9Dqp3y1kaYLgwCTT5_altNJ0eDgc0d1jE5FD99UX8HbpKxyV6YE9Gk5bWuaayrKgT20WmIZi6jfzhKmLtMAnVV2dKHpGR2-QyejZ4XDPtUki3JwnonE114oLxqViSmc6ZkUYJpmSQSJ0WCQ5zwJdKB0pmFcxXfAoT8Dn4wXobhZIXwc3Sa-sSrVFqMcLP1JahSLjYV5wyYqIFbng8NOezhwSLJs-zS2DOibymKVmWzCGmVSLW4rophZdh7irUvOWQeQv8ruoVStZ5P82f0Abp7ZZU_gOr4DqgbmFGbHiWeIlRSJjqSOobiAdch91Mm2DaVdWLB2AOwwvYV7ikIdGAjlASjxk9EEu6jp98eZoDaGD8TpC-x2hJ1ZIV4BZLm30ByCPKtqR3O5IgrnLO7e3UNGX0NUp4wJzFEWe75AHy66XYik8PliqaoEyfuzFvkB0b7VdcYWvH4WMxYI5JO500k4DdO-Uxx8NETuYN5FEkUP6q-68VhPf_tcCd8hFcNTDNgZ2m_Sazwt1F5zhJrtnrdkPpXe4VA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+genetics+of+CTCF+binding+reveal+local+sequence+effects+and+different+modes+of+X-chromosome+association&rft.jtitle=PLoS+genetics&rft.au=Ding%2C+Zhihao&rft.au=Ni%2C+Yunyun&rft.au=Timmer%2C+Sander+W&rft.au=Lee%2C+Bum-Kyu&rft.date=2014-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=10&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pgen.1004798&rft.externalDBID=ISR&rft.externalDocID=A392479109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |