Summary results of the 2014-2015 DARPA Chikungunya challenge

Background : Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent intro...

Full description

Saved in:
Bibliographic Details
Published inBMC infectious diseases Vol. 18; no. 1; pp. 245 - 14
Main Authors Del Valle, Sara Y., McMahon, Benjamin H., Asher, Jason, Hatchett, Richard, Lega, Joceline C., Brown, Heidi E., Leany, Mark E., Pantazis, Yannis, Roberts, David J., Moore, Sean, Peterson, A Townsend, Escobar, Luis E., Qiao, Huijie, Hengartner, Nicholas W., Mukundan, Harshini
Format Journal Article
LanguageEnglish
Published London BioMed Central 30.05.2018
BioMed Central Ltd
BMC - Springer Nature
BMC
Subjects
R&D
Online AccessGet full text
ISSN1471-2334
1471-2334
DOI10.1186/s12879-018-3124-7

Cover

Abstract Background : Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. Methods : To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014–2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants ( n =38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Results : Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. Conclusion : We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
AbstractList Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. Methods: To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014-2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Results: Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. Conclusion: We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics. Keywords: Chikungunya, Forecasting, Morphological models, Mechanistic models
Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014-2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Here, emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.
Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. Methods: To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014–2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Results: Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. Conclusion: We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Background : Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. Methods : To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014–2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants ( n =38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Results : Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. Conclusion : We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Abstract Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. Methods: To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014–2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. Results: Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. Conclusion: We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.BACKGROUNDEmerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014-2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners.METHODSTo explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014-2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners.Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy.RESULTSParticipant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy.We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.CONCLUSIONWe conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
ArticleNumber 245
Audience Academic
Author McMahon, Benjamin H.
Mukundan, Harshini
Asher, Jason
Del Valle, Sara Y.
Leany, Mark E.
Hatchett, Richard
Escobar, Luis E.
Brown, Heidi E.
Pantazis, Yannis
Roberts, David J.
Hengartner, Nicholas W.
Peterson, A Townsend
Lega, Joceline C.
Qiao, Huijie
Moore, Sean
Author_xml – sequence: 1
  givenname: Sara Y.
  orcidid: 0000-0002-0159-1952
  surname: Del Valle
  fullname: Del Valle, Sara Y.
  email: sdelvall@lanl.gov
  organization: Analytics, Intelligence, and Technology Division, Los Alamos National Laboratory
– sequence: 2
  givenname: Benjamin H.
  surname: McMahon
  fullname: McMahon, Benjamin H.
  organization: Theoretical Division, Los Alamos National Laboratory
– sequence: 3
  givenname: Jason
  surname: Asher
  fullname: Asher, Jason
  organization: Leidos Supporting Biomedical Advanced Research and Development Authority
– sequence: 4
  givenname: Richard
  surname: Hatchett
  fullname: Hatchett, Richard
  organization: Office of the Assistant Secretary for Preparedness and Response, U.S. Department of Health and Human Services
– sequence: 5
  givenname: Joceline C.
  surname: Lega
  fullname: Lega, Joceline C.
  organization: Department of Mathematics, University of Arizona
– sequence: 6
  givenname: Heidi E.
  surname: Brown
  fullname: Brown, Heidi E.
  organization: Epidemiology and Biostatistics Department, University of Arizona
– sequence: 7
  givenname: Mark E.
  surname: Leany
  fullname: Leany, Mark E.
  organization: Utah Valley University
– sequence: 8
  givenname: Yannis
  surname: Pantazis
  fullname: Pantazis, Yannis
  organization: Department of Mathematics and Statistics, University of Massachusetts, Present Address: Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas
– sequence: 9
  givenname: David J.
  surname: Roberts
  fullname: Roberts, David J.
  organization: NHS Blood and Transplant-Oxford, BRC Haematology Theme and Radcliffe Department of Medicine, John Radcliffe Hospital
– sequence: 10
  givenname: Sean
  surname: Moore
  fullname: Moore, Sean
  organization: Department of Biological Sciences, University of Notre Dame
– sequence: 11
  givenname: A Townsend
  surname: Peterson
  fullname: Peterson, A Townsend
  organization: Biodiversity Institute, University of Kansas
– sequence: 12
  givenname: Luis E.
  surname: Escobar
  fullname: Escobar, Luis E.
  organization: Department of Fish and Wildlife Conservation, Virginia Tech
– sequence: 13
  givenname: Huijie
  surname: Qiao
  fullname: Qiao, Huijie
  organization: Institute of Zoology, Chinese Academy of Sciences
– sequence: 14
  givenname: Nicholas W.
  surname: Hengartner
  fullname: Hengartner, Nicholas W.
  organization: Analytics, Intelligence, and Technology Division, Los Alamos National Laboratory
– sequence: 15
  givenname: Harshini
  surname: Mukundan
  fullname: Mukundan, Harshini
  organization: Chemistry Division, Los Alamos National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29843621$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1441292$$D View this record in Osti.gov
BookMark eNqNkluL1DAcxYusuBf9AL5I0Rd96JqkaS4gwjDeBhZWdtXXkCZpJ2MnWZNU3G9vanfdnUVFCm1Jf-fk35NzWOw570xRPIbgGEJGXkaIGOUVgKyqIcIVvVccQExhheoa79163y8OY9wAAClD_EGxjzjDNUHwoHh1Pm63MlyWwcRxSLH0XZnWpkQA4irfmvLN4uzjolyu7dfR9aO7lKVay2EwrjcPi_udHKJ5dPU8Kj6_e_tp-aE6OX2_Wi5OKkU4SxXldU1aqmWLUa0awxuuCSMtIBRR1TQUM4IB1JoB3gIKicKEaWoMRUy2BNRHxWr21V5uxEWw08TCSyt-LfjQCxmSVYMRgKtsj7oGEox1q2TLtG67rgEQUaxp9no9e12M7dZoZVwKctgx3f3i7Fr0_rtoOG0IrbPB09nAx2RFVDYZtVbeOaOSgBhDxFGGnl_tEvy30cQktjYqMwzSGT9GgQCmqAGETH7P7qAbPwaX88xU3pFSTOAN1cv8l9Z1Pg-nJlOxaDCpCcwHlqnjP1D50mZr84yms3l9R_BiR5CZZH6kXo4xitX52f-zp1922Se3U_4d73XxMkBnQAUfYzCdyEHKZP0Uuh0EBGKquJgrLnLFxVRxMR0gvKO8Nv-XBs2amNlc3HCT8d9FPwGX_wUT
CitedBy_id crossref_primary_10_1016_j_epidem_2020_100400
crossref_primary_10_1016_j_ijforecast_2020_07_002
crossref_primary_10_1038_s41467_021_25207_0
crossref_primary_10_1371_journal_pntd_0007451
crossref_primary_10_2196_39336
crossref_primary_10_1371_journal_pone_0263047
crossref_primary_10_1038_s43856_022_00191_8
crossref_primary_10_3390_e25070968
crossref_primary_10_1186_s12916_018_1127_2
crossref_primary_10_4081_gh_2024_1261
crossref_primary_10_1146_annurev_publhealth_040119_094402
crossref_primary_10_1186_s12874_021_01226_9
crossref_primary_10_1073_pnas_2111456118
crossref_primary_10_1016_j_epidem_2023_100665
crossref_primary_10_2196_27888
crossref_primary_10_1016_j_epidem_2022_100615
crossref_primary_10_1016_j_epidem_2025_100819
crossref_primary_10_1016_j_epidem_2022_100616
crossref_primary_10_3389_fdgth_2021_707902
crossref_primary_10_1038_s41467_021_25695_0
crossref_primary_10_1371_journal_pntd_0007065
crossref_primary_10_1371_journal_pgph_0000207
crossref_primary_10_1073_pnas_1822167116
crossref_primary_10_1371_journal_pntd_0012671
crossref_primary_10_1016_j_epidem_2019_100357
crossref_primary_10_1371_journal_pcbi_1010485
crossref_primary_10_1016_j_ecoinf_2021_101241
crossref_primary_10_1371_journal_pcbi_1008651
crossref_primary_10_3390_v14091889
crossref_primary_10_1371_journal_pcbi_1010405
crossref_primary_10_1371_journal_pmed_1003793
Cites_doi 10.1098/rspa.1927.0118
10.1137/S0036144500371907
10.1002/joc.1276
10.1186/1741-7015-10-165
10.1098/rstb.2014.0135
10.1073/pnas.1208772109
10.1371/journal.pmed.0040013
10.4067/S0716-10182017000300015
10.1016/S1473-3099(15)70139-8
10.1111/ecog.01961
10.1111/j.1750-2659.2009.00081.x
10.1093/infdis/jiw375
10.1186/s12879-016-1669-x
10.1038/352581a0
10.1073/pnas.0905137106
10.1086/605496
10.1371/journal.pone.0057448
10.1371/journal.pcbi.1003892
10.3354/esr00646
10.1002/wics.19
10.1371/journal.pcbi.1004382
10.1073/pnas.0603181103
10.1016/j.epidem.2016.10.002
10.1111/evo.12343
10.1038/280361a0
10.3201/eid2201.151410
10.1098/rsbl.2012.0637
10.1371/journal.pone.0100957
10.1515/9781400841035
10.1371/journal.pcbi.1001005
10.1086/422341
10.1073/pnas.0901637106
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7T2
7U9
7X5
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
C1K
CCPQU
DWQXO
FYUFA
GHDGH
H94
K6~
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1186/s12879-018-3124-7
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Virology and AIDS Abstracts
Entrepreneurship Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database (ProQuest)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Entrepreneurship
Business Premium Collection
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2334
EndPage 14
ExternalDocumentID oai_doaj_org_article_09c9592f51644dbcab8ddbff501274d7
PMC5975673
1441292
A546361014
29843621
10_1186_s12879_018_3124_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GeographicLocations United States
America
United States--US
Western Hemisphere
GeographicLocations_xml – name: United States
– name: America
– name: United States--US
– name: Western Hemisphere
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IOV
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QL
7T2
7U9
7X5
7XB
8FK
AZQEC
BEZIV
C1K
DWQXO
H94
K6~
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c698t-79336b7dab423c5e959d686b06727c557486401dd809b0716c468d7ee728ab603
IEDL.DBID M48
ISSN 1471-2334
IngestDate Wed Aug 27 01:30:35 EDT 2025
Thu Aug 21 17:21:54 EDT 2025
Mon Nov 25 02:36:45 EST 2024
Fri Sep 05 07:03:44 EDT 2025
Fri Jul 25 07:15:08 EDT 2025
Tue Jun 17 21:01:39 EDT 2025
Tue Jun 10 20:44:46 EDT 2025
Fri Jun 27 04:40:06 EDT 2025
Fri Jun 27 05:02:47 EDT 2025
Wed Feb 19 02:33:39 EST 2025
Tue Jul 01 01:57:30 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Sat Sep 06 07:26:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mechanistic models
Chikungunya
Morphological models
Forecasting
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-79336b7dab423c5e959d686b06727c557486401dd809b0716c468d7ee728ab603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
LA-UR-16-26565
AC52-06NA25396
USDOD
ORCID 0000-0002-0159-1952
000000024157134X
0000000282261276
0000000201591952
0000000209310545
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12879-018-3124-7
PMID 29843621
PQID 2056777461
PQPubID 42582
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_09c9592f51644dbcab8ddbff501274d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5975673
osti_scitechconnect_1441292
proquest_miscellaneous_2047250663
proquest_journals_2056777461
gale_infotracmisc_A546361014
gale_infotracacademiconefile_A546361014
gale_incontextgauss_ISR_A546361014
gale_incontextgauss_IOV_A546361014
pubmed_primary_29843621
crossref_citationtrail_10_1186_s12879_018_3124_7
crossref_primary_10_1186_s12879_018_3124_7
springer_journals_10_1186_s12879_018_3124_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-30
PublicationDateYYYYMMDD 2018-05-30
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-30
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle BMC infectious diseases
PublicationTitleAbbrev BMC Infect Dis
PublicationTitleAlternate BMC Infect Dis
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC - Springer Nature
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC - Springer Nature
– name: BMC
References RM Anderson (3124_CR4) 1991; 352
3124_CR30
J-P Cretien (3124_CR9) 2015; 4
JD Manthey (3124_CR43) 2015; 26
R Anderson (3124_CR3) 1979; 280
M Tizzoni (3124_CR6) 2012; 10
3124_CR2
HW Hethcote (3124_CR27) 2000; 42
LC Brooks (3124_CR8) 2015; 11
V Colizza (3124_CR11) 2007; 4
J Chan (3124_CR12) 2010; 6
E Martínez-Meyer (3124_CR40) 2013; 9
H Qiao (3124_CR39) 2016; 39
AJ Kucharski (3124_CR15) 2016; 22
S Van Aelst (3124_CR37) 2009; 1
MI Meltzer (3124_CR13) 2014; 63
RD Holt (3124_CR42) 2009; 106
3124_CR16
LP Campbell (3124_CR38) 2015; 370
D Romero-Alvarez (3124_CR45) 2017; 34
WH Hamer (3124_CR1) 1906; 167
SM Moghadas (3124_CR10) 2009; 3
3124_CR18
3124_CR17
A Tarantola (3124_CR29) 1987
A Lira-Noriega (3124_CR44) 2014; 68
3124_CR19
MJ Keeling (3124_CR32) 2008
J Soberón (3124_CR36) 2009; 106
3124_CR20
3124_CR23
J Shaman (3124_CR5) 2012; 109
SE Bellan (3124_CR14) 2015; 15
C Yáñez-Arenas (3124_CR41) 2014; 9
JE Staples (3124_CR22) 2009; 49
KR Moran (3124_CR21) 2016; 214
3124_CR25
L Yakob (3124_CR31) 2013; 8
3124_CR24
3124_CR26
J Lega (3124_CR28) 2016; 17
E Ionides (3124_CR34) 2006; 103
RJ Hijmans (3124_CR35) 2005; 25
N Generous (3124_CR7) 2014; 10
Y Xia (3124_CR33) 2004; 164
References_xml – ident: 3124_CR24
– ident: 3124_CR2
  doi: 10.1098/rspa.1927.0118
– volume: 42
  start-page: 599
  issue: 4
  year: 2000
  ident: 3124_CR27
  publication-title: SIAM Rev
  doi: 10.1137/S0036144500371907
– ident: 3124_CR26
– volume: 4
  start-page: 09186
  year: 2015
  ident: 3124_CR9
  publication-title: eLIFE
– volume: 25
  start-page: 1965
  issue: 15
  year: 2005
  ident: 3124_CR35
  publication-title: Int J Climatol
  doi: 10.1002/joc.1276
– volume: 10
  start-page: 1
  issue: 1
  year: 2012
  ident: 3124_CR6
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-165
– ident: 3124_CR20
– volume: 370
  start-page: 20140135
  issue: 1665
  year: 2015
  ident: 3124_CR38
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2014.0135
– volume: 63
  start-page: 1
  issue: Suppl 3
  year: 2014
  ident: 3124_CR13
  publication-title: MMWR Surveill Summ
– volume: 109
  start-page: 20425
  issue: 50
  year: 2012
  ident: 3124_CR5
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1208772109
– volume: 4
  start-page: 13
  issue: 1
  year: 2007
  ident: 3124_CR11
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040013
– volume: 34
  start-page: 289
  year: 2017
  ident: 3124_CR45
  publication-title: Rev Chil Infectología
  doi: 10.4067/S0716-10182017000300015
– volume-title: Inverse Problem Theory and Methods for Model Parameter Estimation
  year: 1987
  ident: 3124_CR29
– volume: 15
  start-page: 703
  issue: 6
  year: 2015
  ident: 3124_CR14
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(15)70139-8
– volume: 39
  start-page: 805
  year: 2016
  ident: 3124_CR39
  publication-title: Ecography
  doi: 10.1111/ecog.01961
– volume: 3
  start-page: 75
  issue: 2
  year: 2009
  ident: 3124_CR10
  publication-title: Influenza Other Respir Viruses
  doi: 10.1111/j.1750-2659.2009.00081.x
– volume: 214
  start-page: 404
  issue: suppl 4
  year: 2016
  ident: 3124_CR21
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiw375
– ident: 3124_CR17
  doi: 10.1186/s12879-016-1669-x
– volume: 167
  start-page: 665
  year: 1906
  ident: 3124_CR1
  publication-title: The Lancet
– volume: 352
  start-page: 581
  issue: 6336
  year: 1991
  ident: 3124_CR4
  publication-title: Nature
  doi: 10.1038/352581a0
– volume: 106
  start-page: 19659
  issue: Supplement 2
  year: 2009
  ident: 3124_CR42
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0905137106
– volume: 49
  start-page: 942
  issue: 6
  year: 2009
  ident: 3124_CR22
  publication-title: Clin Inf Dis
  doi: 10.1086/605496
– ident: 3124_CR30
– volume: 8
  start-page: 57448
  issue: 3
  year: 2013
  ident: 3124_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057448
– volume: 10
  start-page: 1003892
  issue: 11
  year: 2014
  ident: 3124_CR7
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003892
– volume: 26
  start-page: 201
  issue: 3
  year: 2015
  ident: 3124_CR43
  publication-title: Endanger Species Res
  doi: 10.3354/esr00646
– volume: 1
  start-page: 71
  issue: 1
  year: 2009
  ident: 3124_CR37
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.19
– ident: 3124_CR25
– volume: 11
  start-page: 1004382
  issue: 8
  year: 2015
  ident: 3124_CR8
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004382
– ident: 3124_CR23
– volume: 103
  start-page: 18438
  issue: 49
  year: 2006
  ident: 3124_CR34
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603181103
– ident: 3124_CR19
– volume: 17
  start-page: 19
  year: 2016
  ident: 3124_CR28
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2016.10.002
– volume: 68
  start-page: 1082
  issue: 4
  year: 2014
  ident: 3124_CR44
  publication-title: Evolution
  doi: 10.1111/evo.12343
– volume: 280
  start-page: 361
  year: 1979
  ident: 3124_CR3
  publication-title: Nature
  doi: 10.1038/280361a0
– ident: 3124_CR18
– volume: 22
  start-page: 105
  issue: 1
  year: 2016
  ident: 3124_CR15
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2201.151410
– ident: 3124_CR16
– volume: 9
  start-page: 20120637
  issue: 1
  year: 2013
  ident: 3124_CR40
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2012.0637
– volume: 9
  start-page: 100957
  issue: 6
  year: 2014
  ident: 3124_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100957
– volume-title: Modeling Infectious Diseases in Humans and Animals
  year: 2008
  ident: 3124_CR32
  doi: 10.1515/9781400841035
– volume: 6
  start-page: 1001005
  issue: 11
  year: 2010
  ident: 3124_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001005
– volume: 164
  start-page: 267
  issue: 2
  year: 2004
  ident: 3124_CR33
  publication-title: Am Nat
  doi: 10.1086/422341
– volume: 106
  start-page: 19644
  issue: Supplement 2
  year: 2009
  ident: 3124_CR36
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0901637106
SSID ssj0017829
Score 2.4063845
SecondaryResourceType review_article
Snippet Background : Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate...
Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of...
Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate...
Here, emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of...
Abstract Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security....
SourceID doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 245
SubjectTerms 60 APPLIED LIFE SCIENCES
Analysis
Aquatic insects
Biological Science
Care and treatment
Chikungunya
Chikungunya fever
Chikungunya Fever - epidemiology
Chikungunya Fever - prevention & control
CHIKUNGUNYA FORECASTING
Chikungunya virus
Decision making
Demographics
Demography
Dengue - epidemiology
Dengue - prevention & control
Dengue fever
Dengue virus
Disease Outbreaks - prevention & control
Epidemics
Forecasting
Forecasting - methods
Global health
Growth models
Health aspects
Health risks
Humans
Infection Control - organization & administration
Infection Control - standards
Infection Control - trends
Infectious Diseases
Influenza
Internal Medicine
Mathematical models
Mechanistic models
Medical Microbiology
Medicine
Medicine & Public Health
Morbidity
Morphological models
Organizational Innovation
Parameter estimation
Parasitology
Population
Population (statistical)
Prediction markets
R&D
Research & development
Research Article
Research Design
Research projects
Security
Security Measures - organization & administration
Security Measures - standards
Security Measures - trends
Statistical analysis
Statistical models
Tropical Medicine
United States - epidemiology
United States Department of Defense - organization & administration
United States Department of Defense - trends
Vector-borne diseases
Viral diseases
Viral infections
Viruses
Zika virus
Zika Virus Infection - epidemiology
Zika Virus Infection - prevention & control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADB6hPSAuiDdLCwoICQkUNTuZp8RlKVQFqYBainobzSu0okoQSQ78e-xkshCgcOG640k2fsSfY49NyGOcoe21K_JYDp9ulM0tK0POSxYtrXSpGJ53Pngr9o_ZmxN-8tOoL6wJG9sDj4zbKbTXXNOKA65nwXnrVAiuqjjmTFkYzpGDG5uCqZQ_AL-nUw5zpcROC29hiXVB-C2QslzOvNDQrH_zSl40YFt_wpu_l03-kjsdXNLeNXI1YclsPT7DdXIp1jfI5YOULb9Jnh-NJ9MyCKn7867NmioDvJeBN2agtyuevVwfvl9nu6dnn8Hm-_qbzfw0XOUWOd579WF3P0_TEnIvtOpyMLRSOBmsA4TkeQSuBaGEG3KtnnPJlIBgKgRVgGwgTPJMqCBjlFRZJ4ryNlnUTR3vkswpHSoqOI00MoDfruABRGlZFR14vNWSFBP3jE-txHGixbkZQgolzMhwAww3yHAjl-TpZsuXsY_G34hfoEg2hNgCe_gBFMMkxTD_UowleYQCNdjkosYqmk-2b1vz-t1Hs8YZAAKnFF9EdHQ4I3qSiKoGHtPbdHIBmIXNs2aU2zNKMFU_W95C5TIAbrBDr8dSJt8ZjGmpprB50jmTXiStoQBQJUB0ZPrDzTJeF4vj6tj0SMMkIFnAjktyZ1TRDeuoVgwwCuyWM-Wd8Xa-Up-dDm3GIdSEe8M1n01q_uNvXSi6e_9DdFvkCkVbxSKNYpssuq99vA_Yr3MPBjP_Du0ZTbs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_0BPFF_O7ZKlEEQQkmm_0KCHJWSxWq0lq5tyX7kbZYktokD_73ziSblKjt6-3s5nZ2Zvc3O7MzhLzAGto2N0nss_7qRhVxwTIX84z5gpZ5phi-d977InYP2ec1X4cLtyaEVY57Yr9Ru9riHTkY6VxIwCoifXf2K8aqUehdDSU0rpMbKUAVlGq5ngyuFE6_PHgyUyXeNLAXS4wOwhtBymI5O4v6lP3TxryoQcP-hzr_DZ78y4PaH0w7d8jtgCij1SACd8k1X90jN_eCz_w-eXswvE-LwLDuTtsmqssIUF8EZzID6U159GG1_20VbR-f_ATN76rfRWTHEisPyOHOx-_bu3GomRBbkas2BnXLhJGuMICTLPc5z51QwvQeV8u5ZEqASeWcSmCFwFiyTCgnvZdUFUYk2UOyqOrKb5DIqNyVVHDqqWcAwk3CHSxowUpv4NxLlyQZuadtSCiOdS1OdW9YKKEHhmtguEaGa7kkr6YuZ0M2jauI3-OSTISYCLv_oT4_0kGvdJJbmCItOZh9zBlbGOWcKUuOLnXmYJDnuKAaU11UGEtzVHRNoz99_aFXWAlAYK3iy4gO9mdELwNRWcM0bRHeLwCzMIXWjHJrRgkKa2fNmyhcGiAO5um1GNBkW42WLc0pdB5lToftpNEXwr8kz6ZmHBdD5Cpfd0jDJOBZQJBL8mgQ0Yl1NFcMkAr0ljPhnfF23lKdHPfJxsHghG_DmK9HMb_4W5cu3eOrJ7FJblHUQgzCSLbIoj3v_BPAdq152ivwH9WaRMA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_0BPFF_O7ZKlEEQQnmNvsJvpynpQpVaa30bdmv2GJJxCQP_vfO5Pai0Vbw9XZ2c5mP3d9kZmcIeYI9tL12RR7L4dONsrllZch5yaKllS4Vw_vO--_F3hF7d8yPU7FovAvze_x-ocSLFvZPiRk9-BWPslxeJlc47LuYvbcSqzFgAAedTkHLc6dNjp2hOv-4B88aMKbzAObfeZJ_BEuHM2j3BrmewGO2XEv7JrkU61vk6n4Kj98mLw_XV9Ey8KH7s67NmioDgJfB8ctAURc8e708-LjMVienX8HI-_qHzfymm8odcrT75tNqL0_tEXIvtOpysKxSOBmsA0jkedRcB6GEG4KrnnPJlADvKQRVgDDAL_JMqCBjlFRZJ4ryLpnVTR23SOaUDhUVnEYaGeBtV_AAsrOsig6OuMWcFBvuGZ9qh2MLizMz-BBKmDXDDTDcIMONnJNn45Rv68IZ_yJ-hSIZCbHm9fADqIJJJmQK7eEVacXBw2PBeetUCK6qOEbPWYBFHqNADVa1qDFt5ovt29a8_fDZLLHov8C2xBcRHR5MiJ4moqqB1_Q2XVUAZmG1rAnlzoQSbNNPhrdRuQygGSzJ6zF3yXcGnViqKUze6JxJO0drKCBSCZgcmf5oHMZ1MRuujk2PNEwCdAWwOCf31io6so5qxQCUwGw5Ud4Jb6cj9enJUFccfEt4Nqz5fKPmv_7WhaK7_1_U2-QaRaPE9Itih8y67318AKiucw8He_4Jy-s9PA
  priority: 102
  providerName: Springer Nature
Title Summary results of the 2014-2015 DARPA Chikungunya challenge
URI https://link.springer.com/article/10.1186/s12879-018-3124-7
https://www.ncbi.nlm.nih.gov/pubmed/29843621
https://www.proquest.com/docview/2056777461
https://www.proquest.com/docview/2047250663
https://www.osti.gov/servlets/purl/1441292
https://pubmed.ncbi.nlm.nih.gov/PMC5975673
https://doaj.org/article/09c9592f51644dbcab8ddbff501274d7
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: KQ8
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: M48
  dateStart: 20010801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017829
  issn: 1471-2334
  databaseCode: C6C
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1raxNBcGlTEL9IfcfWcIogKKeXvX0dKJLEliqkltRI8Mty-7i2GO5qHmD_vTOXu5TTVPDLQbKzm9w8dmZ2ZmcIeYE9tG1iotDH5dGNSsOUxS7kMfMpzZJYMbzvPDwWR2P2ecInW6Rub1UhcL7RtcN-UuPZ9M2vn1cfQODflwKvxNs57LESs37wpI-yUG6THVBMFJl8yK6DCqAMk_KykeyGNI5ZFeTcuERDTZXV_Nd7dqsA4dtkkP6dV_lHcLXUWYe75E5lbAa9FXfcJVs-v0duDatw-n3y7nR1dS0An3s5XcyDIgvAIAxAXTNg7C4PPvZGJ71gcH7xAzaFZX6VBrbuvvKAjA8Pvg6OwqqdQmhFohYhSGIsjHSpARPKcp_wxAklTBmMtZxLpgR4W86pCIgHfpRlQjnpvaQqNSKKH5JWXuT-MQmMSlxGBaeeegb2uYm4A1qnLPMGVGK3TaIae9pWtcax5cVUlz6HEnqFcA0I14hwLdvk1XrK5arQxr-A-0iSNSDWyC6_KGZnuhI5HSUWXpFmHDxC5oxNjXLOZBnHaDtzsMhzJKjGKhg5ptmcpcv5XH_68k33sEmAwDbGNwGdjhpALyugrIDXtGl1tQGQhdW1GpD7DUiQZdsY3kPm0mD9YAlfi7lOdqHR6aUJhck1z-laUDQFC1aCDY9If7YexnUxey73xRJhmARTF4zLNnm0YtE16miiGBgxMFs2mLeB2-ZIfnFe1iEHXxR-G9Z8XbP59d-6kXRP_ofOe-Q2RZnEbI1on7QWs6V_CkbgwnTItpxIeKpBt0N2-gfHJyP4NBCDTnms0ilFH56j_vffuvZTYw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKIgEviJulBQICIYEiso7tOBIILS3VLu0W1APtm4mPtBVVUpqsUP8Uv5GZXFWA9q2v67GzHo_H33jGM4S8wBraJtaB78Lq6kYmfsJC6_OQuYSmcSgZvneebYnJHvs85_Ml8rt9C4Nhla1OrBS1zQ3ekYORzkUEWEWMPhz_9LFqFHpX2xIatVhsuNNfYLIV76drsL4vKV3_tLs68ZuqAr4RsSx9EMhQ6MgmGpCE4S7msRVS6MonaTiPmBRgdFgrA5gDmBOGCWkj5yIqEy2CEMa9Qq6yMGCYqz-adwbeCE7buPGcjqR4W4DujzAaCW8gKfOj3tlXlQjoDoJBDjv6fyj332DNvzy21UG4fovcbBCsN65F7jZZctkdcm3W-Ojvknc79Xs4Dwz5xVFZeHnqAcr0AAMw2C0j7q2Nt7-OvdWDwx-gaRbZaeKZtqTLPbJ3Kdy8TwZZnrmHxNMytikVnDrqGIB-HXALApSw1Gk4Z0dDErTcU6ZJYI51NI5UZchIoWqGK2C4QoaraEhed12O6-wdFxF_xCXpCDHxdvVDfrKvmn2sgtjAFGnKwcxkVptES2t1mnJ04TMLgzzHBVWYWiPD2J39ZFEUavrlmxpj5QGBtZHPI9rZ7hG9aojSHKZpkua9BDALU3b1KFd6lKAgTK95GYVLAaTCvMAGA6hMqdCSpjGFzq3MqUZ9Fepssw3Js64Zx8WQvMzlC6RhEeBnQKxD8qAW0Y51NJYMkBH0jnrC2-NtvyU7PKiSm4OBC9-GMd-0Yn72t85dukcXT-IpuT7ZnW2qzenWxjK5QXFHYgBIsEIG5cnCPQZcWeon1Wb2yPfL1h5_AJQYf3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK1VcUHkvLRAQEhIoaurYji1xCS2rdqGl6lLUmxU_0lZUSdVkD_33zOSFAi0S1_XY2czD_iYzniHkLfbQtspEoY-bTzcyCzMWu5DHzGc0V7FkeN95_0DsHrP5CT_p-pxWfbZ7H5Js7zRglaai3rx0eWviUmxWsKsmmOeD3_YoC5O7ZEVyJcD7WknT-WI-BBLgAFRdMPPGiaPjqKnaP-zNkxKM7Cbg-Xf-5B9B1OZsmq2R-x2oDNJWCx6QO754SFb3u7D5I_Jx0V5RC8C3Xl7UVVDmAQC_AI5lBgq8xYOd9OgwDbbPzn-C8S-L6yywfZeVx-R49vn79m7YtU0IrVCyDsHiYmESlxmASpZ7xZUTUpgm6Go5T5gU4FU5JyMQEvhLlgnpEu8TKjMjovgJmRRl4Z-RwEjlcio49dQzwOEm4g5kmrHcGzj6tqYk6rmnbVdTHFtbXOjGt5BCtwzXwHCNDNfJlLwfply2BTX-RfwJRTIQYi3s5ofy6lR3pqUjZeEVac7B82PO2MxI50yec4yqMweLvEGBaqx2UWA6zWm2rCq99-2HTrEZgMB2xbcRLY5GRO86oryE17RZd4UBmIVVtEaUGyNKsFk7Gl5H5dKAcrBUr8WcJltrdG6pojC51znd7SiVpoBUE8DqyPTXwzCui1lyhS-XSMMSgLQAIqfkaauiA-uokgzACsxORso74u14pDg_a-qNg88Jz4Y1P_Rq_vtv3Sq65_9F_YqsHu7M9Ne9gy_r5B5F-8QMjWiDTOqrpX8BwK82Lzvj_gUG10nn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Summary+results+of+the+2014-2015+DARPA+Chikungunya+challenge&rft.jtitle=BMC+infectious+diseases&rft.au=Del+Valle%2C+Sara+Y.&rft.au=McMahon%2C+Benjamin+H.&rft.au=Asher%2C+Jason&rft.au=Hatchett%2C+Richard&rft.date=2018-05-30&rft.issn=1471-2334&rft.eissn=1471-2334&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12879-018-3124-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12879_018_3124_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2334&client=summon