Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database
Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this...
Saved in:
| Published in | PLoS ONE Vol. 15; no. 9; p. e0239262 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
San Francisco
Public Library of Science (PLoS)
17.09.2020
Public Library of Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0239262 |
Cover
| Abstract | Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library ( |
|---|---|
| AbstractList | Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline. Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library ( Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline.Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline. |
| Audience | Academic |
| Author | Michiharu Kudo Toshiya Iwamori Ryosuke Yanagiya Yukio Yuzawa Daijo Inaguma Akira Koseki Akimitsu Kitagawa Tatsuo Shimosawa |
| AuthorAffiliation | 4 Department of Nephrology, Fujita Health University School of Medicine–Toyoake, Japan 2 Division of Medical Information Systems, Fujita Health University School of Medicine–Toyoake, Japan 3 IBM Research—Tokyo, Japan 1 Department of Internal Medicine, Fujita Health University Bantane Hospital–Nagoya, Japan International University of Health and Welfare, School of Medicine, JAPAN |
| AuthorAffiliation_xml | – name: 2 Division of Medical Information Systems, Fujita Health University School of Medicine–Toyoake, Japan – name: 3 IBM Research—Tokyo, Japan – name: International University of Health and Welfare, School of Medicine, JAPAN – name: 4 Department of Nephrology, Fujita Health University School of Medicine–Toyoake, Japan – name: 1 Department of Internal Medicine, Fujita Health University Bantane Hospital–Nagoya, Japan |
| Author_xml | – sequence: 1 givenname: Daijo orcidid: 0000-0002-3977-5933 surname: Inaguma fullname: Inaguma, Daijo – sequence: 2 givenname: Akimitsu surname: Kitagawa fullname: Kitagawa, Akimitsu – sequence: 3 givenname: Ryosuke surname: Yanagiya fullname: Yanagiya, Ryosuke – sequence: 4 givenname: Akira surname: Koseki fullname: Koseki, Akira – sequence: 5 givenname: Toshiya surname: Iwamori fullname: Iwamori, Toshiya – sequence: 6 givenname: Michiharu surname: Kudo fullname: Kudo, Michiharu – sequence: 7 givenname: Yukio surname: Yuzawa fullname: Yuzawa, Yukio |
| BackLink | https://cir.nii.ac.jp/crid/1871991017861728384$$DView record in CiNii |
| BookMark | eNqNkl1v0zAUhiM0xD7gHyBhiQnBRYsdO3ayC6RpsFExadL4uLVc56T1cO1iO4z-H34ozlrQOk1iihJHx895fc55vV_sOO-gKJ4TPCZUkLdXvg9O2fEyh8e4pE3Jy0fFHmloOeIlpju3_neL_RivMK5ozfmTYpeWDSMVrfaK3xOnA6ho3AwlcC04vUK-Q30wDtAy-ATGIRORQsHE76hTOvmAuvwGtTQtgrPTS9SCtgOf0aVKBlyK6NqkOTr59P4IHaOF0vNh34IKLh81mqoIbZaH1uhkvEML34JF0xXqb0pRaGpmqFVJDeTT4nGnbIRnm_Wg-Hr64cvJx9H5xdnk5Ph8pHlTpxEXDW0oJyVojhUVrCNMNSAwEZgB67ppSwnuGqwFBTwVeWS0rNocB8VqqulB8WKtu7Q-ys2AoywZo7VgDaaZmKyJ1qsruQxmocJKemXkTcCHmVQhGW1B1hqoZiXnAggTQjeMc6w1qQRthYAqa1Vrrd4t1epaWftPkGA5ePy3BDl4LDce57x3myr76QJanacdlN0qZnvHmbmc-Z8ytyCaWmSB1xuB4H_0EJNcmKjBWuXA9zf9MipqiocaX95B75_Khpqp3Lhxnc_n6kFUHnNaidx-tuagGN9D5aeFhdG5w87k-FbCm62EzCT4lWaqj1FOPl8-nL34ts2-usXOQdk0j972w0WM2-DRGtTBxxigk9okNWC5cmP_ZxO7k_xAdw_Xac6YfNzwJbUgTUPyNa45EWVNa0b_AN6JQqM |
| CitedBy_id | crossref_primary_10_2139_ssrn_3944583 crossref_primary_10_1371_journal_pone_0264167 crossref_primary_10_1016_j_fmre_2022_01_037 crossref_primary_10_3390_nu17050916 crossref_primary_10_1016_j_heliyon_2024_e40566 crossref_primary_10_1111_jdi_14309 crossref_primary_10_3389_fcimb_2021_645951 crossref_primary_10_1080_0886022X_2024_2303205 crossref_primary_10_1371_journal_pone_0317558 crossref_primary_10_2196_48320 crossref_primary_10_1136_bmjopen_2021_058833 crossref_primary_10_1038_s41440_023_01185_2 crossref_primary_10_1038_s41598_024_52251_9 crossref_primary_10_1007_s40620_023_01573_4 crossref_primary_10_3389_fendo_2023_1052227 crossref_primary_10_1186_s12911_023_02269_2 crossref_primary_10_3390_biomedinformatics3010017 |
| Cites_doi | 10.1159/000495818 10.1007/s10157-018-1587-x 10.1016/j.mbs.2019.02.001 10.1053/j.ajkd.2014.07.030 10.1038/s41598-019-41663-7 10.1053/j.ajkd.2016.02.039 10.1016/j.metabol.2017.01.011 10.1056/NEJMoa011161 10.1038/sj.ki.5000058 10.1038/s41551-018-0305-z 10.1053/j.ajkd.2019.05.020 10.1097/CCM.0000000000003123 10.1053/j.ajkd.2010.05.016 10.1681/ASN.2018010103 10.1016/j.jacc.2018.03.521 10.1186/s12967-019-1860-0 10.1016/j.kint.2016.03.036 10.1159/000339327 10.1016/j.kint.2016.08.003 10.1056/NEJMoa1811744 10.1159/000484962 10.1053/j.ajkd.2013.08.028 10.1001/jama.2019.14745 10.1016/j.kint.2018.04.011 10.1007/s10157-016-1309-1 10.1001/jama.2014.6634 10.1038/ki.2012.208 10.1371/journal.pone.0127071 10.1056/NEJMoa011303 10.1053/j.ackd.2011.10.006 10.1038/s41598-019-46074-2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Inaguma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Inaguma et al 2020 Inaguma et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Inaguma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Inaguma et al 2020 Inaguma et al |
| DBID | RYH AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0239262 |
| DatabaseName | CiNii Complete CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) Statistics |
| DocumentTitleAlternate | A machine learning-based prediction model for rapid eGFR decline |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2443874903 oai_doaj_org_article_8ce3c42667e1477c94660cc1573d77e5 10.1371/journal.pone.0239262 PMC7497987 A635747779 10_1371_journal_pone_0239262 |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RYH RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION ESTFP PJZUB PPXIY PQGLB PUEGO 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c698t-679393612ec60a374f14a9e701704e4ffbd310f90c73e0b7392325dffbea483c3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Sep 03 00:14:21 EDT 2023 Tue Oct 14 19:02:49 EDT 2025 Sun Oct 26 04:12:20 EDT 2025 Tue Sep 30 16:36:10 EDT 2025 Fri Sep 05 07:55:41 EDT 2025 Tue Oct 07 09:07:51 EDT 2025 Mon Oct 20 21:42:25 EDT 2025 Mon Oct 20 16:34:56 EDT 2025 Thu Oct 16 14:14:06 EDT 2025 Thu Oct 16 14:45:28 EDT 2025 Thu May 22 21:24:29 EDT 2025 Wed Oct 01 02:05:04 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Thu Jun 26 23:21:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c698t-679393612ec60a374f14a9e701704e4ffbd310f90c73e0b7392325dffbea483c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors also contributed equally to this work. Competing Interests: DI received lecture fees from Ono Pharmaceutical Co., Ltd. and Kyowa Hakko Kirin Co. YY received research support grants from Otsuka Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., and Chugai Pharmaceutical Co., Ltd. IBM Research provided support for this study in the form of salaries for AK, TI and MK. There are no patents, products in development or marketed products associated with this research to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
| ORCID | 0000-0002-3977-5933 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0239262 |
| PMID | 32941535 |
| PQID | 2443874903 |
| PQPubID | 1436336 |
| PageCount | e0239262 |
| ParticipantIDs | plos_journals_2443874903 doaj_primary_oai_doaj_org_article_8ce3c42667e1477c94660cc1573d77e5 unpaywall_primary_10_1371_journal_pone_0239262 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497987 proquest_miscellaneous_2444378305 proquest_journals_2443874903 gale_infotracmisc_A635747779 gale_infotracacademiconefile_A635747779 gale_incontextgauss_ISR_A635747779 gale_incontextgauss_IOV_A635747779 gale_healthsolutions_A635747779 crossref_citationtrail_10_1371_journal_pone_0239262 crossref_primary_10_1371_journal_pone_0239262 nii_cinii_1871991017861728384 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-17 |
| PublicationDateYYYYMMDD | 2020-09-17 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS ONE |
| PublicationYear | 2020 |
| Publisher | Public Library of Science (PLoS) Public Library of Science |
| Publisher_xml | – name: Public Library of Science (PLoS) – name: Public Library of Science |
| References | M Fiorentino (pone.0239262.ref029) 2018; 193 BM Brenner (pone.0239262.ref009) 2001; 345 AS Levey (pone.0239262.ref026) 2014; 64 O Niel (pone.0239262.ref017) 2019; 74 E Kanda (pone.0239262.ref032) 2019; 9 W Yang (pone.0239262.ref005) 2014; 63 D Inaguma (pone.0239262.ref006) 2017; 21 L De Nicola (pone.0239262.ref007) 2015; 10 JL Koyner (pone.0239262.ref031) 2018; 46 K Matsushita (pone.0239262.ref027) 2016; 90 J Coresh (pone.0239262.ref025) 2014; 311 BO Eriksen (pone.0239262.ref028) 2006; 69 C Barbieri (pone.0239262.ref023) 2016; 90 SJ Rosansky (pone.0239262.ref014) 2012; 36 EJ Lewis (pone.0239262.ref010) 2001; 345 Y Xie (pone.0239262.ref001) 2018; 94 Z Yu (pone.0239262.ref015) 2019 J Xiao (pone.0239262.ref022) 2019; 17 K Iseki (pone.0239262.ref016) 2018; 22 Y Liu (pone.0239262.ref021) 2018; 43 GA Campbell (pone.0239262.ref003) 2011; 18 KW Johnson (pone.0239262.ref019) 2018; 71 Y Xie (pone.0239262.ref013) 2016; 68 M Elhoseny (pone.0239262.ref033) 2019; 9 P Hamet (pone.0239262.ref018) 2017; 69s C Wanner (pone.0239262.ref011) 2018; 29 NA Smart (pone.0239262.ref004) 2014 TK Chen (pone.0239262.ref002) 2019; 322 RD Toto (pone.0239262.ref008) 2010; 56 LS Chawla (pone.0239262.ref030) 2012; 82 V Perkovic (pone.0239262.ref012) 2019; 380 KH Yu (pone.0239262.ref020) 2018; 2 J Zhao (pone.0239262.ref024) 2019; 310 |
| References_xml | – volume: 43 start-page: 1852 issue: 6 year: 2018 ident: pone.0239262.ref021 article-title: Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model publication-title: Kidney & blood pressure research doi: 10.1159/000495818 – volume: 22 start-page: 1331 issue: 6 year: 2018 ident: pone.0239262.ref016 article-title: Dipstick proteinuria and all-cause mortality among the general population publication-title: Clinical and experimental nephrology doi: 10.1007/s10157-018-1587-x – volume: 310 start-page: 24 year: 2019 ident: pone.0239262.ref024 article-title: Predicting outcomes of chronic kidney disease from EMR data based on Random Forest Regression publication-title: Mathematical biosciences doi: 10.1016/j.mbs.2019.02.001 – volume: 64 start-page: 821 issue: 6 year: 2014 ident: pone.0239262.ref026 article-title: GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation doi: 10.1053/j.ajkd.2014.07.030 – volume: 9 start-page: 5082 issue: 1 year: 2019 ident: pone.0239262.ref032 article-title: Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study publication-title: Scientific reports doi: 10.1038/s41598-019-41663-7 – volume: 68 start-page: 219 issue: 2 year: 2016 ident: pone.0239262.ref013 article-title: Estimated GFR Trajectories of People Entering CKD Stage 4 and Subsequent Kidney Disease Outcomes and Mortality publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation doi: 10.1053/j.ajkd.2016.02.039 – volume: 69s start-page: S36 year: 2017 ident: pone.0239262.ref018 article-title: Artificial intelligence in medicine publication-title: Metabolism: clinical and experimental doi: 10.1016/j.metabol.2017.01.011 – year: 2019 ident: pone.0239262.ref015 article-title: Association Between Hypertension and Kidney Function Decline: The Atherosclerosis Risk in Communities (ARIC) Study publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation – volume: 345 start-page: 861 issue: 12 year: 2001 ident: pone.0239262.ref009 article-title: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy publication-title: The New England journal of medicine doi: 10.1056/NEJMoa011161 – volume: 69 start-page: 375 issue: 2 year: 2006 ident: pone.0239262.ref028 article-title: The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age publication-title: Kidney international doi: 10.1038/sj.ki.5000058 – volume: 2 start-page: 719 issue: 10 year: 2018 ident: pone.0239262.ref020 article-title: Artificial intelligence in healthcare publication-title: Nature biomedical engineering doi: 10.1038/s41551-018-0305-z – volume: 74 start-page: 803 issue: 6 year: 2019 ident: pone.0239262.ref017 article-title: Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation doi: 10.1053/j.ajkd.2019.05.020 – volume: 46 start-page: 1070 issue: 7 year: 2018 ident: pone.0239262.ref031 article-title: The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model publication-title: Critical care medicine doi: 10.1097/CCM.0000000000003123 – volume: 56 start-page: 896 issue: 5 year: 2010 ident: pone.0239262.ref008 article-title: Relationship between body mass index and proteinuria in hypertensive nephrosclerosis: results from the African American Study of Kidney Disease and Hypertension (AASK) cohort publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation doi: 10.1053/j.ajkd.2010.05.016 – volume: 29 start-page: 2755 issue: 11 year: 2018 ident: pone.0239262.ref011 article-title: Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial publication-title: Journal of the American Society of Nephrology: JASN doi: 10.1681/ASN.2018010103 – volume: 71 start-page: 2668 issue: 23 year: 2018 ident: pone.0239262.ref019 article-title: Artificial Intelligence in Cardiology publication-title: Journal of the American College of Cardiology doi: 10.1016/j.jacc.2018.03.521 – volume: 17 start-page: 119 issue: 1 year: 2019 ident: pone.0239262.ref022 article-title: Comparison and development of machine learning tools in the prediction of chronic kidney disease progression publication-title: Journal of translational medicine doi: 10.1186/s12967-019-1860-0 – volume: 90 start-page: 422 issue: 2 year: 2016 ident: pone.0239262.ref023 article-title: An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients publication-title: Kidney international doi: 10.1016/j.kint.2016.03.036 – start-page: Cd007333 issue: 6 year: 2014 ident: pone.0239262.ref004 article-title: Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease publication-title: The Cochrane database of systematic reviews – volume: 36 start-page: 1 issue: 1 year: 2012 ident: pone.0239262.ref014 article-title: Renal function trajectory is more important than chronic kidney disease stage for managing patients with chronic kidney disease publication-title: American journal of nephrology doi: 10.1159/000339327 – volume: 90 start-page: 1109 issue: 5 year: 2016 ident: pone.0239262.ref027 article-title: Risk of end-stage renal disease in Japanese patients with chronic kidney disease increases proportionately to decline in estimated glomerular filtration rate publication-title: Kidney international doi: 10.1016/j.kint.2016.08.003 – volume: 380 start-page: 2295 issue: 24 year: 2019 ident: pone.0239262.ref012 article-title: Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy publication-title: The New England journal of medicine doi: 10.1056/NEJMoa1811744 – volume: 193 start-page: 45 year: 2018 ident: pone.0239262.ref029 article-title: Acute Kidney Injury to Chronic Kidney Disease Transition publication-title: Contributions to nephrology doi: 10.1159/000484962 – volume: 63 start-page: 236 issue: 2 year: 2014 ident: pone.0239262.ref005 article-title: Association of kidney disease outcomes with risk factors for CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation doi: 10.1053/j.ajkd.2013.08.028 – volume: 322 start-page: 1294 issue: 13 year: 2019 ident: pone.0239262.ref002 article-title: Chronic Kidney Disease Diagnosis and Management: A Review publication-title: Jama doi: 10.1001/jama.2019.14745 – volume: 94 start-page: 567 issue: 3 year: 2018 ident: pone.0239262.ref001 article-title: Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016 publication-title: Kidney international doi: 10.1016/j.kint.2018.04.011 – volume: 21 start-page: 446 issue: 3 year: 2017 ident: pone.0239262.ref006 article-title: Risk factors for CKD progression in Japanese patients: findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study publication-title: Clinical and experimental nephrology doi: 10.1007/s10157-016-1309-1 – volume: 311 start-page: 2518 issue: 24 year: 2014 ident: pone.0239262.ref025 article-title: Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality publication-title: Jama doi: 10.1001/jama.2014.6634 – volume: 82 start-page: 516 issue: 5 year: 2012 ident: pone.0239262.ref030 article-title: Acute kidney injury and chronic kidney disease: an integrated clinical syndrome publication-title: Kidney international doi: 10.1038/ki.2012.208 – volume: 10 start-page: e0127071 issue: 5 year: 2015 ident: pone.0239262.ref007 article-title: Independent Role of Underlying Kidney Disease on Renal Prognosis of Patients with Chronic Kidney Disease under Nephrology Care publication-title: PloS one doi: 10.1371/journal.pone.0127071 – volume: 345 start-page: 851 issue: 12 year: 2001 ident: pone.0239262.ref010 article-title: Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes publication-title: The New England journal of medicine doi: 10.1056/NEJMoa011303 – volume: 18 start-page: 420 issue: 6 year: 2011 ident: pone.0239262.ref003 article-title: Referral and comanagement of the patient with CKD publication-title: Advances in chronic kidney disease doi: 10.1053/j.ackd.2011.10.006 – volume: 9 start-page: 9583 issue: 1 year: 2019 ident: pone.0239262.ref033 article-title: Intelligent Diagnostic Prediction and Classification System for Chronic Kidney Disease publication-title: Scientific reports doi: 10.1038/s41598-019-46074-2 |
| SSID | ssj0053866 |
| Score | 2.4650226 |
| Snippet | Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale crossref nii |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e0239262 |
| SubjectTerms | Algorithms Artificial intelligence Biology and Life Sciences Blood pressure Chronic kidney failure Comorbidity Complications and side effects Computer and Information Sciences Diabetes Electronic health records Electronic medical records End-stage renal disease Epidermal growth factor receptors Glomerular filtration rate Health aspects Hemoglobin Hospitals Hypertension Internal medicine Kidney diseases Kidneys Laboratories Learning algorithms Machine learning Medical records Medicine Medicine and Health Sciences Nephrology Patients Physical Sciences Prediction models Prognosis Proteins Proteinuria Risk analysis Risk factors Science Statistics Urine |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF7ggykMNtDAgJOCQNomdOOG2FJYCAqRCUW-R49hLpCW7anaF-n_4ocw43qhBSO2Byx7iSTaet53xN4w9UynmEGktQmUiFRICVlhhIAljbStUL25VRVsDnz5nRyfiw2l6eqHVF9WE9fDAPeMOcm24pjAiTSyk1ISHHmkdp5LXUhqHXhrlxWYx1ftgtOIs8wfluIwPvFz2l4vW7NNxziRLRoHI4fUPXvl62zQEdjpfdKPE8--yyRvrdqnOf6n5_EJMmt5mt3wyCZN-EtvsmmnvsG1vrh288JjSL--y3-gHqPwcAxW4XW_0qbCwQHvtBhxYQ9NC04ECKjaHvg0PYEYLZ2rZ1GDeTY-hNnSQ0gCSejzWDmgjFw4_vnkFE_jpKjMN-FYUs5BiZI2Pp69BpAHgGu9AdQ5r9yoKqmYGVKVKlPfYyfTtt8Oj0DdoCHVW5KswQ-MuOOZIRmeR4lLYWKjCSMLkEUZYW9WYPdoi0pKbqJLId56kNV43SuRc8_tsq0WR7DCobZJUcaQrWxWCZyIvbFxXRZYYblMZFQHjG2mV2qOXUxONeek-yUlcxfQ8L0nGpZdxwMLhrmWP3nEJ_WtShIGWsLfdBdTI0mtkeZlGBuwxqVHZH2QdPEg5Ieg_vEHiZJ46CsLfaKnAZ6bWXVe-__L9CkRfj0dEzz2RXSA7tPKHKnBOhOs1otwdUaIX0aPhPVR6ZC39xriKxnUDijGnBDfnuQjYDpnDhmtdiWkhz6UoIo5P3pjIv4efDMP0p1TU15rF2tEILnN0CQGTI9MaCWA80jY_HAg6PlsWuQzY_mCEVxLxg_8h4ofsZkL7LtRKRO6yrdXZ2uxhcrqqHjk_9AcrxIsc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9QwDI_2R4K9IDZAO9jAICTgoVvbpE2LhNA2NgZoAw2G9lalaXpUOtrjeie078MHxc6lB0UI9nIPjZtL49hxHPtnxh6rCG2IqBCeMr7yCAHLy3Ej8QJd5ri8eKlycg2cnMbH5-LtRXSxxE67XBgKq-x0olXURaPJR76L2xBPpEh9_nL8zaOqUXS72pXQUK60QvHCQowts9WQkLFW2Or-4emHs043o3THsUug4zLYdfzaGTe12aE0zzAOexuUxfFfaOvluqoIBHXUtD2D9M9wyuuzeqwuv6vR6Le96ugmu-GMTNibr4p1tmTqDXbtxF2jb7B1J9EtPHWw08822BrZnXPY5lvsB-oNClfHjQ2slxx1MDQlkG_egAV3qGqoWlBAwekwL9sDaAHDRI2rAszrozMoDCVeGkBSh9_aAjl-4eDdq-ewB19tJKcBV7pi6NGeWmD3NFJaMWAL9UB-CTM7FAV5NQSKaiXK2-z86PDTwbHnCjp4Ok6TqRejMkg52lRGx77iUpSBUKmRhOEjjCjLvEBrs0x9Lbnxc4n84GFU4HOjRMI1v8NWamTVJoOiDMM88HVe5qngsUjSMijyNA4NLyPppwPGOy5m2qGdU9GNUWav8CSeeua8yIj3meP9gHmLt8ZztI__0O_TAlnQEla3fdBMhpkT_SzRhmsyhKQJhJSaEP19rYNI8kJKEw3YA1pe2TzxdaFxsj2CCsQXJH7MI0tBeB01BQQN1axtszfvP1-B6ONZj-iJIyobnA6tXBIGfhPhgPUot3qUqHV0r3kbhQGnln4DPHXjOQPZmJBBnPBEDNgmiUk3a232S36x5050_t78cNFMf0pBgLVpZpZGcJmgChkw2RO5HgP6LXX1xYKmY98yTeSA7SyE80osvvvv0d5jayF5YKioiNxiK9PJzGyjmTrN7zvd8xPYI5GE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfG9gAvwPijFTY4EBIgkZLETpzwVgZlgDbQoNN4imzHGRElrZZWaHwePih3iVstE4jy0of4nMZ3vvPZvvsdY49UhD5ElAtPWV95hIDlaVxIvMAUGqcXL5Smo4H9g3hvJN4dR8dr7NkiF-b8_T2XwXPH0f50Utk-JWKGZHA34gg973W2MTr4OPjSXhyHXhz63GXH_a1rZ_VpQPqXpvhSVZaEcDqe1B1v82Ks5OV5NVVnP9R4fG4hGl5j-4shtPEn3_rzme6bnxfQHVcd43V21XmkMGin0CZbs9UNtul0voYnDpj66U32C40JxbDjagfN0TkaZpgUQAf2FhrEh7KCsgYFFLEObS0fQLcYTtW0zMG-GR5Cbikb0wKSOlDXGug0GHbfv3oBA_jehHdacPUsTjxaaHN8PV0p0TSCpnoP6DOYN5-iQJcnQKGuRHmLjYavP-_uea7Kg2fiNJl5MVqIlKOjZU3sKy5FEQiVWknAPsKKotA5uqBF6hvJra8lsoeHUY7PrRIJN_w2W6-Qc1sM8iIMdeAbXehU8FgkaRHkOo1Dy4tI-mmP8YX0M-Mg0KkSxzhr7vUkboVanmckisyJose8Za9pCwHyD_qXNLGWtATg3TxAmWfOHmSJsdyQdyRtIKQ0BPPvGxNEkudS2qjH7tO0zNps2KUZygaEH4gdJA7mYUNBIB4VRQmdqHldZ28_HK1A9OmwQ_TYERUTZIdRLjMDx0TgYB3K7Q4lmiLTad5BJULW0m-AW3HcfKAYE_KSE56IHtsi9Vpwrc7Qt-SJFKnP8c0Llftz84NlM_0pRQZWdjJvaASXCdqVHpMdVe0IoNtSlV8bJHV8t0wT2WP9pVKvJOI7_9vhLrsS0kEN1R6R22x9djq3O-jNzvQ9Z8R-Ay7LnHM priority: 102 providerName: Unpaywall |
| Title | Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database |
| URI | https://cir.nii.ac.jp/crid/1871991017861728384 https://www.proquest.com/docview/2443874903 https://www.proquest.com/docview/2444378305 https://pubmed.ncbi.nlm.nih.gov/PMC7497987 https://doi.org/10.1371/journal.pone.0239262 https://doaj.org/article/8ce3c42667e1477c94660cc1573d77e5 http://dx.doi.org/10.1371/journal.pone.0239262 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QAviPGhFbZyICTgIVUSO3GChFBX1g3QxjQoGk-R4zglUklL0wr2__CHcuemEUFD7MUP9tlt7nzns33-HWNPVYA-RJAJRxlXOYSA5aS4kDiezlOcXjxXKR0NnJyGxyPx7iK42GDrnK01A6srt3aUT2o0n_R-fr98jQr_ymZtkN66U282LU2PHmv6ZJS3ca2KKZnDiWjuFVC77e0leS1O6Lu8fkz3r1Fai5XF9G8s92ZZFASIOplWLef079DKG8typi5_qMnkj3VreJvdqh1O6K9myA7bMOUdtlOrdAXPa9zpF3fZL7QVFKKOixnYk3G0uzDNgc7jDVhAh6KEogIFFJAOq1Q9gF4vzNWsyMAcDc8hM_TY0gCS1pitFdBhLwzev3kJffhmozcN1Okqxg6toxkOTzdGNEvAJueB9BKW9q8oSIsxUCQrUd5jo-Hhp8GxUydxcHQYRwsnRAMQc_SjjA5dxaXIPaFiIwm3RxiR52mGHmYeu1py46YS-c79IMN6o0TENb_PtkoUyS6DLPf91HN1mqex4KGI4tzL0jj0Dc8D6cYdxtfSSnSNcE6JNiaJvbaTuNNZ8TwhGSe1jDvMaXrNVggf_6E_oInQ0BI-t62YzsdJre5JpA3X5PxI4wkpNaH4u1p7geSZlCbosEc0jZLVY9fGyiR9ggfEDhI_5omlIIyOkoKAxmpZVcnbD5-vQfTxvEX0rCbKp8gOreqHF_hNhP3VotxrUaKl0a3mfZz0yFoqPdxp494CxRiRExzxSHTYLqnDmmtVgq4jj6SIXY4jr1Xk6ubHTTP9KAX-lWa6tDSCywjNRofJlmq1BNBuKYuvFigdx5ZxJDus1yjhtUT84Dq8f8hu-nT2QulE5B7bWsyXZh8d1EXaZZvyQmIZDTwqh0ddtn1weHp23rVHPl1rk7BudHrW__Ibr9aUEA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEN4AJsKLEdRwCjIajfrQo-1uu62JMQgiyA8TBMNb3W63Z5OzPSkXwv_js3-jM-3eaY1RXni5h-50b9uZ_WZ2O_sNY09UgDFEkAlHGVc5xIDlpOhIHE_nKZoXz1VKWwMHh-HOiXh_GpzOsB-TszCUVjnBxAaos0rTHvk6uiEeSRG7_PXom0NVo-jr6qSERmsWe-byApds9avdLdTvU9_ffnu8uePYqgKODuPo3AnRImOOjt3o0FVcitwTKjaSiGSEEXmeZhjy5LGrJTduKjGA4H6Q4XWjRMQ1x35n2Q3BEUtw_sjT6QIPsSMM7fE8Lr11aw39UVWaPh0i9UO_4_6aKgFTXzBbFgVRrA6ruhPu_pmsOT8uR-ryQg2Hv3nC7dvslg1hYaO1uUU2Y8oldvPAfqRfYosWL2p4bkmtXyyxBYpqW1LoO-w7ohIlw6PbhGYPHhEeqhxo599AQx1RlFDUoIBS36EtCgQYX8OZGhUZmHfbR5AZOtZpAEUtO2wNtK0Mm3tbL2EDvjZ5ogZsYYyBQx47w-5ppGSP0JQBgvQSxs1QFKTFAChnliTvspNrUew9NleiqpYZZLnvp56r0zyNBQ9FFOdelsahb3geSDfuMT7RYqItlzqV9BgmzQdCiWuqVhcJ6T6xuu8xZ3rXqOUS-Y_8GzKQqSwxgTcXqrNBYoElibThmsIsaTwhpaZ6Aa7WXiB5JqUJemyNzCtpj9VO8SzZICJCvEHiwzxuJIgNpKR0o4Ea13Wy--HTFYQ-HnWEnlmhvMLXoZU94oHPRCxjHcmVjiRimu40r-JkwFdLvx6u6XEVg2qMKNyOeCR6bJmmyeSt1ckvdMCeJ1Pn782Pps30p5RiWJpq3MgILiMEqB6TnSnXUUC3pSy-NJTs2LeMI9lj_enkvJKK7_97tGtsfuf4YD_Z3z3ce8AWfNrrofIlcoXNnZ-NzSoGxOfpwwaFgH2-btj7CVQcxus |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9RAEN4AJsiLEdRwCjIajfpQaLtttzUx5gRPEEEDYnir2-32bHK2J70L4f_4K_x1zrR71RqjvPByD93pXtuZ_WZ2d_Ybxh5JH2MIP_UsqW1pEQOWlaAjsRyVJWhePJMJLQ0cHAa7J97bU_90jv2YnYWhtMoZJtZAnZaK1si30A3xUHiRzbcykxbxYWfwcvzNogpStNM6K6fRmMi-vjjH6Vv1Ym8Hdf3YdQevP27vWqbCgKWCKJxYAVpnxNHJaxXYkgsvczwZaUGkMp72sixJMfzJIlsJru1EYDDBXT_F61p6IVcc-51n1wTnEaUTitN2soc4EgTmqB4XzpaxjM1xWehNOlDqBm7HFdYVA1q_MF_kOdGtjsqqE_r-mbh5fVqM5cW5HI1-84qDm-yGCWeh39jfMpvTxQpbPDAb9its2WBHBU8NwfWzFbZEEW5DEH2LfUeEosR4dKFQr8cj2kOZAe0CaKhpJPIC8gokUBo8NAWCAGNtOJPjPAX9ZnAEqaYjnhpQ1DDFVkBLzLC9v_Mc-vC1zhnVYIpkDC3y3il2T09Ktgl1SSBILmBaP4qEJB8C5c-S5G12ciWKvcMWClTVKoM0c93EsVWSJZHHAy-MMidNosDVPPOFHfUYn2kxVoZXncp7jOJ6s1Dg_KrRRUy6j43ue8xq7xo3vCL_kX9FBtLKEit4faE8G8YGZOJQaa4o5BLa8YRQVDvAVsrxBU-F0H6PbZB5xc0R2xbb4j6REuINAl_mYS1BzCAFjbGhnFZVvPf-0yWEjo86Qk-MUFbi51DSHPfAdyLGsY7kWkcS8U11mtdxMOCnpV8H5_c4o0E1hhR6hzz0emyVhsnsq1XxL6TAnmdD5-_ND9pm-lNKNyx0Oa1lPC5CBKseE50h11FAt6XIv9T07Ni3iELRY5vt4LyUiu_--2k32CICXvxu73D_HltyadmHKpmINbYwOZvqdYyNJ8n9GoSAfb5q1PsJLEHLLg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfG9gAvwPijFTY4EBIgkZLETpzwVgZlgDbQoNN4imzHGRElrZZWaHwePih3iVstE4jy0of4nMZ3vvPZvvsdY49UhD5ElAtPWV95hIDlaVxIvMAUGqcXL5Smo4H9g3hvJN4dR8dr7NkiF-b8_T2XwXPH0f50Utk-JWKGZHA34gg973W2MTr4OPjSXhyHXhz63GXH_a1rZ_VpQPqXpvhSVZaEcDqe1B1v82Ks5OV5NVVnP9R4fG4hGl5j-4shtPEn3_rzme6bnxfQHVcd43V21XmkMGin0CZbs9UNtul0voYnDpj66U32C40JxbDjagfN0TkaZpgUQAf2FhrEh7KCsgYFFLEObS0fQLcYTtW0zMG-GR5Cbikb0wKSOlDXGug0GHbfv3oBA_jehHdacPUsTjxaaHN8PV0p0TSCpnoP6DOYN5-iQJcnQKGuRHmLjYavP-_uea7Kg2fiNJl5MVqIlKOjZU3sKy5FEQiVWknAPsKKotA5uqBF6hvJra8lsoeHUY7PrRIJN_w2W6-Qc1sM8iIMdeAbXehU8FgkaRHkOo1Dy4tI-mmP8YX0M-Mg0KkSxzhr7vUkboVanmckisyJose8Za9pCwHyD_qXNLGWtATg3TxAmWfOHmSJsdyQdyRtIKQ0BPPvGxNEkudS2qjH7tO0zNps2KUZygaEH4gdJA7mYUNBIB4VRQmdqHldZ28_HK1A9OmwQ_TYERUTZIdRLjMDx0TgYB3K7Q4lmiLTad5BJULW0m-AW3HcfKAYE_KSE56IHtsi9Vpwrc7Qt-SJFKnP8c0Llftz84NlM_0pRQZWdjJvaASXCdqVHpMdVe0IoNtSlV8bJHV8t0wT2WP9pVKvJOI7_9vhLrsS0kEN1R6R22x9djq3O-jNzvQ9Z8R-Ay7LnHM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+tendency+of+urine+protein+is+a+risk+factor+for+rapid+eGFR+decline+in+patients+with+CKD%3A+A+machine+learning-based+prediction+model+by+using+a+big+database&rft.jtitle=PloS+one&rft.au=Inaguma%2C+Daijo&rft.au=Kitagawa%2C+Akimitsu&rft.au=Yanagiya%2C+Ryosuke&rft.au=Koseki%2C+Akira&rft.date=2020-09-17&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0239262&rft_id=info:doi/10.1371%2Fjournal.pone.0239262&rft.externalDBID=IOV&rft.externalDocID=A635747779 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |