Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database

Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this...

Full description

Saved in:
Bibliographic Details
Published inPLoS ONE Vol. 15; no. 9; p. e0239262
Main Authors Inaguma, Daijo, Kitagawa, Akimitsu, Yanagiya, Ryosuke, Koseki, Akira, Iwamori, Toshiya, Kudo, Michiharu, Yuzawa, Yukio
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science (PLoS) 17.09.2020
Public Library of Science
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0239262

Cover

Abstract Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (
AbstractList Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline.
Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (
Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline.Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline.
Audience Academic
Author Michiharu Kudo
Toshiya Iwamori
Ryosuke Yanagiya
Yukio Yuzawa
Daijo Inaguma
Akira Koseki
Akimitsu Kitagawa
Tatsuo Shimosawa
AuthorAffiliation 4 Department of Nephrology, Fujita Health University School of Medicine–Toyoake, Japan
2 Division of Medical Information Systems, Fujita Health University School of Medicine–Toyoake, Japan
3 IBM Research—Tokyo, Japan
1 Department of Internal Medicine, Fujita Health University Bantane Hospital–Nagoya, Japan
International University of Health and Welfare, School of Medicine, JAPAN
AuthorAffiliation_xml – name: 2 Division of Medical Information Systems, Fujita Health University School of Medicine–Toyoake, Japan
– name: 3 IBM Research—Tokyo, Japan
– name: International University of Health and Welfare, School of Medicine, JAPAN
– name: 4 Department of Nephrology, Fujita Health University School of Medicine–Toyoake, Japan
– name: 1 Department of Internal Medicine, Fujita Health University Bantane Hospital–Nagoya, Japan
Author_xml – sequence: 1
  givenname: Daijo
  orcidid: 0000-0002-3977-5933
  surname: Inaguma
  fullname: Inaguma, Daijo
– sequence: 2
  givenname: Akimitsu
  surname: Kitagawa
  fullname: Kitagawa, Akimitsu
– sequence: 3
  givenname: Ryosuke
  surname: Yanagiya
  fullname: Yanagiya, Ryosuke
– sequence: 4
  givenname: Akira
  surname: Koseki
  fullname: Koseki, Akira
– sequence: 5
  givenname: Toshiya
  surname: Iwamori
  fullname: Iwamori, Toshiya
– sequence: 6
  givenname: Michiharu
  surname: Kudo
  fullname: Kudo, Michiharu
– sequence: 7
  givenname: Yukio
  surname: Yuzawa
  fullname: Yuzawa, Yukio
BackLink https://cir.nii.ac.jp/crid/1871991017861728384$$DView record in CiNii
BookMark eNqNkl1v0zAUhiM0xD7gHyBhiQnBRYsdO3ayC6RpsFExadL4uLVc56T1cO1iO4z-H34ozlrQOk1iihJHx895fc55vV_sOO-gKJ4TPCZUkLdXvg9O2fEyh8e4pE3Jy0fFHmloOeIlpju3_neL_RivMK5ozfmTYpeWDSMVrfaK3xOnA6ho3AwlcC04vUK-Q30wDtAy-ATGIRORQsHE76hTOvmAuvwGtTQtgrPTS9SCtgOf0aVKBlyK6NqkOTr59P4IHaOF0vNh34IKLh81mqoIbZaH1uhkvEML34JF0xXqb0pRaGpmqFVJDeTT4nGnbIRnm_Wg-Hr64cvJx9H5xdnk5Ph8pHlTpxEXDW0oJyVojhUVrCNMNSAwEZgB67ppSwnuGqwFBTwVeWS0rNocB8VqqulB8WKtu7Q-ys2AoywZo7VgDaaZmKyJ1qsruQxmocJKemXkTcCHmVQhGW1B1hqoZiXnAggTQjeMc6w1qQRthYAqa1Vrrd4t1epaWftPkGA5ePy3BDl4LDce57x3myr76QJanacdlN0qZnvHmbmc-Z8ytyCaWmSB1xuB4H_0EJNcmKjBWuXA9zf9MipqiocaX95B75_Khpqp3Lhxnc_n6kFUHnNaidx-tuagGN9D5aeFhdG5w87k-FbCm62EzCT4lWaqj1FOPl8-nL34ts2-usXOQdk0j972w0WM2-DRGtTBxxigk9okNWC5cmP_ZxO7k_xAdw_Xac6YfNzwJbUgTUPyNa45EWVNa0b_AN6JQqM
CitedBy_id crossref_primary_10_2139_ssrn_3944583
crossref_primary_10_1371_journal_pone_0264167
crossref_primary_10_1016_j_fmre_2022_01_037
crossref_primary_10_3390_nu17050916
crossref_primary_10_1016_j_heliyon_2024_e40566
crossref_primary_10_1111_jdi_14309
crossref_primary_10_3389_fcimb_2021_645951
crossref_primary_10_1080_0886022X_2024_2303205
crossref_primary_10_1371_journal_pone_0317558
crossref_primary_10_2196_48320
crossref_primary_10_1136_bmjopen_2021_058833
crossref_primary_10_1038_s41440_023_01185_2
crossref_primary_10_1038_s41598_024_52251_9
crossref_primary_10_1007_s40620_023_01573_4
crossref_primary_10_3389_fendo_2023_1052227
crossref_primary_10_1186_s12911_023_02269_2
crossref_primary_10_3390_biomedinformatics3010017
Cites_doi 10.1159/000495818
10.1007/s10157-018-1587-x
10.1016/j.mbs.2019.02.001
10.1053/j.ajkd.2014.07.030
10.1038/s41598-019-41663-7
10.1053/j.ajkd.2016.02.039
10.1016/j.metabol.2017.01.011
10.1056/NEJMoa011161
10.1038/sj.ki.5000058
10.1038/s41551-018-0305-z
10.1053/j.ajkd.2019.05.020
10.1097/CCM.0000000000003123
10.1053/j.ajkd.2010.05.016
10.1681/ASN.2018010103
10.1016/j.jacc.2018.03.521
10.1186/s12967-019-1860-0
10.1016/j.kint.2016.03.036
10.1159/000339327
10.1016/j.kint.2016.08.003
10.1056/NEJMoa1811744
10.1159/000484962
10.1053/j.ajkd.2013.08.028
10.1001/jama.2019.14745
10.1016/j.kint.2018.04.011
10.1007/s10157-016-1309-1
10.1001/jama.2014.6634
10.1038/ki.2012.208
10.1371/journal.pone.0127071
10.1056/NEJMoa011303
10.1053/j.ackd.2011.10.006
10.1038/s41598-019-46074-2
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Inaguma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Inaguma et al 2020 Inaguma et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Inaguma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Inaguma et al 2020 Inaguma et al
DBID RYH
AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0239262
DatabaseName CiNii Complete
CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Statistics
DocumentTitleAlternate A machine learning-based prediction model for rapid eGFR decline
EISSN 1932-6203
ExternalDocumentID 2443874903
oai_doaj_org_article_8ce3c42667e1477c94660cc1573d77e5
10.1371/journal.pone.0239262
PMC7497987
A635747779
10_1371_journal_pone_0239262
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RYH
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAYXX
CITATION
ESTFP
PJZUB
PPXIY
PQGLB
PUEGO
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c698t-679393612ec60a374f14a9e701704e4ffbd310f90c73e0b7392325dffbea483c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Sep 03 00:14:21 EDT 2023
Tue Oct 14 19:02:49 EDT 2025
Sun Oct 26 04:12:20 EDT 2025
Tue Sep 30 16:36:10 EDT 2025
Fri Sep 05 07:55:41 EDT 2025
Tue Oct 07 09:07:51 EDT 2025
Mon Oct 20 21:42:25 EDT 2025
Mon Oct 20 16:34:56 EDT 2025
Thu Oct 16 14:14:06 EDT 2025
Thu Oct 16 14:45:28 EDT 2025
Thu May 22 21:24:29 EDT 2025
Wed Oct 01 02:05:04 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Thu Jun 26 23:21:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-679393612ec60a374f14a9e701704e4ffbd310f90c73e0b7392325dffbea483c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors also contributed equally to this work.
Competing Interests: DI received lecture fees from Ono Pharmaceutical Co., Ltd. and Kyowa Hakko Kirin Co. YY received research support grants from Otsuka Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., and Chugai Pharmaceutical Co., Ltd. IBM Research provided support for this study in the form of salaries for AK, TI and MK. There are no patents, products in development or marketed products associated with this research to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0002-3977-5933
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0239262
PMID 32941535
PQID 2443874903
PQPubID 1436336
PageCount e0239262
ParticipantIDs plos_journals_2443874903
doaj_primary_oai_doaj_org_article_8ce3c42667e1477c94660cc1573d77e5
unpaywall_primary_10_1371_journal_pone_0239262
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497987
proquest_miscellaneous_2444378305
proquest_journals_2443874903
gale_infotracmisc_A635747779
gale_infotracacademiconefile_A635747779
gale_incontextgauss_ISR_A635747779
gale_incontextgauss_IOV_A635747779
gale_healthsolutions_A635747779
crossref_citationtrail_10_1371_journal_pone_0239262
crossref_primary_10_1371_journal_pone_0239262
nii_cinii_1871991017861728384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-17
PublicationDateYYYYMMDD 2020-09-17
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-17
  day: 17
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS ONE
PublicationYear 2020
Publisher Public Library of Science (PLoS)
Public Library of Science
Publisher_xml – name: Public Library of Science (PLoS)
– name: Public Library of Science
References M Fiorentino (pone.0239262.ref029) 2018; 193
BM Brenner (pone.0239262.ref009) 2001; 345
AS Levey (pone.0239262.ref026) 2014; 64
O Niel (pone.0239262.ref017) 2019; 74
E Kanda (pone.0239262.ref032) 2019; 9
W Yang (pone.0239262.ref005) 2014; 63
D Inaguma (pone.0239262.ref006) 2017; 21
L De Nicola (pone.0239262.ref007) 2015; 10
JL Koyner (pone.0239262.ref031) 2018; 46
K Matsushita (pone.0239262.ref027) 2016; 90
J Coresh (pone.0239262.ref025) 2014; 311
BO Eriksen (pone.0239262.ref028) 2006; 69
C Barbieri (pone.0239262.ref023) 2016; 90
SJ Rosansky (pone.0239262.ref014) 2012; 36
EJ Lewis (pone.0239262.ref010) 2001; 345
Y Xie (pone.0239262.ref001) 2018; 94
Z Yu (pone.0239262.ref015) 2019
J Xiao (pone.0239262.ref022) 2019; 17
K Iseki (pone.0239262.ref016) 2018; 22
Y Liu (pone.0239262.ref021) 2018; 43
GA Campbell (pone.0239262.ref003) 2011; 18
KW Johnson (pone.0239262.ref019) 2018; 71
Y Xie (pone.0239262.ref013) 2016; 68
M Elhoseny (pone.0239262.ref033) 2019; 9
P Hamet (pone.0239262.ref018) 2017; 69s
C Wanner (pone.0239262.ref011) 2018; 29
NA Smart (pone.0239262.ref004) 2014
TK Chen (pone.0239262.ref002) 2019; 322
RD Toto (pone.0239262.ref008) 2010; 56
LS Chawla (pone.0239262.ref030) 2012; 82
V Perkovic (pone.0239262.ref012) 2019; 380
KH Yu (pone.0239262.ref020) 2018; 2
J Zhao (pone.0239262.ref024) 2019; 310
References_xml – volume: 43
  start-page: 1852
  issue: 6
  year: 2018
  ident: pone.0239262.ref021
  article-title: Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model
  publication-title: Kidney & blood pressure research
  doi: 10.1159/000495818
– volume: 22
  start-page: 1331
  issue: 6
  year: 2018
  ident: pone.0239262.ref016
  article-title: Dipstick proteinuria and all-cause mortality among the general population
  publication-title: Clinical and experimental nephrology
  doi: 10.1007/s10157-018-1587-x
– volume: 310
  start-page: 24
  year: 2019
  ident: pone.0239262.ref024
  article-title: Predicting outcomes of chronic kidney disease from EMR data based on Random Forest Regression
  publication-title: Mathematical biosciences
  doi: 10.1016/j.mbs.2019.02.001
– volume: 64
  start-page: 821
  issue: 6
  year: 2014
  ident: pone.0239262.ref026
  article-title: GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
  doi: 10.1053/j.ajkd.2014.07.030
– volume: 9
  start-page: 5082
  issue: 1
  year: 2019
  ident: pone.0239262.ref032
  article-title: Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study
  publication-title: Scientific reports
  doi: 10.1038/s41598-019-41663-7
– volume: 68
  start-page: 219
  issue: 2
  year: 2016
  ident: pone.0239262.ref013
  article-title: Estimated GFR Trajectories of People Entering CKD Stage 4 and Subsequent Kidney Disease Outcomes and Mortality
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
  doi: 10.1053/j.ajkd.2016.02.039
– volume: 69s
  start-page: S36
  year: 2017
  ident: pone.0239262.ref018
  article-title: Artificial intelligence in medicine
  publication-title: Metabolism: clinical and experimental
  doi: 10.1016/j.metabol.2017.01.011
– year: 2019
  ident: pone.0239262.ref015
  article-title: Association Between Hypertension and Kidney Function Decline: The Atherosclerosis Risk in Communities (ARIC) Study
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
– volume: 345
  start-page: 861
  issue: 12
  year: 2001
  ident: pone.0239262.ref009
  article-title: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa011161
– volume: 69
  start-page: 375
  issue: 2
  year: 2006
  ident: pone.0239262.ref028
  article-title: The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age
  publication-title: Kidney international
  doi: 10.1038/sj.ki.5000058
– volume: 2
  start-page: 719
  issue: 10
  year: 2018
  ident: pone.0239262.ref020
  article-title: Artificial intelligence in healthcare
  publication-title: Nature biomedical engineering
  doi: 10.1038/s41551-018-0305-z
– volume: 74
  start-page: 803
  issue: 6
  year: 2019
  ident: pone.0239262.ref017
  article-title: Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
  doi: 10.1053/j.ajkd.2019.05.020
– volume: 46
  start-page: 1070
  issue: 7
  year: 2018
  ident: pone.0239262.ref031
  article-title: The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model
  publication-title: Critical care medicine
  doi: 10.1097/CCM.0000000000003123
– volume: 56
  start-page: 896
  issue: 5
  year: 2010
  ident: pone.0239262.ref008
  article-title: Relationship between body mass index and proteinuria in hypertensive nephrosclerosis: results from the African American Study of Kidney Disease and Hypertension (AASK) cohort
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
  doi: 10.1053/j.ajkd.2010.05.016
– volume: 29
  start-page: 2755
  issue: 11
  year: 2018
  ident: pone.0239262.ref011
  article-title: Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial
  publication-title: Journal of the American Society of Nephrology: JASN
  doi: 10.1681/ASN.2018010103
– volume: 71
  start-page: 2668
  issue: 23
  year: 2018
  ident: pone.0239262.ref019
  article-title: Artificial Intelligence in Cardiology
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2018.03.521
– volume: 17
  start-page: 119
  issue: 1
  year: 2019
  ident: pone.0239262.ref022
  article-title: Comparison and development of machine learning tools in the prediction of chronic kidney disease progression
  publication-title: Journal of translational medicine
  doi: 10.1186/s12967-019-1860-0
– volume: 90
  start-page: 422
  issue: 2
  year: 2016
  ident: pone.0239262.ref023
  article-title: An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients
  publication-title: Kidney international
  doi: 10.1016/j.kint.2016.03.036
– start-page: Cd007333
  issue: 6
  year: 2014
  ident: pone.0239262.ref004
  article-title: Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease
  publication-title: The Cochrane database of systematic reviews
– volume: 36
  start-page: 1
  issue: 1
  year: 2012
  ident: pone.0239262.ref014
  article-title: Renal function trajectory is more important than chronic kidney disease stage for managing patients with chronic kidney disease
  publication-title: American journal of nephrology
  doi: 10.1159/000339327
– volume: 90
  start-page: 1109
  issue: 5
  year: 2016
  ident: pone.0239262.ref027
  article-title: Risk of end-stage renal disease in Japanese patients with chronic kidney disease increases proportionately to decline in estimated glomerular filtration rate
  publication-title: Kidney international
  doi: 10.1016/j.kint.2016.08.003
– volume: 380
  start-page: 2295
  issue: 24
  year: 2019
  ident: pone.0239262.ref012
  article-title: Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa1811744
– volume: 193
  start-page: 45
  year: 2018
  ident: pone.0239262.ref029
  article-title: Acute Kidney Injury to Chronic Kidney Disease Transition
  publication-title: Contributions to nephrology
  doi: 10.1159/000484962
– volume: 63
  start-page: 236
  issue: 2
  year: 2014
  ident: pone.0239262.ref005
  article-title: Association of kidney disease outcomes with risk factors for CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study
  publication-title: American journal of kidney diseases: the official journal of the National Kidney Foundation
  doi: 10.1053/j.ajkd.2013.08.028
– volume: 322
  start-page: 1294
  issue: 13
  year: 2019
  ident: pone.0239262.ref002
  article-title: Chronic Kidney Disease Diagnosis and Management: A Review
  publication-title: Jama
  doi: 10.1001/jama.2019.14745
– volume: 94
  start-page: 567
  issue: 3
  year: 2018
  ident: pone.0239262.ref001
  article-title: Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016
  publication-title: Kidney international
  doi: 10.1016/j.kint.2018.04.011
– volume: 21
  start-page: 446
  issue: 3
  year: 2017
  ident: pone.0239262.ref006
  article-title: Risk factors for CKD progression in Japanese patients: findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study
  publication-title: Clinical and experimental nephrology
  doi: 10.1007/s10157-016-1309-1
– volume: 311
  start-page: 2518
  issue: 24
  year: 2014
  ident: pone.0239262.ref025
  article-title: Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality
  publication-title: Jama
  doi: 10.1001/jama.2014.6634
– volume: 82
  start-page: 516
  issue: 5
  year: 2012
  ident: pone.0239262.ref030
  article-title: Acute kidney injury and chronic kidney disease: an integrated clinical syndrome
  publication-title: Kidney international
  doi: 10.1038/ki.2012.208
– volume: 10
  start-page: e0127071
  issue: 5
  year: 2015
  ident: pone.0239262.ref007
  article-title: Independent Role of Underlying Kidney Disease on Renal Prognosis of Patients with Chronic Kidney Disease under Nephrology Care
  publication-title: PloS one
  doi: 10.1371/journal.pone.0127071
– volume: 345
  start-page: 851
  issue: 12
  year: 2001
  ident: pone.0239262.ref010
  article-title: Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa011303
– volume: 18
  start-page: 420
  issue: 6
  year: 2011
  ident: pone.0239262.ref003
  article-title: Referral and comanagement of the patient with CKD
  publication-title: Advances in chronic kidney disease
  doi: 10.1053/j.ackd.2011.10.006
– volume: 9
  start-page: 9583
  issue: 1
  year: 2019
  ident: pone.0239262.ref033
  article-title: Intelligent Diagnostic Prediction and Classification System for Chronic Kidney Disease
  publication-title: Scientific reports
  doi: 10.1038/s41598-019-46074-2
SSID ssj0053866
Score 2.4650226
Snippet Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e0239262
SubjectTerms Algorithms
Artificial intelligence
Biology and Life Sciences
Blood pressure
Chronic kidney failure
Comorbidity
Complications and side effects
Computer and Information Sciences
Diabetes
Electronic health records
Electronic medical records
End-stage renal disease
Epidermal growth factor receptors
Glomerular filtration rate
Health aspects
Hemoglobin
Hospitals
Hypertension
Internal medicine
Kidney diseases
Kidneys
Laboratories
Learning algorithms
Machine learning
Medical records
Medicine
Medicine and Health Sciences
Nephrology
Patients
Physical Sciences
Prediction models
Prognosis
Proteins
Proteinuria
Risk analysis
Risk factors
Science
Statistics
Urine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF7ggykMNtDAgJOCQNomdOOG2FJYCAqRCUW-R49hLpCW7anaF-n_4ocw43qhBSO2Byx7iSTaet53xN4w9UynmEGktQmUiFRICVlhhIAljbStUL25VRVsDnz5nRyfiw2l6eqHVF9WE9fDAPeMOcm24pjAiTSyk1ISHHmkdp5LXUhqHXhrlxWYx1ftgtOIs8wfluIwPvFz2l4vW7NNxziRLRoHI4fUPXvl62zQEdjpfdKPE8--yyRvrdqnOf6n5_EJMmt5mt3wyCZN-EtvsmmnvsG1vrh288JjSL--y3-gHqPwcAxW4XW_0qbCwQHvtBhxYQ9NC04ECKjaHvg0PYEYLZ2rZ1GDeTY-hNnSQ0gCSejzWDmgjFw4_vnkFE_jpKjMN-FYUs5BiZI2Pp69BpAHgGu9AdQ5r9yoKqmYGVKVKlPfYyfTtt8Oj0DdoCHVW5KswQ-MuOOZIRmeR4lLYWKjCSMLkEUZYW9WYPdoi0pKbqJLId56kNV43SuRc8_tsq0WR7DCobZJUcaQrWxWCZyIvbFxXRZYYblMZFQHjG2mV2qOXUxONeek-yUlcxfQ8L0nGpZdxwMLhrmWP3nEJ_WtShIGWsLfdBdTI0mtkeZlGBuwxqVHZH2QdPEg5Ieg_vEHiZJ46CsLfaKnAZ6bWXVe-__L9CkRfj0dEzz2RXSA7tPKHKnBOhOs1otwdUaIX0aPhPVR6ZC39xriKxnUDijGnBDfnuQjYDpnDhmtdiWkhz6UoIo5P3pjIv4efDMP0p1TU15rF2tEILnN0CQGTI9MaCWA80jY_HAg6PlsWuQzY_mCEVxLxg_8h4ofsZkL7LtRKRO6yrdXZ2uxhcrqqHjk_9AcrxIsc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9QwDI_2R4K9IDZAO9jAICTgoVvbpE2LhNA2NgZoAw2G9lalaXpUOtrjeie078MHxc6lB0UI9nIPjZtL49hxHPtnxh6rCG2IqBCeMr7yCAHLy3Ej8QJd5ri8eKlycg2cnMbH5-LtRXSxxE67XBgKq-x0olXURaPJR76L2xBPpEh9_nL8zaOqUXS72pXQUK60QvHCQowts9WQkLFW2Or-4emHs043o3THsUug4zLYdfzaGTe12aE0zzAOexuUxfFfaOvluqoIBHXUtD2D9M9wyuuzeqwuv6vR6Le96ugmu-GMTNibr4p1tmTqDXbtxF2jb7B1J9EtPHWw08822BrZnXPY5lvsB-oNClfHjQ2slxx1MDQlkG_egAV3qGqoWlBAwekwL9sDaAHDRI2rAszrozMoDCVeGkBSh9_aAjl-4eDdq-ewB19tJKcBV7pi6NGeWmD3NFJaMWAL9UB-CTM7FAV5NQSKaiXK2-z86PDTwbHnCjp4Ok6TqRejMkg52lRGx77iUpSBUKmRhOEjjCjLvEBrs0x9Lbnxc4n84GFU4HOjRMI1v8NWamTVJoOiDMM88HVe5qngsUjSMijyNA4NLyPppwPGOy5m2qGdU9GNUWav8CSeeua8yIj3meP9gHmLt8ZztI__0O_TAlnQEla3fdBMhpkT_SzRhmsyhKQJhJSaEP19rYNI8kJKEw3YA1pe2TzxdaFxsj2CCsQXJH7MI0tBeB01BQQN1axtszfvP1-B6ONZj-iJIyobnA6tXBIGfhPhgPUot3qUqHV0r3kbhQGnln4DPHXjOQPZmJBBnPBEDNgmiUk3a232S36x5050_t78cNFMf0pBgLVpZpZGcJmgChkw2RO5HgP6LXX1xYKmY98yTeSA7SyE80osvvvv0d5jayF5YKioiNxiK9PJzGyjmTrN7zvd8xPYI5GE
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfG9gAvwPijFTY4EBIgkZLETpzwVgZlgDbQoNN4imzHGRElrZZWaHwePih3iVstE4jy0of4nMZ3vvPZvvsdY49UhD5ElAtPWV95hIDlaVxIvMAUGqcXL5Smo4H9g3hvJN4dR8dr7NkiF-b8_T2XwXPH0f50Utk-JWKGZHA34gg973W2MTr4OPjSXhyHXhz63GXH_a1rZ_VpQPqXpvhSVZaEcDqe1B1v82Ks5OV5NVVnP9R4fG4hGl5j-4shtPEn3_rzme6bnxfQHVcd43V21XmkMGin0CZbs9UNtul0voYnDpj66U32C40JxbDjagfN0TkaZpgUQAf2FhrEh7KCsgYFFLEObS0fQLcYTtW0zMG-GR5Cbikb0wKSOlDXGug0GHbfv3oBA_jehHdacPUsTjxaaHN8PV0p0TSCpnoP6DOYN5-iQJcnQKGuRHmLjYavP-_uea7Kg2fiNJl5MVqIlKOjZU3sKy5FEQiVWknAPsKKotA5uqBF6hvJra8lsoeHUY7PrRIJN_w2W6-Qc1sM8iIMdeAbXehU8FgkaRHkOo1Dy4tI-mmP8YX0M-Mg0KkSxzhr7vUkboVanmckisyJose8Za9pCwHyD_qXNLGWtATg3TxAmWfOHmSJsdyQdyRtIKQ0BPPvGxNEkudS2qjH7tO0zNps2KUZygaEH4gdJA7mYUNBIB4VRQmdqHldZ28_HK1A9OmwQ_TYERUTZIdRLjMDx0TgYB3K7Q4lmiLTad5BJULW0m-AW3HcfKAYE_KSE56IHtsi9Vpwrc7Qt-SJFKnP8c0Llftz84NlM_0pRQZWdjJvaASXCdqVHpMdVe0IoNtSlV8bJHV8t0wT2WP9pVKvJOI7_9vhLrsS0kEN1R6R22x9djq3O-jNzvQ9Z8R-Ay7LnHM
  priority: 102
  providerName: Unpaywall
Title Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database
URI https://cir.nii.ac.jp/crid/1871991017861728384
https://www.proquest.com/docview/2443874903
https://www.proquest.com/docview/2444378305
https://pubmed.ncbi.nlm.nih.gov/PMC7497987
https://doi.org/10.1371/journal.pone.0239262
https://doaj.org/article/8ce3c42667e1477c94660cc1573d77e5
http://dx.doi.org/10.1371/journal.pone.0239262
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QAviPGhFbZyICTgIVUSO3GChFBX1g3QxjQoGk-R4zglUklL0wr2__CHcuemEUFD7MUP9tlt7nzns33-HWNPVYA-RJAJRxlXOYSA5aS4kDiezlOcXjxXKR0NnJyGxyPx7iK42GDrnK01A6srt3aUT2o0n_R-fr98jQr_ymZtkN66U282LU2PHmv6ZJS3ca2KKZnDiWjuFVC77e0leS1O6Lu8fkz3r1Fai5XF9G8s92ZZFASIOplWLef079DKG8typi5_qMnkj3VreJvdqh1O6K9myA7bMOUdtlOrdAXPa9zpF3fZL7QVFKKOixnYk3G0uzDNgc7jDVhAh6KEogIFFJAOq1Q9gF4vzNWsyMAcDc8hM_TY0gCS1pitFdBhLwzev3kJffhmozcN1Okqxg6toxkOTzdGNEvAJueB9BKW9q8oSIsxUCQrUd5jo-Hhp8GxUydxcHQYRwsnRAMQc_SjjA5dxaXIPaFiIwm3RxiR52mGHmYeu1py46YS-c79IMN6o0TENb_PtkoUyS6DLPf91HN1mqex4KGI4tzL0jj0Dc8D6cYdxtfSSnSNcE6JNiaJvbaTuNNZ8TwhGSe1jDvMaXrNVggf_6E_oInQ0BI-t62YzsdJre5JpA3X5PxI4wkpNaH4u1p7geSZlCbosEc0jZLVY9fGyiR9ggfEDhI_5omlIIyOkoKAxmpZVcnbD5-vQfTxvEX0rCbKp8gOreqHF_hNhP3VotxrUaKl0a3mfZz0yFoqPdxp494CxRiRExzxSHTYLqnDmmtVgq4jj6SIXY4jr1Xk6ubHTTP9KAX-lWa6tDSCywjNRofJlmq1BNBuKYuvFigdx5ZxJDus1yjhtUT84Dq8f8hu-nT2QulE5B7bWsyXZh8d1EXaZZvyQmIZDTwqh0ddtn1weHp23rVHPl1rk7BudHrW__Ibr9aUEA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEN4AJsKLEdRwCjIajfrQo-1uu62JMQgiyA8TBMNb3W63Z5OzPSkXwv_js3-jM-3eaY1RXni5h-50b9uZ_WZ2O_sNY09UgDFEkAlHGVc5xIDlpOhIHE_nKZoXz1VKWwMHh-HOiXh_GpzOsB-TszCUVjnBxAaos0rTHvk6uiEeSRG7_PXom0NVo-jr6qSERmsWe-byApds9avdLdTvU9_ffnu8uePYqgKODuPo3AnRImOOjt3o0FVcitwTKjaSiGSEEXmeZhjy5LGrJTduKjGA4H6Q4XWjRMQ1x35n2Q3BEUtw_sjT6QIPsSMM7fE8Lr11aw39UVWaPh0i9UO_4_6aKgFTXzBbFgVRrA6ruhPu_pmsOT8uR-ryQg2Hv3nC7dvslg1hYaO1uUU2Y8oldvPAfqRfYosWL2p4bkmtXyyxBYpqW1LoO-w7ohIlw6PbhGYPHhEeqhxo599AQx1RlFDUoIBS36EtCgQYX8OZGhUZmHfbR5AZOtZpAEUtO2wNtK0Mm3tbL2EDvjZ5ogZsYYyBQx47w-5ppGSP0JQBgvQSxs1QFKTFAChnliTvspNrUew9NleiqpYZZLnvp56r0zyNBQ9FFOdelsahb3geSDfuMT7RYqItlzqV9BgmzQdCiWuqVhcJ6T6xuu8xZ3rXqOUS-Y_8GzKQqSwxgTcXqrNBYoElibThmsIsaTwhpaZ6Aa7WXiB5JqUJemyNzCtpj9VO8SzZICJCvEHiwzxuJIgNpKR0o4Ea13Wy--HTFYQ-HnWEnlmhvMLXoZU94oHPRCxjHcmVjiRimu40r-JkwFdLvx6u6XEVg2qMKNyOeCR6bJmmyeSt1ckvdMCeJ1Pn782Pps30p5RiWJpq3MgILiMEqB6TnSnXUUC3pSy-NJTs2LeMI9lj_enkvJKK7_97tGtsfuf4YD_Z3z3ce8AWfNrrofIlcoXNnZ-NzSoGxOfpwwaFgH2-btj7CVQcxus
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9RAEN4AJsiLEdRwCjIajfpQaLtttzUx5gRPEEEDYnir2-32bHK2J70L4f_4K_x1zrR71RqjvPByD93pXtuZ_WZ2d_Ybxh5JH2MIP_UsqW1pEQOWlaAjsRyVJWhePJMJLQ0cHAa7J97bU_90jv2YnYWhtMoZJtZAnZaK1si30A3xUHiRzbcykxbxYWfwcvzNogpStNM6K6fRmMi-vjjH6Vv1Ym8Hdf3YdQevP27vWqbCgKWCKJxYAVpnxNHJaxXYkgsvczwZaUGkMp72sixJMfzJIlsJru1EYDDBXT_F61p6IVcc-51n1wTnEaUTitN2soc4EgTmqB4XzpaxjM1xWehNOlDqBm7HFdYVA1q_MF_kOdGtjsqqE_r-mbh5fVqM5cW5HI1-84qDm-yGCWeh39jfMpvTxQpbPDAb9its2WBHBU8NwfWzFbZEEW5DEH2LfUeEosR4dKFQr8cj2kOZAe0CaKhpJPIC8gokUBo8NAWCAGNtOJPjPAX9ZnAEqaYjnhpQ1DDFVkBLzLC9v_Mc-vC1zhnVYIpkDC3y3il2T09Ktgl1SSBILmBaP4qEJB8C5c-S5G12ciWKvcMWClTVKoM0c93EsVWSJZHHAy-MMidNosDVPPOFHfUYn2kxVoZXncp7jOJ6s1Dg_KrRRUy6j43ue8xq7xo3vCL_kX9FBtLKEit4faE8G8YGZOJQaa4o5BLa8YRQVDvAVsrxBU-F0H6PbZB5xc0R2xbb4j6REuINAl_mYS1BzCAFjbGhnFZVvPf-0yWEjo86Qk-MUFbi51DSHPfAdyLGsY7kWkcS8U11mtdxMOCnpV8H5_c4o0E1hhR6hzz0emyVhsnsq1XxL6TAnmdD5-_ND9pm-lNKNyx0Oa1lPC5CBKseE50h11FAt6XIv9T07Ni3iELRY5vt4LyUiu_--2k32CICXvxu73D_HltyadmHKpmINbYwOZvqdYyNJ8n9GoSAfb5q1PsJLEHLLg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfG9gAvwPijFTY4EBIgkZLETpzwVgZlgDbQoNN4imzHGRElrZZWaHwePih3iVstE4jy0of4nMZ3vvPZvvsdY49UhD5ElAtPWV95hIDlaVxIvMAUGqcXL5Smo4H9g3hvJN4dR8dr7NkiF-b8_T2XwXPH0f50Utk-JWKGZHA34gg973W2MTr4OPjSXhyHXhz63GXH_a1rZ_VpQPqXpvhSVZaEcDqe1B1v82Ks5OV5NVVnP9R4fG4hGl5j-4shtPEn3_rzme6bnxfQHVcd43V21XmkMGin0CZbs9UNtul0voYnDpj66U32C40JxbDjagfN0TkaZpgUQAf2FhrEh7KCsgYFFLEObS0fQLcYTtW0zMG-GR5Cbikb0wKSOlDXGug0GHbfv3oBA_jehHdacPUsTjxaaHN8PV0p0TSCpnoP6DOYN5-iQJcnQKGuRHmLjYavP-_uea7Kg2fiNJl5MVqIlKOjZU3sKy5FEQiVWknAPsKKotA5uqBF6hvJra8lsoeHUY7PrRIJN_w2W6-Qc1sM8iIMdeAbXehU8FgkaRHkOo1Dy4tI-mmP8YX0M-Mg0KkSxzhr7vUkboVanmckisyJose8Za9pCwHyD_qXNLGWtATg3TxAmWfOHmSJsdyQdyRtIKQ0BPPvGxNEkudS2qjH7tO0zNps2KUZygaEH4gdJA7mYUNBIB4VRQmdqHldZ28_HK1A9OmwQ_TYERUTZIdRLjMDx0TgYB3K7Q4lmiLTad5BJULW0m-AW3HcfKAYE_KSE56IHtsi9Vpwrc7Qt-SJFKnP8c0Llftz84NlM_0pRQZWdjJvaASXCdqVHpMdVe0IoNtSlV8bJHV8t0wT2WP9pVKvJOI7_9vhLrsS0kEN1R6R22x9djq3O-jNzvQ9Z8R-Ay7LnHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+tendency+of+urine+protein+is+a+risk+factor+for+rapid+eGFR+decline+in+patients+with+CKD%3A+A+machine+learning-based+prediction+model+by+using+a+big+database&rft.jtitle=PloS+one&rft.au=Inaguma%2C+Daijo&rft.au=Kitagawa%2C+Akimitsu&rft.au=Yanagiya%2C+Ryosuke&rft.au=Koseki%2C+Akira&rft.date=2020-09-17&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0239262&rft_id=info:doi/10.1371%2Fjournal.pone.0239262&rft.externalDBID=IOV&rft.externalDocID=A635747779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon