Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees

Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numer...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 12; no. 1; p. 470
Main Authors Izquierdo-Carrasco, Fernando, Smith, Stephen A, Stamatakis, Alexandros
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.12.2011
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-12-470

Cover

Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
AbstractList Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the ? model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood.BACKGROUNDThe rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood.We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems.RESULTSWe introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems.We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.CONCLUSIONSWe address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the ? model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
ArticleNumber 470
Audience Academic
Author Smith, Stephen A
Stamatakis, Alexandros
Izquierdo-Carrasco, Fernando
AuthorAffiliation 2 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048 USA
1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
AuthorAffiliation_xml – name: 1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
– name: 2 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048 USA
Author_xml – sequence: 1
  givenname: Fernando
  surname: Izquierdo-Carrasco
  fullname: Izquierdo-Carrasco, Fernando
  email: Fernando.Izquierdo@h-its.org
  organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies
– sequence: 2
  givenname: Stephen A
  surname: Smith
  fullname: Smith, Stephen A
  organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan
– sequence: 3
  givenname: Alexandros
  surname: Stamatakis
  fullname: Stamatakis, Alexandros
  email: Alexandros.Stamatakis@h-its.org
  organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22165866$$D View this record in MEDLINE/PubMed
BookMark eNqNktuL1DAYxYusuBd990mKPohg11zapH0RlsXLwoLg5TmkyZdO1jYZk1Sd_97UGdedRUUCSfjyOyfJSY6LA-cdFMVDjE4xbtkLXHNcEYyaCpOq5uhOcXRdOrgxPyyOY7xCCPMWNfeKQ0Iwa1rGjgp1Ng4-2LSa4vNSyyTLmMKs0hwgF6TTpZsnCFbF0vhQjvYzjHblva56GUGX69Vm9AM4SFaV1hkI4BSU3pSreYAyBYB4v7hr5BjhwW48KT69fvXx_G11-e7NxfnZZaVYx1Nl-oa0DFOKlCQSG9ljLSkypqM9MojrFumadbUxnEpKMdO9bCVpdEsVxT3Qk-Ji66u9vBLrYCcZNsJLK34WfBiEDPmcIwjCFVOc6rZjqq4V7eqas9wzIxtmaJ298NZrdmu5-SbH8doQI7GEL5Z0xZKuwETk8LPm5VaznvsJtAKXghz3DrK_4uxKDP6roIRx3jbZ4OnOIPgvM8QkJhsVjKN04OcoOtx2FGO8kI9vkVd-Di6nu0CIN5iSDD3ZQoPMV86P4_OuarEUZ4S3pCMdY5k6_QOVm4bJqvzfjM31PcGzPUFmEnxPg5xjFBcf3u-zj25Gcp3Frw-YAbQFVPAxBjD_EzO7JVE2yWT9Eqod_yXcvWnMe7gBwu_Q_qr5ATeACoY
CitedBy_id crossref_primary_10_1371_journal_pone_0143926
crossref_primary_10_1093_sysbio_syu084
crossref_primary_10_1111_jse_12219
crossref_primary_10_1093_molbev_msv109
crossref_primary_10_1093_gbe_evu283
crossref_primary_10_1186_s12859_017_1916_1
crossref_primary_10_1002_ece3_7986
crossref_primary_10_1002_ajpa_24099
crossref_primary_10_1038_s41598_017_13901_3
crossref_primary_10_1093_gbe_evv212
crossref_primary_10_1093_molbev_msu236
crossref_primary_10_1111_2041_210X_12760
crossref_primary_10_1038_s41598_019_52722_4
crossref_primary_10_1371_journal_pone_0117987
crossref_primary_10_1093_bioinformatics_bts309
crossref_primary_10_1016_j_ympev_2018_07_008
crossref_primary_10_1093_bioinformatics_btu033
crossref_primary_10_1093_bioinformatics_btt760
crossref_primary_10_1093_sysbio_syu098
crossref_primary_10_1093_sysbio_syw075
crossref_primary_10_1093_ve_vev009
crossref_primary_10_3390_v10080437
crossref_primary_10_1093_gbe_evx163
crossref_primary_10_1093_bioinformatics_btz068
crossref_primary_10_1093_sysbio_syw037
crossref_primary_10_1093_nar_gkx322
crossref_primary_10_1016_j_ympev_2015_03_018
crossref_primary_10_1016_j_ympev_2025_108342
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1111_2041_210X_12055
crossref_primary_10_1016_j_ympev_2020_106862
crossref_primary_10_1371_journal_pone_0110723
crossref_primary_10_1111_jpy_12401
Cites_doi 10.1007/s11265-007-0067-4
10.1080/10635150801898920
10.1093/bioinformatics/btg180
10.1111/j.1096-0031.2009.00255.x
10.1007/BF00160154
10.1371/journal.pone.0009490
10.1201/EBK1439814888-c5
10.1093/bioinformatics/btq205
10.1093/bioinformatics/btm619
10.1007/BF01734359
10.1093/bioinformatics/bth078
10.1093/bioinformatics/bti594
10.1101/gr.11.1.3
10.1126/science.1163197
10.1098/rstb.2008.0163
10.1080/10635150490522269
10.1093/bioinformatics/btl446
10.1016/j.jtbi.2009.09.037
10.1093/molbev/msp098
10.1093/nar/gkh340
10.1093/bib/bbn013
10.1093/molbev/msh112
10.1093/sysbio/syq010
10.1109/CSB.2002.1039325
ContentType Journal Article
Copyright Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011
COPYRIGHT 2011 BioMed Central Ltd.
2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011
– notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-12-470
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 470
ExternalDocumentID oai_doaj_org_article_27c6c73d896c44c3944763946fa56f34
10.1186/1471-2105-12-470
PMC3267785
2571425771
A278292966
22165866
10_1186_1471_2105_12_470
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Germany
GeographicLocations_xml – name: Germany
– name: United States
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c697t-fb52861330ca2a1fab1da30ff93b0f07d80d4694ff73a3316dba8a25d83c31be3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:34:24 EDT 2025
Sun Oct 26 03:36:27 EDT 2025
Tue Sep 30 16:47:14 EDT 2025
Wed Oct 01 14:33:36 EDT 2025
Mon Oct 06 18:37:19 EDT 2025
Mon Oct 20 22:07:21 EDT 2025
Mon Oct 20 16:45:38 EDT 2025
Thu Oct 16 14:51:06 EDT 2025
Wed Feb 19 02:10:19 EST 2025
Thu Apr 24 22:55:45 EDT 2025
Wed Oct 01 04:15:20 EDT 2025
Sat Sep 06 07:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Branch Length
Numerical Scaling
Ancestral Node
Rate Heterogeneity
Memory Saving
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c697t-fb52861330ca2a1fab1da30ff93b0f07d80d4694ff73a3316dba8a25d83c31be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/27c6c73d896c44c3944763946fa56f34
PMID 22165866
PQID 918075132
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_27c6c73d896c44c3944763946fa56f34
unpaywall_primary_10_1186_1471_2105_12_470
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3267785
proquest_miscellaneous_918931115
proquest_journals_918075132
gale_infotracmisc_A278292966
gale_infotracacademiconefile_A278292966
gale_incontextgauss_ISR_A278292966
pubmed_primary_22165866
crossref_primary_10_1186_1471_2105_12_470
crossref_citationtrail_10_1186_1471_2105_12_470
springer_journals_10_1186_1471_2105_12_470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-13
PublicationDateYYYYMMDD 2011-12-13
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2011
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References W Fletcher (5012_CR32) 2009; 26
B Minh (5012_CR3) 2005; 21
S Smith (5012_CR10) 2008; 322
A Drummond (5012_CR9) 2007; 7
N Lartillot (5012_CR25) 2004; 21
MJL de Hoon (5012_CR17) 2004; 20
A Stamatakis (5012_CR31) 2008; 363
SA Smith (5012_CR12) 2009
A Stamatakis (5012_CR13) 2002
SA Smith (5012_CR28) 2008; 24
5012_CR16
D Zwickl (5012_CR4) 2006
PA Goloboff (5012_CR11) 2009; 25
K Katoh (5012_CR26) 2008; 9
S Smith (5012_CR29) 2011
S Le (5012_CR15) 2004
J Felsenstein (5012_CR2) 1981; 17
A Stamatakis (5012_CR30) 2007; 48
Z Yang (5012_CR14) 1994; 39
S Guindon (5012_CR5) 2010; 59
F Ronquist (5012_CR7) 2003; 19
S Pond (5012_CR20) 2004; 53
J Sumner (5012_CR21) 2010; 262
A Stamatakis (5012_CR18) 2006; 22
J Ripplinger (5012_CR23) 2008; 57
A Stamatakis (5012_CR22) 2010; 26
N Lartillot (5012_CR8) 2007
M Price (5012_CR6) 2010; 5
A Stamatakis (5012_CR24) 2006
RC Edgar (5012_CR27) 2004; 32
A Stamatakis (5012_CR19) 2002
M Ronaghi (5012_CR1) 2001; 11
References_xml – volume: 48
  start-page: 271
  issue: 3
  year: 2007
  ident: 5012_CR30
  publication-title: J VLSI Sig Proc Sys
  doi: 10.1007/s11265-007-0067-4
– volume-title: PhyloBayes. v2. 3
  year: 2007
  ident: 5012_CR8
– volume: 57
  start-page: 76
  year: 2008
  ident: 5012_CR23
  publication-title: Syst Biol
  doi: 10.1080/10635150801898920
– volume: 19
  start-page: 1572
  issue: 12
  year: 2003
  ident: 5012_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg180
– volume: 25
  start-page: 1
  year: 2009
  ident: 5012_CR11
  publication-title: Cladistics
  doi: 10.1111/j.1096-0031.2009.00255.x
– volume: 39
  start-page: 306
  year: 1994
  ident: 5012_CR14
  publication-title: J Mol Evol
  doi: 10.1007/BF00160154
– volume: 5
  start-page: e9490
  issue: 3
  year: 2010
  ident: 5012_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– ident: 5012_CR16
  doi: 10.1201/EBK1439814888-c5
– volume: 26
  start-page: i132
  issue: 12
  year: 2010
  ident: 5012_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq205
– volume: 24
  start-page: 715
  issue: 5
  year: 2008
  ident: 5012_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm619
– volume: 17
  start-page: 368
  year: 1981
  ident: 5012_CR2
  publication-title: J Mol Evol
  doi: 10.1007/BF01734359
– volume: 20
  start-page: 1453
  issue: 9
  year: 2004
  ident: 5012_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth078
– volume-title: Proc of GfKl conference
  year: 2004
  ident: 5012_CR15
– volume: 21
  start-page: 3794
  issue: 19
  year: 2005
  ident: 5012_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti594
– volume-title: BMC Evolutionary Biology
  year: 2009
  ident: 5012_CR12
– volume: 11
  start-page: 3
  year: 2001
  ident: 5012_CR1
  publication-title: Genome Research
  doi: 10.1101/gr.11.1.3
– volume: 322
  start-page: 86
  issue: 5898
  year: 2008
  ident: 5012_CR10
  publication-title: Science
  doi: 10.1126/science.1163197
– volume: 363
  start-page: 3977
  year: 2008
  ident: 5012_CR31
  publication-title: Phil Trans R Soc series B Biol Sci
  doi: 10.1098/rstb.2008.0163
– volume: 53
  start-page: 685
  issue: 5
  year: 2004
  ident: 5012_CR20
  publication-title: Systematic biology
  doi: 10.1080/10635150490522269
– volume-title: Proc. of IPDPS2006, HICOMB Workshop, Proceedings on CD, Rhodos, Greece
  year: 2006
  ident: 5012_CR24
– volume-title: PhD thesis
  year: 2006
  ident: 5012_CR4
– volume: 22
  start-page: 2688
  issue: 21
  year: 2006
  ident: 5012_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 262
  start-page: 413
  issue: 3
  year: 2010
  ident: 5012_CR21
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2009.09.037
– volume: 26
  start-page: 1879
  issue: 8
  year: 2009
  ident: 5012_CR32
  publication-title: Molecular biology and evolution
  doi: 10.1093/molbev/msp098
– volume: 32
  start-page: 1792
  issue: 5
  year: 2004
  ident: 5012_CR27
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh340
– volume-title: American Journal of Botany
  year: 2011
  ident: 5012_CR29
– volume: 9
  start-page: 286
  issue: 4
  year: 2008
  ident: 5012_CR26
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbn013
– volume: 21
  start-page: 1095
  issue: 6
  year: 2004
  ident: 5012_CR25
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msh112
– volume: 59
  start-page: 307
  issue: 3
  year: 2010
  ident: 5012_CR5
  publication-title: Systematic biology
  doi: 10.1093/sysbio/syq010
– volume-title: Proc of IEEE/ACM Supercomputing Conference 2002 (SC2002)
  year: 2002
  ident: 5012_CR13
– volume: 7
  start-page: 1471
  issue: 214
  year: 2007
  ident: 5012_CR9
  publication-title: BMC Evol Biol
– start-page: 21
  volume-title: Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002)
  year: 2002
  ident: 5012_CR19
  doi: 10.1109/CSB.2002.1039325
SSID ssj0017805
Score 2.234858
Snippet Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum...
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum...
Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum...
Abstract Background: The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale...
Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 470
SubjectTerms Algorithms
Analysis
Bayes Theorem
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
DNA sequencing
Evolutionary biology
Genetic algorithms
Genomes
Heterogeneity
Life Sciences
Likelihood Functions
Methods
Microarrays
Models, Genetic
Molecular Sequence Data
Nucleotide sequencing
Phylogeny
Probability
Research Article
Studies
Transcriptome analysis
Trees
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QJAQ8IL65baAIISGmVdckbZI-Hohp8MADMGlvUZo0d6eV3kSvmvbfY_eLKwj2wmvjRK3txHbt_EzIa52rkHOWRCpzMkp8LCKbOBs5wQW4H1yErkD2szw9Sz6dp-c7rb6wJqyDB-4YN-fKSaeE15l0SeLwHidsiSyRwaYyiBYJNNbZEEz1-QNE6m_vFSkWQVCTDglKLefjMyxKSLBJ8Y5BanH7_zydd8zT76WTY_70HrnTVJf2-sqW5Y6JOnlA7ve-JV103_SQ3CqqR-R2123y-jFxi3K5-bHerr7XxxQrQ2kHHttAxH1MbeVp1bT5m5qCJ0vL9UVRrhH1OEJT5ykIBBaCsxGWp-vhoiDdBLpqlgXF9Hb9hJydfPj2_jTqeyxETmZqG4U85RpMuoid5ZYFmzNvRRxCJvI4xMrr2EMEnYSghBWCSZ9bbXnqtXCC5YV4SvaqTVU8JxQkImLrpVI-TXiRWHB1fM6ltU7pkKYzMh8YbVwPQI59MErTBiJaGhSNQdEYxg2IZkbejjMuO_CNf9C-Q9mNdAib3T4AZTK9MpmblGlGXqHkDQJjVFh5s7RNXZuPX7-YBQdfCnxJKWfkTU8UNvD-zvYXGYALiKU1oTycUMLOdZPhg0HBTH9y1CZjCA_NBJ8ROo7iRCyGq4pN05JkAmwUcPRZp43jV3POwKXEpdVETydsmY5U61WLKg5-vFIa1jwaNPrXS_2d6Uejzt8oof3_IaEDcrf9qw97l4lDsgf7pHgBbuE2f9meAD8BkEtXTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDI_GTQh4QHwNjg0UISTEtOrapE3aB4Q2tGkgMaHBpL1FadLcnSjtQa9C---x-8UVxHhtnCiJHdupnZ8JeRmn0qUsCD2ZGOGF1ueeDo32DGcc3A_GXZsgeyZOL8IPl9HlFvnYv4XBtMpeJzaK2pYG_5HPkgBhc-Hu9Hb13cOiURhc7Sto6K6ygn3TIIzdINsMgbEmZPvo-OzT-RBWQAD_PlYZi1kAmtkDugjzE0KsV7xhmxoI_78V9Yal-jOLcgil3iG36mKlr37qPN-wVif3yN3OzaSHrVzcJ1tZ8YDcbAtPXj0k5jCfw-rWi2_VAcUkUdriyNZw-T6gurC0qJtQTkXBqaX58muWLxEA2UOrZynwBgYCNQnD02X_ZpCWji7qeUYx0l09Ihcnx1_enXpduQXPiESuPZdGLAbrzn2jmQ6cTgOrue9cwlPf-dLGvoXLdOic5JrzQNhUx5pFNuaGB2nGd8ikKIvsCaHCQUdthZQ2ClkWavB6bMqE1kbGLoqmZNZvtDIdFjmWxMhVcyeJhULWKGSNCpgC1kzJ66HHqsXhuIb2CHk30CGCdvOh_DFX3YFUTBphJLdxIkwYGnwfDKo2CWHqkXA8nJIXyHmFGBkFJuHMdV1V6v3nc3XIwK0Ct1KIKXnVEbkS5m9096YBdgFhtUaUeyNKOMRm1LzbC5jqlEilBpGfEjq0YkfMiyuysm5IEg7mCnb0cSuNw6oZC8C7xKHlSE5H2zJuKZaLBmAcXHopYxhzv5fo35P696bvDzL_Xw49vXa5u-R28-ceDmXA98gEDkD2DFy_dfq8O9C_AJKhVD8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QEII9IL4pGyhCSIhp1ZqPJu3jMTENHngAJu0tSpPm7kRpJ3XVtP8eu-2VK5_i9eJYOduJ7dr5hZBXWaFDwZmMde5ULH0iYiudjZ3gAsIPLsLQIPtRnZ7JD-fp-fi9A-_CbNfvWaaOGByeMaQlKbYQSA3J-U1wUaovy6rjqV6AyPybIuRvZs2cTo_N_-sJvOWCfm6PnGqku-R2V1_Y6ytbVVtu6OQeuTvGj3QxKPw-uVHWD8it4UXJ64fELaplA_n-6lt7SLH7kw4AsR1k1YfU1p7WXV-jaSlEq7Rafy2rNSIbx-jOPAWhAyM4_4A9XW8uA9Im0FW3LCmWsNtH5Ozk3Zfj03h8RyF2KteXcShSnoHbFomz3LJgC-atSELIRZGERPss8ZAlyxC0sEIw5QubWZ76TDjBilI8Jjt1U5dPCVUBJlqvtPap5KW0EM74gitrnc5CmkbkaCNo40aQcXzrojJ9spEpg6oxqBrDuAHVROTNNONiANj4C-1b1N1Eh9DY_Q9gMWbcaYZrp5wWPsuVk9LhxV84Q3MJS09VEDIiL1HzBsEvauyuWdqubc37z5_MgkO8BPGiUhF5PRKFBtbv7HhZAaSAeFkzyv0ZJexONxve2xiYGU-H1uQMIaCZ4BGh0yhOxIa3umy6niQX4IdAok8Ga5z-NecMwkZkrWd2OhPLfKRer3rkcIjVtc6A58HGon8s6s9CP5hs_p8aevY_nPfInf4LPexRJvbJDuyH8jmEeJfFi353fwd0dUWf
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrRDwwH0sLchCSIiq2U3sxE4eF0RVeKgqYKXyZDl2vBs1TZbNRqj8esa52JRLSLzGY8sZey7NzGeEXoQxNzHxfIdHijm-dqkjfSUdRQkF94NQ0xTInrDjuf_-LDjbQaddL0x8oeK0aEFDLVDxZLsNPWu6HOwrCsl6utKmEfqQTT1Qsg6EL4EtNfA5BPG7LADvfIR25yens891k1FL0mUrfzFtYJ1qEP-fVfWWrbpaR9knU2-i61W-kpdfZZZt2auj2-hL96dNmcr5pNrEE_XtCgjk_2TFHXSrdW7xrLmNd9FOkt9D15rnLi_vIzXLFsU63SwvykNsS1Nxg15bQch_iGWucV7VCaQSw25wlp4nWWphlx1razWGGwELgXKG5XHadSriwuBltUiwza-XD9D86O2nN8dO-8iDo1jEN46JAxKCT0FdJYn0jIw9LalrTERj17hch66GEN43hlNJqcd0LENJAh1SRb04oQ_RKC_y5DHCzMBEqRnnOvBJ4kvwtXRMmJSKhyYIxmjaHa5QLQK6fYgjE3UkFDJhWScs64RHBLBujF71M1YN-scfaF_b-9LTWdzu-kOxXohWDQjCFVOc6jBiyveV7UoGBR_5sPWAGeqP0XN724RF5sht6c9CVmUp3n38IGYEnDlwZhkbo5ctkSlg_0q2nRTABQvmNaDcH1CC6lCD4b3uUotWdZUi8iw-tUfJGOF-1E601Xh5UlQ1SUTBSAJHHzUS0P81IR74tHZpPpCNAVuGI3m6rGHNIZDgPIQ1Dzop-rGp3zP9oJezv57Qk38h3kM36vQByJBH99EI5CF5Cv7nJn7WqpTvUcV9bA
  priority: 102
  providerName: Unpaywall
Title Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees
URI https://link.springer.com/article/10.1186/1471-2105-12-470
https://www.ncbi.nlm.nih.gov/pubmed/22165866
https://www.proquest.com/docview/918075132
https://www.proquest.com/docview/918931115
https://pubmed.ncbi.nlm.nih.gov/PMC3267785
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-470
https://doaj.org/article/27c6c73d896c44c3944763946fa56f34
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal: Open Access Journals [open access]
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEwIeEN-UjcpCSIhpYYnt2MkDQlm1MipRTRuVtifLseO2IqSjaQX97zmnabvA-HhppfhsOffhu4vPPyP0KkqFTUnAPBFr7jHjU08xrTxNCYXwg1C7LJDt8-MB652H55vj0TUDy2tTO3ef1GCav_3xbfEeDP5dZfARPwhggfUgdQldmQETkMBvg5-K3UUOn9hmT8Gh91dnjWrq1ablNSM0nFSF5f_7in3FZf1aTrneU72Lbs-LS7X4rvL8itvq3kf36ngTJ0sFeYBuZMVDdGt5A-XiEdJJPpxMx7PR13Ifu2pRvASUnUMWvo9VYXAxr_Z0SgzRLc7HX7J87JCQPef-DAYhwUCwXsLweLw6PIgnFo_mwwy7Le_yMRp0jz53jr363gVP81jMPJuGJAI3T32tiAqsSgOjqG9tTFPf-sJEvoGsmlkrqKI04CZVkSKhiaimQZrRJ2irmBTZM4S5hY7KcCFMyEjGFIQ_JiVcKS0iG4YtdLBitNQ1KLm7GyOXVXIScelEI51oZEAkiKaF3qx7XC4BOf5Ce-hkt6ZzUNrVg8l0KGvLlERorgU1Ucw1Y9odFIY1N2Yw9ZBbylropZO8dGAZhavGGap5WcqPZ6cyIRBfQXzJeQu9ronsBOavVX24Abjg8LUalLsNSrBm3WjeWSmYXBmDjAMHGR1Q0kJ43eo6ugK5IpvMK5KYgt8Cjj5dauP6rQkJIMx0Q4uGnjbY0mwpxqMKaRxieyEiGHNvpdGbSf2Z6Xtrnf-nhJ7_D3N30J3qSz7YZkB30RbYQfYCQsFZ2kY3xbmA36j7oY22k6R31oP_w6P-ySk87fBOu_rI0q5WAmgZ9E-Si594-Vz6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CpFqHBAvAktYCEQouqqWdtr7x4QKo8qpaUHaKXcXK-9TiPCJrBZVf0o_pGZfZGAKKde47HlnfdkxjOEPI9T5VMWikAlVgbC9XlghDWB5YyD-8G4rwtkD-XgWHwcRsMV8rN9C4Nlla1OrBS1m1r8j3w7CbFtLsROb2bfAxwahcnVdoJGzRX72fkZRGzF6733QN4XjO1-OHo3CJqhAoGViZoHPo1YDDaM961hJvQmDZ3hfe8TnvZ9X7m47yBkFN4rbjgPpUtNbFjkYm55mGYczr1CrgoOqgTERw27-C7E8QBtJjSW2yHo_QAiqgirHwROQ16wfNWAgL_NwIId_LNGs0vU3iBrZT4z52dmMlmwhbu3yM3GiaU7NdfdJitZfodcq8dant8ldmcyAtzNT78VWxRLUGndpbaE0H6LmtzRvKwSRQUFl5lOxl-zyRjbKwdoUx0FysNBoITheDpuXyTSqaen5SijmEcv7pHjS8H7fbKaT_PsIaHSw0bjpFIuEiwTBnwqlzJpjFWxj6Ie2W4RrW3T6RwHbkx0FfHEUiNpNJJGh0wDaXrkVbdjVnf5uAD2LdKug8P-3NUP0x8j3Yi7ZspKq7iLE2mFsPj6GBR5IuDqkfRc9MgzpLzGDhw5lviMTFkUeu_LZ73DwGkDp1XKHnnZAPkp3N-a5sUEYAGbdi1BbixBgoqwS8vrLYPpRkUVuhOoHqHdKm7Eqrs8m5YVSMLBGAJGH9Tc2H01YyH4rni0WuLTJbQsr-Tj06p9OQQMSsVw5mbL0b8v9W-kb3Y8_18KPbrwc5-StcHRpwN9sHe4v06uVzkCENCQb5BVEIbsMTiZ8_RJJdqUnFy2LvkFfDWLRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQELcHxJ2yARZCQkyLGl9iJ4-lUG2AJgRM2pvl2HFbEZJqaYT27znOjYWreK2PLdfnnnP8GaHncSpdSgkPZGJEwG3IAs2NDgyjDMIPylzbIHssDk_429PotPvgVvXd7n1Jsr3T4FGaiu10Y12r4rGYEjCpASQrkW8s4BJS9sscfJt_wWAu5kMVweP196XJ38wauaIGsf9Xu3zBMf3cNDlUTm-ga3Wx0effdJ5fcE6LW-hmF1XiWSsGt9GlrLiDrrTvTJ7fRWaWL8uz9Xb1tTrAvicUt7CxNeTaB1gXFhd1U7mpMMSwOF9_yfK1xzsOvJOzGFgBC4FVhOXxur8iiEuHV_Uyw76wXd1DJ4s3n-eHQfe6QmBEIreBSyMagzNnodFUE6dTYjULnUtYGrpQ2ji0kDtz5yTTjBFhUx1rGtmYGUbSjN1HO0VZZA8RFg4maiuktBGnGdcQ5NiUCq2NjF0UTdC0P2hlOuhx_wJGrpoUJBbKs0Z51ihCFbBmgl4OMzYt7MZfaF953g10HjC7-aE8W6pO_xSVRhjJbJwIw7nx14HBsiYcth4Jx_gEPfOcVx4So_A9N0tdV5U6-vRRzShEURBFCjFBLzoiV8L-je6uMMApeBStEeXeiBJ01oyGd3sBU53NqFRCPDA0YXSC8DDqJ_o2uCIr64YkYeCd4EQftNI4_GtKCQSTfmk5ktPRsYxHivWqwROHCF7KGNbc7yX6x6b-fOj7g8z_k0OP_mflp-jqh9cL9f7o-N0uut58wgd1JWwP7YBqZI8hBtymTxpF_w6nEVDV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrRDwwH0sLchCSIiq2U3sxE4eF0RVeKgqYKXyZDl2vBs1TZbNRqj8esa52JRLSLzGY8sZey7NzGeEXoQxNzHxfIdHijm-dqkjfSUdRQkF94NQ0xTInrDjuf_-LDjbQaddL0x8oeK0aEFDLVDxZLsNPWu6HOwrCsl6utKmEfqQTT1Qsg6EL4EtNfA5BPG7LADvfIR25yens891k1FL0mUrfzFtYJ1qEP-fVfWWrbpaR9knU2-i61W-kpdfZZZt2auj2-hL96dNmcr5pNrEE_XtCgjk_2TFHXSrdW7xrLmNd9FOkt9D15rnLi_vIzXLFsU63SwvykNsS1Nxg15bQch_iGWucV7VCaQSw25wlp4nWWphlx1razWGGwELgXKG5XHadSriwuBltUiwza-XD9D86O2nN8dO-8iDo1jEN46JAxKCT0FdJYn0jIw9LalrTERj17hch66GEN43hlNJqcd0LENJAh1SRb04oQ_RKC_y5DHCzMBEqRnnOvBJ4kvwtXRMmJSKhyYIxmjaHa5QLQK6fYgjE3UkFDJhWScs64RHBLBujF71M1YN-scfaF_b-9LTWdzu-kOxXohWDQjCFVOc6jBiyveV7UoGBR_5sPWAGeqP0XN724RF5sht6c9CVmUp3n38IGYEnDlwZhkbo5ctkSlg_0q2nRTABQvmNaDcH1CC6lCD4b3uUotWdZUi8iw-tUfJGOF-1E601Xh5UlQ1SUTBSAJHHzUS0P81IR74tHZpPpCNAVuGI3m6rGHNIZDgPIQ1Dzop-rGp3zP9oJezv57Qk38h3kM36vQByJBH99EI5CF5Cv7nJn7WqpTvUcV9bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms%2C+data+structures%2C+and+numerics+for+likelihood-based+phylogenetic+inference+of+huge+trees&rft.jtitle=BMC+bioinformatics&rft.au=Izquierdo-Carrasco%2C+Fernando&rft.au=Smith%2C+Stephen+A&rft.au=Stamatakis%2C+Alexandros&rft.date=2011-12-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=470&rft_id=info:doi/10.1186%2F1471-2105-12-470&rft.externalDBID=ISR&rft.externalDocID=A278292966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon