Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees
Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numer...
Saved in:
| Published in | BMC bioinformatics Vol. 12; no. 1; p. 470 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
13.12.2011
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-12-470 |
Cover
| Abstract | Background
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood.
Results
We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times
and
memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems.
Conclusions
We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. |
|---|---|
| AbstractList | Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the ? model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood.BACKGROUNDThe rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood.We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems.RESULTSWe introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems.We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.CONCLUSIONSWe address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the ? model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code. |
| ArticleNumber | 470 |
| Audience | Academic |
| Author | Smith, Stephen A Stamatakis, Alexandros Izquierdo-Carrasco, Fernando |
| AuthorAffiliation | 2 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048 USA 1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany |
| AuthorAffiliation_xml | – name: 1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany – name: 2 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048 USA |
| Author_xml | – sequence: 1 givenname: Fernando surname: Izquierdo-Carrasco fullname: Izquierdo-Carrasco, Fernando email: Fernando.Izquierdo@h-its.org organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies – sequence: 2 givenname: Stephen A surname: Smith fullname: Smith, Stephen A organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, 2 Smith Lab, Dept. Ecology and Evolutionary Biology, University of Michigan – sequence: 3 givenname: Alexandros surname: Stamatakis fullname: Stamatakis, Alexandros email: Alexandros.Stamatakis@h-its.org organization: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22165866$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNktuL1DAYxYusuBd990mKPohg11zapH0RlsXLwoLg5TmkyZdO1jYZk1Sd_97UGdedRUUCSfjyOyfJSY6LA-cdFMVDjE4xbtkLXHNcEYyaCpOq5uhOcXRdOrgxPyyOY7xCCPMWNfeKQ0Iwa1rGjgp1Ng4-2LSa4vNSyyTLmMKs0hwgF6TTpZsnCFbF0vhQjvYzjHblva56GUGX69Vm9AM4SFaV1hkI4BSU3pSreYAyBYB4v7hr5BjhwW48KT69fvXx_G11-e7NxfnZZaVYx1Nl-oa0DFOKlCQSG9ljLSkypqM9MojrFumadbUxnEpKMdO9bCVpdEsVxT3Qk-Ji66u9vBLrYCcZNsJLK34WfBiEDPmcIwjCFVOc6rZjqq4V7eqas9wzIxtmaJ298NZrdmu5-SbH8doQI7GEL5Z0xZKuwETk8LPm5VaznvsJtAKXghz3DrK_4uxKDP6roIRx3jbZ4OnOIPgvM8QkJhsVjKN04OcoOtx2FGO8kI9vkVd-Di6nu0CIN5iSDD3ZQoPMV86P4_OuarEUZ4S3pCMdY5k6_QOVm4bJqvzfjM31PcGzPUFmEnxPg5xjFBcf3u-zj25Gcp3Frw-YAbQFVPAxBjD_EzO7JVE2yWT9Eqod_yXcvWnMe7gBwu_Q_qr5ATeACoY |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0143926 crossref_primary_10_1093_sysbio_syu084 crossref_primary_10_1111_jse_12219 crossref_primary_10_1093_molbev_msv109 crossref_primary_10_1093_gbe_evu283 crossref_primary_10_1186_s12859_017_1916_1 crossref_primary_10_1002_ece3_7986 crossref_primary_10_1002_ajpa_24099 crossref_primary_10_1038_s41598_017_13901_3 crossref_primary_10_1093_gbe_evv212 crossref_primary_10_1093_molbev_msu236 crossref_primary_10_1111_2041_210X_12760 crossref_primary_10_1038_s41598_019_52722_4 crossref_primary_10_1371_journal_pone_0117987 crossref_primary_10_1093_bioinformatics_bts309 crossref_primary_10_1016_j_ympev_2018_07_008 crossref_primary_10_1093_bioinformatics_btu033 crossref_primary_10_1093_bioinformatics_btt760 crossref_primary_10_1093_sysbio_syu098 crossref_primary_10_1093_sysbio_syw075 crossref_primary_10_1093_ve_vev009 crossref_primary_10_3390_v10080437 crossref_primary_10_1093_gbe_evx163 crossref_primary_10_1093_bioinformatics_btz068 crossref_primary_10_1093_sysbio_syw037 crossref_primary_10_1093_nar_gkx322 crossref_primary_10_1016_j_ympev_2015_03_018 crossref_primary_10_1016_j_ympev_2025_108342 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1111_2041_210X_12055 crossref_primary_10_1016_j_ympev_2020_106862 crossref_primary_10_1371_journal_pone_0110723 crossref_primary_10_1111_jpy_12401 |
| Cites_doi | 10.1007/s11265-007-0067-4 10.1080/10635150801898920 10.1093/bioinformatics/btg180 10.1111/j.1096-0031.2009.00255.x 10.1007/BF00160154 10.1371/journal.pone.0009490 10.1201/EBK1439814888-c5 10.1093/bioinformatics/btq205 10.1093/bioinformatics/btm619 10.1007/BF01734359 10.1093/bioinformatics/bth078 10.1093/bioinformatics/bti594 10.1101/gr.11.1.3 10.1126/science.1163197 10.1098/rstb.2008.0163 10.1080/10635150490522269 10.1093/bioinformatics/btl446 10.1016/j.jtbi.2009.09.037 10.1093/molbev/msp098 10.1093/nar/gkh340 10.1093/bib/bbn013 10.1093/molbev/msh112 10.1093/sysbio/syq010 10.1109/CSB.2002.1039325 |
| ContentType | Journal Article |
| Copyright | Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 COPYRIGHT 2011 BioMed Central Ltd. 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-12-470 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 470 |
| ExternalDocumentID | oai_doaj_org_article_27c6c73d896c44c3944763946fa56f34 10.1186/1471-2105-12-470 PMC3267785 2571425771 A278292966 22165866 10_1186_1471_2105_12_470 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States Germany |
| GeographicLocations_xml | – name: Germany – name: United States |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c697t-fb52861330ca2a1fab1da30ff93b0f07d80d4694ff73a3316dba8a25d83c31be3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:34:24 EDT 2025 Sun Oct 26 03:36:27 EDT 2025 Tue Sep 30 16:47:14 EDT 2025 Wed Oct 01 14:33:36 EDT 2025 Mon Oct 06 18:37:19 EDT 2025 Mon Oct 20 22:07:21 EDT 2025 Mon Oct 20 16:45:38 EDT 2025 Thu Oct 16 14:51:06 EDT 2025 Wed Feb 19 02:10:19 EST 2025 Thu Apr 24 22:55:45 EDT 2025 Wed Oct 01 04:15:20 EDT 2025 Sat Sep 06 07:27:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Branch Length Numerical Scaling Ancestral Node Rate Heterogeneity Memory Saving |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c697t-fb52861330ca2a1fab1da30ff93b0f07d80d4694ff73a3316dba8a25d83c31be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/27c6c73d896c44c3944763946fa56f34 |
| PMID | 22165866 |
| PQID | 918075132 |
| PQPubID | 44065 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_27c6c73d896c44c3944763946fa56f34 unpaywall_primary_10_1186_1471_2105_12_470 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3267785 proquest_miscellaneous_918931115 proquest_journals_918075132 gale_infotracmisc_A278292966 gale_infotracacademiconefile_A278292966 gale_incontextgauss_ISR_A278292966 pubmed_primary_22165866 crossref_primary_10_1186_1471_2105_12_470 crossref_citationtrail_10_1186_1471_2105_12_470 springer_journals_10_1186_1471_2105_12_470 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-13 |
| PublicationDateYYYYMMDD | 2011-12-13 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2011 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | W Fletcher (5012_CR32) 2009; 26 B Minh (5012_CR3) 2005; 21 S Smith (5012_CR10) 2008; 322 A Drummond (5012_CR9) 2007; 7 N Lartillot (5012_CR25) 2004; 21 MJL de Hoon (5012_CR17) 2004; 20 A Stamatakis (5012_CR31) 2008; 363 SA Smith (5012_CR12) 2009 A Stamatakis (5012_CR13) 2002 SA Smith (5012_CR28) 2008; 24 5012_CR16 D Zwickl (5012_CR4) 2006 PA Goloboff (5012_CR11) 2009; 25 K Katoh (5012_CR26) 2008; 9 S Smith (5012_CR29) 2011 S Le (5012_CR15) 2004 J Felsenstein (5012_CR2) 1981; 17 A Stamatakis (5012_CR30) 2007; 48 Z Yang (5012_CR14) 1994; 39 S Guindon (5012_CR5) 2010; 59 F Ronquist (5012_CR7) 2003; 19 S Pond (5012_CR20) 2004; 53 J Sumner (5012_CR21) 2010; 262 A Stamatakis (5012_CR18) 2006; 22 J Ripplinger (5012_CR23) 2008; 57 A Stamatakis (5012_CR22) 2010; 26 N Lartillot (5012_CR8) 2007 M Price (5012_CR6) 2010; 5 A Stamatakis (5012_CR24) 2006 RC Edgar (5012_CR27) 2004; 32 A Stamatakis (5012_CR19) 2002 M Ronaghi (5012_CR1) 2001; 11 |
| References_xml | – volume: 48 start-page: 271 issue: 3 year: 2007 ident: 5012_CR30 publication-title: J VLSI Sig Proc Sys doi: 10.1007/s11265-007-0067-4 – volume-title: PhyloBayes. v2. 3 year: 2007 ident: 5012_CR8 – volume: 57 start-page: 76 year: 2008 ident: 5012_CR23 publication-title: Syst Biol doi: 10.1080/10635150801898920 – volume: 19 start-page: 1572 issue: 12 year: 2003 ident: 5012_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 25 start-page: 1 year: 2009 ident: 5012_CR11 publication-title: Cladistics doi: 10.1111/j.1096-0031.2009.00255.x – volume: 39 start-page: 306 year: 1994 ident: 5012_CR14 publication-title: J Mol Evol doi: 10.1007/BF00160154 – volume: 5 start-page: e9490 issue: 3 year: 2010 ident: 5012_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – ident: 5012_CR16 doi: 10.1201/EBK1439814888-c5 – volume: 26 start-page: i132 issue: 12 year: 2010 ident: 5012_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq205 – volume: 24 start-page: 715 issue: 5 year: 2008 ident: 5012_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm619 – volume: 17 start-page: 368 year: 1981 ident: 5012_CR2 publication-title: J Mol Evol doi: 10.1007/BF01734359 – volume: 20 start-page: 1453 issue: 9 year: 2004 ident: 5012_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth078 – volume-title: Proc of GfKl conference year: 2004 ident: 5012_CR15 – volume: 21 start-page: 3794 issue: 19 year: 2005 ident: 5012_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti594 – volume-title: BMC Evolutionary Biology year: 2009 ident: 5012_CR12 – volume: 11 start-page: 3 year: 2001 ident: 5012_CR1 publication-title: Genome Research doi: 10.1101/gr.11.1.3 – volume: 322 start-page: 86 issue: 5898 year: 2008 ident: 5012_CR10 publication-title: Science doi: 10.1126/science.1163197 – volume: 363 start-page: 3977 year: 2008 ident: 5012_CR31 publication-title: Phil Trans R Soc series B Biol Sci doi: 10.1098/rstb.2008.0163 – volume: 53 start-page: 685 issue: 5 year: 2004 ident: 5012_CR20 publication-title: Systematic biology doi: 10.1080/10635150490522269 – volume-title: Proc. of IPDPS2006, HICOMB Workshop, Proceedings on CD, Rhodos, Greece year: 2006 ident: 5012_CR24 – volume-title: PhD thesis year: 2006 ident: 5012_CR4 – volume: 22 start-page: 2688 issue: 21 year: 2006 ident: 5012_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 262 start-page: 413 issue: 3 year: 2010 ident: 5012_CR21 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2009.09.037 – volume: 26 start-page: 1879 issue: 8 year: 2009 ident: 5012_CR32 publication-title: Molecular biology and evolution doi: 10.1093/molbev/msp098 – volume: 32 start-page: 1792 issue: 5 year: 2004 ident: 5012_CR27 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh340 – volume-title: American Journal of Botany year: 2011 ident: 5012_CR29 – volume: 9 start-page: 286 issue: 4 year: 2008 ident: 5012_CR26 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbn013 – volume: 21 start-page: 1095 issue: 6 year: 2004 ident: 5012_CR25 publication-title: Mol Biol Evol doi: 10.1093/molbev/msh112 – volume: 59 start-page: 307 issue: 3 year: 2010 ident: 5012_CR5 publication-title: Systematic biology doi: 10.1093/sysbio/syq010 – volume-title: Proc of IEEE/ACM Supercomputing Conference 2002 (SC2002) year: 2002 ident: 5012_CR13 – volume: 7 start-page: 1471 issue: 214 year: 2007 ident: 5012_CR9 publication-title: BMC Evol Biol – start-page: 21 volume-title: Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002) year: 2002 ident: 5012_CR19 doi: 10.1109/CSB.2002.1039325 |
| SSID | ssj0017805 |
| Score | 2.234858 |
| Snippet | Background
The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum... The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum... Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum... Abstract Background: The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale... Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 470 |
| SubjectTerms | Algorithms Analysis Bayes Theorem Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences DNA sequencing Evolutionary biology Genetic algorithms Genomes Heterogeneity Life Sciences Likelihood Functions Methods Microarrays Models, Genetic Molecular Sequence Data Nucleotide sequencing Phylogeny Probability Research Article Studies Transcriptome analysis Trees |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QJAQ8IL65baAIISGmVdckbZI-Hohp8MADMGlvUZo0d6eV3kSvmvbfY_eLKwj2wmvjRK3txHbt_EzIa52rkHOWRCpzMkp8LCKbOBs5wQW4H1yErkD2szw9Sz6dp-c7rb6wJqyDB-4YN-fKSaeE15l0SeLwHidsiSyRwaYyiBYJNNbZEEz1-QNE6m_vFSkWQVCTDglKLefjMyxKSLBJ8Y5BanH7_zydd8zT76WTY_70HrnTVJf2-sqW5Y6JOnlA7ve-JV103_SQ3CqqR-R2123y-jFxi3K5-bHerr7XxxQrQ2kHHttAxH1MbeVp1bT5m5qCJ0vL9UVRrhH1OEJT5ykIBBaCsxGWp-vhoiDdBLpqlgXF9Hb9hJydfPj2_jTqeyxETmZqG4U85RpMuoid5ZYFmzNvRRxCJvI4xMrr2EMEnYSghBWCSZ9bbXnqtXCC5YV4SvaqTVU8JxQkImLrpVI-TXiRWHB1fM6ltU7pkKYzMh8YbVwPQI59MErTBiJaGhSNQdEYxg2IZkbejjMuO_CNf9C-Q9mNdAib3T4AZTK9MpmblGlGXqHkDQJjVFh5s7RNXZuPX7-YBQdfCnxJKWfkTU8UNvD-zvYXGYALiKU1oTycUMLOdZPhg0HBTH9y1CZjCA_NBJ8ROo7iRCyGq4pN05JkAmwUcPRZp43jV3POwKXEpdVETydsmY5U61WLKg5-vFIa1jwaNPrXS_2d6Uejzt8oof3_IaEDcrf9qw97l4lDsgf7pHgBbuE2f9meAD8BkEtXTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDI_GTQh4QHwNjg0UISTEtOrapE3aB4Q2tGkgMaHBpL1FadLcnSjtQa9C---x-8UVxHhtnCiJHdupnZ8JeRmn0qUsCD2ZGOGF1ueeDo32DGcc3A_GXZsgeyZOL8IPl9HlFvnYv4XBtMpeJzaK2pYG_5HPkgBhc-Hu9Hb13cOiURhc7Sto6K6ygn3TIIzdINsMgbEmZPvo-OzT-RBWQAD_PlYZi1kAmtkDugjzE0KsV7xhmxoI_78V9Yal-jOLcgil3iG36mKlr37qPN-wVif3yN3OzaSHrVzcJ1tZ8YDcbAtPXj0k5jCfw-rWi2_VAcUkUdriyNZw-T6gurC0qJtQTkXBqaX58muWLxEA2UOrZynwBgYCNQnD02X_ZpCWji7qeUYx0l09Ihcnx1_enXpduQXPiESuPZdGLAbrzn2jmQ6cTgOrue9cwlPf-dLGvoXLdOic5JrzQNhUx5pFNuaGB2nGd8ikKIvsCaHCQUdthZQ2ClkWavB6bMqE1kbGLoqmZNZvtDIdFjmWxMhVcyeJhULWKGSNCpgC1kzJ66HHqsXhuIb2CHk30CGCdvOh_DFX3YFUTBphJLdxIkwYGnwfDKo2CWHqkXA8nJIXyHmFGBkFJuHMdV1V6v3nc3XIwK0Ct1KIKXnVEbkS5m9096YBdgFhtUaUeyNKOMRm1LzbC5jqlEilBpGfEjq0YkfMiyuysm5IEg7mCnb0cSuNw6oZC8C7xKHlSE5H2zJuKZaLBmAcXHopYxhzv5fo35P696bvDzL_Xw49vXa5u-R28-ceDmXA98gEDkD2DFy_dfq8O9C_AJKhVD8 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QEII9IL4pGyhCSIhp1ZqPJu3jMTENHngAJu0tSpPm7kRpJ3XVtP8eu-2VK5_i9eJYOduJ7dr5hZBXWaFDwZmMde5ULH0iYiudjZ3gAsIPLsLQIPtRnZ7JD-fp-fi9A-_CbNfvWaaOGByeMaQlKbYQSA3J-U1wUaovy6rjqV6AyPybIuRvZs2cTo_N_-sJvOWCfm6PnGqku-R2V1_Y6ytbVVtu6OQeuTvGj3QxKPw-uVHWD8it4UXJ64fELaplA_n-6lt7SLH7kw4AsR1k1YfU1p7WXV-jaSlEq7Rafy2rNSIbx-jOPAWhAyM4_4A9XW8uA9Im0FW3LCmWsNtH5Ozk3Zfj03h8RyF2KteXcShSnoHbFomz3LJgC-atSELIRZGERPss8ZAlyxC0sEIw5QubWZ76TDjBilI8Jjt1U5dPCVUBJlqvtPap5KW0EM74gitrnc5CmkbkaCNo40aQcXzrojJ9spEpg6oxqBrDuAHVROTNNONiANj4C-1b1N1Eh9DY_Q9gMWbcaYZrp5wWPsuVk9LhxV84Q3MJS09VEDIiL1HzBsEvauyuWdqubc37z5_MgkO8BPGiUhF5PRKFBtbv7HhZAaSAeFkzyv0ZJexONxve2xiYGU-H1uQMIaCZ4BGh0yhOxIa3umy6niQX4IdAok8Ga5z-NecMwkZkrWd2OhPLfKRer3rkcIjVtc6A58HGon8s6s9CP5hs_p8aevY_nPfInf4LPexRJvbJDuyH8jmEeJfFi353fwd0dUWf priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrRDwwH0sLchCSIiq2U3sxE4eF0RVeKgqYKXyZDl2vBs1TZbNRqj8esa52JRLSLzGY8sZey7NzGeEXoQxNzHxfIdHijm-dqkjfSUdRQkF94NQ0xTInrDjuf_-LDjbQaddL0x8oeK0aEFDLVDxZLsNPWu6HOwrCsl6utKmEfqQTT1Qsg6EL4EtNfA5BPG7LADvfIR25yens891k1FL0mUrfzFtYJ1qEP-fVfWWrbpaR9knU2-i61W-kpdfZZZt2auj2-hL96dNmcr5pNrEE_XtCgjk_2TFHXSrdW7xrLmNd9FOkt9D15rnLi_vIzXLFsU63SwvykNsS1Nxg15bQch_iGWucV7VCaQSw25wlp4nWWphlx1razWGGwELgXKG5XHadSriwuBltUiwza-XD9D86O2nN8dO-8iDo1jEN46JAxKCT0FdJYn0jIw9LalrTERj17hch66GEN43hlNJqcd0LENJAh1SRb04oQ_RKC_y5DHCzMBEqRnnOvBJ4kvwtXRMmJSKhyYIxmjaHa5QLQK6fYgjE3UkFDJhWScs64RHBLBujF71M1YN-scfaF_b-9LTWdzu-kOxXohWDQjCFVOc6jBiyveV7UoGBR_5sPWAGeqP0XN724RF5sht6c9CVmUp3n38IGYEnDlwZhkbo5ctkSlg_0q2nRTABQvmNaDcH1CC6lCD4b3uUotWdZUi8iw-tUfJGOF-1E601Xh5UlQ1SUTBSAJHHzUS0P81IR74tHZpPpCNAVuGI3m6rGHNIZDgPIQ1Dzop-rGp3zP9oJezv57Qk38h3kM36vQByJBH99EI5CF5Cv7nJn7WqpTvUcV9bA priority: 102 providerName: Unpaywall |
| Title | Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees |
| URI | https://link.springer.com/article/10.1186/1471-2105-12-470 https://www.ncbi.nlm.nih.gov/pubmed/22165866 https://www.proquest.com/docview/918075132 https://www.proquest.com/docview/918931115 https://pubmed.ncbi.nlm.nih.gov/PMC3267785 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-470 https://doaj.org/article/27c6c73d896c44c3944763946fa56f34 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal: Open Access Journals [open access] customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEwIeEN-UjcpCSIhpYYnt2MkDQlm1MipRTRuVtifLseO2IqSjaQX97zmnabvA-HhppfhsOffhu4vPPyP0KkqFTUnAPBFr7jHjU08xrTxNCYXwg1C7LJDt8-MB652H55vj0TUDy2tTO3ef1GCav_3xbfEeDP5dZfARPwhggfUgdQldmQETkMBvg5-K3UUOn9hmT8Gh91dnjWrq1ablNSM0nFSF5f_7in3FZf1aTrneU72Lbs-LS7X4rvL8itvq3kf36ngTJ0sFeYBuZMVDdGt5A-XiEdJJPpxMx7PR13Ifu2pRvASUnUMWvo9VYXAxr_Z0SgzRLc7HX7J87JCQPef-DAYhwUCwXsLweLw6PIgnFo_mwwy7Le_yMRp0jz53jr363gVP81jMPJuGJAI3T32tiAqsSgOjqG9tTFPf-sJEvoGsmlkrqKI04CZVkSKhiaimQZrRJ2irmBTZM4S5hY7KcCFMyEjGFIQ_JiVcKS0iG4YtdLBitNQ1KLm7GyOXVXIScelEI51oZEAkiKaF3qx7XC4BOf5Ce-hkt6ZzUNrVg8l0KGvLlERorgU1Ucw1Y9odFIY1N2Yw9ZBbylropZO8dGAZhavGGap5WcqPZ6cyIRBfQXzJeQu9ronsBOavVX24Abjg8LUalLsNSrBm3WjeWSmYXBmDjAMHGR1Q0kJ43eo6ugK5IpvMK5KYgt8Cjj5dauP6rQkJIMx0Q4uGnjbY0mwpxqMKaRxieyEiGHNvpdGbSf2Z6Xtrnf-nhJ7_D3N30J3qSz7YZkB30RbYQfYCQsFZ2kY3xbmA36j7oY22k6R31oP_w6P-ySk87fBOu_rI0q5WAmgZ9E-Si594-Vz6 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CpFqHBAvAktYCEQouqqWdtr7x4QKo8qpaUHaKXcXK-9TiPCJrBZVf0o_pGZfZGAKKde47HlnfdkxjOEPI9T5VMWikAlVgbC9XlghDWB5YyD-8G4rwtkD-XgWHwcRsMV8rN9C4Nlla1OrBS1m1r8j3w7CbFtLsROb2bfAxwahcnVdoJGzRX72fkZRGzF6733QN4XjO1-OHo3CJqhAoGViZoHPo1YDDaM961hJvQmDZ3hfe8TnvZ9X7m47yBkFN4rbjgPpUtNbFjkYm55mGYczr1CrgoOqgTERw27-C7E8QBtJjSW2yHo_QAiqgirHwROQ16wfNWAgL_NwIId_LNGs0vU3iBrZT4z52dmMlmwhbu3yM3GiaU7NdfdJitZfodcq8dant8ldmcyAtzNT78VWxRLUGndpbaE0H6LmtzRvKwSRQUFl5lOxl-zyRjbKwdoUx0FysNBoITheDpuXyTSqaen5SijmEcv7pHjS8H7fbKaT_PsIaHSw0bjpFIuEiwTBnwqlzJpjFWxj6Ie2W4RrW3T6RwHbkx0FfHEUiNpNJJGh0wDaXrkVbdjVnf5uAD2LdKug8P-3NUP0x8j3Yi7ZspKq7iLE2mFsPj6GBR5IuDqkfRc9MgzpLzGDhw5lviMTFkUeu_LZ73DwGkDp1XKHnnZAPkp3N-a5sUEYAGbdi1BbixBgoqwS8vrLYPpRkUVuhOoHqHdKm7Eqrs8m5YVSMLBGAJGH9Tc2H01YyH4rni0WuLTJbQsr-Tj06p9OQQMSsVw5mbL0b8v9W-kb3Y8_18KPbrwc5-StcHRpwN9sHe4v06uVzkCENCQb5BVEIbsMTiZ8_RJJdqUnFy2LvkFfDWLRg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQELcHxJ2yARZCQkyLGl9iJ4-lUG2AJgRM2pvl2HFbEZJqaYT27znOjYWreK2PLdfnnnP8GaHncSpdSgkPZGJEwG3IAs2NDgyjDMIPylzbIHssDk_429PotPvgVvXd7n1Jsr3T4FGaiu10Y12r4rGYEjCpASQrkW8s4BJS9sscfJt_wWAu5kMVweP196XJ38wauaIGsf9Xu3zBMf3cNDlUTm-ga3Wx0effdJ5fcE6LW-hmF1XiWSsGt9GlrLiDrrTvTJ7fRWaWL8uz9Xb1tTrAvicUt7CxNeTaB1gXFhd1U7mpMMSwOF9_yfK1xzsOvJOzGFgBC4FVhOXxur8iiEuHV_Uyw76wXd1DJ4s3n-eHQfe6QmBEIreBSyMagzNnodFUE6dTYjULnUtYGrpQ2ji0kDtz5yTTjBFhUx1rGtmYGUbSjN1HO0VZZA8RFg4maiuktBGnGdcQ5NiUCq2NjF0UTdC0P2hlOuhx_wJGrpoUJBbKs0Z51ihCFbBmgl4OMzYt7MZfaF953g10HjC7-aE8W6pO_xSVRhjJbJwIw7nx14HBsiYcth4Jx_gEPfOcVx4So_A9N0tdV5U6-vRRzShEURBFCjFBLzoiV8L-je6uMMApeBStEeXeiBJ01oyGd3sBU53NqFRCPDA0YXSC8DDqJ_o2uCIr64YkYeCd4EQftNI4_GtKCQSTfmk5ktPRsYxHivWqwROHCF7KGNbc7yX6x6b-fOj7g8z_k0OP_mflp-jqh9cL9f7o-N0uut58wgd1JWwP7YBqZI8hBtymTxpF_w6nEVDV |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrRDwwH0sLchCSIiq2U3sxE4eF0RVeKgqYKXyZDl2vBs1TZbNRqj8esa52JRLSLzGY8sZey7NzGeEXoQxNzHxfIdHijm-dqkjfSUdRQkF94NQ0xTInrDjuf_-LDjbQaddL0x8oeK0aEFDLVDxZLsNPWu6HOwrCsl6utKmEfqQTT1Qsg6EL4EtNfA5BPG7LADvfIR25yens891k1FL0mUrfzFtYJ1qEP-fVfWWrbpaR9knU2-i61W-kpdfZZZt2auj2-hL96dNmcr5pNrEE_XtCgjk_2TFHXSrdW7xrLmNd9FOkt9D15rnLi_vIzXLFsU63SwvykNsS1Nxg15bQch_iGWucV7VCaQSw25wlp4nWWphlx1razWGGwELgXKG5XHadSriwuBltUiwza-XD9D86O2nN8dO-8iDo1jEN46JAxKCT0FdJYn0jIw9LalrTERj17hch66GEN43hlNJqcd0LENJAh1SRb04oQ_RKC_y5DHCzMBEqRnnOvBJ4kvwtXRMmJSKhyYIxmjaHa5QLQK6fYgjE3UkFDJhWScs64RHBLBujF71M1YN-scfaF_b-9LTWdzu-kOxXohWDQjCFVOc6jBiyveV7UoGBR_5sPWAGeqP0XN724RF5sht6c9CVmUp3n38IGYEnDlwZhkbo5ctkSlg_0q2nRTABQvmNaDcH1CC6lCD4b3uUotWdZUi8iw-tUfJGOF-1E601Xh5UlQ1SUTBSAJHHzUS0P81IR74tHZpPpCNAVuGI3m6rGHNIZDgPIQ1Dzop-rGp3zP9oJezv57Qk38h3kM36vQByJBH99EI5CF5Cv7nJn7WqpTvUcV9bA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms%2C+data+structures%2C+and+numerics+for+likelihood-based+phylogenetic+inference+of+huge+trees&rft.jtitle=BMC+bioinformatics&rft.au=Izquierdo-Carrasco%2C+Fernando&rft.au=Smith%2C+Stephen+A&rft.au=Stamatakis%2C+Alexandros&rft.date=2011-12-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=470&rft_id=info:doi/10.1186%2F1471-2105-12-470&rft.externalDBID=ISR&rft.externalDocID=A278292966 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |