The association between impaired proinsulin processing and type 2 diabetes mellitus in non-obese Japanese individuals

We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance te...

Full description

Saved in:
Bibliographic Details
Published inENDOCRINE JOURNAL Vol. 62; no. 6; pp. 485 - 492
Main Authors Sumitani, Yoshikazu, Suzuki, Kiyoshi, Kondo, Takuma, Inukai, Kouichi, Takahashi, Kazuto, Ishida, Hitoshi, Nishida, Susumu, Tanaka, Toshiaki, Katsuta, Hidenori, Ozawa, Sachihiko, Hosaka, Toshio
Format Journal Article
LanguageEnglish
Published Japan The Japan Endocrine Society 2015
Subjects
Online AccessGet full text
ISSN0918-8959
1348-4540
DOI10.1507/endocrj.EJ14-0611

Cover

Abstract We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DIO). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DIO. Odds ratios (95% CI) of PC1/3, HOMA-β, and DIO were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(≤1.7) combined with decreased HOMA-β (≤30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DIO. A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
AbstractList We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DI(O)). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DI(O). Odds ratios (95% CI) of PC1/3, HOMA-β, and DI(O) were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(≤1.7) combined with decreased HOMA-β (≤30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DI(O). A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DIO). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DIO. Odds ratios (95% CI) of PC1/3, HOMA-β, and DIO were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(≤1.7) combined with decreased HOMA-β (≤30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DIO. A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
[Abstract] We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DIO). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DIO. Odds ratios (95%CI) of PC1/3, HOMA-β, and DIO were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(<1.7) combined with decreased HOMA-β (<30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DIO. A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA- beta and the oral disposition index (DI sub(O)). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA- beta and DI sub(O). Odds ratios (95% CI) of PC1/3, HOMA- beta , and DI sub(O) were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3( less than or equal to 1.7) combined with decreased HOMA- beta ( less than or equal to 30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA- beta or DI sub(O). A combined decrease in estimated fasting PC1/3 activity and HOMA- beta measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
Author Kondo, Takuma
Tanaka, Toshiaki
Ozawa, Sachihiko
Inukai, Kouichi
Katsuta, Hidenori
Sumitani, Yoshikazu
Takahashi, Kazuto
Ishida, Hitoshi
Nishida, Susumu
Suzuki, Kiyoshi
Hosaka, Toshio
Author_xml – sequence: 1
  fullname: Sumitani, Yoshikazu
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Suzuki, Kiyoshi
  organization: Division of Clinical Laboratory, Shimada Municipal Hospital, Shizuoka 427-8501, Japan
– sequence: 1
  fullname: Kondo, Takuma
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Inukai, Kouichi
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Takahashi, Kazuto
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Ishida, Hitoshi
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Nishida, Susumu
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Tanaka, Toshiaki
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Katsuta, Hidenori
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Ozawa, Sachihiko
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
– sequence: 1
  fullname: Hosaka, Toshio
  organization: Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25892189$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFD8AF-cglZfwnTnxEVSlUlbiUs-U4k9arxNnaDqjfHqe7XSQOcPHY0u_NPM87IydhDkjIewYXrIbmE4Z-dnF7cXXDZAWKsVdkw4RsK1lLOCEb0KytWl3rU3KW0hZAiFqKN-SU163mrNUbstw9ILUpzc7b7OdAO8y_EAP10876iD3dxdmHtIw-rFeHKflwT23oaX7aIeW097aIMNEJx9HnJdGCFqfV3GFCemN3NqwXH3r_0_eLHdNb8nooBd8d6jn58eXq7vJrdfv9-tvl59vKKa1yhbZzrm6VBsl6IQSCFbUQVnQCeocI5YOC9wPnDqxqh6EZpOKDci3XqCyKc_Jx37c4f1wwZTP55IrN4mhekikraIQGLuH_qNKiYbxWoqAfDujSTdibXfSTjU_mZasFaPaAi3NKEQfjfH5eb47Wj4aBWfMzh_zMmp9Z8ytK9pfypfm_NNd7TfHinR3nULJCs52XGMpyjXtUzyLDgdUGQHFQpXADsi1vqTmXLQfR_Om0Tdne43G2jdm7EY-zFTdqPY4ejoR7sLFg4jen-dHP
CitedBy_id crossref_primary_10_1371_journal_pone_0162603
crossref_primary_10_7554_eLife_18134
crossref_primary_10_1016_j_jddst_2019_05_002
crossref_primary_10_1507_endocrj_EJ20_0795
crossref_primary_10_1021_acschembio_6b00602
Cites_doi 10.2337/dc07-0358
10.1016/S0168-8227(02)00249-8
10.1074/jbc.M008499200
10.1073/pnas.162352799
10.1172/JCI200319774
10.1016/j.diabres.2009.10.007
10.1210/endo.136.10.7664638
10.1007/s001250050756
10.1093/jn/132.9.2574
10.1210/jc.83.2.604
10.1007/s00125-009-1266-2
10.1016/j.diabres.2004.08.006
10.2337/diacare.27.6.1439
10.1507/endocrj.EJ13-0506
10.1210/jcem-70-5-1247
10.1074/jbc.273.6.3431
10.2337/diacare.15.3.442
10.2337/diabetes.51.4.1263
10.2337/dc08-1478
10.2337/diacare.19.1.39
10.2337/diab.43.4.511
10.1038/333093a0
10.1007/s00125-008-1129-2
10.1074/jbc.M111.323220
10.1152/ajpendo.00104.2002
10.1007/s00125-006-0462-6
10.1073/pnas.0711232105
10.1016/S0009-9120(05)80001-3
10.1038/ng1732
10.1007/BF02341503
10.2337/diacare.19.10.1138
10.1152/ajpendo.2000.279.3.E520
10.2337/diacare.26.4.1211
10.1042/bj2600535
10.1007/s00125-008-0926-y
10.1515/CCLM.2003.189
10.1046/j.1464-5491.2002.00746.x
10.2337/diacare.26.2007.S21
10.2337/diab.44.9.1054
10.2337/diab.46.11.1725
10.2337/diacare.22.2.262
ContentType Journal Article
Copyright The Japan Endocrine Society
Copyright_xml – notice: The Japan Endocrine Society
CorporateAuthor Division of Clinical Laboratory
Division of Diabetes
Kyorin University School of Medicine
Shimada Municipal Hospital
Third Department of Internal Medicine
Endocrinology and Metabolism
CorporateAuthor_xml – name: Kyorin University School of Medicine
– name: Endocrinology and Metabolism
– name: Division of Diabetes
– name: Shimada Municipal Hospital
– name: Third Department of Internal Medicine
– name: Division of Clinical Laboratory
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
DOI 10.1507/endocrj.EJ14-0611
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList MEDLINE - Academic
MEDLINE


Physical Education Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 492
ExternalDocumentID 25892189
10_1507_endocrj_EJ14_0611
cq6endoc_2015_006206_002_0485_04922482037
article_endocrj_62_6_62_EJ14_0611_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
AAFWJ
ACPRK
ADBBV
AENEX
AFPKN
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
JMI
JSF
JSH
KQ8
MOJWN
OK1
OVT
P2P
RJT
RNS
RPM
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
AAYXX
CITATION
ACRZS
CGR
CUY
CVF
ECM
EIF
M~E
NPM
7X8
7TS
ID FETCH-LOGICAL-c696t-eabcc5869041d333e0a3533a3b30dcee009132df22c0a68ff7f462f6c829e6ae3
ISSN 0918-8959
IngestDate Fri Jul 11 07:36:52 EDT 2025
Fri Jul 11 16:33:51 EDT 2025
Wed Feb 19 01:58:30 EST 2025
Thu Apr 24 23:12:49 EDT 2025
Tue Jul 01 01:17:26 EDT 2025
Thu Jul 10 16:15:12 EDT 2025
Wed Sep 03 06:30:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c696t-eabcc5869041d333e0a3533a3b30dcee009132df22c0a68ff7f462f6c829e6ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/endocrj/62/6/62_EJ14-0611/_article/-char/en
PMID 25892189
PQID 1693712563
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1897390240
proquest_miscellaneous_1693712563
pubmed_primary_25892189
crossref_citationtrail_10_1507_endocrj_EJ14_0611
crossref_primary_10_1507_endocrj_EJ14_0611
medicalonline_journals_cq6endoc_2015_006206_002_0485_04922482037
jstage_primary_article_endocrj_62_6_62_EJ14_0611_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle ENDOCRINE JOURNAL
PublicationTitleAlternate Endocr J
PublicationYear 2015
Publisher The Japan Endocrine Society
Publisher_xml – name: The Japan Endocrine Society
References 15. Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46: 1725-1732.
19. Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, et al. (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601.
4. Saad MF, Kahn SE, Nelson RG, Pettitt DJ, Knowler WC, et al. (1990) Disproportionately elevated proinsulin in Pima Indians with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 70: 1247-1253.
11. Suzuki K, Kurose T, Takizawa M, Maruyama M, Ushikawa K, et al. (2005) Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin (OCIF/OPG) on the decrease of bone mineral density. Diabetes Res Clin Pract 68: 117-125.
13. American Diabetes Association (2003) Screening for type 2 diabetes. Diabetes Care 26: S21-24.
2. Roder ME, Porte D, Jr., Schwartz RS, Kahn SE (1998) Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83: 604-608.
25. Refaie S, Gagnon S, Gagnon H, Desjardins R, D’Anjou F, et al. (2012) Disruption of proprotein convertase 1/3 (PC1/3) expression in mice causes innate immune defects and uncontrolled cytokine secretion. J Biol Chem 287: 14703-14717.
9. Csorba TR (1991) Proinsulin: biosynthesis, conversion, assay methods and clinical studies. Clin Biochem 24: 447-454.
39. Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H (1996) A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care 19: 1138-1141.
31. Sato Y, Komatsu M, Katakura M, Ohfusa H, Yamada S, et al. (2002) Diminution of early insulin response to glucose in subjects with normal but minimally elevated fasting plasma glucose. Evidence for early beta-cell dysfunction. Diabet Med 19: 566-571.
24. Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP (1995) Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44: 1054-1058.
8. Rhodes CJ, Alarcon C (1994) What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 43: 511-517.
33. Hanley AJ, D’Agostino R, Jr., Wagenknecht LE, Saad MF, Savage PJ, et al. (2002) Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. Diabetes 51: 1263-1270.
36. Song Y, Manson JE, Tinker L, Howard BV, Kuller LH, et al. (2007) Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30: 1747-1752.
37. Osei K, Rhinesmith S, Gaillard T, Schuster D (2004) Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 27: 1439-1446.
38. Li CL, Tsai ST, Chou P (2003) Relative role of insulin resistance and beta-cell dysfunction in the progression to type 2 diabetes-The Kinmen Study. Diabetes Res Clin Pract 59: 225-232.
6. Haffner SM, Gonzalez C, Mykkanen L, Stern M (1997) Total immunoreactive proinsulin, immunoreactive insulin and specific insulin in relation to conversion to NIDDM: the Mexico City Diabetes Study. Diabetologia 40: 830-837.
23. Davidson HW, Rhodes CJ, Hutton JC (1998) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333: 93-96.
35. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87: 4-14.
3. Leahy JL, Bonner-Weir S, Weir GC (1992) Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care 15: 442-455.
18. Stolerman ES, Manning AK, McAteer JB, Fox CS, Dupuis J, et al. (2009) TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52: 614-620.
20. Gonzalez-Sanchez JL, Martinez-Larrad MT, Zabena C, Perez-Barba M, Serrano-Rios M (2008) Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia 51: 1993-1997.
14. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, et al. (2009) Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32: 335-341.
34. Wareham NJ, Byrne CD, Williams R, Day NE, Hales CN (1999) Fasting proinsulin concentrations predict the development of type 2 diabetes. Diabetes Care 22: 262-270.
29. Berman Y, Mzhavia N, Polonskaia A, Devi LA (2001) Impaired prohormone convertases in Cpe(fat)/Cpe(fat) mice. J Biol Chem 276: 1466-1473.
30. Dickinson S, Colagiuri S, Faramus E, Petocz P, Brand-Miller JC (2002) Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. J Nutr 132: 2574-2579.
5. Yoshioka N, Kuzuya T, Matsuda A, Taniguchi M, Iwamoto Y (1988) Serum proinsulin levels at fasting and after oral glucose load in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 31: 355-360.
21. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38: 320-323.
12. Ozawa S, Katsuta H, Suzuki K, Takahashi K, Tanaka T, et al. (2014) Estimated proinsulin processing activity of prohormone convertase (PC) 1/3 rather than PC2 is decreased in pancreatic β-cells of type 2 diabetic patients. Endocr J 61: 607-614.
32. Suzuki H, Fukushima M, Usami M, Ikeda M, Taniguchi A, et al. (2003) Factors responsible for development from normal glucose tolerance to isolated postchallenge hyperglycemia. Diabetes Care 26: 1211-1215.
16. Gadot M, Ariav Y, Cerasi E, Kaiser N, Gross DJ (1995) Hyperproinsulinemia in the diabetic Psammomys obesus is a result of increased secretory demand on the beta-cell. Endocrinology 136: 4218-4223.
40. Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, et al. (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99: 10299-10304.
1. Tura A, Pacini G, Kautzky-Willer A, Ludvik B, Prager R, et al. (2003) Basal and dynamic proinsulin-insulin relationship to assess beta-cell function during OGTT in metabolic disorders. Am J Physiol Endocrinol Metab 285: E155-162.
22. Furuta M, Carroll R, Martin S, Benediktsson R, Manolescu A, et al. (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273: 3431-3437.
27. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, et al. (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112: 1831-1842.
41. Nagi DK, Ali VM, Walji S, Jain SK, Yudkin JS (1996) Hyperinsulinemia in nondiabetic Asian subjects using specific assays for insulin, intact proinsulin, and des-31,32-proinsulin. Diabetes Care 19: 39-42.
7. Pfutzner A, Kunt T, Langenfeld M, Lobig M, Knesovic M, et al. (2003) Clinical and laboratory evaluation of specific chemiluminescence assays for intact and total proinsulin. Clin Chem Lab Med 41: 1234-1238.
10. Sobey WJ, Beer SF, Carrington CA, Clark PM, Frank BH, et al. (1989) Sensitive and specific two-site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulins. Biochem J 260: 535-541.
26. Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, et al. (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50: 359-369.
17. Laedtke T, Kjems L, Porksen N, Schmitz O, Veldhuis J, et al. (2000) Overnight inhibition of insulin secretion restores pulsatility and proinsulin/insulin ratio in type 2 diabetes. Am J Physiol Endocrinol Metab 279: E520-528.
28. Jeffrey KD, Alejandro EU, Luciani DS, Kalynyak TB, Hu X, et al. (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105: 8452-8457.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
21
References_xml – reference: 12. Ozawa S, Katsuta H, Suzuki K, Takahashi K, Tanaka T, et al. (2014) Estimated proinsulin processing activity of prohormone convertase (PC) 1/3 rather than PC2 is decreased in pancreatic β-cells of type 2 diabetic patients. Endocr J 61: 607-614.
– reference: 24. Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP (1995) Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44: 1054-1058.
– reference: 28. Jeffrey KD, Alejandro EU, Luciani DS, Kalynyak TB, Hu X, et al. (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105: 8452-8457.
– reference: 8. Rhodes CJ, Alarcon C (1994) What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 43: 511-517.
– reference: 19. Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, et al. (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601.
– reference: 29. Berman Y, Mzhavia N, Polonskaia A, Devi LA (2001) Impaired prohormone convertases in Cpe(fat)/Cpe(fat) mice. J Biol Chem 276: 1466-1473.
– reference: 3. Leahy JL, Bonner-Weir S, Weir GC (1992) Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care 15: 442-455.
– reference: 10. Sobey WJ, Beer SF, Carrington CA, Clark PM, Frank BH, et al. (1989) Sensitive and specific two-site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulins. Biochem J 260: 535-541.
– reference: 20. Gonzalez-Sanchez JL, Martinez-Larrad MT, Zabena C, Perez-Barba M, Serrano-Rios M (2008) Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia 51: 1993-1997.
– reference: 40. Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, et al. (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99: 10299-10304.
– reference: 36. Song Y, Manson JE, Tinker L, Howard BV, Kuller LH, et al. (2007) Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30: 1747-1752.
– reference: 30. Dickinson S, Colagiuri S, Faramus E, Petocz P, Brand-Miller JC (2002) Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. J Nutr 132: 2574-2579.
– reference: 4. Saad MF, Kahn SE, Nelson RG, Pettitt DJ, Knowler WC, et al. (1990) Disproportionately elevated proinsulin in Pima Indians with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 70: 1247-1253.
– reference: 39. Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H (1996) A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care 19: 1138-1141.
– reference: 14. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, et al. (2009) Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32: 335-341.
– reference: 5. Yoshioka N, Kuzuya T, Matsuda A, Taniguchi M, Iwamoto Y (1988) Serum proinsulin levels at fasting and after oral glucose load in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 31: 355-360.
– reference: 31. Sato Y, Komatsu M, Katakura M, Ohfusa H, Yamada S, et al. (2002) Diminution of early insulin response to glucose in subjects with normal but minimally elevated fasting plasma glucose. Evidence for early beta-cell dysfunction. Diabet Med 19: 566-571.
– reference: 33. Hanley AJ, D’Agostino R, Jr., Wagenknecht LE, Saad MF, Savage PJ, et al. (2002) Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. Diabetes 51: 1263-1270.
– reference: 38. Li CL, Tsai ST, Chou P (2003) Relative role of insulin resistance and beta-cell dysfunction in the progression to type 2 diabetes-The Kinmen Study. Diabetes Res Clin Pract 59: 225-232.
– reference: 41. Nagi DK, Ali VM, Walji S, Jain SK, Yudkin JS (1996) Hyperinsulinemia in nondiabetic Asian subjects using specific assays for insulin, intact proinsulin, and des-31,32-proinsulin. Diabetes Care 19: 39-42.
– reference: 35. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87: 4-14.
– reference: 27. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, et al. (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112: 1831-1842.
– reference: 13. American Diabetes Association (2003) Screening for type 2 diabetes. Diabetes Care 26: S21-24.
– reference: 34. Wareham NJ, Byrne CD, Williams R, Day NE, Hales CN (1999) Fasting proinsulin concentrations predict the development of type 2 diabetes. Diabetes Care 22: 262-270.
– reference: 37. Osei K, Rhinesmith S, Gaillard T, Schuster D (2004) Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 27: 1439-1446.
– reference: 1. Tura A, Pacini G, Kautzky-Willer A, Ludvik B, Prager R, et al. (2003) Basal and dynamic proinsulin-insulin relationship to assess beta-cell function during OGTT in metabolic disorders. Am J Physiol Endocrinol Metab 285: E155-162.
– reference: 7. Pfutzner A, Kunt T, Langenfeld M, Lobig M, Knesovic M, et al. (2003) Clinical and laboratory evaluation of specific chemiluminescence assays for intact and total proinsulin. Clin Chem Lab Med 41: 1234-1238.
– reference: 22. Furuta M, Carroll R, Martin S, Benediktsson R, Manolescu A, et al. (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273: 3431-3437.
– reference: 32. Suzuki H, Fukushima M, Usami M, Ikeda M, Taniguchi A, et al. (2003) Factors responsible for development from normal glucose tolerance to isolated postchallenge hyperglycemia. Diabetes Care 26: 1211-1215.
– reference: 16. Gadot M, Ariav Y, Cerasi E, Kaiser N, Gross DJ (1995) Hyperproinsulinemia in the diabetic Psammomys obesus is a result of increased secretory demand on the beta-cell. Endocrinology 136: 4218-4223.
– reference: 17. Laedtke T, Kjems L, Porksen N, Schmitz O, Veldhuis J, et al. (2000) Overnight inhibition of insulin secretion restores pulsatility and proinsulin/insulin ratio in type 2 diabetes. Am J Physiol Endocrinol Metab 279: E520-528.
– reference: 25. Refaie S, Gagnon S, Gagnon H, Desjardins R, D’Anjou F, et al. (2012) Disruption of proprotein convertase 1/3 (PC1/3) expression in mice causes innate immune defects and uncontrolled cytokine secretion. J Biol Chem 287: 14703-14717.
– reference: 11. Suzuki K, Kurose T, Takizawa M, Maruyama M, Ushikawa K, et al. (2005) Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin (OCIF/OPG) on the decrease of bone mineral density. Diabetes Res Clin Pract 68: 117-125.
– reference: 2. Roder ME, Porte D, Jr., Schwartz RS, Kahn SE (1998) Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83: 604-608.
– reference: 21. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38: 320-323.
– reference: 9. Csorba TR (1991) Proinsulin: biosynthesis, conversion, assay methods and clinical studies. Clin Biochem 24: 447-454.
– reference: 23. Davidson HW, Rhodes CJ, Hutton JC (1998) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333: 93-96.
– reference: 6. Haffner SM, Gonzalez C, Mykkanen L, Stern M (1997) Total immunoreactive proinsulin, immunoreactive insulin and specific insulin in relation to conversion to NIDDM: the Mexico City Diabetes Study. Diabetologia 40: 830-837.
– reference: 26. Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, et al. (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50: 359-369.
– reference: 15. Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46: 1725-1732.
– reference: 18. Stolerman ES, Manning AK, McAteer JB, Fox CS, Dupuis J, et al. (2009) TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52: 614-620.
– ident: 36
  doi: 10.2337/dc07-0358
– ident: 38
  doi: 10.1016/S0168-8227(02)00249-8
– ident: 29
  doi: 10.1074/jbc.M008499200
– ident: 40
  doi: 10.1073/pnas.162352799
– ident: 27
  doi: 10.1172/JCI200319774
– ident: 35
  doi: 10.1016/j.diabres.2009.10.007
– ident: 16
  doi: 10.1210/endo.136.10.7664638
– ident: 6
  doi: 10.1007/s001250050756
– ident: 30
  doi: 10.1093/jn/132.9.2574
– ident: 2
  doi: 10.1210/jc.83.2.604
– ident: 18
  doi: 10.1007/s00125-009-1266-2
– ident: 11
  doi: 10.1016/j.diabres.2004.08.006
– ident: 37
  doi: 10.2337/diacare.27.6.1439
– ident: 12
  doi: 10.1507/endocrj.EJ13-0506
– ident: 4
  doi: 10.1210/jcem-70-5-1247
– ident: 22
  doi: 10.1074/jbc.273.6.3431
– ident: 3
  doi: 10.2337/diacare.15.3.442
– ident: 33
  doi: 10.2337/diabetes.51.4.1263
– ident: 14
  doi: 10.2337/dc08-1478
– ident: 41
  doi: 10.2337/diacare.19.1.39
– ident: 8
  doi: 10.2337/diab.43.4.511
– ident: 23
  doi: 10.1038/333093a0
– ident: 20
  doi: 10.1007/s00125-008-1129-2
– ident: 25
  doi: 10.1074/jbc.M111.323220
– ident: 1
  doi: 10.1152/ajpendo.00104.2002
– ident: 26
  doi: 10.1007/s00125-006-0462-6
– ident: 28
  doi: 10.1073/pnas.0711232105
– ident: 9
  doi: 10.1016/S0009-9120(05)80001-3
– ident: 21
  doi: 10.1038/ng1732
– ident: 5
  doi: 10.1007/BF02341503
– ident: 39
  doi: 10.2337/diacare.19.10.1138
– ident: 17
  doi: 10.1152/ajpendo.2000.279.3.E520
– ident: 32
  doi: 10.2337/diacare.26.4.1211
– ident: 10
  doi: 10.1042/bj2600535
– ident: 19
  doi: 10.1007/s00125-008-0926-y
– ident: 7
  doi: 10.1515/CCLM.2003.189
– ident: 31
  doi: 10.1046/j.1464-5491.2002.00746.x
– ident: 13
  doi: 10.2337/diacare.26.2007.S21
– ident: 24
  doi: 10.2337/diab.44.9.1054
– ident: 15
  doi: 10.2337/diab.46.11.1725
– ident: 34
  doi: 10.2337/diacare.22.2.262
SSID ssj0033543
ssib022572652
ssib044735826
ssib058492669
ssib002822051
ssib000750009
Score 2.0864909
Snippet We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese...
[Abstract] We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Adult
Aged
Algorithms
Biomarkers - blood
Cohort Studies
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - ethnology
Diabetes Mellitus, Type 2 - metabolism
Female
HOMA-β
Humans
Insulin - blood
Insulin Resistance - ethnology
Isoenzymes - metabolism
Japan
Male
Middle Aged
Non-obese
Prohormone convertase
Proinsulin - blood
Proinsulin - metabolism
Proinsulin processing
Proprotein Convertases - metabolism
Protein Processing, Post-Translational
Proteolysis
Sensitivity and Specificity
Type 2 diabetes
Title The association between impaired proinsulin processing and type 2 diabetes mellitus in non-obese Japanese individuals
URI https://www.jstage.jst.go.jp/article/endocrj/62/6/62_EJ14-0611/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=cq6endoc/2015/006206/002&name=0485-0492e
https://www.ncbi.nlm.nih.gov/pubmed/25892189
https://www.proquest.com/docview/1693712563
https://www.proquest.com/docview/1897390240
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2015, Vol.62(6), pp.485-492
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgIISEEG_KS0biE1W61k7c5BsIdaq6MYTUSv1mOa6jZmPNWBIh-tdzFydOymAafIna5OI87pfz3fkehLwbc7ABRMS9YDwKPJjxladMILwQTA2TBP6I2SjfYzFd-LNlsGzDiqrskiIe6O0f80r-h6uwD_iKWbL_wFk3KOyA38Bf2AKHYXttHqv2_bqgK0x9TDGwHMRjE2x-bjMCmpzE312vZ1iYsyir6NhNtvGy2OSmP4OpFFtU9lOXt5Xv-PI3q0xj_mC_e7-qarWel1YxnWLb0uwide7crfqhrDNar9N1epq1C1Pb0nbRPkx_ZvnanTJXp5h5trbH1LYssq63wmZqDoyVrRx9l4GtztQIX8E6IOtKUj8MOpOybxvmXZL3QRXiYaqHPRlMZiMfW1WM2smtWdA__iIPFkdHcj5Zzm-SW2wsBPa7OPzq1pw4D3xer3vDsPuXBt3RXG6fgPKOVRnundkFNVvY5O92SqWvzB-Q-7WhQT9a1DwkN8zmEbnzuQ6leExKAA_tgIfW4KENeGgLHtqChwJ4KIKHMtqAhzbgoUDqwEMb8NAOeJ6QxcFk_mnq1T04PC0iUXhGxVoH2LbMH60452aoOFgIisd8uAIFa4h1ZdkqYUwPlQiTZJz4giVChywyQhn-lOzBhc1zQgMF1jDY4zCgATt7FcegrSsNKrc2OtaqR4bN-5W6LlCPfVK-STRUgSWyZolElkhkSY-8d6ec2-osVxF_sExzpPWH60gFkwI37hRHgSmQQAZD7LBb1h9XLvV3UY0iEfQSM5OreFEmYYaE_4Bf5oOyzcc98rZBiARJjstzwIuszCWWRRqDvSH4FTRhBNIV6xL2yDMLL_c0LAgjUNijF9e4wktyF2_U-hJfkb3iojSvQbsu4jfVR_ELUzLa2w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+association+between+impaired+proinsulin+processing+and+type+2+diabetes+mellitus+in+non-obese+Japanese+individuals&rft.jtitle=Endocrine+journal&rft.au=Katsuta%2C+Hidenori&rft.au=Ozawa%2C+Sachihiko&rft.au=Suzuki%2C+Kiyoshi&rft.au=Takahashi%2C+Kazuto&rft.date=2015&rft.eissn=1348-4540&rft.volume=62&rft.issue=6&rft.spage=485&rft.epage=492&rft_id=info:doi/10.1507%2Fendocrj.EJ14-0611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon