Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us...
Saved in:
| Published in | PLoS genetics Vol. 5; no. 6; p. e1000516 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.06.2009
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7404 1553-7390 1553-7404 |
| DOI | 10.1371/journal.pgen.1000516 |
Cover
| Abstract | An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. |
|---|---|
| AbstractList | An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufol. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. Plant genomes analyzed to date contain 15% or more genes that are arranged in tandem arrays. Tandem duplications are a source for allelic variability since their homologous sequences can serve in recombination events. For example, unequal crossing over between amplified genes can result in contraction and expansion of the array. Tandem gene multiplications are also subject to repeat induced gene silencing (RIGS). Most importantly, gene duplications create the evolutionary potential for genetic novelty (neo- or subfunctionalization). In addition to homologous recombination during meiosis, illegitimate recombination in somatic tissues of plants can create events that potentially can be transmitted through reproductive tissue to further enrich genetic diversity. Here we illustrate the evolution from a single Myb homolog to a multigene cluster that exemplifies the evolution of the maize genome. We used the p locus to demonstrate how plant genomes expand by polyploidization, gene duplication, and transposition. We characterized in detail the structural changes at the p cluster that resulted from genomic instability. Because structure determines function, we linked genomic rearrangements at the P1-wr cluster to functional consequences. At the P1-wr locus, structural changes caused regulatory/transcriptional modifications that in turn give rise to phenotypic alterations. |
| Audience | Academic |
| Author | Goettel, Wolfgang Messing, Joachim |
| AuthorAffiliation | Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, United States of America Institut Jean-Pierre Bourgin, INRA de Versailles, France |
| AuthorAffiliation_xml | – name: Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, United States of America – name: Institut Jean-Pierre Bourgin, INRA de Versailles, France |
| Author_xml | – sequence: 1 givenname: Wolfgang surname: Goettel fullname: Goettel, Wolfgang – sequence: 2 givenname: Joachim surname: Messing fullname: Messing, Joachim |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19521498$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk_9r1DAYxotM3Hb6H4gWhIGwnknT9Is_CMe5LyfjBtv01_A2TXsZaXI2rfP-e9O7qlcRmRTa8PbzPH37Psmxd6CNFp73EqMpJgl-d2-6RoOariuhpxghRHH8xDvClJIgiVB0sLc-9I6tvUeI0DRLnnmHOKMhjrL0yHuYr0BXwjelfyG08G_bpuNt1wgfdOGfd5q30mg_3_hLo4NLUxtlKtNZ_0wXwScjtdTVqb9XvxHc1LnU0OtOty53DWi7NlZurdyXPi5nz72nJSgrXgzPiff5_OxufhlcXV8s5rOrgMdZ3AYccixSmgKgBJWChzTJKU7jCGgJlEQRDktAeV7mGIVlGcVZWhASC1fiAjAlE-_1znetjGXDzCzDBBNK0izricWOKAzcs3Uja2g2zIBk24JpKgZNK7kSzI09ixM3OAp5VOIiFUVKKaA4h6jIKHZedOfV6TVsHkCpX4YYsT62ny2wPjY2xOZ0H4Yuu7wWBRe6bUCNmhm_0XLFKvONhXEaY5o5g5PBoDFfO2FbVkvLhVKghUuFxQmJSeTuE-_NDqzA_ZDUpXF-vIfZLEQkJCGiPTX9C-WuQtSSu31YSlcfCd6OBI5pxfe2gs5atri9-Q92-Xj2-suYPdljVwJUu7JGdf2us2Pw1f60f0c0nAoHRDuAN8baRpSPTfH9HzIu2-05cNOT6t_iHwBRNFU |
| CitedBy_id | crossref_primary_10_1155_2015_250158 crossref_primary_10_1016_j_gene_2012_12_034 crossref_primary_10_1073_pnas_1608775113 crossref_primary_10_3389_fpls_2016_00523 crossref_primary_10_1093_genetics_iyab062 crossref_primary_10_1534_genetics_116_199638 crossref_primary_10_1186_1471_2229_12_92 crossref_primary_10_1007_s00122_012_1970_z crossref_primary_10_1101_gr_109744_110 crossref_primary_10_1093_gbe_evt146 crossref_primary_10_1101_gr_109165_110 crossref_primary_10_1099_jgv_0_001034 crossref_primary_10_1093_genetics_iyad178 crossref_primary_10_2903_j_efsa_2012_2561 crossref_primary_10_1534_genetics_110_117929 crossref_primary_10_1093_genetics_iyac124 crossref_primary_10_1111_nph_13689 crossref_primary_10_1371_journal_pone_0121381 crossref_primary_10_1093_molbev_msr261 crossref_primary_10_1016_j_scienta_2013_01_002 |
| Cites_doi | 10.1093/nar/19.12.3325 10.1534/genetics.105.052712 10.1093/genetics/128.1.163 10.1104/pp.012179 10.1093/genetics/162.1.381 10.1093/nar/25.17.3389 10.1016/S0092-8674(01)00416-0 10.1093/molbev/msm092 10.1016/j.tig.2005.01.002 10.1073/pnas.87.22.8731 10.1046/j.1365-313X.2001.01124.x 10.1073/pnas.97.13.7002 10.1186/1471-2148-6-62 10.1093/genetics/141.1.347 10.1016/S1360-1385(99)01430-2 10.1023/A:1023942819106 10.1534/genetics.104.034629 10.1007/BF00261181 10.1073/pnas.96.26.15330 10.1126/science.274.5288.765 10.1093/genetics/131.4.939 10.1038/nature03895 10.1007/s11103-005-3568-1 10.1002/j.1460-2075.1995.tb07230.x 10.1038/nature07723 10.1105/tpc.8.7.1149 10.1093/genetics/142.2.603 10.1159/000126005 10.1016/0092-8674(94)90117-1 10.1046/j.1365-313X.2003.01898.x 10.1016/j.gde.2007.08.010 10.1105/tpc.12.12.2311 10.1093/genetics/132.3.813 10.1016/j.plantsci.2005.05.007 10.1093/genetics/158.1.423 10.1073/pnas.0403715101 10.1038/nrg2268 10.1101/gr.268302 10.1104/pp.013474 10.1093/genetics/9.5.442 10.1101/gr.2332504 10.1073/pnas.93.17.8820 10.1093/nar/25.24.4876 10.1105/tpc.001271 10.1007/s00122-007-0548-7 10.1016/0378-1119(82)90015-4 10.1126/science.15739260 10.1105/tpc.9.9.1633 10.1093/genetics/119.1.185 10.1007/PL00008672 10.1105/tpc.104.029660 10.1093/genetics/163.3.1135 10.1093/genetics/136.3.1121 10.1371/journal.pgen.0030123 10.1046/j.1365-313x.2000.00750.x 10.1093/genetics/131.1.199 10.1139/g77-032 10.1101/gr.8.3.175 10.1007/s004380050906 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2009 Public Library of Science Goettel, Messing. 2009 2009 Goettel, Messing. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Goettel W, Messing J (2009) Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA. PLoS Genet 5(6): e1000516. doi:10.1371/journal.pgen.1000516 |
| Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Goettel, Messing. 2009 – notice: 2009 Goettel, Messing. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Goettel W, Messing J (2009) Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA. PLoS Genet 5(6): e1000516. doi:10.1371/journal.pgen.1000516 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pgen.1000516 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Gene Duplications in Plants |
| EISSN | 1553-7404 |
| ExternalDocumentID | 1313538995 oai_doaj_org_article_3719671495ab4f1d8ed855a06ba4d951 10.1371/journal.pgen.1000516 PMC2686159 A203232057 19521498 10_1371_journal_pgen_1000516 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 QF4 RIG RZL WOQ 7X8 5PM ACCTH ADTOC AFFHD BBTPI UNPAY 3V. AAPBV ABPTK M~E |
| ID | FETCH-LOGICAL-c696t-cab1e858aa070fec257b51864a5fa534412fa0bbfb102ff4698d336e0bbcea153 |
| IEDL.DBID | M48 |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun Oct 01 00:20:33 EDT 2023 Fri Oct 03 12:38:13 EDT 2025 Wed Oct 29 12:16:01 EDT 2025 Tue Sep 30 15:24:10 EDT 2025 Thu Oct 02 11:20:24 EDT 2025 Mon Oct 20 22:53:06 EDT 2025 Mon Oct 20 16:57:54 EDT 2025 Thu Oct 16 16:16:07 EDT 2025 Thu Oct 16 15:49:17 EDT 2025 Thu Oct 16 15:54:21 EDT 2025 Thu May 22 21:23:31 EDT 2025 Mon Jul 21 05:42:14 EDT 2025 Wed Oct 01 03:16:54 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c696t-cab1e858aa070fec257b51864a5fa534412fa0bbfb102ff4698d336e0bbcea153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: WG JM. Performed the experiments: WG. Analyzed the data: WG JM. Contributed reagents/materials/analysis tools: WG. Wrote the paper: WG JM. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1000516 |
| PMID | 19521498 |
| PQID | 67363467 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1313538995 doaj_primary_oai_doaj_org_article_3719671495ab4f1d8ed855a06ba4d951 unpaywall_primary_10_1371_journal_pgen_1000516 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2686159 proquest_miscellaneous_67363467 gale_infotracmisc_A203232057 gale_infotracacademiconefile_A203232057 gale_incontextgauss_ISR_A203232057 gale_incontextgauss_ISN_A203232057 gale_incontextgauss_IOV_A203232057 gale_healthsolutions_A203232057 pubmed_primary_19521498 crossref_primary_10_1371_journal_pgen_1000516 crossref_citationtrail_10_1371_journal_pgen_1000516 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-06-01 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2009 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | D Schuermann (ref6) 2005; 21 EL Walker (ref33) 1995; 14 B McClintock (ref3) 1984; 226 P Zhang (ref42) 2003; 52 S Wessler (ref32) 1990; 87 AP Hsia (ref11) 1996; 142 HK Dooner (ref9) 2007; 17 EG Anderson (ref13) 1924; 9 R Song (ref19) 2002; 12 J Boddu (ref29) 2005; 169 PF Byrne (ref40) 1996; 93 A Aguilera (ref1) 2008; 9 Q Sun (ref51) 2001; 158 V Gorbunova (ref5) 1999; 4 S Chopra (ref28) 1999; 96 S Chopra (ref16) 1996; 8 C Lechelt (ref24) 1989; 219 AH Paterson (ref26) 2009; 457 YS Yim (ref53) 2002; 130 (ref58) 2005; 436 EJ Ralston (ref31) 1988; 119 F Zhang (ref15) 2005; 17 HK Dooner (ref44) 2002; 14 K Tamura (ref59) 2007; 24 J Ma (ref61) 2004; 101 MA Moreno (ref36) 1992; 131 S Chopra (ref22) 2003; 163 LV Sidorenko (ref21) 2000; 22 HK Dooner (ref45) 1997; 9 R Song (ref54) 2002; 130 N Fedoroff (ref10) 2000; 97 OP Das (ref37) 1994; 136 J Boddu (ref27) 2006; 60 Z Swigonová (ref30) 2004; 14 SM Cocciolone (ref20) 2001; 27 E Grotewold (ref12) 1994; 76 J Messing (ref2) 2008; 4 P Athma (ref8) 1991; 128 JD Meyer (ref41) 2007; 115 B Ewing (ref56) 1998; 8 F Wei (ref18) 2007; 3 J Vieira (ref55) 1982; 19 B Lowe (ref47) 1992; 132 T Tanaka (ref25) 2008; 36 P SanMiguel (ref23) 1996; 274 S Chopra (ref14) 1998; 260 JD Thompson (ref60) 1997; 25 H Puchta (ref4) 2005; 56 SF Altschul (ref57) 1997; 25 P Athma (ref35) 1992; 131 C Du (ref38) 2006; 6 T Allers (ref43) 2001; 106 R Pilu (ref48) 2003; 36 P Zhang (ref17) 2000; 12 OP Das (ref46) 1991; 19 MD Yandeau-Nelson (ref49) 2006; 173 WB Eggleston (ref50) 1995; 141 CA Webb (ref52) 2002; 162 YL Xiao (ref7) 2000; 263 Z Swigonová (ref34) 2005; 169 ED Styles (ref39) 1977; 19 15722466 - Plant Cell. 2005 Mar;17(3):903-14 1334895 - Genetics. 1992 Nov;132(3):813-22 11148280 - Plant Cell. 2000 Dec;12(12):2311-2322 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 9338965 - Plant Cell. 1997 Sep;9(9):1633-46 17486311 - Theor Appl Genet. 2007 Jun;115(1):119-28 11461701 - Cell. 2001 Jul 13;106(1):47-57 18089549 - Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33 12034905 - Plant Cell. 2002 May;14(5):1173-83 8768374 - Plant Cell. 1996 Jul;8(7):1149-58 12481046 - Plant Physiol. 2002 Dec;130(4):1626-35 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96 19189423 - Nature. 2009 Jan 29;457(7229):551-6 10886767 - Plant J. 2000 Jun;22(6):471-82 3396861 - Genetics. 1988 May;119(1):185-97 10732670 - Mol Gen Genet. 2000 Feb;263(1):22-9 9521921 - Genome Res. 1998 Mar;8(3):175-85 12825685 - Plant Mol Biol. 2003 May;52(1):1-15 17919898 - Curr Opin Genet Dev. 2007 Dec;17(6):486-92 8536982 - Genetics. 1995 Sep;141(1):347-60 10860963 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7002-7 14617081 - Plant J. 2003 Nov;36(4):510-21 17658954 - PLoS Genet. 2007 Jul;3(7):e123 15734576 - Trends Genet. 2005 Mar;21(3):172-81 10611384 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15330-5 10407442 - Trends Plant Sci. 1999 Jul;4(7):263-269 12242248 - Genetics. 2002 Sep;162(1):381-94 15240870 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10 2559311 - Mol Gen Genet. 1989 Oct;219(1-2):225-34 7774593 - EMBO J. 1995 May 15;14(10):2350-63 16751673 - Genetics. 2006 Aug;173(4):2211-26 15489523 - Genetics. 2005 Feb;169(2):891-906 2247441 - Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731-5 2062649 - Nucleic Acids Res. 1991 Jun 25;19(12):3325-30 18227811 - Nat Rev Genet. 2008 Mar;9(3):204-17 11576430 - Plant J. 2001 Sep;27(5):467-78 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 15739260 - Science. 1984 Nov 16;226(4676):792-801 9870702 - Mol Gen Genet. 1998 Nov;260(4):372-80 8005419 - Genetics. 1994 Mar;136(3):1121-41 17246050 - Genetics. 1924 Sep;9(5):442-53 1325389 - Genetics. 1992 Aug;131(4):939-56 8313474 - Cell. 1994 Feb 11;76(3):543-53 1648001 - Genetics. 1991 May;128(1):163-73 16914031 - BMC Evol Biol. 2006;6:62 12663550 - Genetics. 2003 Mar;163(3):1135-46 8852857 - Genetics. 1996 Feb;142(2):603-18 18756076 - Genome Dyn. 2008;4:41-56 1317315 - Genetics. 1992 May;131(1):199-209 6295879 - Gene. 1982 Oct;19(3):259-68 11607699 - Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820-5 8864112 - Science. 1996 Nov 1;274(5288):765-8 15557293 - J Exp Bot. 2005 Jan;56(409):1-14 15466289 - Genome Res. 2004 Oct;14(10A):1916-23 16429259 - Plant Mol Biol. 2006 Jan;60(2):185-99 12368247 - Genome Res. 2002 Oct;12(10):1549-55 11333250 - Genetics. 2001 May;158(1):423-38 16100779 - Nature. 2005 Aug 11;436(7052):793-800 |
| References_xml | – volume: 19 start-page: 3325 year: 1991 ident: ref46 article-title: A new allele of the duplicated 27kD zein locus of maize generated by homologous recombination. publication-title: Nucleic Acids Res doi: 10.1093/nar/19.12.3325 – volume: 173 start-page: 2211 year: 2006 ident: ref49 article-title: Unequal sister chromatid and homolog recombination at a tandem duplication of the A1 locus in maize. publication-title: Genetics doi: 10.1534/genetics.105.052712 – volume: 128 start-page: 163 year: 1991 ident: ref8 article-title: Ac induces homologous recombination at the maize P locus. publication-title: Genetics doi: 10.1093/genetics/128.1.163 – volume: 130 start-page: 1626 year: 2002 ident: ref54 article-title: Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.012179 – volume: 162 start-page: 381 year: 2002 ident: ref52 article-title: Genetic and molecular characterization of the maize rp3 rust resistance locus. publication-title: Genetics doi: 10.1093/genetics/162.1.381 – volume: 25 start-page: 3389 year: 1997 ident: ref57 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 106 start-page: 47 year: 2001 ident: ref43 article-title: Differential timing and control of noncrossover and crossover recombination during meiosis. publication-title: Cell doi: 10.1016/S0092-8674(01)00416-0 – volume: 24 start-page: 1596 year: 2007 ident: ref59 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 21 start-page: 172 year: 2005 ident: ref6 article-title: The dual nature of homologous recombination in plants. publication-title: Trends Genet doi: 10.1016/j.tig.2005.01.002 – volume: 87 start-page: 8731 year: 1990 ident: ref32 article-title: Filler DNA is associated with spontaneous deletions in maize. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.22.8731 – volume: 27 start-page: 467 year: 2001 ident: ref20 article-title: Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. publication-title: Plant J doi: 10.1046/j.1365-313X.2001.01124.x – volume: 97 start-page: 7002 year: 2000 ident: ref10 article-title: Transposons and genome evolution in plants. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.13.7002 – volume: 6 start-page: 62 year: 2006 ident: ref38 article-title: Retrotranspositions in orthologous regions of closely related grass species. publication-title: BMC Evol Biol doi: 10.1186/1471-2148-6-62 – volume: 141 start-page: 347 year: 1995 ident: ref50 article-title: Molecular organization and germinal instability of R-stippled maize. publication-title: Genetics doi: 10.1093/genetics/141.1.347 – volume: 4 start-page: 263 year: 1999 ident: ref5 article-title: How plants make ends meet: DNA double-strand break repair. publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(99)01430-2 – volume: 52 start-page: 1 year: 2003 ident: ref42 article-title: A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. publication-title: Plant Mol Biol doi: 10.1023/A:1023942819106 – volume: 169 start-page: 891 year: 2005 ident: ref34 article-title: Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. publication-title: Genetics doi: 10.1534/genetics.104.034629 – volume: 219 start-page: 225 year: 1989 ident: ref24 article-title: Isolation and molecular analysis of the maize P locus. publication-title: Mol Gen Genet doi: 10.1007/BF00261181 – volume: 36 start-page: D1028 year: 2008 ident: ref25 article-title: The Rice Annotation Project Database (RAP-DB): 2008 update. publication-title: Nucleic Acids Res – volume: 96 start-page: 15330 year: 1999 ident: ref28 article-title: Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.26.15330 – volume: 274 start-page: 765 year: 1996 ident: ref23 article-title: Nested retrotransposons in the intergenic regions of the maize genome. publication-title: Science doi: 10.1126/science.274.5288.765 – volume: 131 start-page: 939 year: 1992 ident: ref36 article-title: Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. publication-title: Genetics doi: 10.1093/genetics/131.4.939 – volume: 436 start-page: 793 year: 2005 ident: ref58 article-title: The map-based sequence of the rice genome. publication-title: Nature doi: 10.1038/nature03895 – volume: 60 start-page: 185 year: 2006 ident: ref27 article-title: Comparative structural and functional characterization of sorghum and maize duplications containing orthologous myb transcription regulators of 3-deoxyflavonoid biosynthesis. publication-title: Plant Mol Biol doi: 10.1007/s11103-005-3568-1 – volume: 14 start-page: 2350 year: 1995 ident: ref33 article-title: Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb07230.x – volume: 457 start-page: 551 year: 2009 ident: ref26 article-title: The Sorghum bicolor genome and the diversification of grasses. publication-title: Nature doi: 10.1038/nature07723 – volume: 8 start-page: 1149 year: 1996 ident: ref16 article-title: Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. publication-title: Plant Cell doi: 10.1105/tpc.8.7.1149 – volume: 142 start-page: 603 year: 1996 ident: ref11 article-title: DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. publication-title: Genetics doi: 10.1093/genetics/142.2.603 – volume: 4 start-page: 41 year: 2008 ident: ref2 article-title: Grass genome structure and evolution. publication-title: Genome Dynamics doi: 10.1159/000126005 – volume: 56 start-page: 1 year: 2005 ident: ref4 article-title: The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. publication-title: J Exp Bot – volume: 76 start-page: 543 year: 1994 ident: ref12 article-title: The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. publication-title: Cell doi: 10.1016/0092-8674(94)90117-1 – volume: 36 start-page: 510 year: 2003 ident: ref48 article-title: pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01898.x – volume: 17 start-page: 486 year: 2007 ident: ref9 article-title: Give-and-take: interactions between DNA transposons and their host plant genomes. publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2007.08.010 – volume: 12 start-page: 2311 year: 2000 ident: ref17 article-title: A segmental gene duplication generated differentially expressed myb-homologous genes in maize. publication-title: Plant Cell doi: 10.1105/tpc.12.12.2311 – volume: 132 start-page: 813 year: 1992 ident: ref47 article-title: Active Mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication. publication-title: Genetics doi: 10.1093/genetics/132.3.813 – volume: 169 start-page: 542 year: 2005 ident: ref29 article-title: Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids. publication-title: Plant Science doi: 10.1016/j.plantsci.2005.05.007 – volume: 158 start-page: 423 year: 2001 ident: ref51 article-title: Recombination between paralogues at the Rp1 rust resistance locus in maize. publication-title: Genetics doi: 10.1093/genetics/158.1.423 – volume: 101 start-page: 12404 year: 2004 ident: ref61 article-title: Rapid recent growth and divergence of rice nuclear genomes. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403715101 – volume: 9 start-page: 204 year: 2008 ident: ref1 article-title: Genome instability: a mechanistic view of its causes and consequences. publication-title: Nat Rev Genet doi: 10.1038/nrg2268 – volume: 12 start-page: 1549 year: 2002 ident: ref19 article-title: Mosaic organization of orthologous sequences in grass genomes. publication-title: Genome research doi: 10.1101/gr.268302 – volume: 130 start-page: 1686 year: 2002 ident: ref53 article-title: Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.013474 – volume: 9 start-page: 442 year: 1924 ident: ref13 article-title: Pericarp Studies in Maize. II. The Allelomorphism of a Series of Factors for Pericarp Color. publication-title: Genetics doi: 10.1093/genetics/9.5.442 – volume: 14 start-page: 1916 year: 2004 ident: ref30 article-title: Close split of sorghum and maize genome progenitors. publication-title: Genome Res doi: 10.1101/gr.2332504 – volume: 93 start-page: 8820 year: 1996 ident: ref40 article-title: Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.17.8820 – volume: 25 start-page: 4876 year: 1997 ident: ref60 article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. publication-title: Nucleic Acids Res doi: 10.1093/nar/25.24.4876 – volume: 14 start-page: 1173 year: 2002 ident: ref44 article-title: Extensive interallelic polymorphisms drive meiotic recombination into a crossover pathway. publication-title: Plant Cell doi: 10.1105/tpc.001271 – volume: 115 start-page: 119 year: 2007 ident: ref41 article-title: Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content. publication-title: Theor Appl Genet doi: 10.1007/s00122-007-0548-7 – volume: 19 start-page: 259 year: 1982 ident: ref55 article-title: The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. publication-title: Gene doi: 10.1016/0378-1119(82)90015-4 – volume: 226 start-page: 792 year: 1984 ident: ref3 article-title: The significance of responses of the genome to challenge. publication-title: Science doi: 10.1126/science.15739260 – volume: 9 start-page: 1633 year: 1997 ident: ref45 article-title: Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. publication-title: Plant Cell doi: 10.1105/tpc.9.9.1633 – volume: 119 start-page: 185 year: 1988 ident: ref31 article-title: Sequence of three bronze alleles of maize and correlation with the genetic fine structure. publication-title: Genetics doi: 10.1093/genetics/119.1.185 – volume: 263 start-page: 22 year: 2000 ident: ref7 article-title: Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon. publication-title: Mol Gen Genet doi: 10.1007/PL00008672 – volume: 17 start-page: 903 year: 2005 ident: ref15 article-title: Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region. publication-title: Plant Cell doi: 10.1105/tpc.104.029660 – volume: 163 start-page: 1135 year: 2003 ident: ref22 article-title: The maize unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1. publication-title: Genetics doi: 10.1093/genetics/163.3.1135 – volume: 136 start-page: 1121 year: 1994 ident: ref37 article-title: Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. publication-title: Genetics doi: 10.1093/genetics/136.3.1121 – volume: 3 start-page: e123 year: 2007 ident: ref18 article-title: Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030123 – volume: 22 start-page: 471 year: 2000 ident: ref21 article-title: Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants. publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00750.x – volume: 131 start-page: 199 year: 1992 ident: ref35 article-title: Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. publication-title: Genetics doi: 10.1093/genetics/131.1.199 – volume: 19 start-page: 289 year: 1977 ident: ref39 article-title: The genetic control of flavonoid biosynthesis in maize. publication-title: Can J Genet Cyt doi: 10.1139/g77-032 – volume: 8 start-page: 175 year: 1998 ident: ref56 article-title: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. publication-title: Genome Res doi: 10.1101/gr.8.3.175 – volume: 260 start-page: 372 year: 1998 ident: ref14 article-title: A maize Myb homolog is encoded by a multicopy gene complex. publication-title: Mol Gen Genet doi: 10.1007/s004380050906 – reference: 8313474 - Cell. 1994 Feb 11;76(3):543-53 – reference: 18089549 - Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33 – reference: 11576430 - Plant J. 2001 Sep;27(5):467-78 – reference: 12368247 - Genome Res. 2002 Oct;12(10):1549-55 – reference: 14617081 - Plant J. 2003 Nov;36(4):510-21 – reference: 16751673 - Genetics. 2006 Aug;173(4):2211-26 – reference: 15489523 - Genetics. 2005 Feb;169(2):891-906 – reference: 15557293 - J Exp Bot. 2005 Jan;56(409):1-14 – reference: 10886767 - Plant J. 2000 Jun;22(6):471-82 – reference: 15722466 - Plant Cell. 2005 Mar;17(3):903-14 – reference: 9870702 - Mol Gen Genet. 1998 Nov;260(4):372-80 – reference: 8852857 - Genetics. 1996 Feb;142(2):603-18 – reference: 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96 – reference: 17919898 - Curr Opin Genet Dev. 2007 Dec;17(6):486-92 – reference: 6295879 - Gene. 1982 Oct;19(3):259-68 – reference: 12481046 - Plant Physiol. 2002 Dec;130(4):1626-35 – reference: 19189423 - Nature. 2009 Jan 29;457(7229):551-6 – reference: 15734576 - Trends Genet. 2005 Mar;21(3):172-81 – reference: 7774593 - EMBO J. 1995 May 15;14(10):2350-63 – reference: 18227811 - Nat Rev Genet. 2008 Mar;9(3):204-17 – reference: 11607699 - Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820-5 – reference: 12825685 - Plant Mol Biol. 2003 May;52(1):1-15 – reference: 1325389 - Genetics. 1992 Aug;131(4):939-56 – reference: 16100779 - Nature. 2005 Aug 11;436(7052):793-800 – reference: 2062649 - Nucleic Acids Res. 1991 Jun 25;19(12):3325-30 – reference: 16914031 - BMC Evol Biol. 2006;6:62 – reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85 – reference: 15240870 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10 – reference: 8536982 - Genetics. 1995 Sep;141(1):347-60 – reference: 8864112 - Science. 1996 Nov 1;274(5288):765-8 – reference: 10732670 - Mol Gen Genet. 2000 Feb;263(1):22-9 – reference: 2559311 - Mol Gen Genet. 1989 Oct;219(1-2):225-34 – reference: 10407442 - Trends Plant Sci. 1999 Jul;4(7):263-269 – reference: 11333250 - Genetics. 2001 May;158(1):423-38 – reference: 17486311 - Theor Appl Genet. 2007 Jun;115(1):119-28 – reference: 11461701 - Cell. 2001 Jul 13;106(1):47-57 – reference: 12242248 - Genetics. 2002 Sep;162(1):381-94 – reference: 8005419 - Genetics. 1994 Mar;136(3):1121-41 – reference: 12663550 - Genetics. 2003 Mar;163(3):1135-46 – reference: 9338965 - Plant Cell. 1997 Sep;9(9):1633-46 – reference: 3396861 - Genetics. 1988 May;119(1):185-97 – reference: 16429259 - Plant Mol Biol. 2006 Jan;60(2):185-99 – reference: 10611384 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15330-5 – reference: 2247441 - Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731-5 – reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 – reference: 1317315 - Genetics. 1992 May;131(1):199-209 – reference: 12034905 - Plant Cell. 2002 May;14(5):1173-83 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 11148280 - Plant Cell. 2000 Dec;12(12):2311-2322 – reference: 15466289 - Genome Res. 2004 Oct;14(10A):1916-23 – reference: 8768374 - Plant Cell. 1996 Jul;8(7):1149-58 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 18756076 - Genome Dyn. 2008;4:41-56 – reference: 17246050 - Genetics. 1924 Sep;9(5):442-53 – reference: 17658954 - PLoS Genet. 2007 Jul;3(7):e123 – reference: 15739260 - Science. 1984 Nov 16;226(4676):792-801 – reference: 1648001 - Genetics. 1991 May;128(1):163-73 – reference: 10860963 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7002-7 – reference: 1334895 - Genetics. 1992 Nov;132(3):813-22 |
| SSID | ssj0035897 |
| Score | 2.0788717 |
| Snippet | An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their... An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1000516 |
| SubjectTerms | Alleles Chromosomes, Plant - genetics Deoxyribonucleic acid DNA DNA damage DNA Repair DNA, Plant - genetics Evolution Evolutionary Biology/Plant Genetics and Gene Expression Evolutionary Biology/Plant Genomes and Evolution Genes Genetic regulation Genomics Mutation Physiological aspects Plant genetics Plant Proteins - genetics Plants - genetics Recombination, Genetic Translocation, Genetic Transposons Zea mays - genetics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJQQvaHwuMMBCSLwsWxLbif1YPqbBQ5GAob1FdmIzUJdUS6up_z13dhoagbQ-8Jqc3eTufP5dc_4dIa9zWwMOqSD6CW5jzl0VG4XMiFrYwhqNpOZYbTHLT8_4p3NxvtXqC2vCAj1wUNwxK8BHCsTx2nCX1tLWUgid5DBPrfzh6SyRapNMhRjMhAxtVYRgcQFpfX9oDiY77m10tAADYY0AeGU-2pQ8d_8QoSeLedv9C37-XUV5Z9Us9Ppaz-dbW9TJHrnXY0s6De90n9yyzQNyO3SbXD8k1-EkAW0dhYeyNFDHrq4s1U1NcYNDI1Gzpk3bxBftJY5rVx21TR3_an0niUO6dR2T6UvIrL1xD_0sy8CVHgrB8Jfez6aPyNnJh2_vTuO-70Jc5SpfxpU2qZVCag3xwNkKVrURqcy5Fk4LBgAqczoxxhlAJ85hD8qasdzCpcpqCKGPyQQe1O4TWjAAgJDimKJWPFXc1EnqlOOuSDJlpI4I2yi-rHpScuyNMS_9l7YCkpOguxLNVfbmikg8jFoEUo4b5N-iTQdZpNT2F8DRyt7RypscLSIv0SPKcD51CAzlFHvQswxwb0ReeQmk1WiwbueHXnVd-fHz9x2Evs52EfoyEnrTC7kWdFbp_kAFaB45vUaSByNJiCDV6PY-OvlGdR0oEruhQCYu4KU3jl_iKKzIayy4mK8HZLDLRuRJWAZ_LKEAEnIlI1KMFshI_eM7zc8Lz2ye5RIQtorI0bCUdjLw0_9h4GfkbvhUiH-xHZAJLEL7HBDn0rzwweU3RIN9eQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZGJwQXfo8FBkQIwWXpksZO4mOBVWWHghhF4xTZiQ0TXVKRVlO58o_znu2UhR-iHLhVyXPafn5--Wy_95mQJ4kqgYcUEP0YVQGluggkR2VEwVSqpEBRc8y2mCTjKT06YSdbRLa1MA5BmCPO6sbs5OMHwBJL-poDB-cBihbZLdR-FKdR26w_B0vc-AdXS54a2SFcHltgFdIlsp0w4Os9sj2dvBl-MEKqLA7S2CzE2M80pK6-7k9P7by_jMz_Opj38Kf-jqn-mnB5ZVnNxepczGYX3maj6-Rbi4NNYvncXy5kv_j6k0Tk_wXqBrnmyLA_tE-5SbZUdYtctsdjrm6Tc1v64NfaR3Vs_9ho3S6_KF9UpT-CNzJ6lS9X_qSugnF9hu3qZeMfVmVwVJujL_b9C9dxrn0mT-0C6L55ihN3t5lr-E0vJ8M7ZDo6fPdiHLiDIoIi4ckiKISMVMYyISCAaVVAGJIsyhIqmBYsBsY30CKUUkugU1rjoZllHCcKLhVKQMzfIb2qrtQu8dMYGCvMyWRachpxKssw0lxTnYYDLjPhkbjt_rxwKup4mMcsN1uDKcymLHY5Ipw7hD0SrFvNrYrIX-yfo2etbVED3FyAfs5d1-bQmCcpznCFpDoqM1VmjIkwgRFWAnH2yCP0y9wW1K4jWT4chDHwaCDqHnlsLFAHpMJEo49i2TT5q9fvNzA6nmxi9LZj9MwZ6RowK4SrAAHk0U07lnsdSwh5Ref2Ljp7C10DQOLxLRnnDP50O_xybIUphJUCFzMJjDHQAo_ctYPxR09w4LCUZx5JO8O0A3_3TnX6yUixD5IMpgTcI_31gN6og-_9a4P75Krdx8T1vz3SgwGnHgAdXsiHLp59B43mt_Y priority: 102 providerName: Unpaywall |
| Title | Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19521498 https://www.proquest.com/docview/67363467 https://pubmed.ncbi.nlm.nih.gov/PMC2686159 https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000516&type=printable https://doaj.org/article/3719671495ab4f1d8ed855a06ba4d951 http://dx.doi.org/10.1371/journal.pgen.1000516 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7404 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M48 dateStart: 20050701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgheEJ9bYBQLIfGyVE0Tx8kDQi1rVSYRpo2i8hTZiT2QsqQ0q0b_e-6cNCxiiIqnSM45Ue7Ld_H5d4S89lUKcUgC3o95yvY8ndgyRGREwRRXUiCoOVZbRP505p3M2XyHbHq21gwsb03tsJ_UbJn1fv5YvwODf2u6NnBnM6m3AJbjrj_omb9L9mCtCrGZw0ev2VdwWVC1W2HMtTmk-_Vhur89xUCKwgLnhUFr3TLw_o0T7yyyorwtQv2z0PLuKl-I9bXIshur2OQBuV-Hn3RY6ctDsqPyR-RO1ZBy_ZhcV4cNaKEp4lHTc4Muu1oqKvKUTmANRDlSuaZRkdvT4hLnFauSjvPUPilMs4kjemMcs9tLSL6N_I_MU2o49apWDN90HA2fkNlk_Pn91K5bM9iJH_pXdiKkowIWCAEuQ6sEDF8yJ_A9wbRgLsRYAy36UmoJAYzW2KYydV1fwVCiBHjZp6STF7k6IJS7ECNCFiR5GnpO6Mm07-hQe5r3B6EMhEXcDePjpMYtx_YZWWw24zjkLxXvYpRcXEvOInYza1HhdvyDfoQybWgRddsMFMuLuDbiGCaHPsecUkhPO2mg0oAx0fdBp1MIVS3yEjUiro6wNr4jHmKbencAobFFXhkKRN7IsbTnQqzKMv7w6csWROfRNkRnLaI3NZEugGeJqM9cAOcR9qtFediiBCeTtG4foJJvWFcCI7FhCiTrDD56o_gxzsKivVyBipmSQRcWYovsV2bwWxK1UVmEtwykxf72nfz7NwN-PvADCMJDi_QaU9pKwM_--1XPyb1qCxF_vR2SDlieegGR6JXskl0-512yNxwdjyZwHY2j07Ou-a_TNY4HxmbR6fDrL1nyjf8 |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZGJwQXfo8FBkQIwWXpksZO4mOBVWWHghhF4xTZiQ0TXVKRVlO58o_znu2UhR-iHLhVyXPafn5--Wy_95mQJ4kqgYcUEP0YVQGluggkR2VEwVSqpEBRc8y2mCTjKT06YSdbRLa1MA5BmCPO6sbs5OMHwBJL-poDB-cBihbZLdR-FKdR26w_B0vc-AdXS54a2SFcHltgFdIlsp0w4Os9sj2dvBl-MEKqLA7S2CzE2M80pK6-7k9P7by_jMz_Opj38Kf-jqn-mnB5ZVnNxepczGYX3maj6-Rbi4NNYvncXy5kv_j6k0Tk_wXqBrnmyLA_tE-5SbZUdYtctsdjrm6Tc1v64NfaR3Vs_9ho3S6_KF9UpT-CNzJ6lS9X_qSugnF9hu3qZeMfVmVwVJujL_b9C9dxrn0mT-0C6L55ihN3t5lr-E0vJ8M7ZDo6fPdiHLiDIoIi4ckiKISMVMYyISCAaVVAGJIsyhIqmBYsBsY30CKUUkugU1rjoZllHCcKLhVKQMzfIb2qrtQu8dMYGCvMyWRachpxKssw0lxTnYYDLjPhkbjt_rxwKup4mMcsN1uDKcymLHY5Ipw7hD0SrFvNrYrIX-yfo2etbVED3FyAfs5d1-bQmCcpznCFpDoqM1VmjIkwgRFWAnH2yCP0y9wW1K4jWT4chDHwaCDqHnlsLFAHpMJEo49i2TT5q9fvNzA6nmxi9LZj9MwZ6RowK4SrAAHk0U07lnsdSwh5Ref2Ljp7C10DQOLxLRnnDP50O_xybIUphJUCFzMJjDHQAo_ctYPxR09w4LCUZx5JO8O0A3_3TnX6yUixD5IMpgTcI_31gN6og-_9a4P75Krdx8T1vz3SgwGnHgAdXsiHLp59B43mt_Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+of+Gene+Structure+and+Function+by+Non-Homologous+End-Joining%2C+Homologous+Recombination%2C+and+Transposition+of+DNA&rft.jtitle=PLoS+genetics&rft.au=Goettel%2C+Wolfgang&rft.au=Messing%2C+Joachim&rft.date=2009-06-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=5&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pgen.1000516&rft_id=info%3Apmid%2F19521498&rft.externalDocID=PMC2686159 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |