Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA

An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 5; no. 6; p. e1000516
Main Authors Goettel, Wolfgang, Messing, Joachim
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1000516

Cover

Abstract An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
AbstractList An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufol. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
  An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization.
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization. Plant genomes analyzed to date contain 15% or more genes that are arranged in tandem arrays. Tandem duplications are a source for allelic variability since their homologous sequences can serve in recombination events. For example, unequal crossing over between amplified genes can result in contraction and expansion of the array. Tandem gene multiplications are also subject to repeat induced gene silencing (RIGS). Most importantly, gene duplications create the evolutionary potential for genetic novelty (neo- or subfunctionalization). In addition to homologous recombination during meiosis, illegitimate recombination in somatic tissues of plants can create events that potentially can be transmitted through reproductive tissue to further enrich genetic diversity. Here we illustrate the evolution from a single Myb homolog to a multigene cluster that exemplifies the evolution of the maize genome. We used the p locus to demonstrate how plant genomes expand by polyploidization, gene duplication, and transposition. We characterized in detail the structural changes at the p cluster that resulted from genomic instability. Because structure determines function, we linked genomic rearrangements at the P1-wr cluster to functional consequences. At the P1-wr locus, structural changes caused regulatory/transcriptional modifications that in turn give rise to phenotypic alterations.
Audience Academic
Author Goettel, Wolfgang
Messing, Joachim
AuthorAffiliation Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, United States of America
Institut Jean-Pierre Bourgin, INRA de Versailles, France
AuthorAffiliation_xml – name: Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, United States of America
– name: Institut Jean-Pierre Bourgin, INRA de Versailles, France
Author_xml – sequence: 1
  givenname: Wolfgang
  surname: Goettel
  fullname: Goettel, Wolfgang
– sequence: 2
  givenname: Joachim
  surname: Messing
  fullname: Messing, Joachim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19521498$$D View this record in MEDLINE/PubMed
BookMark eNqVk_9r1DAYxotM3Hb6H4gWhIGwnknT9Is_CMe5LyfjBtv01_A2TXsZaXI2rfP-e9O7qlcRmRTa8PbzPH37Psmxd6CNFp73EqMpJgl-d2-6RoOariuhpxghRHH8xDvClJIgiVB0sLc-9I6tvUeI0DRLnnmHOKMhjrL0yHuYr0BXwjelfyG08G_bpuNt1wgfdOGfd5q30mg_3_hLo4NLUxtlKtNZ_0wXwScjtdTVqb9XvxHc1LnU0OtOty53DWi7NlZurdyXPi5nz72nJSgrXgzPiff5_OxufhlcXV8s5rOrgMdZ3AYccixSmgKgBJWChzTJKU7jCGgJlEQRDktAeV7mGIVlGcVZWhASC1fiAjAlE-_1znetjGXDzCzDBBNK0izricWOKAzcs3Uja2g2zIBk24JpKgZNK7kSzI09ixM3OAp5VOIiFUVKKaA4h6jIKHZedOfV6TVsHkCpX4YYsT62ny2wPjY2xOZ0H4Yuu7wWBRe6bUCNmhm_0XLFKvONhXEaY5o5g5PBoDFfO2FbVkvLhVKghUuFxQmJSeTuE-_NDqzA_ZDUpXF-vIfZLEQkJCGiPTX9C-WuQtSSu31YSlcfCd6OBI5pxfe2gs5atri9-Q92-Xj2-suYPdljVwJUu7JGdf2us2Pw1f60f0c0nAoHRDuAN8baRpSPTfH9HzIu2-05cNOT6t_iHwBRNFU
CitedBy_id crossref_primary_10_1155_2015_250158
crossref_primary_10_1016_j_gene_2012_12_034
crossref_primary_10_1073_pnas_1608775113
crossref_primary_10_3389_fpls_2016_00523
crossref_primary_10_1093_genetics_iyab062
crossref_primary_10_1534_genetics_116_199638
crossref_primary_10_1186_1471_2229_12_92
crossref_primary_10_1007_s00122_012_1970_z
crossref_primary_10_1101_gr_109744_110
crossref_primary_10_1093_gbe_evt146
crossref_primary_10_1101_gr_109165_110
crossref_primary_10_1099_jgv_0_001034
crossref_primary_10_1093_genetics_iyad178
crossref_primary_10_2903_j_efsa_2012_2561
crossref_primary_10_1534_genetics_110_117929
crossref_primary_10_1093_genetics_iyac124
crossref_primary_10_1111_nph_13689
crossref_primary_10_1371_journal_pone_0121381
crossref_primary_10_1093_molbev_msr261
crossref_primary_10_1016_j_scienta_2013_01_002
Cites_doi 10.1093/nar/19.12.3325
10.1534/genetics.105.052712
10.1093/genetics/128.1.163
10.1104/pp.012179
10.1093/genetics/162.1.381
10.1093/nar/25.17.3389
10.1016/S0092-8674(01)00416-0
10.1093/molbev/msm092
10.1016/j.tig.2005.01.002
10.1073/pnas.87.22.8731
10.1046/j.1365-313X.2001.01124.x
10.1073/pnas.97.13.7002
10.1186/1471-2148-6-62
10.1093/genetics/141.1.347
10.1016/S1360-1385(99)01430-2
10.1023/A:1023942819106
10.1534/genetics.104.034629
10.1007/BF00261181
10.1073/pnas.96.26.15330
10.1126/science.274.5288.765
10.1093/genetics/131.4.939
10.1038/nature03895
10.1007/s11103-005-3568-1
10.1002/j.1460-2075.1995.tb07230.x
10.1038/nature07723
10.1105/tpc.8.7.1149
10.1093/genetics/142.2.603
10.1159/000126005
10.1016/0092-8674(94)90117-1
10.1046/j.1365-313X.2003.01898.x
10.1016/j.gde.2007.08.010
10.1105/tpc.12.12.2311
10.1093/genetics/132.3.813
10.1016/j.plantsci.2005.05.007
10.1093/genetics/158.1.423
10.1073/pnas.0403715101
10.1038/nrg2268
10.1101/gr.268302
10.1104/pp.013474
10.1093/genetics/9.5.442
10.1101/gr.2332504
10.1073/pnas.93.17.8820
10.1093/nar/25.24.4876
10.1105/tpc.001271
10.1007/s00122-007-0548-7
10.1016/0378-1119(82)90015-4
10.1126/science.15739260
10.1105/tpc.9.9.1633
10.1093/genetics/119.1.185
10.1007/PL00008672
10.1105/tpc.104.029660
10.1093/genetics/163.3.1135
10.1093/genetics/136.3.1121
10.1371/journal.pgen.0030123
10.1046/j.1365-313x.2000.00750.x
10.1093/genetics/131.1.199
10.1139/g77-032
10.1101/gr.8.3.175
10.1007/s004380050906
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Goettel, Messing. 2009
2009 Goettel, Messing. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Goettel W, Messing J (2009) Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA. PLoS Genet 5(6): e1000516. doi:10.1371/journal.pgen.1000516
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Goettel, Messing. 2009
– notice: 2009 Goettel, Messing. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Goettel W, Messing J (2009) Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA. PLoS Genet 5(6): e1000516. doi:10.1371/journal.pgen.1000516
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pgen.1000516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE








Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Gene Duplications in Plants
EISSN 1553-7404
ExternalDocumentID 1313538995
oai_doaj_org_article_3719671495ab4f1d8ed855a06ba4d951
10.1371/journal.pgen.1000516
PMC2686159
A203232057
19521498
10_1371_journal_pgen_1000516
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
QF4
RIG
RZL
WOQ
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c696t-cab1e858aa070fec257b51864a5fa534412fa0bbfb102ff4698d336e0bbcea153
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:33 EDT 2023
Fri Oct 03 12:38:13 EDT 2025
Wed Oct 29 12:16:01 EDT 2025
Tue Sep 30 15:24:10 EDT 2025
Thu Oct 02 11:20:24 EDT 2025
Mon Oct 20 22:53:06 EDT 2025
Mon Oct 20 16:57:54 EDT 2025
Thu Oct 16 16:16:07 EDT 2025
Thu Oct 16 15:49:17 EDT 2025
Thu Oct 16 15:54:21 EDT 2025
Thu May 22 21:23:31 EDT 2025
Mon Jul 21 05:42:14 EDT 2025
Wed Oct 01 03:16:54 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-cab1e858aa070fec257b51864a5fa534412fa0bbfb102ff4698d336e0bbcea153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: WG JM. Performed the experiments: WG. Analyzed the data: WG JM. Contributed reagents/materials/analysis tools: WG. Wrote the paper: WG JM.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1000516
PMID 19521498
PQID 67363467
PQPubID 23479
ParticipantIDs plos_journals_1313538995
doaj_primary_oai_doaj_org_article_3719671495ab4f1d8ed855a06ba4d951
unpaywall_primary_10_1371_journal_pgen_1000516
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2686159
proquest_miscellaneous_67363467
gale_infotracmisc_A203232057
gale_infotracacademiconefile_A203232057
gale_incontextgauss_ISR_A203232057
gale_incontextgauss_ISN_A203232057
gale_incontextgauss_IOV_A203232057
gale_healthsolutions_A203232057
pubmed_primary_19521498
crossref_primary_10_1371_journal_pgen_1000516
crossref_citationtrail_10_1371_journal_pgen_1000516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References D Schuermann (ref6) 2005; 21
EL Walker (ref33) 1995; 14
B McClintock (ref3) 1984; 226
P Zhang (ref42) 2003; 52
S Wessler (ref32) 1990; 87
AP Hsia (ref11) 1996; 142
HK Dooner (ref9) 2007; 17
EG Anderson (ref13) 1924; 9
R Song (ref19) 2002; 12
J Boddu (ref29) 2005; 169
PF Byrne (ref40) 1996; 93
A Aguilera (ref1) 2008; 9
Q Sun (ref51) 2001; 158
V Gorbunova (ref5) 1999; 4
S Chopra (ref28) 1999; 96
S Chopra (ref16) 1996; 8
C Lechelt (ref24) 1989; 219
AH Paterson (ref26) 2009; 457
YS Yim (ref53) 2002; 130
(ref58) 2005; 436
EJ Ralston (ref31) 1988; 119
F Zhang (ref15) 2005; 17
HK Dooner (ref44) 2002; 14
K Tamura (ref59) 2007; 24
J Ma (ref61) 2004; 101
MA Moreno (ref36) 1992; 131
S Chopra (ref22) 2003; 163
LV Sidorenko (ref21) 2000; 22
HK Dooner (ref45) 1997; 9
R Song (ref54) 2002; 130
N Fedoroff (ref10) 2000; 97
OP Das (ref37) 1994; 136
J Boddu (ref27) 2006; 60
Z Swigonová (ref30) 2004; 14
SM Cocciolone (ref20) 2001; 27
E Grotewold (ref12) 1994; 76
J Messing (ref2) 2008; 4
P Athma (ref8) 1991; 128
JD Meyer (ref41) 2007; 115
B Ewing (ref56) 1998; 8
F Wei (ref18) 2007; 3
J Vieira (ref55) 1982; 19
B Lowe (ref47) 1992; 132
T Tanaka (ref25) 2008; 36
P SanMiguel (ref23) 1996; 274
S Chopra (ref14) 1998; 260
JD Thompson (ref60) 1997; 25
H Puchta (ref4) 2005; 56
SF Altschul (ref57) 1997; 25
P Athma (ref35) 1992; 131
C Du (ref38) 2006; 6
T Allers (ref43) 2001; 106
R Pilu (ref48) 2003; 36
P Zhang (ref17) 2000; 12
OP Das (ref46) 1991; 19
MD Yandeau-Nelson (ref49) 2006; 173
WB Eggleston (ref50) 1995; 141
CA Webb (ref52) 2002; 162
YL Xiao (ref7) 2000; 263
Z Swigonová (ref34) 2005; 169
ED Styles (ref39) 1977; 19
15722466 - Plant Cell. 2005 Mar;17(3):903-14
1334895 - Genetics. 1992 Nov;132(3):813-22
11148280 - Plant Cell. 2000 Dec;12(12):2311-2322
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
9338965 - Plant Cell. 1997 Sep;9(9):1633-46
17486311 - Theor Appl Genet. 2007 Jun;115(1):119-28
11461701 - Cell. 2001 Jul 13;106(1):47-57
18089549 - Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33
12034905 - Plant Cell. 2002 May;14(5):1173-83
8768374 - Plant Cell. 1996 Jul;8(7):1149-58
12481046 - Plant Physiol. 2002 Dec;130(4):1626-35
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
12481051 - Plant Physiol. 2002 Dec;130(4):1686-96
19189423 - Nature. 2009 Jan 29;457(7229):551-6
10886767 - Plant J. 2000 Jun;22(6):471-82
3396861 - Genetics. 1988 May;119(1):185-97
10732670 - Mol Gen Genet. 2000 Feb;263(1):22-9
9521921 - Genome Res. 1998 Mar;8(3):175-85
12825685 - Plant Mol Biol. 2003 May;52(1):1-15
17919898 - Curr Opin Genet Dev. 2007 Dec;17(6):486-92
8536982 - Genetics. 1995 Sep;141(1):347-60
10860963 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7002-7
14617081 - Plant J. 2003 Nov;36(4):510-21
17658954 - PLoS Genet. 2007 Jul;3(7):e123
15734576 - Trends Genet. 2005 Mar;21(3):172-81
10611384 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15330-5
10407442 - Trends Plant Sci. 1999 Jul;4(7):263-269
12242248 - Genetics. 2002 Sep;162(1):381-94
15240870 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10
2559311 - Mol Gen Genet. 1989 Oct;219(1-2):225-34
7774593 - EMBO J. 1995 May 15;14(10):2350-63
16751673 - Genetics. 2006 Aug;173(4):2211-26
15489523 - Genetics. 2005 Feb;169(2):891-906
2247441 - Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731-5
2062649 - Nucleic Acids Res. 1991 Jun 25;19(12):3325-30
18227811 - Nat Rev Genet. 2008 Mar;9(3):204-17
11576430 - Plant J. 2001 Sep;27(5):467-78
9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
15739260 - Science. 1984 Nov 16;226(4676):792-801
9870702 - Mol Gen Genet. 1998 Nov;260(4):372-80
8005419 - Genetics. 1994 Mar;136(3):1121-41
17246050 - Genetics. 1924 Sep;9(5):442-53
1325389 - Genetics. 1992 Aug;131(4):939-56
8313474 - Cell. 1994 Feb 11;76(3):543-53
1648001 - Genetics. 1991 May;128(1):163-73
16914031 - BMC Evol Biol. 2006;6:62
12663550 - Genetics. 2003 Mar;163(3):1135-46
8852857 - Genetics. 1996 Feb;142(2):603-18
18756076 - Genome Dyn. 2008;4:41-56
1317315 - Genetics. 1992 May;131(1):199-209
6295879 - Gene. 1982 Oct;19(3):259-68
11607699 - Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820-5
8864112 - Science. 1996 Nov 1;274(5288):765-8
15557293 - J Exp Bot. 2005 Jan;56(409):1-14
15466289 - Genome Res. 2004 Oct;14(10A):1916-23
16429259 - Plant Mol Biol. 2006 Jan;60(2):185-99
12368247 - Genome Res. 2002 Oct;12(10):1549-55
11333250 - Genetics. 2001 May;158(1):423-38
16100779 - Nature. 2005 Aug 11;436(7052):793-800
References_xml – volume: 19
  start-page: 3325
  year: 1991
  ident: ref46
  article-title: A new allele of the duplicated 27kD zein locus of maize generated by homologous recombination.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/19.12.3325
– volume: 173
  start-page: 2211
  year: 2006
  ident: ref49
  article-title: Unequal sister chromatid and homolog recombination at a tandem duplication of the A1 locus in maize.
  publication-title: Genetics
  doi: 10.1534/genetics.105.052712
– volume: 128
  start-page: 163
  year: 1991
  ident: ref8
  article-title: Ac induces homologous recombination at the maize P locus.
  publication-title: Genetics
  doi: 10.1093/genetics/128.1.163
– volume: 130
  start-page: 1626
  year: 2002
  ident: ref54
  article-title: Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize.
  publication-title: PLANT PHYSIOLOGY
  doi: 10.1104/pp.012179
– volume: 162
  start-page: 381
  year: 2002
  ident: ref52
  article-title: Genetic and molecular characterization of the maize rp3 rust resistance locus.
  publication-title: Genetics
  doi: 10.1093/genetics/162.1.381
– volume: 25
  start-page: 3389
  year: 1997
  ident: ref57
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 106
  start-page: 47
  year: 2001
  ident: ref43
  article-title: Differential timing and control of noncrossover and crossover recombination during meiosis.
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00416-0
– volume: 24
  start-page: 1596
  year: 2007
  ident: ref59
  article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 21
  start-page: 172
  year: 2005
  ident: ref6
  article-title: The dual nature of homologous recombination in plants.
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2005.01.002
– volume: 87
  start-page: 8731
  year: 1990
  ident: ref32
  article-title: Filler DNA is associated with spontaneous deletions in maize.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.22.8731
– volume: 27
  start-page: 467
  year: 2001
  ident: ref20
  article-title: Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated.
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2001.01124.x
– volume: 97
  start-page: 7002
  year: 2000
  ident: ref10
  article-title: Transposons and genome evolution in plants.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.13.7002
– volume: 6
  start-page: 62
  year: 2006
  ident: ref38
  article-title: Retrotranspositions in orthologous regions of closely related grass species.
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-6-62
– volume: 141
  start-page: 347
  year: 1995
  ident: ref50
  article-title: Molecular organization and germinal instability of R-stippled maize.
  publication-title: Genetics
  doi: 10.1093/genetics/141.1.347
– volume: 4
  start-page: 263
  year: 1999
  ident: ref5
  article-title: How plants make ends meet: DNA double-strand break repair.
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(99)01430-2
– volume: 52
  start-page: 1
  year: 2003
  ident: ref42
  article-title: A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis.
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1023942819106
– volume: 169
  start-page: 891
  year: 2005
  ident: ref34
  article-title: Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum.
  publication-title: Genetics
  doi: 10.1534/genetics.104.034629
– volume: 219
  start-page: 225
  year: 1989
  ident: ref24
  article-title: Isolation and molecular analysis of the maize P locus.
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00261181
– volume: 36
  start-page: D1028
  year: 2008
  ident: ref25
  article-title: The Rice Annotation Project Database (RAP-DB): 2008 update.
  publication-title: Nucleic Acids Res
– volume: 96
  start-page: 15330
  year: 1999
  ident: ref28
  article-title: Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.26.15330
– volume: 274
  start-page: 765
  year: 1996
  ident: ref23
  article-title: Nested retrotransposons in the intergenic regions of the maize genome.
  publication-title: Science
  doi: 10.1126/science.274.5288.765
– volume: 131
  start-page: 939
  year: 1992
  ident: ref36
  article-title: Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions.
  publication-title: Genetics
  doi: 10.1093/genetics/131.4.939
– volume: 436
  start-page: 793
  year: 2005
  ident: ref58
  article-title: The map-based sequence of the rice genome.
  publication-title: Nature
  doi: 10.1038/nature03895
– volume: 60
  start-page: 185
  year: 2006
  ident: ref27
  article-title: Comparative structural and functional characterization of sorghum and maize duplications containing orthologous myb transcription regulators of 3-deoxyflavonoid biosynthesis.
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-005-3568-1
– volume: 14
  start-page: 2350
  year: 1995
  ident: ref33
  article-title: Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex.
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb07230.x
– volume: 457
  start-page: 551
  year: 2009
  ident: ref26
  article-title: The Sorghum bicolor genome and the diversification of grasses.
  publication-title: Nature
  doi: 10.1038/nature07723
– volume: 8
  start-page: 1149
  year: 1996
  ident: ref16
  article-title: Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements.
  publication-title: Plant Cell
  doi: 10.1105/tpc.8.7.1149
– volume: 142
  start-page: 603
  year: 1996
  ident: ref11
  article-title: DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR.
  publication-title: Genetics
  doi: 10.1093/genetics/142.2.603
– volume: 4
  start-page: 41
  year: 2008
  ident: ref2
  article-title: Grass genome structure and evolution.
  publication-title: Genome Dynamics
  doi: 10.1159/000126005
– volume: 56
  start-page: 1
  year: 2005
  ident: ref4
  article-title: The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution.
  publication-title: J Exp Bot
– volume: 76
  start-page: 543
  year: 1994
  ident: ref12
  article-title: The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset.
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90117-1
– volume: 36
  start-page: 510
  year: 2003
  ident: ref48
  article-title: pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population.
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01898.x
– volume: 17
  start-page: 486
  year: 2007
  ident: ref9
  article-title: Give-and-take: interactions between DNA transposons and their host plant genomes.
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2007.08.010
– volume: 12
  start-page: 2311
  year: 2000
  ident: ref17
  article-title: A segmental gene duplication generated differentially expressed myb-homologous genes in maize.
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.12.2311
– volume: 132
  start-page: 813
  year: 1992
  ident: ref47
  article-title: Active Mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication.
  publication-title: Genetics
  doi: 10.1093/genetics/132.3.813
– volume: 169
  start-page: 542
  year: 2005
  ident: ref29
  article-title: Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids.
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2005.05.007
– volume: 158
  start-page: 423
  year: 2001
  ident: ref51
  article-title: Recombination between paralogues at the Rp1 rust resistance locus in maize.
  publication-title: Genetics
  doi: 10.1093/genetics/158.1.423
– volume: 101
  start-page: 12404
  year: 2004
  ident: ref61
  article-title: Rapid recent growth and divergence of rice nuclear genomes.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403715101
– volume: 9
  start-page: 204
  year: 2008
  ident: ref1
  article-title: Genome instability: a mechanistic view of its causes and consequences.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2268
– volume: 12
  start-page: 1549
  year: 2002
  ident: ref19
  article-title: Mosaic organization of orthologous sequences in grass genomes.
  publication-title: Genome research
  doi: 10.1101/gr.268302
– volume: 130
  start-page: 1686
  year: 2002
  ident: ref53
  article-title: Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.
  publication-title: PLANT PHYSIOLOGY
  doi: 10.1104/pp.013474
– volume: 9
  start-page: 442
  year: 1924
  ident: ref13
  article-title: Pericarp Studies in Maize. II. The Allelomorphism of a Series of Factors for Pericarp Color.
  publication-title: Genetics
  doi: 10.1093/genetics/9.5.442
– volume: 14
  start-page: 1916
  year: 2004
  ident: ref30
  article-title: Close split of sorghum and maize genome progenitors.
  publication-title: Genome Res
  doi: 10.1101/gr.2332504
– volume: 93
  start-page: 8820
  year: 1996
  ident: ref40
  article-title: Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.17.8820
– volume: 25
  start-page: 4876
  year: 1997
  ident: ref60
  article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.24.4876
– volume: 14
  start-page: 1173
  year: 2002
  ident: ref44
  article-title: Extensive interallelic polymorphisms drive meiotic recombination into a crossover pathway.
  publication-title: Plant Cell
  doi: 10.1105/tpc.001271
– volume: 115
  start-page: 119
  year: 2007
  ident: ref41
  article-title: Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-007-0548-7
– volume: 19
  start-page: 259
  year: 1982
  ident: ref55
  article-title: The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers.
  publication-title: Gene
  doi: 10.1016/0378-1119(82)90015-4
– volume: 226
  start-page: 792
  year: 1984
  ident: ref3
  article-title: The significance of responses of the genome to challenge.
  publication-title: Science
  doi: 10.1126/science.15739260
– volume: 9
  start-page: 1633
  year: 1997
  ident: ref45
  article-title: Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome.
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.9.1633
– volume: 119
  start-page: 185
  year: 1988
  ident: ref31
  article-title: Sequence of three bronze alleles of maize and correlation with the genetic fine structure.
  publication-title: Genetics
  doi: 10.1093/genetics/119.1.185
– volume: 263
  start-page: 22
  year: 2000
  ident: ref7
  article-title: Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon.
  publication-title: Mol Gen Genet
  doi: 10.1007/PL00008672
– volume: 17
  start-page: 903
  year: 2005
  ident: ref15
  article-title: Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region.
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.029660
– volume: 163
  start-page: 1135
  year: 2003
  ident: ref22
  article-title: The maize unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1.
  publication-title: Genetics
  doi: 10.1093/genetics/163.3.1135
– volume: 136
  start-page: 1121
  year: 1994
  ident: ref37
  article-title: Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation.
  publication-title: Genetics
  doi: 10.1093/genetics/136.3.1121
– volume: 3
  start-page: e123
  year: 2007
  ident: ref18
  article-title: Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030123
– volume: 22
  start-page: 471
  year: 2000
  ident: ref21
  article-title: Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants.
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00750.x
– volume: 131
  start-page: 199
  year: 1992
  ident: ref35
  article-title: Insertional mutagenesis of the maize P gene by intragenic transposition of Ac.
  publication-title: Genetics
  doi: 10.1093/genetics/131.1.199
– volume: 19
  start-page: 289
  year: 1977
  ident: ref39
  article-title: The genetic control of flavonoid biosynthesis in maize.
  publication-title: Can J Genet Cyt
  doi: 10.1139/g77-032
– volume: 8
  start-page: 175
  year: 1998
  ident: ref56
  article-title: Base-calling of automated sequencer traces using phred. I. Accuracy assessment.
  publication-title: Genome Res
  doi: 10.1101/gr.8.3.175
– volume: 260
  start-page: 372
  year: 1998
  ident: ref14
  article-title: A maize Myb homolog is encoded by a multicopy gene complex.
  publication-title: Mol Gen Genet
  doi: 10.1007/s004380050906
– reference: 8313474 - Cell. 1994 Feb 11;76(3):543-53
– reference: 18089549 - Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33
– reference: 11576430 - Plant J. 2001 Sep;27(5):467-78
– reference: 12368247 - Genome Res. 2002 Oct;12(10):1549-55
– reference: 14617081 - Plant J. 2003 Nov;36(4):510-21
– reference: 16751673 - Genetics. 2006 Aug;173(4):2211-26
– reference: 15489523 - Genetics. 2005 Feb;169(2):891-906
– reference: 15557293 - J Exp Bot. 2005 Jan;56(409):1-14
– reference: 10886767 - Plant J. 2000 Jun;22(6):471-82
– reference: 15722466 - Plant Cell. 2005 Mar;17(3):903-14
– reference: 9870702 - Mol Gen Genet. 1998 Nov;260(4):372-80
– reference: 8852857 - Genetics. 1996 Feb;142(2):603-18
– reference: 12481051 - Plant Physiol. 2002 Dec;130(4):1686-96
– reference: 17919898 - Curr Opin Genet Dev. 2007 Dec;17(6):486-92
– reference: 6295879 - Gene. 1982 Oct;19(3):259-68
– reference: 12481046 - Plant Physiol. 2002 Dec;130(4):1626-35
– reference: 19189423 - Nature. 2009 Jan 29;457(7229):551-6
– reference: 15734576 - Trends Genet. 2005 Mar;21(3):172-81
– reference: 7774593 - EMBO J. 1995 May 15;14(10):2350-63
– reference: 18227811 - Nat Rev Genet. 2008 Mar;9(3):204-17
– reference: 11607699 - Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820-5
– reference: 12825685 - Plant Mol Biol. 2003 May;52(1):1-15
– reference: 1325389 - Genetics. 1992 Aug;131(4):939-56
– reference: 16100779 - Nature. 2005 Aug 11;436(7052):793-800
– reference: 2062649 - Nucleic Acids Res. 1991 Jun 25;19(12):3325-30
– reference: 16914031 - BMC Evol Biol. 2006;6:62
– reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85
– reference: 15240870 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10
– reference: 8536982 - Genetics. 1995 Sep;141(1):347-60
– reference: 8864112 - Science. 1996 Nov 1;274(5288):765-8
– reference: 10732670 - Mol Gen Genet. 2000 Feb;263(1):22-9
– reference: 2559311 - Mol Gen Genet. 1989 Oct;219(1-2):225-34
– reference: 10407442 - Trends Plant Sci. 1999 Jul;4(7):263-269
– reference: 11333250 - Genetics. 2001 May;158(1):423-38
– reference: 17486311 - Theor Appl Genet. 2007 Jun;115(1):119-28
– reference: 11461701 - Cell. 2001 Jul 13;106(1):47-57
– reference: 12242248 - Genetics. 2002 Sep;162(1):381-94
– reference: 8005419 - Genetics. 1994 Mar;136(3):1121-41
– reference: 12663550 - Genetics. 2003 Mar;163(3):1135-46
– reference: 9338965 - Plant Cell. 1997 Sep;9(9):1633-46
– reference: 3396861 - Genetics. 1988 May;119(1):185-97
– reference: 16429259 - Plant Mol Biol. 2006 Jan;60(2):185-99
– reference: 10611384 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15330-5
– reference: 2247441 - Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731-5
– reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
– reference: 1317315 - Genetics. 1992 May;131(1):199-209
– reference: 12034905 - Plant Cell. 2002 May;14(5):1173-83
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 11148280 - Plant Cell. 2000 Dec;12(12):2311-2322
– reference: 15466289 - Genome Res. 2004 Oct;14(10A):1916-23
– reference: 8768374 - Plant Cell. 1996 Jul;8(7):1149-58
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 18756076 - Genome Dyn. 2008;4:41-56
– reference: 17246050 - Genetics. 1924 Sep;9(5):442-53
– reference: 17658954 - PLoS Genet. 2007 Jul;3(7):e123
– reference: 15739260 - Science. 1984 Nov 16;226(4676):792-801
– reference: 1648001 - Genetics. 1991 May;128(1):163-73
– reference: 10860963 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7002-7
– reference: 1334895 - Genetics. 1992 Nov;132(3):813-22
SSID ssj0035897
Score 2.0788717
Snippet An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their...
  An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000516
SubjectTerms Alleles
Chromosomes, Plant - genetics
Deoxyribonucleic acid
DNA
DNA damage
DNA Repair
DNA, Plant - genetics
Evolution
Evolutionary Biology/Plant Genetics and Gene Expression
Evolutionary Biology/Plant Genomes and Evolution
Genes
Genetic regulation
Genomics
Mutation
Physiological aspects
Plant genetics
Plant Proteins - genetics
Plants - genetics
Recombination, Genetic
Translocation, Genetic
Transposons
Zea mays - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJQQvaHwuMMBCSLwsWxLbif1YPqbBQ5GAob1FdmIzUJdUS6up_z13dhoagbQ-8Jqc3eTufP5dc_4dIa9zWwMOqSD6CW5jzl0VG4XMiFrYwhqNpOZYbTHLT8_4p3NxvtXqC2vCAj1wUNwxK8BHCsTx2nCX1tLWUgid5DBPrfzh6SyRapNMhRjMhAxtVYRgcQFpfX9oDiY77m10tAADYY0AeGU-2pQ8d_8QoSeLedv9C37-XUV5Z9Us9Ppaz-dbW9TJHrnXY0s6De90n9yyzQNyO3SbXD8k1-EkAW0dhYeyNFDHrq4s1U1NcYNDI1Gzpk3bxBftJY5rVx21TR3_an0niUO6dR2T6UvIrL1xD_0sy8CVHgrB8Jfez6aPyNnJh2_vTuO-70Jc5SpfxpU2qZVCag3xwNkKVrURqcy5Fk4LBgAqczoxxhlAJ85hD8qasdzCpcpqCKGPyQQe1O4TWjAAgJDimKJWPFXc1EnqlOOuSDJlpI4I2yi-rHpScuyNMS_9l7YCkpOguxLNVfbmikg8jFoEUo4b5N-iTQdZpNT2F8DRyt7RypscLSIv0SPKcD51CAzlFHvQswxwb0ReeQmk1WiwbueHXnVd-fHz9x2Evs52EfoyEnrTC7kWdFbp_kAFaB45vUaSByNJiCDV6PY-OvlGdR0oEruhQCYu4KU3jl_iKKzIayy4mK8HZLDLRuRJWAZ_LKEAEnIlI1KMFshI_eM7zc8Lz2ye5RIQtorI0bCUdjLw0_9h4GfkbvhUiH-xHZAJLEL7HBDn0rzwweU3RIN9eQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZGJwQXfo8FBkQIwWXpksZO4mOBVWWHghhF4xTZiQ0TXVKRVlO58o_znu2UhR-iHLhVyXPafn5--Wy_95mQJ4kqgYcUEP0YVQGluggkR2VEwVSqpEBRc8y2mCTjKT06YSdbRLa1MA5BmCPO6sbs5OMHwBJL-poDB-cBihbZLdR-FKdR26w_B0vc-AdXS54a2SFcHltgFdIlsp0w4Os9sj2dvBl-MEKqLA7S2CzE2M80pK6-7k9P7by_jMz_Opj38Kf-jqn-mnB5ZVnNxepczGYX3maj6-Rbi4NNYvncXy5kv_j6k0Tk_wXqBrnmyLA_tE-5SbZUdYtctsdjrm6Tc1v64NfaR3Vs_9ho3S6_KF9UpT-CNzJ6lS9X_qSugnF9hu3qZeMfVmVwVJujL_b9C9dxrn0mT-0C6L55ihN3t5lr-E0vJ8M7ZDo6fPdiHLiDIoIi4ckiKISMVMYyISCAaVVAGJIsyhIqmBYsBsY30CKUUkugU1rjoZllHCcKLhVKQMzfIb2qrtQu8dMYGCvMyWRachpxKssw0lxTnYYDLjPhkbjt_rxwKup4mMcsN1uDKcymLHY5Ipw7hD0SrFvNrYrIX-yfo2etbVED3FyAfs5d1-bQmCcpznCFpDoqM1VmjIkwgRFWAnH2yCP0y9wW1K4jWT4chDHwaCDqHnlsLFAHpMJEo49i2TT5q9fvNzA6nmxi9LZj9MwZ6RowK4SrAAHk0U07lnsdSwh5Ref2Ljp7C10DQOLxLRnnDP50O_xybIUphJUCFzMJjDHQAo_ctYPxR09w4LCUZx5JO8O0A3_3TnX6yUixD5IMpgTcI_31gN6og-_9a4P75Krdx8T1vz3SgwGnHgAdXsiHLp59B43mt_Y
  priority: 102
  providerName: Unpaywall
Title Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA
URI https://www.ncbi.nlm.nih.gov/pubmed/19521498
https://www.proquest.com/docview/67363467
https://pubmed.ncbi.nlm.nih.gov/PMC2686159
https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000516&type=printable
https://doaj.org/article/3719671495ab4f1d8ed855a06ba4d951
http://dx.doi.org/10.1371/journal.pgen.1000516
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M48
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgheEJ9bYBQLIfGyVE0Tx8kDQi1rVSYRpo2i8hTZiT2QsqQ0q0b_e-6cNCxiiIqnSM45Ue7Ld_H5d4S89lUKcUgC3o95yvY8ndgyRGREwRRXUiCoOVZbRP505p3M2XyHbHq21gwsb03tsJ_UbJn1fv5YvwODf2u6NnBnM6m3AJbjrj_omb9L9mCtCrGZw0ev2VdwWVC1W2HMtTmk-_Vhur89xUCKwgLnhUFr3TLw_o0T7yyyorwtQv2z0PLuKl-I9bXIshur2OQBuV-Hn3RY6ctDsqPyR-RO1ZBy_ZhcV4cNaKEp4lHTc4Muu1oqKvKUTmANRDlSuaZRkdvT4hLnFauSjvPUPilMs4kjemMcs9tLSL6N_I_MU2o49apWDN90HA2fkNlk_Pn91K5bM9iJH_pXdiKkowIWCAEuQ6sEDF8yJ_A9wbRgLsRYAy36UmoJAYzW2KYydV1fwVCiBHjZp6STF7k6IJS7ECNCFiR5GnpO6Mm07-hQe5r3B6EMhEXcDePjpMYtx_YZWWw24zjkLxXvYpRcXEvOInYza1HhdvyDfoQybWgRddsMFMuLuDbiGCaHPsecUkhPO2mg0oAx0fdBp1MIVS3yEjUiro6wNr4jHmKbencAobFFXhkKRN7IsbTnQqzKMv7w6csWROfRNkRnLaI3NZEugGeJqM9cAOcR9qtFediiBCeTtG4foJJvWFcCI7FhCiTrDD56o_gxzsKivVyBipmSQRcWYovsV2bwWxK1UVmEtwykxf72nfz7NwN-PvADCMJDi_QaU9pKwM_--1XPyb1qCxF_vR2SDlieegGR6JXskl0-512yNxwdjyZwHY2j07Ou-a_TNY4HxmbR6fDrL1nyjf8
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZGJwQXfo8FBkQIwWXpksZO4mOBVWWHghhF4xTZiQ0TXVKRVlO58o_znu2UhR-iHLhVyXPafn5--Wy_95mQJ4kqgYcUEP0YVQGluggkR2VEwVSqpEBRc8y2mCTjKT06YSdbRLa1MA5BmCPO6sbs5OMHwBJL-poDB-cBihbZLdR-FKdR26w_B0vc-AdXS54a2SFcHltgFdIlsp0w4Os9sj2dvBl-MEKqLA7S2CzE2M80pK6-7k9P7by_jMz_Opj38Kf-jqn-mnB5ZVnNxepczGYX3maj6-Rbi4NNYvncXy5kv_j6k0Tk_wXqBrnmyLA_tE-5SbZUdYtctsdjrm6Tc1v64NfaR3Vs_9ho3S6_KF9UpT-CNzJ6lS9X_qSugnF9hu3qZeMfVmVwVJujL_b9C9dxrn0mT-0C6L55ihN3t5lr-E0vJ8M7ZDo6fPdiHLiDIoIi4ckiKISMVMYyISCAaVVAGJIsyhIqmBYsBsY30CKUUkugU1rjoZllHCcKLhVKQMzfIb2qrtQu8dMYGCvMyWRachpxKssw0lxTnYYDLjPhkbjt_rxwKup4mMcsN1uDKcymLHY5Ipw7hD0SrFvNrYrIX-yfo2etbVED3FyAfs5d1-bQmCcpznCFpDoqM1VmjIkwgRFWAnH2yCP0y9wW1K4jWT4chDHwaCDqHnlsLFAHpMJEo49i2TT5q9fvNzA6nmxi9LZj9MwZ6RowK4SrAAHk0U07lnsdSwh5Ref2Ljp7C10DQOLxLRnnDP50O_xybIUphJUCFzMJjDHQAo_ctYPxR09w4LCUZx5JO8O0A3_3TnX6yUixD5IMpgTcI_31gN6og-_9a4P75Krdx8T1vz3SgwGnHgAdXsiHLp59B43mt_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+of+Gene+Structure+and+Function+by+Non-Homologous+End-Joining%2C+Homologous+Recombination%2C+and+Transposition+of+DNA&rft.jtitle=PLoS+genetics&rft.au=Goettel%2C+Wolfgang&rft.au=Messing%2C+Joachim&rft.date=2009-06-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=5&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pgen.1000516&rft_id=info%3Apmid%2F19521498&rft.externalDocID=PMC2686159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon