Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity

•Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward mode...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 267; p. 119851
Main Authors Medani, Takfarinas, Garcia-Prieto, Juan, Tadel, Francois, Antonakakis, Marios, Erdbrügger, Tim, Höltershinken, Malte, Mead, Wayne, Schrader, Sophie, Joshi, Anand, Engwer, Christian, Wolters, Carsten H., Mosher, John C., Leahy, Richard M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2023
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2022.119851

Cover

Abstract •Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward modeling can be performed either from an easy-to-use GUI or scripting using the DUNEuro solver.•Full anatomical data (MRI/DWI) and functional data (EEG/MEG) are distributed for easy analysis replication. Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. [Display omitted]
AbstractList Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.
Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.
•Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward modeling can be performed either from an easy-to-use GUI or scripting using the DUNEuro solver.•Full anatomical data (MRI/DWI) and functional data (EEG/MEG) are distributed for easy analysis replication. Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. [Display omitted]
ArticleNumber 119851
Author Mosher, John C.
Leahy, Richard M.
Wolters, Carsten H.
Antonakakis, Marios
Tadel, Francois
Schrader, Sophie
Höltershinken, Malte
Erdbrügger, Tim
Garcia-Prieto, Juan
Joshi, Anand
Mead, Wayne
Engwer, Christian
Medani, Takfarinas
AuthorAffiliation f Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
c Harvard Medical School, Boston, Massachusetts, United States
b Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
g Department of Applied Mathematics, University of Munster, Germany
e School of Electrical and Computer Engineering, Technical University of Crete, Greece
h Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Munster, Munster, Germany
d Institute for Biomagnetism and Biosignalanalysis, University of Munster, Munster, Germany
a Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
AuthorAffiliation_xml – name: f Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
– name: b Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
– name: h Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Munster, Munster, Germany
– name: c Harvard Medical School, Boston, Massachusetts, United States
– name: d Institute for Biomagnetism and Biosignalanalysis, University of Munster, Munster, Germany
– name: e School of Electrical and Computer Engineering, Technical University of Crete, Greece
– name: g Department of Applied Mathematics, University of Munster, Germany
– name: a Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
Author_xml – sequence: 1
  givenname: Takfarinas
  orcidid: 0000-0003-0774-067X
  surname: Medani
  fullname: Medani, Takfarinas
  email: medani@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
– sequence: 2
  givenname: Juan
  surname: Garcia-Prieto
  fullname: Garcia-Prieto, Juan
  email: juangpc@gmail.com
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
– sequence: 3
  givenname: Francois
  surname: Tadel
  fullname: Tadel, Francois
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
– sequence: 4
  givenname: Marios
  surname: Antonakakis
  fullname: Antonakakis, Marios
  organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
– sequence: 5
  givenname: Tim
  surname: Erdbrügger
  fullname: Erdbrügger, Tim
  organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
– sequence: 6
  givenname: Malte
  orcidid: 0000-0002-8291-816X
  surname: Höltershinken
  fullname: Höltershinken, Malte
  organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
– sequence: 7
  givenname: Wayne
  surname: Mead
  fullname: Mead, Wayne
  organization: Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
– sequence: 8
  givenname: Sophie
  surname: Schrader
  fullname: Schrader, Sophie
  organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
– sequence: 9
  givenname: Anand
  surname: Joshi
  fullname: Joshi, Anand
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
– sequence: 10
  givenname: Christian
  surname: Engwer
  fullname: Engwer, Christian
  organization: Department of Applied Mathematics, University of Münster, Germany
– sequence: 11
  givenname: Carsten H.
  surname: Wolters
  fullname: Wolters, Carsten H.
  organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
– sequence: 12
  givenname: John C.
  surname: Mosher
  fullname: Mosher, John C.
  organization: Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
– sequence: 13
  givenname: Richard M.
  surname: Leahy
  fullname: Leahy, Richard M.
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36599389$$D View this record in MEDLINE/PubMed
BookMark eNqVkk9vEzEQxVeoiP6Br4AsceGywd6sHZsDoi0tVCpwoWdr1p5NHRy79XqL8u1xSGlpTuFky575-XneO6z2QgxYVYTRCaNMvFtMAo4puiXMcdLQppkwpiRnz6oDRhWvFZ81e-s9n9ayXO1Xh8OwoJQq1soX1f5UcKWmUh1U40kCF4Yc07L-dPXtrFDfk-NAXMg4T5DREgiWjAOmuk8Og_Urcu6Cy0jOPC4xZPIV83W0pI-JLKNF78KcoEeTUywCA2ZnSLd-hoDJ7s7l1cvqeQ9-wFf361F1dX724_RLffn988Xp8WVthBK5loC2N4oDZYACLDXMdpJaaRvLWSMpR9tyFLKbzsBiKzomZA8zNTOcTaWZHlUXG66NsNA3qQwsrXQEp_8cxDTXkIo8j9oq3jJLgVqQLVDe9T0wAZ1qOkYFqsJSG9YYbmD1C7x_ADKq17bohX60Ra9t0RtbSu-HTe_N2C3RmjK1BP6JoKc3wV3rebzTStG2kU0BvL0HpHg74pD10g0GvYeAcRx0MxOMyYZJUUrfbJUu4phCGfO6ilPBpGpL1et_FT1I-ZuMR8kmxWFI2GvjMmQX1wKd3-XPcgvwH-M62bRiycadw6QHU6Jn0LpUYlXMc7tAPm5BTEmmM-B_4mo3xG-vdhcy
CitedBy_id crossref_primary_10_3390_bioengineering11090897
crossref_primary_10_1109_TBME_2024_3509539
crossref_primary_10_1038_s41467_024_54244_8
crossref_primary_10_1063_5_0226457
crossref_primary_10_1109_TBME_2024_3365803
crossref_primary_10_1088_1361_6560_ad25c3
crossref_primary_10_55578_joaims_231215_001
crossref_primary_10_1088_1361_6560_ad66a9
crossref_primary_10_1371_journal_pbio_3002452
crossref_primary_10_1016_j_neuroimage_2023_120259
crossref_primary_10_1002_hbm_26810
crossref_primary_10_3389_fnins_2024_1443752
crossref_primary_10_1162_imag_a_00153
Cites_doi 10.1016/j.ics.2006.12.058
10.3389/fnins.2019.00076
10.1109/TBME.2004.836490
10.1016/j.neuroimage.2019.116039
10.1109/10.245635
10.1016/0168-5597(94)00228-7
10.1002/hbm.460020402
10.1088/0031-9155/50/13/004
10.1016/j.neuroimage.2014.06.040
10.1016/j.neuroimage.2020.117353
10.3389/fnins.2018.00030
10.1006/nimg.1998.0395
10.1109/10.995679
10.1002/hbm.21114
10.1016/j.neuroimage.2020.116797
10.1109/TBME.2008.923159
10.1088/1361-6560/abc5aa
10.1016/j.neuroimage.2009.02.024
10.1016/j.neuroimage.2020.117012
10.1109/TBME.2018.2828336
10.1155/2011/879716
10.1016/j.camwa.2020.06.007
10.1371/journal.pone.0093154
10.1007/s10548-013-0313-y
10.1088/0266-5611/20/4/007
10.1002/hbm.20795
10.1186/s12938-018-0463-y
10.1137/060659053
10.1155/2011/935364
10.1109/79.962275
10.1109/10.141192
10.1088/1741-2552/ab2694
10.1155/2011/758973
10.1002/hbm.20714
10.1155/2010/972060
10.1137/09075038X
10.3389/fnhum.2023.1216758
10.1007/978-3-642-12197-5_19
10.3389/fnins.2019.00531
10.1371/journal.pone.0252431
10.2528/PIER15050102
10.1114/1.1310220
10.1006/nimg.2001.0962
10.1016/j.neuroimage.2005.10.014
10.1016/j.neuroimage.2010.02.014
10.1007/s12021-019-09436-9
10.1088/0031-9155/44/2/010
10.1016/j.neuroimage.2012.05.006
10.1109/10.748978
10.1016/S0896-6273(00)81138-1
10.1109/TBME.2016.2590740
10.1103/RevModPhys.65.413
10.1016/S1361-8415(02)00054-3
10.1016/S0013-4694(98)00057-1
10.1016/j.neuroimage.2013.10.027
10.1155/2011/923703
10.1073/pnas.171473898
10.1117/1.NPh.7.1.015008
10.1007/s00607-008-0004-9
10.1088/0031-9155/40/3/001
10.1155/2011/156869
10.1088/0266-5611/27/4/045003
10.1016/j.neuroimage.2005.02.018
10.1016/j.clinph.2006.05.003
10.3389/fnins.2013.00031
10.1007/s12021-020-09458-8
10.1002/nme.2579
10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2
10.1137/15M1048392
10.1088/0031-9155/57/18/5715
10.1088/0031-9155/61/24/8502
10.1007/BF02442317
10.1186/1743-0003-4-46
10.1016/j.neuroimage.2008.09.009
10.1109/TBME.2020.2999271
10.1002/hbm.24754
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Feb 15, 2023
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 15, 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2022.119851
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest One Psychology

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 119851
ExternalDocumentID oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9
10.1016/j.neuroimage.2022.119851
PMC9904282
36599389
10_1016_j_neuroimage_2022_119851
S1053811922009727
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS104585
– fundername: NINDS NIH HHS
  grantid: R01 NS074980
– fundername: NIBIB NIH HHS
  grantid: R01 EB009048
– fundername: NIBIB NIH HHS
  grantid: R01 EB026299
– fundername: NIBIB NIH HHS
  grantid: U01 EB023820
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c696t-8aedfc95a01ae6ad0c1db80d8d2d512805ed45e68b37ade46b168fa797c5138c3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:36:37 EDT 2025
Sun Oct 26 03:55:47 EDT 2025
Tue Sep 30 17:16:34 EDT 2025
Thu Oct 02 10:20:31 EDT 2025
Tue Oct 07 06:51:50 EDT 2025
Thu Jul 24 03:25:36 EDT 2025
Sat Oct 25 05:58:12 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 23 02:38:45 EST 2024
Tue Oct 14 19:35:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
DUNEuro
Electrophysiology
Head modeling
Forward model
Brainstorm
EEG/MEG/SEEG
Language English
License This is an open access article under the CC BY license.
Copyright © 2022. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-8aedfc95a01ae6ad0c1db80d8d2d512805ed45e68b37ade46b168fa797c5138c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this paper.
ORCID 0000-0003-0774-067X
0000-0002-8291-816X
OpenAccessLink https://doaj.org/article/d9541d0a0da84a05bffa16ab92b106e9
PMID 36599389
PQID 2765061894
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9
unpaywall_primary_10_1016_j_neuroimage_2022_119851
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9904282
proquest_miscellaneous_2761182186
proquest_journals_2765061894
pubmed_primary_36599389
crossref_citationtrail_10_1016_j_neuroimage_2022_119851
crossref_primary_10_1016_j_neuroimage_2022_119851
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119851
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119851
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Medani, T., Lautru, D., Ren, Z., Schwartz, D., Sou, G., 2014. Improving the FEM resolution of the EEG forward problem using the dipole model based on Saint Venant's approach. International workshop on Biomaterial Innovations: Toward Repair of the Human Body. doi
Gaser, Dahnke (bib0026) 2016; 32
Marino, Cordero-Grande, Mantini, Ferrazzi (bib0049) 2021; 15
Ashburner, Friston (bib0005) 2005; 26
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0033) 1993; 65
Bastian, Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger, Sander (bib0010) 2008; 822
Haueisen, Tuch, Ramon, Schimpf, Wedeen, George, Belliveau (bib0034) 2002; 15
Leahy, Mosher, Spencer, Huang, Lewine (bib0042) 1998; 107
Salayev, Nakasato, Ishitobi, Shamoto, Kanno, Iinuma (bib0069) 2006; 117
Pursiainen, Vorwerk, Wolters (bib0064) 2016; 61
Schimpf, Ramon, Haueisen (bib0072) 2002; 49
Nüßing, A. (2018).
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Parkkonen, Hämäläinen (bib0028) 2014; 86
Baillet, Tadel, Leahy, Mosher, Delorme, Makeig, Oostenveld, Hämäläinen, Dalal, Zumer, Clerc, Wolters, Kiebel, Jensen (bib0008) 2010
Nüßing, Wolters, Brinck, Engwer (bib0058) 2016; 63
Buchner, Adams, Müller, Ludwig, Knepper, Thron, Niemann, Scherg (bib0014) 1995; 96
Medani, Lautru, Schwartz, Ren, Sou (bib0052) 2015; 153
Lew, Wolters, Anwander, Makeig, MacLeod (bib0044) 2007; 1300
Van Uitert, Johnson, Zhukov (bib0085) 2004; 51
Wolters, Anwander, Tricoche, Weinstein, Koch, MacLeod (bib0098) 2006; 30
.
Lew, Wolters, Anwander, Makeig, MacLeod (bib0045) 2009; 30
Cook, Koles (bib0015) 2006
Dalal, Zumer, Guggisberg, Trumpis, Wong, Sekihara, Nagarajan (bib0016) 2011; 2011
Fang, Boas (bib0065) 2009
Pursiainen, Sorrentino, Campi, Piana (bib0063) 2011; 27
Wolters, C.H., 2003. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain. Leipzig. 239267
Vatta, Meneghini, Esposito, Mininel, Di Salle (bib0086) 2010; 2010
Huang, Mosher, Leahy (bib0038) 1999; 44
doi
Lanfer, Scherg, Dannhauer, Knösche, Burger, Wolters (bib0041) 2012; 62
Beltrachini (bib0012) 2019; 16
Huang, Datta, Bikson, Parra (bib0039) 2019; 12
Vorwerk, Cho, Rampp, Hamer, Knösche, Wolters (bib0090) 2014; 100
He, Rezaei, Pursiainen (bib0035) 2020; 18
Makarov, Hamalainen, Okada, Noetscher, Ahveninen, Nummenmaa (bib0046) 2021; 68
Salmelin, Baillet (bib0070) 2009; 30
Vallaghé, Papadopoulo (bib0084) 2010; 32
Tadel, Bock, Niso, Mosher, Cousineau, Pantazis, Leahy, Baillet (bib0080) 2019; 13
Pascual-Marqui (bib0060) 2002; 24
Vorwerk, Oostenveld, Piastra, Magyari, Wolters (bib0093) 2018; 17
Marin, Guerin, Baillet, Garnero, Meunier (bib0048) 1998; 6
Antonakakis, Schrader, Aydin, Khan, Gross, Zervakis, Rampp, Wolters (bib0003) 2020; 223
Saturnino, Puonti, Nielsen, Antonenko, Madsen, Thielscher (bib0071) 2019
Gramfort, Papadopoulo, Olivi, Clerc (bib0029) 2011; 2011
Schrader, Antonakakis, Rampp, Engwer, Wolters (bib0073) 2020; 65
Ad-Dab'bagh, Y., Lyttelton, O., Muehlboeck, J.S., Lepage, C., Einarson, D., Mok, K., Ivanov, O., Vincent, R.D., Lerch, J., Fombonne, E., others, 2006. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research, in: Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping. Florence, p. 2266.
Hallez, Vanrumste, Grech, Muscat, De Clercq, Vergult, D'Asseler, Camilleri, Fabri, Van Huffel, Lemahieu (bib0032) 2007; 4
Rivière, Régis, Cointepas, Papadopoulos-Orfanos, Cachia, Mangin (bib0066) 2003; 19
Vorwerk, Clerc, Burger, Wolters (bib0091) 2012; 57
Yan, Nunez, Hart (bib0101) 1991; 29
Höltershinken, M., Lange, P., Wallois, F., Buyx, A., Pursiainen, S., Engwer, C., Wolters, C., 2022. The localized subtraction approach for EEG and MEG forward modeling. Proc. Work. BIOSIGNAL. 10.1016/j.neuroimage.2019.116039
Tanzer, Järvenpää, Nenonen, Somersalo (bib0081) 2005; 50
Vidaurre, Sander, Schlögl (bib0088) 2011; 2011
Zhang (bib0102) 1995; 40
Wang, Zhu, Mueller, Lim, Liu, He, Member, He (bib0094) 2008; 55
Oostenveld, Fries, Maris, Schoffelen (bib0059) 2011; 2011
Soares, Marques, Alves, Sousa (bib0077) 2013; 7
de Munck, Peters (bib0020) 1993; 40
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1994. Statistical parametric maps in functional imaging: A general linear approach, 2, 189-210. doi
Erdbrügger, T., Westhoff, A., Hoeltershinken, M., Radecke, J., Buschermoehle, Y., Buyx, A., Wallois, F., Pursiainen, S., Gross, J., Lencer, R., Engwer, C., Wolters, C., 2022. CutFEM forward modeling for EEG source analysis.
Akalin Acar, Makeig (bib0002) 2008; 2008
Ruthotto, Kugel, Olesch, Fischer, Modersitzki, Burger, Wolters (bib0068) 2012; 57
Engwer, Vorwerk, Ludewig, Wolters (bib0023) 2017; 39
Geuzaine, Remacle (bib0027) 2009; 79
Weinstein, Zhukov, Johnson (bib0095) 2000; 28
Baillet, Mosher, Leahy (bib0007) 2001; 18
Antonakakis, Schrader, Wollbrink, Oostenveld, Rampp, Haueisen, Wolters (bib0004) 2019; 40
Lee, S., Cho, M., Kim, T., Kim, I., Oh, S., 2006. Electrical conductivity estimation from diffusion tensor and T2: a silk yarn phantom study. Proc. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 26, 3034.
Beltrachini (bib0011) 2019; 66
(Doctoral dissertation, Universitäts-und Landesbibliothek Münster).
Güllmar, Haueisen, Reichenbach (bib0031) 2010; 51
Rullmann, Anwander, Dannhauer, Warfield, Duffy, Wolters (bib0067) 2009; 44
Tuch, Wedeen, Dale, George, Belliveau (bib0083) 2001; 98
Stenroos (bib0050) 2016; 7
Wolters, Grasedyck, Hackbusch (bib0099) 2004; 20
Medani, T., Mosher, J.C., Joshi, A.A., Taylor, K.N., Nair, D.R., Wolters, C.H., Leahy, R.M., 2022. SEEG source analysis of intracranial stimulation with realistic head modeling: a validation study, in: OHBM (Ed.), OHBM Annual Meeting. 10.1117/12.2580935
Piastra, Nüßing, Vorwerk, Bornfleth, Oostenveld, Engwer, Wolters (bib0061) 2018; 12
Drechsler, Wolters, Dierkes, Si, Grasedyck (bib0022) 2009; 46
Vorwerk, Hanrath, Wolters, Grasedyck (bib0092) 2019; 201
Vermaas, Piastra, Oostendorp, Ramsey, Tiesinga (bib0087) 2020; 18
Malmivuo, Plonsey (bib0047) 2012; 1–506
Strang, Fix (bib0078) 1974
Wolters, C.H., Anwander, A., Koch, M.A., Reitzinger, S., Kuhn, M., Svensen, M., 2001. Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver, in: “Forschung Und Forschung Und Wissenschaftliches Rechnen” Contributions to the Heinz-Billing Award. pp. 111–157.
Vorwerk, Aydin, Wolters, Butson (bib0089) 2019; 13
Piastra, M.C., Schrader, S., Nüßing, A., Antonakakis, M., Medani, T., Wollbrink, A., Engwer, C., Wolters, C.H., 2020. The WWU DUNEuro reference data set for combined EEG/MEG source analysis. 10.5281/ZENODO.3888381
Sheng Bao, Liu, Zhang (bib0076) 2011; 2011
Bastian, Blatt, Dedner, Dreier, Engwer, Fritze, Gräser, Grüninger, Kempf, Klöfkorn, Ohlberger, Sander (bib0009) 2021; 81
Gross, Junghöfer, Wolters (bib0030) 2021; 0
Mosher, Leahy, Lewis (bib0055) 1999; 46
Jaiswal, Nenonen, Stenroos, Gramfort, Dalal, Westner, Litvak, Mosher, Schoffelen, Witton, Oostenveld, Parkkonen (bib0040) 2020; 216
Brette, Destexhe (bib0013) 2012
Wolters, Köstler, Möller, Härdtlein, Grasedyck, Hackbusch (bib0100) 2007; 30
Dannhauer, Lanfer, Wolters, Knösche (bib0019) 2011; 32
Aydin, Vorwerk, Küpper, Heers, Kugel, Galka, Hamid, Wellmer, Kellinghaus, Rampp, Wolters (bib0006) 2014; 9
Dale, Liu, Fischl, Buckner, Belliveau, Lewine, Halgren (bib0018) 2000; 26
Montes-Restrepo, van Mierlo, Strobbe, Staelens, Vandenberghe, Hallez (bib0054) 2014; 27
Shattuck, Leahy (bib0075) 2002; 6
Henschel, Conjeti, Estrada, Diers, Fischl, Reuter (bib0036) 2020; 219
Tadel, Baillet, Mosher, Pantazis, Leahy (bib0079) 2011; 2011
Dale, Fischl, Sereno (bib0017) 1999; 9
Tran, Yan, Fang (bib0082) 2020; 7
Mosher, Lewis, Leahy (bib0056) 1992; 39
Drechsler, F., Vorwerk, J., Haueisen, J., Grasedyck, L., Wolters, C.H., 2022. Validation of EEG forward modeling approaches in the presence of anisotropy in the source space. 10.48550/arXiv.2208.03081
Schrader, Westhoff, Piastra, Miinalainen, Pursiainen, Vorwerk, Brinck, Wolters, Engwer (bib0074) 2021; 16
Shattuck (10.1016/j.neuroimage.2022.119851_bib0075) 2002; 6
Ashburner (10.1016/j.neuroimage.2022.119851_bib0005) 2005; 26
Huang (10.1016/j.neuroimage.2022.119851_bib0039) 2019; 12
Schrader (10.1016/j.neuroimage.2022.119851_bib0073) 2020; 65
Huang (10.1016/j.neuroimage.2022.119851_bib0038) 1999; 44
10.1016/j.neuroimage.2022.119851_bib0097
Mosher (10.1016/j.neuroimage.2022.119851_bib0055) 1999; 46
Tadel (10.1016/j.neuroimage.2022.119851_bib0080) 2019; 13
10.1016/j.neuroimage.2022.119851_bib0096
Cook (10.1016/j.neuroimage.2022.119851_bib0015) 2006
Dale (10.1016/j.neuroimage.2022.119851_bib0017) 1999; 9
Medani (10.1016/j.neuroimage.2022.119851_bib0052) 2015; 153
Pursiainen (10.1016/j.neuroimage.2022.119851_bib0063) 2011; 27
Brette (10.1016/j.neuroimage.2022.119851_bib0013) 2012
Drechsler (10.1016/j.neuroimage.2022.119851_bib0022) 2009; 46
Vorwerk (10.1016/j.neuroimage.2022.119851_bib0093) 2018; 17
Rullmann (10.1016/j.neuroimage.2022.119851_bib0067) 2009; 44
Tadel (10.1016/j.neuroimage.2022.119851_bib0079) 2011; 2011
Antonakakis (10.1016/j.neuroimage.2022.119851_bib0003) 2020; 223
Jaiswal (10.1016/j.neuroimage.2022.119851_bib0040) 2020; 216
Vorwerk (10.1016/j.neuroimage.2022.119851_bib0089) 2019; 13
He (10.1016/j.neuroimage.2022.119851_bib0035) 2020; 18
Gaser (10.1016/j.neuroimage.2022.119851_bib0026) 2016; 32
Soares (10.1016/j.neuroimage.2022.119851_bib0077) 2013; 7
Vorwerk (10.1016/j.neuroimage.2022.119851_bib0091) 2012; 57
Montes-Restrepo (10.1016/j.neuroimage.2022.119851_bib0054) 2014; 27
Baillet (10.1016/j.neuroimage.2022.119851_bib0007) 2001; 18
Leahy (10.1016/j.neuroimage.2022.119851_bib0042) 1998; 107
10.1016/j.neuroimage.2022.119851_bib0001
Oostenveld (10.1016/j.neuroimage.2022.119851_bib0059) 2011; 2011
Schrader (10.1016/j.neuroimage.2022.119851_bib0074) 2021; 16
Malmivuo (10.1016/j.neuroimage.2022.119851_bib0047) 2012; 1–506
Hallez (10.1016/j.neuroimage.2022.119851_bib0032) 2007; 4
Fang (10.1016/j.neuroimage.2022.119851_bib0065) 2009
Marin (10.1016/j.neuroimage.2022.119851_bib0048) 1998; 6
Gramfort (10.1016/j.neuroimage.2022.119851_bib0028) 2014; 86
Antonakakis (10.1016/j.neuroimage.2022.119851_bib0004) 2019; 40
Vermaas (10.1016/j.neuroimage.2022.119851_bib0087) 2020; 18
Pascual-Marqui (10.1016/j.neuroimage.2022.119851_bib0060) 2002; 24
Van Uitert (10.1016/j.neuroimage.2022.119851_bib0085) 2004; 51
Wolters (10.1016/j.neuroimage.2022.119851_bib0099) 2004; 20
Yan (10.1016/j.neuroimage.2022.119851_bib0101) 1991; 29
Vorwerk (10.1016/j.neuroimage.2022.119851_bib0090) 2014; 100
Weinstein (10.1016/j.neuroimage.2022.119851_bib0095) 2000; 28
Tanzer (10.1016/j.neuroimage.2022.119851_bib0081) 2005; 50
Bastian (10.1016/j.neuroimage.2022.119851_bib0009) 2021; 81
Dale (10.1016/j.neuroimage.2022.119851_bib0018) 2000; 26
10.1016/j.neuroimage.2022.119851_bib0062
Vidaurre (10.1016/j.neuroimage.2022.119851_bib0088) 2011; 2011
Zhang (10.1016/j.neuroimage.2022.119851_bib0102) 1995; 40
Ruthotto (10.1016/j.neuroimage.2022.119851_bib0068) 2012; 57
Gramfort (10.1016/j.neuroimage.2022.119851_bib0029) 2011; 2011
Vallaghé (10.1016/j.neuroimage.2022.119851_bib0084) 2010; 32
Pursiainen (10.1016/j.neuroimage.2022.119851_bib0064) 2016; 61
Sheng Bao (10.1016/j.neuroimage.2022.119851_bib0076) 2011; 2011
Wang (10.1016/j.neuroimage.2022.119851_bib0094) 2008; 55
10.1016/j.neuroimage.2022.119851_bib0053
Akalin Acar (10.1016/j.neuroimage.2022.119851_bib0002) 2008; 2008
Dannhauer (10.1016/j.neuroimage.2022.119851_bib0019) 2011; 32
10.1016/j.neuroimage.2022.119851_bib0051
Güllmar (10.1016/j.neuroimage.2022.119851_bib0031) 2010; 51
Schimpf (10.1016/j.neuroimage.2022.119851_bib0072) 2002; 49
10.1016/j.neuroimage.2022.119851_bib0057
Henschel (10.1016/j.neuroimage.2022.119851_bib0036) 2020; 219
Salayev (10.1016/j.neuroimage.2022.119851_bib0069) 2006; 117
Makarov (10.1016/j.neuroimage.2022.119851_bib0046) 2021; 68
Engwer (10.1016/j.neuroimage.2022.119851_bib0023) 2017; 39
de Munck (10.1016/j.neuroimage.2022.119851_bib0020) 1993; 40
Tuch (10.1016/j.neuroimage.2022.119851_bib0083) 2001; 98
Aydin (10.1016/j.neuroimage.2022.119851_bib0006) 2014; 9
Stenroos (10.1016/j.neuroimage.2022.119851_bib0050) 2016; 7
Haueisen (10.1016/j.neuroimage.2022.119851_bib0034) 2002; 15
Dalal (10.1016/j.neuroimage.2022.119851_bib0016) 2011; 2011
10.1016/j.neuroimage.2022.119851_bib0043
Marino (10.1016/j.neuroimage.2022.119851_bib0049) 2021; 15
Wolters (10.1016/j.neuroimage.2022.119851_bib0100) 2007; 30
Tran (10.1016/j.neuroimage.2022.119851_bib0082) 2020; 7
Lew (10.1016/j.neuroimage.2022.119851_bib0044) 2007; 1300
Vatta (10.1016/j.neuroimage.2022.119851_bib0086) 2010; 2010
Vorwerk (10.1016/j.neuroimage.2022.119851_bib0092) 2019; 201
Bastian (10.1016/j.neuroimage.2022.119851_bib0010) 2008; 822
Nüßing (10.1016/j.neuroimage.2022.119851_bib0058) 2016; 63
10.1016/j.neuroimage.2022.119851_bib0037
Baillet (10.1016/j.neuroimage.2022.119851_bib0008) 2010
Lew (10.1016/j.neuroimage.2022.119851_bib0045) 2009; 30
Rivière (10.1016/j.neuroimage.2022.119851_bib0066) 2003; 19
Beltrachini (10.1016/j.neuroimage.2022.119851_bib0011) 2019; 66
Geuzaine (10.1016/j.neuroimage.2022.119851_bib0027) 2009; 79
Strang (10.1016/j.neuroimage.2022.119851_bib0078) 1974
Salmelin (10.1016/j.neuroimage.2022.119851_bib0070) 2009; 30
Buchner (10.1016/j.neuroimage.2022.119851_bib0014) 1995; 96
Piastra (10.1016/j.neuroimage.2022.119851_bib0061) 2018; 12
Saturnino (10.1016/j.neuroimage.2022.119851_bib0071) 2019
Mosher (10.1016/j.neuroimage.2022.119851_bib0056) 1992; 39
Hämäläinen (10.1016/j.neuroimage.2022.119851_bib0033) 1993; 65
Wolters (10.1016/j.neuroimage.2022.119851_bib0098) 2006; 30
Gross (10.1016/j.neuroimage.2022.119851_bib0030) 2021; 0
Lanfer (10.1016/j.neuroimage.2022.119851_bib0041) 2012; 62
10.1016/j.neuroimage.2022.119851_bib0025
Beltrachini (10.1016/j.neuroimage.2022.119851_bib0012) 2019; 16
10.1016/j.neuroimage.2022.119851_bib0024
10.1016/j.neuroimage.2022.119851_bib0021
References_xml – volume: 50
  start-page: 3023
  year: 2005
  end-page: 3039
  ident: bib0081
  article-title: Representation of bioelectric current sources using Whitney elements in the finite element method
  publication-title: Phys. Med. Biol.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0079
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
– volume: 9
  start-page: e93154
  year: 2014
  ident: bib0006
  article-title: Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model
  publication-title: PLoS ONE
– volume: 81
  start-page: 75
  year: 2021
  end-page: 112
  ident: bib0009
  article-title: The DUNE framework: basic concepts and recent developments
  publication-title: Comput. Math. Appl.
– volume: 13
  year: 2019
  ident: bib0080
  article-title: MEG/EEG group analysis with brainstorm
  publication-title: Front. Neurosci.
– reference: Ad-Dab'bagh, Y., Lyttelton, O., Muehlboeck, J.S., Lepage, C., Einarson, D., Mok, K., Ivanov, O., Vincent, R.D., Lerch, J., Fombonne, E., others, 2006. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research, in: Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping. Florence, p. 2266.
– reference: Medani, T., Lautru, D., Ren, Z., Schwartz, D., Sou, G., 2014. Improving the FEM resolution of the EEG forward problem using the dipole model based on Saint Venant's approach. International workshop on Biomaterial Innovations: Toward Repair of the Human Body. doi:
– volume: 39
  start-page: B138
  year: 2017
  end-page: B164
  ident: bib0023
  article-title: A discontinuous Galerkin method to solve the EEG forward problem using the subtraction approach
  publication-title: SIAM J. Sci. Comput.
– volume: 1300
  start-page: 149
  year: 2007
  end-page: 152
  ident: bib0044
  article-title: Low resolution conductivity estimation to improve source localization
  publication-title: Int. Congr. Ser.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0017
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 32
  start-page: 336
  year: 2016
  end-page: 348
  ident: bib0026
  article-title: CAT-A computational anatomy toolbox for the analysis of structural MRI Data
  publication-title: Hum. Brain Mapp.
– volume: 16
  year: 2019
  ident: bib0012
  article-title: The analytical subtraction approach for solving the forward problem in EEG
  publication-title: J. Neural Eng.
– volume: 55
  start-page: 2481
  year: 2008
  end-page: 2486
  ident: bib0094
  article-title: A new method to derive white matter conductivity from diffusion tensor MRI
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  start-page: 159
  year: 2002
  end-page: 166
  ident: bib0034
  article-title: The influence of brain tissue anisotropy on human EEG and MEG
  publication-title: Neuroimage
– volume: 61
  start-page: 8502
  year: 2016
  end-page: 8520
  ident: bib0064
  article-title: Electroencephalography (EEG) forward modeling via H (div) finite element sources with focal interpolation
  publication-title: Phys. Med. Biol.
– volume: 13
  start-page: 531
  year: 2019
  ident: bib0089
  article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction
  publication-title: Front. Neurosci.
– volume: 32
  start-page: 2379
  year: 2010
  end-page: 2394
  ident: bib0084
  article-title: A trilinear immersed finite element method for solving the electroencephalography forward problem
  publication-title: SIAM J. Sci. Comput.
– volume: 62
  start-page: 418
  year: 2012
  end-page: 431
  ident: bib0041
  article-title: Influences of skull segmentation inaccuracies on EEG source analysis
  publication-title: Neuroimage
– volume: 32
  start-page: 1383
  year: 2011
  end-page: 1399
  ident: bib0019
  article-title: Modeling of the human skull in EEG source analysis
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 934
  year: 2003
  ident: bib0066
  article-title: A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci
  publication-title: Neuroimage
– volume: 66
  start-page: 273
  year: 2019
  end-page: 282
  ident: bib0011
  article-title: Sensitivity of the projected subtraction approach to mesh degeneracies and its impact on the forward problem in EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 44
  start-page: 423
  year: 1999
  end-page: 440
  ident: bib0038
  article-title: A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG
  publication-title: Phys. Med. Biol.
– volume: 27
  start-page: 95
  year: 2014
  end-page: 111
  ident: bib0054
  article-title: Influence of skull modeling approaches on EEG source localization
  publication-title: Brain Topogr.
– year: 1974
  ident: bib0078
  article-title: An Analysis of the Finite Element Method, Mathematics of Computation
– volume: 29
  start-page: 475
  year: 1991
  end-page: 481
  ident: bib0101
  article-title: Finite-element model of the human head: scalp potentials due to dipole sources
  publication-title: Med. Biol. Eng. Comput.
– volume: 79
  start-page: 1309
  year: 2009
  end-page: 1331
  ident: bib0027
  article-title: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities
  publication-title: Int. J. Numer. Methods Eng.
– volume: 16
  year: 2021
  ident: bib0074
  article-title: DUNEuro—a software toolbox for forward modeling in bioelectromagnetism
  publication-title: PLoS ONE
– volume: 26
  start-page: 55
  year: 2000
  end-page: 67
  ident: bib0018
  article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
– volume: 96
  start-page: 121
  year: 1995
  end-page: 134
  ident: bib0014
  article-title: Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– reference: . doi:
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib0005
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 20
  start-page: 1099
  year: 2004
  end-page: 1116
  ident: bib0099
  article-title: Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem
  publication-title: Inverse Probl.
– volume: 0
  year: 2021
  ident: bib0030
  article-title: Bioelectromagnetism in human brain research: new applications, new questions
  publication-title: Neuroscientist
– volume: 28
  start-page: 1059
  year: 2000
  end-page: 1065
  ident: bib0095
  article-title: Lead-field bases for electroencephalography source imaging
  publication-title: Ann. Biomed. Eng.
– volume: 153
  start-page: 11
  year: 2015
  end-page: 22
  ident: bib0052
  article-title: FEM method for the EEG forward problem and improvement based on modification of the Saint Venant's method
  publication-title: Prog. Electromagn. Res.
– volume: 18
  start-page: 14
  year: 2001
  end-page: 30
  ident: bib0007
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
– volume: 15
  year: 2021
  ident: bib0049
  article-title: Conductivity tensor imaging of the human brain using water mapping techniques
  publication-title: Front. Neurosci.
– volume: 2011
  year: 2011
  ident: bib0029
  article-title: Forward field computation with OpenMEEG
  publication-title: Comput. Intell. Neurosci.
– volume: 2008
  start-page: 3991
  year: 2008
  end-page: 3994
  ident: bib0002
  article-title: Neuroelectromagnetic forward modeling toolbox
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 6
  start-page: 129
  year: 2002
  end-page: 142
  ident: bib0075
  article-title: Brainsuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
– volume: 24
  start-page: 5
  year: 2002
  end-page: 12
  ident: bib0060
  article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– reference: Erdbrügger, T., Westhoff, A., Hoeltershinken, M., Radecke, J., Buschermoehle, Y., Buyx, A., Wallois, F., Pursiainen, S., Gross, J., Lencer, R., Engwer, C., Wolters, C., 2022. CutFEM forward modeling for EEG source analysis.
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  ident: bib0028
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
– volume: 40
  start-page: 5011
  year: 2019
  end-page: 5028
  ident: bib0004
  article-title: The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: 250
  year: 1998
  end-page: 269
  ident: bib0048
  article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models
  publication-title: Hum. Brain Mapp.
– reference: Wolters, C.H., Anwander, A., Koch, M.A., Reitzinger, S., Kuhn, M., Svensen, M., 2001. Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver, in: “Forschung Und Forschung Und Wissenschaftliches Rechnen” Contributions to the Heinz-Billing Award. pp. 111–157.
– volume: 57
  start-page: 5715
  year: 2012
  end-page: 5731
  ident: bib0068
  article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
  publication-title: Phys. Med. Biol.
– reference: Lee, S., Cho, M., Kim, T., Kim, I., Oh, S., 2006. Electrical conductivity estimation from diffusion tensor and T2: a silk yarn phantom study. Proc. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 26, 3034.
– volume: 57
  start-page: 795
  year: 2012
  end-page: 798
  ident: bib0091
  article-title: Comparison of boundary element and finite element approaches to the EEG forward problem
  publication-title: Biomed. Eng. /Biomed. Tech.
– reference: Höltershinken, M., Lange, P., Wallois, F., Buyx, A., Pursiainen, S., Engwer, C., Wolters, C., 2022. The localized subtraction approach for EEG and MEG forward modeling. Proc. Work. BIOSIGNAL. 10.1016/j.neuroimage.2019.116039
– reference: Wolters, C.H., 2003. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain. Leipzig. 239267
– volume: 44
  start-page: 399
  year: 2009
  end-page: 410
  ident: bib0067
  article-title: EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model
  publication-title: Neuroimage
– volume: 12
  year: 2018
  ident: bib0061
  article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem
  publication-title: Front. Neurosci.
– volume: 40
  start-page: 335
  year: 1995
  end-page: 349
  ident: bib0102
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Phys. Med. Biol.
– volume: 46
  start-page: 1055
  year: 2009
  end-page: 1065
  ident: bib0022
  article-title: A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation
  publication-title: Neuroimage
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib0059
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib0033
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 7
  start-page: 1
  year: 2020
  ident: bib0082
  article-title: Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models
  publication-title: Neurophotonics
– volume: 98
  start-page: 11697
  year: 2001
  end-page: 11701
  ident: bib0083
  article-title: Conductivity tensor mapping of the human brain using diffusion tensor MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib0086
  article-title: Realistic and spherical head modeling for EEG forward problem solution: a comparative cortex-based analysis
  publication-title: Comput. Intell. Neurosci.
– volume: 49
  start-page: 409
  year: 2002
  end-page: 418
  ident: bib0072
  article-title: Dipole models for the EEG and MEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  year: 2011
  ident: bib0063
  article-title: Forward simulation and inverse dipole localization with the lowest order Raviart - Thomas elements for electroencephalography
  publication-title: Inverse Probl.
– volume: 117
  start-page: 1836
  year: 2006
  end-page: 1843
  ident: bib0069
  article-title: Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole
  publication-title: Clin. Neurophysiol.
– volume: 39
  start-page: 541
  year: 1992
  end-page: 557
  ident: bib0056
  article-title: Multiple dipole modeling and localization from spatio-temporal MEG data
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1142
  year: 2009
  end-page: 1145
  ident: bib0065
  article-title: Tetrahedral mesh generation from volumetric binary and grayscale images
  publication-title: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE
– start-page: 4536
  year: 2006
  end-page: 4539
  ident: bib0015
  article-title: A high-resolution anisotropic finite-volume head model for EEG source analysis
  publication-title: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE
– volume: 107
  start-page: 159
  year: 1998
  end-page: 173
  ident: bib0042
  article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 4
  start-page: 46
  year: 2007
  ident: bib0032
  article-title: Review on solving the forward problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
– start-page: 101
  year: 2010
  end-page: 104
  ident: bib0008
  article-title: Academic software toolboxes for the analysis of MEG data
  publication-title: IFMBE Proceedings
– volume: 216
  year: 2020
  ident: bib0040
  article-title: Comparison of beamformer implementations for MEG source localization
  publication-title: Neuroimage
– volume: 2011
  start-page: 12
  year: 2011
  ident: bib0088
  article-title: Open source software library for biomedical signal processing
  publication-title: Comput. Intell. Neurosci.
– year: 2012
  ident: bib0013
  publication-title: Handbook of Neural Activity Measurement, Handbook of Neural Activity Measurement
– volume: 51
  start-page: 2129
  year: 2004
  end-page: 2137
  ident: bib0085
  article-title: Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 822
  start-page: 121
  year: 2008
  end-page: 138
  ident: bib0010
  article-title: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE
  publication-title: Computing
– volume: 7
  start-page: 31
  year: 2013
  ident: bib0077
  article-title: A hitchhiker's guide to diffusion tensor imaging
  publication-title: Front. Neurosci.
– reference: Drechsler, F., Vorwerk, J., Haueisen, J., Grasedyck, L., Wolters, C.H., 2022. Validation of EEG forward modeling approaches in the presence of anisotropy in the source space. 10.48550/arXiv.2208.03081
– reference: Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1994. Statistical parametric maps in functional imaging: A general linear approach, 2, 189-210. doi:
– volume: 2011
  year: 2011
  ident: bib0076
  article-title: PyEEG: an open source python module for EEG/MEG feature extraction
  publication-title: Comput. Intell. Neurosci.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 17
  ident: bib0016
  article-title: MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG
  publication-title: Comput. Intell. Neurosci.
– volume: 30
  start-page: 2862
  year: 2009
  end-page: 2878
  ident: bib0045
  article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 343
  year: 2016
  end-page: 354
  ident: bib0050
  article-title: Helsinki BEM framework LCISA solver
  publication-title: Uniw. Śl.
– reference: Medani, T., Mosher, J.C., Joshi, A.A., Taylor, K.N., Nair, D.R., Wolters, C.H., Leahy, R.M., 2022. SEEG source analysis of intracranial stimulation with realistic head modeling: a validation study, in: OHBM (Ed.), OHBM Annual Meeting. 10.1117/12.2580935
– reference: (Doctoral dissertation, Universitäts-und Landesbibliothek Münster).
– year: 2019
  ident: bib0071
  article-title: SimNIBS 2.1: a Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation, Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018
– volume: 219
  year: 2020
  ident: bib0036
  article-title: FastSurfer—a fast and accurate deep learning based neuroimaging pipeline
  publication-title: Neuroimage
– volume: 12
  year: 2019
  ident: bib0039
  article-title: ROAST: a fully-automated, open-source, realistic volumetric-approach-based simulator for TES
  publication-title: Brain Stimul.
– volume: 18
  start-page: 237
  year: 2020
  end-page: 250
  ident: bib0035
  article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated fem tool for forward and inverse computations in MATLAB
  publication-title: Neuroinformatics
– volume: 68
  start-page: 308
  year: 2021
  end-page: 318
  ident: bib0046
  article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 37
  year: 2018
  ident: bib0093
  article-title: The FieldTrip-SimBio pipeline for EEG forward solutions
  publication-title: Biomed. Eng. Online
– volume: 30
  start-page: 813
  year: 2006
  end-page: 826
  ident: bib0098
  article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling
  publication-title: Neuroimage
– volume: 30
  start-page: 24
  year: 2007
  end-page: 45
  ident: bib0100
  article-title: Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models
  publication-title: SIAM J. Sci. Comput.
– reference: Piastra, M.C., Schrader, S., Nüßing, A., Antonakakis, M., Medani, T., Wollbrink, A., Engwer, C., Wolters, C.H., 2020. The WWU DUNEuro reference data set for combined EEG/MEG source analysis. 10.5281/ZENODO.3888381
– volume: 51
  start-page: 145
  year: 2010
  end-page: 163
  ident: bib0031
  article-title: Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study
  publication-title: Neuroimage
– volume: 1–506
  year: 2012
  ident: bib0047
  article-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields
  publication-title: Bioelectromagn. Princ. Appl. Bioelectr. Biomagn. Fields
– volume: 18
  start-page: 569
  year: 2020
  end-page: 580
  ident: bib0087
  article-title: FEMfuns: a volume conduction modeling pipeline that includes resistive, capacitive or dispersive tissue and electrodes
  publication-title: Neuroinformatics
– reference: .
– volume: 201
  year: 2019
  ident: bib0092
  article-title: The multipole approach for EEG forward modeling using the finite element method
  publication-title: Neuroimage
– volume: 46
  start-page: 245
  year: 1999
  end-page: 259
  ident: bib0055
  article-title: EEG and MEG: forward solutions for inverse methods
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Nüßing, A. (2018).
– volume: 100
  start-page: 590
  year: 2014
  end-page: 607
  ident: bib0090
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: Neuroimage
– volume: 40
  start-page: 1166
  year: 1993
  end-page: 1174
  ident: bib0020
  article-title: A fast method to compute the potential in the multisphere model
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 30
  start-page: 1753
  year: 2009
  end-page: 1757
  ident: bib0070
  article-title: Electromagnetic brain imaging
  publication-title: Hum. Brain Mapp.
– volume: 63
  start-page: 2564
  year: 2016
  end-page: 2575
  ident: bib0058
  article-title: The unfitted discontinuous galerkin method for solving the EEG forward problem
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 65
  year: 2020
  ident: bib0073
  article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model
  publication-title: Phys. Med. Biol.
– volume: 223
  year: 2020
  ident: bib0003
  article-title: Inter-subject variability of skull conductivity and thickness in calibrated realistic head models
  publication-title: Neuroimage
– volume: 1300
  start-page: 149
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119851_bib0044
  article-title: Low resolution conductivity estimation to improve source localization
  publication-title: Int. Congr. Ser.
  doi: 10.1016/j.ics.2006.12.058
– volume: 24
  start-page: 5
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119851_bib0060
  article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0080
  article-title: MEG/EEG group analysis with brainstorm
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00076
– volume: 51
  start-page: 2129
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119851_bib0085
  article-title: Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.836490
– volume: 201
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0092
  article-title: The multipole approach for EEG forward modeling using the finite element method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116039
– volume: 40
  start-page: 1166
  year: 1993
  ident: 10.1016/j.neuroimage.2022.119851_bib0020
  article-title: A fast method to compute the potential in the multisphere model
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.245635
– volume: 96
  start-page: 121
  year: 1995
  ident: 10.1016/j.neuroimage.2022.119851_bib0014
  article-title: Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(94)00228-7
– ident: 10.1016/j.neuroimage.2022.119851_bib0025
  doi: 10.1002/hbm.460020402
– volume: 50
  start-page: 3023
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119851_bib0081
  article-title: Representation of bioelectric current sources using Whitney elements in the finite element method
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/13/004
– ident: 10.1016/j.neuroimage.2022.119851_bib0096
– volume: 100
  start-page: 590
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119851_bib0090
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.040
– volume: 223
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0003
  article-title: Inter-subject variability of skull conductivity and thickness in calibrated realistic head models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117353
– volume: 12
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119851_bib0061
  article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00030
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119851_bib0017
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0071
– volume: 49
  start-page: 409
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119851_bib0072
  article-title: Dipole models for the EEG and MEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.995679
– volume: 32
  start-page: 1383
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0019
  article-title: Modeling of the human skull in EEG source analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21114
– volume: 0
  issue: 0
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119851_bib0030
  article-title: Bioelectromagnetism in human brain research: new applications, new questions
  publication-title: Neuroscientist
– volume: 216
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0040
  article-title: Comparison of beamformer implementations for MEG source localization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116797
– volume: 55
  start-page: 2481
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119851_bib0094
  article-title: A new method to derive white matter conductivity from diffusion tensor MRI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.923159
– volume: 15
  issue: 976
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119851_bib0049
  article-title: Conductivity tensor imaging of the human brain using water mapping techniques
  publication-title: Front. Neurosci.
– volume: 65
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0073
  article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abc5aa
– volume: 7
  start-page: 343
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119851_bib0050
  article-title: Helsinki BEM framework LCISA solver
  publication-title: Uniw. Śl.
– ident: 10.1016/j.neuroimage.2022.119851_bib0062
– volume: 46
  start-page: 1055
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0022
  article-title: A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.024
– volume: 219
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0036
  article-title: FastSurfer—a fast and accurate deep learning based neuroimaging pipeline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117012
– volume: 66
  start-page: 273
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0011
  article-title: Sensitivity of the projected subtraction approach to mesh degeneracies and its impact on the forward problem in EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2828336
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0079
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 81
  start-page: 75
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119851_bib0009
  article-title: The DUNE framework: basic concepts and recent developments
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.06.007
– volume: 9
  start-page: e93154
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119851_bib0006
  article-title: Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0093154
– volume: 27
  start-page: 95
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119851_bib0054
  article-title: Influence of skull modeling approaches on EEG source localization
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0313-y
– volume: 20
  start-page: 1099
  year: 2004
  ident: 10.1016/j.neuroimage.2022.119851_bib0099
  article-title: Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/20/4/007
– volume: 30
  start-page: 1753
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0070
  article-title: Electromagnetic brain imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20795
– volume: 17
  start-page: 37
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119851_bib0093
  article-title: The FieldTrip-SimBio pipeline for EEG forward solutions
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0463-y
– volume: 30
  start-page: 24
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119851_bib0100
  article-title: Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060659053
– volume: 2011
  start-page: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0088
  article-title: Open source software library for biomedical signal processing
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/935364
– volume: 18
  start-page: 14
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119851_bib0007
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.962275
– volume: 39
  start-page: 541
  year: 1992
  ident: 10.1016/j.neuroimage.2022.119851_bib0056
  article-title: Multiple dipole modeling and localization from spatio-temporal MEG data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.141192
– volume: 16
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0012
  article-title: The analytical subtraction approach for solving the forward problem in EEG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab2694
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0016
  article-title: MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/758973
– year: 1974
  ident: 10.1016/j.neuroimage.2022.119851_bib0078
– volume: 30
  start-page: 2862
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0045
  article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20714
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119851_bib0086
  article-title: Realistic and spherical head modeling for EEG forward problem solution: a comparative cortex-based analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2010/972060
– volume: 2011
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0076
  article-title: PyEEG: an open source python module for EEG/MEG feature extraction
  publication-title: Comput. Intell. Neurosci.
– ident: 10.1016/j.neuroimage.2022.119851_bib0053
– volume: 32
  start-page: 2379
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119851_bib0084
  article-title: A trilinear immersed finite element method for solving the electroencephalography forward problem
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/09075038X
– ident: 10.1016/j.neuroimage.2022.119851_bib0024
  doi: 10.3389/fnhum.2023.1216758
– start-page: 101
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119851_bib0008
  article-title: Academic software toolboxes for the analysis of MEG data
  doi: 10.1007/978-3-642-12197-5_19
– volume: 13
  start-page: 531
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0089
  article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00531
– volume: 16
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119851_bib0074
  article-title: DUNEuro—a software toolbox for forward modeling in bioelectromagnetism
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0252431
– volume: 153
  start-page: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119851_bib0052
  article-title: FEM method for the EEG forward problem and improvement based on modification of the Saint Venant's method
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER15050102
– volume: 28
  start-page: 1059
  year: 2000
  ident: 10.1016/j.neuroimage.2022.119851_bib0095
  article-title: Lead-field bases for electroencephalography source imaging
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1310220
– start-page: 1142
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0065
  article-title: Tetrahedral mesh generation from volumetric binary and grayscale images
– volume: 15
  start-page: 159
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119851_bib0034
  article-title: The influence of brain tissue anisotropy on human EEG and MEG
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0962
– volume: 30
  start-page: 813
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119851_bib0098
  article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.10.014
– volume: 51
  start-page: 145
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119851_bib0031
  article-title: Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.014
– volume: 18
  start-page: 237
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0035
  article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated fem tool for forward and inverse computations in MATLAB
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-019-09436-9
– volume: 44
  start-page: 423
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119851_bib0038
  article-title: A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/2/010
– volume: 62
  start-page: 418
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119851_bib0041
  article-title: Influences of skull segmentation inaccuracies on EEG source analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.006
– volume: 46
  start-page: 245
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119851_bib0055
  article-title: EEG and MEG: forward solutions for inverse methods
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.748978
– volume: 32
  start-page: 336
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119851_bib0026
  article-title: CAT-A computational anatomy toolbox for the analysis of structural MRI Data
  publication-title: Hum. Brain Mapp.
– volume: 26
  start-page: 55
  year: 2000
  ident: 10.1016/j.neuroimage.2022.119851_bib0018
  article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81138-1
– volume: 63
  start-page: 2564
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119851_bib0058
  article-title: The unfitted discontinuous galerkin method for solving the EEG forward problem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2590740
– volume: 12
  issue: 391
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0039
  article-title: ROAST: a fully-automated, open-source, realistic volumetric-approach-based simulator for TES
  publication-title: Brain Stimul.
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2022.119851_bib0033
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– ident: 10.1016/j.neuroimage.2022.119851_bib0051
– ident: 10.1016/j.neuroimage.2022.119851_bib0097
– volume: 6
  start-page: 129
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119851_bib0075
  article-title: Brainsuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00054-3
– volume: 107
  start-page: 159
  year: 1998
  ident: 10.1016/j.neuroimage.2022.119851_bib0042
  article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00057-1
– volume: 86
  start-page: 446
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119851_bib0028
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 2011
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0029
  article-title: Forward field computation with OpenMEEG
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/923703
– volume: 98
  start-page: 11697
  year: 2001
  ident: 10.1016/j.neuroimage.2022.119851_bib0083
  article-title: Conductivity tensor mapping of the human brain using diffusion tensor MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.171473898
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0082
  article-title: Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.7.1.015008
– volume: 822
  start-page: 121
  issue: 82
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119851_bib0010
  article-title: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE
  publication-title: Computing
  doi: 10.1007/s00607-008-0004-9
– volume: 40
  start-page: 335
  year: 1995
  ident: 10.1016/j.neuroimage.2022.119851_bib0102
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/40/3/001
– ident: 10.1016/j.neuroimage.2022.119851_bib0037
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0059
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– start-page: 4536
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119851_bib0015
  article-title: A high-resolution anisotropic finite-volume head model for EEG source analysis
– ident: 10.1016/j.neuroimage.2022.119851_bib0043
– volume: 27
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119851_bib0063
  article-title: Forward simulation and inverse dipole localization with the lowest order Raviart - Thomas elements for electroencephalography
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/27/4/045003
– volume: 1–506
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119851_bib0047
  article-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields
  publication-title: Bioelectromagn. Princ. Appl. Bioelectr. Biomagn. Fields
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119851_bib0005
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 57
  start-page: 795
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119851_bib0091
  article-title: Comparison of boundary element and finite element approaches to the EEG forward problem
  publication-title: Biomed. Eng. /Biomed. Tech.
– volume: 117
  start-page: 1836
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119851_bib0069
  article-title: Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.05.003
– volume: 7
  start-page: 31
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119851_bib0077
  article-title: A hitchhiker's guide to diffusion tensor imaging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00031
– volume: 18
  start-page: 569
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119851_bib0087
  article-title: FEMfuns: a volume conduction modeling pipeline that includes resistive, capacitive or dispersive tissue and electrodes
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09458-8
– year: 2012
  ident: 10.1016/j.neuroimage.2022.119851_bib0013
– volume: 2008
  start-page: 3991
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119851_bib0002
  article-title: Neuroelectromagnetic forward modeling toolbox
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 79
  start-page: 1309
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0027
  article-title: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2579
– volume: 6
  start-page: 250
  year: 1998
  ident: 10.1016/j.neuroimage.2022.119851_bib0048
  article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2
– volume: 39
  start-page: B138
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119851_bib0023
  article-title: A discontinuous Galerkin method to solve the EEG forward problem using the subtraction approach
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1048392
– volume: 19
  start-page: 934
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119851_bib0066
  article-title: A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci
  publication-title: Neuroimage
– volume: 57
  start-page: 5715
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119851_bib0068
  article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/18/5715
– ident: 10.1016/j.neuroimage.2022.119851_bib0021
– volume: 61
  start-page: 8502
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119851_bib0064
  article-title: Electroencephalography (EEG) forward modeling via H (div) finite element sources with focal interpolation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/24/8502
– volume: 29
  start-page: 475
  year: 1991
  ident: 10.1016/j.neuroimage.2022.119851_bib0101
  article-title: Finite-element model of the human head: scalp potentials due to dipole sources
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02442317
– volume: 4
  start-page: 46
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119851_bib0032
  article-title: Review on solving the forward problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-4-46
– ident: 10.1016/j.neuroimage.2022.119851_bib0001
– volume: 44
  start-page: 399
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119851_bib0067
  article-title: EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.009
– volume: 68
  start-page: 308
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119851_bib0046
  article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2999271
– volume: 40
  start-page: 5011
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119851_bib0004
  article-title: The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24754
– ident: 10.1016/j.neuroimage.2022.119851_bib0057
SSID ssj0009148
Score 2.5111957
Snippet •Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated...
Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields...
Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119851
SubjectTerms Accuracy
Alzheimer's disease
Anisotropy
Automation
Brain - diagnostic imaging
Brain - pathology
Brain Mapping - methods
Brainstorm
Cerebrospinal fluid
DUNEuro
EEG
EEG/MEG/SEEG
Electric Conductivity
Electroencephalography
Electroencephalography - methods
Electrophysiology
Finite Element Analysis
Finite element method
Finite volume method
Forward model
Geometry
Head
Head modeling
Humans
Image processing
Interfaces
Inverse problems
Libraries
Localization
Magnetic resonance imaging
Magnetoencephalography
Magnetoencephalography - methods
Models, Neurological
Nervous system
Neuroimaging
Open source software
Scalp
Segmentation
Substantia alba
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxNRs7tmPDqS1dVUjbC6zUW-TEDgRts6uyK9QLv52ZxEmJelmJYxI7iWcmM9_E8yDkvZBBhFwphrtuTNqqZsYKzbzhNSCOTIWuS8TiQp8v5ZdLdXlATodcGAyrjLq_1-mdto5nZpGas03TzL4CMgBzAwhFdDVoMKNcyhy7GHz4cxvmYbns0-FUxnB0jObpY7y6mpHNFXy54CkKAfrDGsUnJqqr5D-xVHeR6N2Ayvu7duNufrvV6h9rNX9EHkaYSY_7lTwmB6F9Qu4t4kb6U7I7wdYQGBl5xT4vL_Cf_Ed63NKxeoSnrvUUf2GwGksh-9UNnTcIUOlZH3FOF13zaQqol3b9dMAI0thVB9baYnYkLfExFJMnsEfFM7Kcn307PWexAwOrtNVbZlzwdWWVS7kL2vm04r40qTdeeEAKJlXBSxW0KbPc-SB1ybWpXW7zSvHMVNlzctiu2_ASc8NDHkqTgfMOiMI762xtpdU2T0tpvEpIPhC9qGJ5cuySsSqGOLSfxS27CmRX0bMrIXycuelLdOwx5wT5Oo7HItvdifX19yJKWeGtktynLvXOSJeqsq4d1660ogRHOtiE2EEqiiGPFTQv3KjZ4wU-jXMn8r7n7KNBCIuoc34VIge0rbmxMiHvxsugLXALyLVhvevGoEfJjU7Ii15mRxpkWgFYNbCsfCLNEyJNr7TNj64iOUAacGNFQsQo93uz4tV_UeI1eQBHGIrAuDoih9vrXXgDMHFbvu30wF8_dGk7
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3vi9MwGA7nDtQv4m-rp0Twa7BJkzRRRG66cQgbIg7uW0ib9JzsunluyP335m3TznIg-7om7ZK8efMked_nQegN4575XAgCt26E67IiSjNJnKJVQByZ8I1KxGwuzxb8y7k4P0LzLhcGwio7n9g4arcu4Yz8LcsDlpBUaf5x84uAahTcrnYSGjZKK7gPDcXYLXTMgBlrhI7Hk_nXb3saXsrb5DiREUWpjrE9bcRXwyC5vAzzOOwbGQveRCtBBwtWw-s_WLdu4tKb4ZV3dvXGXv-xq9U_a9f0ProXQSc-ba3kATry9UN0exav1R-h3RiEIiBO8pJ8XszhhP4dPq1xzyXhsK0dhgMNUgExsltd4-kS4CqetPHneNZIUeOAgXGjrhOWRBw1dkJba8iVxAV8BkMqBShWPEaL6eT7pzMS9RhIKbXcEmW9q0otbEqtl9alJXWFSp1yzAXcoFLhHRdeqiLLrfNcFlSqyuY6LwXNVJk9QaN6XftnkCnuc1-oLGzlA75wVltdaa6lztOCKycSlHedbspIVg6aGSvTRaX9NPvhMjBcph2uBNG-5qYl7DigzhjGtS8PlNvND-urCxNnsHFacOpSmzqruE1FUVWWSltoVoRttdcJ0p1VmC6rNfjh8KLlAX_gfV83Ip8W0RxY-6QzQhM90G-zny8Jet0_Dr4DLoRs7de7pgzsL6mSCXra2mzfB5kUAbqq0Kx8YM2DTho-qZc_Gn7yAHDCppYliPV2f_BQPP9_W16gu6EwRB4QKk7QaHu18y8DKtwWr-JU_wv-tWST
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTgJeuF8CAxmJV0-xEzs2PHWwakJqBRKVxlNkx44odNkErdD49ZzjXCBMQoXHJjlpcuxjfyfn8hHyQuRBhEJKhlE3lpuqZtoIxbzmNSCOTIbIEjFfqJNl_vZUnu6RtK-FGcXvYx5W7Ou4OgPrAm9OCLBxo7Fmel9JQN8Tsr9cvJt-jEFNmTHNI5cHT5GCUBZ98s7fbjXakWLj_tHGdBV4Xs2fvL5tLuzld7te_7Y5zW6R9_1rtTkpXw63G3dY_fij4-O_vPdtcrNDqnTaTq07ZC80d8m1eReLv0e2R8gugcmVZ-zNcoGf9V_SaUOHBhSe2sZT_ArCauym7NeXdLZCjEuP26R1Oo_81RSAM42UPLCP0o6YBx6pwQJL6vBvKNZfIM3FfbKcHX94fcI6EgdWKaM2TNvg68pIm3IblPVpxb3TqddeeAAbOpXB5zIo7bLC-pArx5WubWGKSvJMV9kDMmnOm_AIy8tDEZzOwP8HUOKtsaY2uVGmSF2uvUxI0Q9kWXUdzpFoY132qWyfy19aLVGrZavVhPBB8qLt8rGDzBHOleF67NMdD8Awlp3Zl97InPvUpt7q3KbS1bXlyjojHPjiwSTE9DOt7EthYfGGG612eIBXg2wHl1oYtKP0QT-xy27Z-laKAgC74trkCXk-nIYFB6NItgnn23gNOqVcq4Q8bO1g0EEGNmkAAsNIjCxkpKTxmWb1KTY1B1QEnrBIiBhsaeehePw_Qk_IDfiFSQyMywMy2XzdhqcAMDfuWbem_AReP3lI
  priority: 102
  providerName: Unpaywall
Title Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922009727
https://dx.doi.org/10.1016/j.neuroimage.2022.119851
https://www.ncbi.nlm.nih.gov/pubmed/36599389
https://www.proquest.com/docview/2765061894
https://www.proquest.com/docview/2761182186
https://pubmed.ncbi.nlm.nih.gov/PMC9904282
https://doi.org/10.1016/j.neuroimage.2022.119851
https://doaj.org/article/d9541d0a0da84a05bffa16ab92b106e9
UnpaywallVersion publishedVersion
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkYAL4k1gqYzENRAnfsKphVYF1GiFqFROlh07oqibXUErtBd-O2PnwVZ7oAcuqdLETu2Zjr-JZ75B6GVOfe4FY2nYdUupqupUqpynTpIaEEfBfKwSsSj5fEk_rtjqUqmvEBPW0gO3E_faKUaJy0zmjKQmY7auDeHGqtyCN-Nj6l4mVe9M9XS7gPK7uJ02miuyQ65P4T8KPmGeg6VQkpG9xShy9u-tSVcx59XQyVu75txc_DKbzaV1aXYX3ekAJR63A7mHrvnmPrq56LbMH6DdJBSBCDGQp-n7ZRnevr_B4wYPPBEOm8bh8LIirQPpsdtc4Nk6QFE8bWPL8SKWmcaAb3GsnAPLHe7q58BYm5AHiW14DA5pEqEaxUO0nE2_vJunXa2FtOKKb1NpvKsrxUxGjOfGZRVxVmZOutwBJpAZ844yz6UthHGecku4rI1QomKkkFXxCB01Z41_ErLAvfBWFuCmA3ZwRhlVK6q4Epml0rEEiX7SddURkYd6GBvdR5x913_FpYO4dCuuBJGh5XlLxnFAm0mQ63B_oNOOX4CS6U7J9L-ULEGq1wrdZ6yCjYWO1gf8gLdD2w7VtGjlwNbHvRLqzrr81LkAXM2JVDRBL4bLYBfCZo9p_Nku3hN8RyJ5gh63OjvMQcEZwFIJwxJ72rw3SftXmvW3yD0O4AUc1jxB-aD3B4vi6f8QxTN0G7oMsQcpYcfoaPtj558DLtzaEbr-6jeBo1iJEbox_vBpXsLnZFqefB5F8wBny_Jk_PUP4gtsGw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJHi1ix3Zs0IRW1qpja4XQKu0tc2IHirq0bK2m_nP8bZzzVapJqC97TXJJ7Lucfxff3Q-hd4w75mIhiN91I1xnOVGaSWIVzQFxRMKVLBGDoeyP-NczcbaF_jS1MD6tsvGJpaO208z_I__AYsASkirNP89-E88a5XdXGwoNU1Mr2P2yxVhd2HHsltcQwl3tHx2Cvt8z1uuefumTmmWAZFLLOVHG2TzTwoTUOGlsmFGbqtAqyyyshioUznLhpEqj2FjHZUqlyk2s40zQSGUR3PcO2uER1xD87XS6w2_fV21_Ka-K8UREFKW6ziWqMszKjpXjC_AbEKcyBt5LK0HXFsiSR2BtnbyJg2-mc-4uiplZXpvJ5J-1svcA3a9BLj6orPIh2nLFI3R3UG_jP0aLjiem8HmZF-RwNPQ7Ah_xQYHb3hUWm8Ji_wOF5L4Rs50scW_s4THuVvnueFBSX2PA3Lhk84ElGNecPjDWwtdm4tQ_BvvSDc-Q8QSNbkUzT9F2MS3cc1-Z7mKXqsilACC5NdroXHMtdRymXFkRoLiZ9CSrm6N7jo5J0mTB_UpW6kq8upJKXQGireSsahCygUzH67W93rf4Lg9ML38ktcdIrBac2tCE1ihuQpHmuaHSpJqlEMY7HSDdWEXSVNGC34cbjTd4gU-tbI20KgS1ofReY4RJ7fGuktX3GaC37WnwVX4DyhRuuiiv8fEsVTJAzyqbbecgkgKgsoJhxWvWvDZJ62eK8c-yHzoAKgiiWYBYa_cbq-LF_8fyBu32TwcnycnR8PglugeCPuuBULGHtueXC_cKEOk8fV1_9hid37an-QvOoKLh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviM8RGGAkeLQWO_4EIbTRVRujFQ9U2ltwYgeKurRsrab-a_x1nPNVqkmoL3tN4iT2Xe5-F9_dD6E3jHvmlRAk7LoRbvKCaMMkcZoWgDgS4SuWiMFQHo_45zNxtoX-tLUwIa2ytYmVoXbTPPwj32cKsISk2vD9okmL-Nrrf5z9JoFBKuy0tnQatYqc-uUVhG-XH056IOu3jPWPvn06Jg3DAMmlkXOirXdFboSNqfXSujinLtOx04458IQ6Ft5x4aXOEmWd5zKjUhdWGZULmug8gfveQrdVkpiQTqjO1KrhL-V1GZ5IiKbUNFlEdW5Z1atyfA4WAyJUxsBuGS3ommusGATWPOR1BHw9kfPOopzZ5ZWdTP7xkv376F4Db_FBrY8P0JYvH6KdQbOB_wgtDgMlRcjIPCe90TDsBbzDByXuulY4bEuHw68TUoQWzG6yxP1xAMb4qM50x4OK9BoD2sYVjw84X9yw-cBcy1CVibPwGByKNgI3xmM0uhG5PEHb5bT0T0NNulc-04nPADpyZ401heFGGhVnXDsRIdUuepo3bdEDO8ckbfPffqUrcaVBXGktrgjRbuSsbg2ywZjDINfu-tDcuzowvfiRNrYidUZw6mIbO6u5jUVWFJZKmxmWQQDvTYRMqxVpWz8LFh9uNN7gBd53YxuMVWOnDUfvtUqYNrbuMl19mRF63Z0GKxW2nmzpp4vqmhDJUi0jtFvrbLcGiRQAkjVMS61p89oirZ8pxz-rTugApSB8ZhFind5vLIpn_5_LK7QD9iX9cjI8fY7uwriQ7kCo2EPb84uFfwFQdJ69rL55jL7ftJH5C29uoHs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTgJeuF8CAxmJV0-xEzs2PHWwakJqBRKVxlNkx44odNkErdD49ZzjXCBMQoXHJjlpcuxjfyfn8hHyQuRBhEJKhlE3lpuqZtoIxbzmNSCOTIbIEjFfqJNl_vZUnu6RtK-FGcXvYx5W7Ou4OgPrAm9OCLBxo7Fmel9JQN8Tsr9cvJt-jEFNmTHNI5cHT5GCUBZ98s7fbjXakWLj_tHGdBV4Xs2fvL5tLuzld7te_7Y5zW6R9_1rtTkpXw63G3dY_fij4-O_vPdtcrNDqnTaTq07ZC80d8m1eReLv0e2R8gugcmVZ-zNcoGf9V_SaUOHBhSe2sZT_ArCauym7NeXdLZCjEuP26R1Oo_81RSAM42UPLCP0o6YBx6pwQJL6vBvKNZfIM3FfbKcHX94fcI6EgdWKaM2TNvg68pIm3IblPVpxb3TqddeeAAbOpXB5zIo7bLC-pArx5WubWGKSvJMV9kDMmnOm_AIy8tDEZzOwP8HUOKtsaY2uVGmSF2uvUxI0Q9kWXUdzpFoY132qWyfy19aLVGrZavVhPBB8qLt8rGDzBHOleF67NMdD8Awlp3Zl97InPvUpt7q3KbS1bXlyjojHPjiwSTE9DOt7EthYfGGG612eIBXg2wHl1oYtKP0QT-xy27Z-laKAgC74trkCXk-nIYFB6NItgnn23gNOqVcq4Q8bO1g0EEGNmkAAsNIjCxkpKTxmWb1KTY1B1QEnrBIiBhsaeehePw_Qk_IDfiFSQyMywMy2XzdhqcAMDfuWbem_AReP3lI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brainstorm-DUNEuro%3A+An+integrated+and+user-friendly+Finite+Element+Method+for+modeling+electromagnetic+brain+activity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Takfarinas+Medani&rft.au=Juan+Garcia-Prieto&rft.au=Francois+Tadel&rft.au=Marios+Antonakakis&rft.date=2023-02-15&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=267&rft.spage=119851&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119851&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon