Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
•Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward mode...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 267; p. 119851 | 
|---|---|
| Main Authors | , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        15.02.2023
     Elsevier Limited Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2022.119851 | 
Cover
| Abstract | •Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward modeling can be performed either from an easy-to-use GUI or scripting using the DUNEuro solver.•Full anatomical data (MRI/DWI) and functional data (EEG/MEG) are distributed for easy analysis replication.
Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.
[Display omitted] | 
    
|---|---|
| AbstractList | Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today’s magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject’s MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. •Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated from the MR data (T1w /and T2w).•Realistic conductivity tensors can be generated from DWI and mapped to the FEM mesh.•E-phys FEM forward modeling can be performed either from an easy-to-use GUI or scripting using the DUNEuro solver.•Full anatomical data (MRI/DWI) and functional data (EEG/MEG) are distributed for easy analysis replication. Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community. [Display omitted]  | 
    
| ArticleNumber | 119851 | 
    
| Author | Mosher, John C. Leahy, Richard M. Wolters, Carsten H. Antonakakis, Marios Tadel, Francois Schrader, Sophie Höltershinken, Malte Erdbrügger, Tim Garcia-Prieto, Juan Joshi, Anand Mead, Wayne Engwer, Christian Medani, Takfarinas  | 
    
| AuthorAffiliation | f Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States c Harvard Medical School, Boston, Massachusetts, United States b Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States g Department of Applied Mathematics, University of Munster, Germany e School of Electrical and Computer Engineering, Technical University of Crete, Greece h Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Munster, Munster, Germany d Institute for Biomagnetism and Biosignalanalysis, University of Munster, Munster, Germany a Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States  | 
    
| AuthorAffiliation_xml | – name: f Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States – name: b Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States – name: h Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Munster, Munster, Germany – name: c Harvard Medical School, Boston, Massachusetts, United States – name: d Institute for Biomagnetism and Biosignalanalysis, University of Munster, Munster, Germany – name: e School of Electrical and Computer Engineering, Technical University of Crete, Greece – name: g Department of Applied Mathematics, University of Munster, Germany – name: a Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States  | 
    
| Author_xml | – sequence: 1 givenname: Takfarinas orcidid: 0000-0003-0774-067X surname: Medani fullname: Medani, Takfarinas email: medani@usc.edu organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States – sequence: 2 givenname: Juan surname: Garcia-Prieto fullname: Garcia-Prieto, Juan email: juangpc@gmail.com organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States – sequence: 3 givenname: Francois surname: Tadel fullname: Tadel, Francois organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States – sequence: 4 givenname: Marios surname: Antonakakis fullname: Antonakakis, Marios organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany – sequence: 5 givenname: Tim surname: Erdbrügger fullname: Erdbrügger, Tim organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany – sequence: 6 givenname: Malte orcidid: 0000-0002-8291-816X surname: Höltershinken fullname: Höltershinken, Malte organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany – sequence: 7 givenname: Wayne surname: Mead fullname: Mead, Wayne organization: Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States – sequence: 8 givenname: Sophie surname: Schrader fullname: Schrader, Sophie organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany – sequence: 9 givenname: Anand surname: Joshi fullname: Joshi, Anand organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States – sequence: 10 givenname: Christian surname: Engwer fullname: Engwer, Christian organization: Department of Applied Mathematics, University of Münster, Germany – sequence: 11 givenname: Carsten H. surname: Wolters fullname: Wolters, Carsten H. organization: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany – sequence: 12 givenname: John C. surname: Mosher fullname: Mosher, John C. organization: Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States – sequence: 13 givenname: Richard M. surname: Leahy fullname: Leahy, Richard M. organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36599389$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVkk9vEzEQxVeoiP6Br4AsceGywd6sHZsDoi0tVCpwoWdr1p5NHRy79XqL8u1xSGlpTuFky575-XneO6z2QgxYVYTRCaNMvFtMAo4puiXMcdLQppkwpiRnz6oDRhWvFZ81e-s9n9ayXO1Xh8OwoJQq1soX1f5UcKWmUh1U40kCF4Yc07L-dPXtrFDfk-NAXMg4T5DREgiWjAOmuk8Og_Urcu6Cy0jOPC4xZPIV83W0pI-JLKNF78KcoEeTUywCA2ZnSLd-hoDJ7s7l1cvqeQ9-wFf361F1dX724_RLffn988Xp8WVthBK5loC2N4oDZYACLDXMdpJaaRvLWSMpR9tyFLKbzsBiKzomZA8zNTOcTaWZHlUXG66NsNA3qQwsrXQEp_8cxDTXkIo8j9oq3jJLgVqQLVDe9T0wAZ1qOkYFqsJSG9YYbmD1C7x_ADKq17bohX60Ra9t0RtbSu-HTe_N2C3RmjK1BP6JoKc3wV3rebzTStG2kU0BvL0HpHg74pD10g0GvYeAcRx0MxOMyYZJUUrfbJUu4phCGfO6ilPBpGpL1et_FT1I-ZuMR8kmxWFI2GvjMmQX1wKd3-XPcgvwH-M62bRiycadw6QHU6Jn0LpUYlXMc7tAPm5BTEmmM-B_4mo3xG-vdhcy | 
    
| CitedBy_id | crossref_primary_10_3390_bioengineering11090897 crossref_primary_10_1109_TBME_2024_3509539 crossref_primary_10_1038_s41467_024_54244_8 crossref_primary_10_1063_5_0226457 crossref_primary_10_1109_TBME_2024_3365803 crossref_primary_10_1088_1361_6560_ad25c3 crossref_primary_10_55578_joaims_231215_001 crossref_primary_10_1088_1361_6560_ad66a9 crossref_primary_10_1371_journal_pbio_3002452 crossref_primary_10_1016_j_neuroimage_2023_120259 crossref_primary_10_1002_hbm_26810 crossref_primary_10_3389_fnins_2024_1443752 crossref_primary_10_1162_imag_a_00153  | 
    
| Cites_doi | 10.1016/j.ics.2006.12.058 10.3389/fnins.2019.00076 10.1109/TBME.2004.836490 10.1016/j.neuroimage.2019.116039 10.1109/10.245635 10.1016/0168-5597(94)00228-7 10.1002/hbm.460020402 10.1088/0031-9155/50/13/004 10.1016/j.neuroimage.2014.06.040 10.1016/j.neuroimage.2020.117353 10.3389/fnins.2018.00030 10.1006/nimg.1998.0395 10.1109/10.995679 10.1002/hbm.21114 10.1016/j.neuroimage.2020.116797 10.1109/TBME.2008.923159 10.1088/1361-6560/abc5aa 10.1016/j.neuroimage.2009.02.024 10.1016/j.neuroimage.2020.117012 10.1109/TBME.2018.2828336 10.1155/2011/879716 10.1016/j.camwa.2020.06.007 10.1371/journal.pone.0093154 10.1007/s10548-013-0313-y 10.1088/0266-5611/20/4/007 10.1002/hbm.20795 10.1186/s12938-018-0463-y 10.1137/060659053 10.1155/2011/935364 10.1109/79.962275 10.1109/10.141192 10.1088/1741-2552/ab2694 10.1155/2011/758973 10.1002/hbm.20714 10.1155/2010/972060 10.1137/09075038X 10.3389/fnhum.2023.1216758 10.1007/978-3-642-12197-5_19 10.3389/fnins.2019.00531 10.1371/journal.pone.0252431 10.2528/PIER15050102 10.1114/1.1310220 10.1006/nimg.2001.0962 10.1016/j.neuroimage.2005.10.014 10.1016/j.neuroimage.2010.02.014 10.1007/s12021-019-09436-9 10.1088/0031-9155/44/2/010 10.1016/j.neuroimage.2012.05.006 10.1109/10.748978 10.1016/S0896-6273(00)81138-1 10.1109/TBME.2016.2590740 10.1103/RevModPhys.65.413 10.1016/S1361-8415(02)00054-3 10.1016/S0013-4694(98)00057-1 10.1016/j.neuroimage.2013.10.027 10.1155/2011/923703 10.1073/pnas.171473898 10.1117/1.NPh.7.1.015008 10.1007/s00607-008-0004-9 10.1088/0031-9155/40/3/001 10.1155/2011/156869 10.1088/0266-5611/27/4/045003 10.1016/j.neuroimage.2005.02.018 10.1016/j.clinph.2006.05.003 10.3389/fnins.2013.00031 10.1007/s12021-020-09458-8 10.1002/nme.2579 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2 10.1137/15M1048392 10.1088/0031-9155/57/18/5715 10.1088/0031-9155/61/24/8502 10.1007/BF02442317 10.1186/1743-0003-4-46 10.1016/j.neuroimage.2008.09.009 10.1109/TBME.2020.2999271 10.1002/hbm.24754  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. Copyright Elsevier Limited Feb 15, 2023  | 
    
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Feb 15, 2023  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.neuroimage.2022.119851 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 119851 | 
    
| ExternalDocumentID | oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9 10.1016/j.neuroimage.2022.119851 PMC9904282 36599389 10_1016_j_neuroimage_2022_119851 S1053811922009727  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS104585 – fundername: NINDS NIH HHS grantid: R01 NS074980 – fundername: NIBIB NIH HHS grantid: R01 EB009048 – fundername: NIBIB NIH HHS grantid: R01 EB026299 – fundername: NIBIB NIH HHS grantid: U01 EB023820  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c696t-8aedfc95a01ae6ad0c1db80d8d2d512805ed45e68b37ade46b168fa797c5138c3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1053-8119 1095-9572  | 
    
| IngestDate | Fri Oct 03 12:36:37 EDT 2025 Sun Oct 26 03:55:47 EDT 2025 Tue Sep 30 17:16:34 EDT 2025 Thu Oct 02 10:20:31 EDT 2025 Tue Oct 07 06:51:50 EDT 2025 Thu Jul 24 03:25:36 EDT 2025 Sat Oct 25 05:58:12 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 23 02:38:45 EST 2024 Tue Oct 14 19:35:52 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Finite element method DUNEuro Electrophysiology Head modeling Forward model Brainstorm EEG/MEG/SEEG  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. Copyright © 2022. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c696t-8aedfc95a01ae6ad0c1db80d8d2d512805ed45e68b37ade46b168fa797c5138c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this paper.  | 
    
| ORCID | 0000-0003-0774-067X 0000-0002-8291-816X  | 
    
| OpenAccessLink | https://doaj.org/article/d9541d0a0da84a05bffa16ab92b106e9 | 
    
| PMID | 36599389 | 
    
| PQID | 2765061894 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9 unpaywall_primary_10_1016_j_neuroimage_2022_119851 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9904282 proquest_miscellaneous_2761182186 proquest_journals_2765061894 pubmed_primary_36599389 crossref_citationtrail_10_1016_j_neuroimage_2022_119851 crossref_primary_10_1016_j_neuroimage_2022_119851 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119851 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119851  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-02-15 | 
    
| PublicationDateYYYYMMDD | 2023-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Amsterdam  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Inc Elsevier Limited Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier  | 
    
| References | Medani, T., Lautru, D., Ren, Z., Schwartz, D., Sou, G., 2014. Improving the FEM resolution of the EEG forward problem using the dipole model based on Saint Venant's approach. International workshop on Biomaterial Innovations: Toward Repair of the Human Body. doi Gaser, Dahnke (bib0026) 2016; 32 Marino, Cordero-Grande, Mantini, Ferrazzi (bib0049) 2021; 15 Ashburner, Friston (bib0005) 2005; 26 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0033) 1993; 65 Bastian, Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger, Sander (bib0010) 2008; 822 Haueisen, Tuch, Ramon, Schimpf, Wedeen, George, Belliveau (bib0034) 2002; 15 Leahy, Mosher, Spencer, Huang, Lewine (bib0042) 1998; 107 Salayev, Nakasato, Ishitobi, Shamoto, Kanno, Iinuma (bib0069) 2006; 117 Pursiainen, Vorwerk, Wolters (bib0064) 2016; 61 Schimpf, Ramon, Haueisen (bib0072) 2002; 49 Nüßing, A. (2018). Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Parkkonen, Hämäläinen (bib0028) 2014; 86 Baillet, Tadel, Leahy, Mosher, Delorme, Makeig, Oostenveld, Hämäläinen, Dalal, Zumer, Clerc, Wolters, Kiebel, Jensen (bib0008) 2010 Nüßing, Wolters, Brinck, Engwer (bib0058) 2016; 63 Buchner, Adams, Müller, Ludwig, Knepper, Thron, Niemann, Scherg (bib0014) 1995; 96 Medani, Lautru, Schwartz, Ren, Sou (bib0052) 2015; 153 Lew, Wolters, Anwander, Makeig, MacLeod (bib0044) 2007; 1300 Van Uitert, Johnson, Zhukov (bib0085) 2004; 51 Wolters, Anwander, Tricoche, Weinstein, Koch, MacLeod (bib0098) 2006; 30 . Lew, Wolters, Anwander, Makeig, MacLeod (bib0045) 2009; 30 Cook, Koles (bib0015) 2006 Dalal, Zumer, Guggisberg, Trumpis, Wong, Sekihara, Nagarajan (bib0016) 2011; 2011 Fang, Boas (bib0065) 2009 Pursiainen, Sorrentino, Campi, Piana (bib0063) 2011; 27 Wolters, C.H., 2003. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain. Leipzig. 239267 Vatta, Meneghini, Esposito, Mininel, Di Salle (bib0086) 2010; 2010 Huang, Mosher, Leahy (bib0038) 1999; 44 doi Lanfer, Scherg, Dannhauer, Knösche, Burger, Wolters (bib0041) 2012; 62 Beltrachini (bib0012) 2019; 16 Huang, Datta, Bikson, Parra (bib0039) 2019; 12 Vorwerk, Cho, Rampp, Hamer, Knösche, Wolters (bib0090) 2014; 100 He, Rezaei, Pursiainen (bib0035) 2020; 18 Makarov, Hamalainen, Okada, Noetscher, Ahveninen, Nummenmaa (bib0046) 2021; 68 Salmelin, Baillet (bib0070) 2009; 30 Vallaghé, Papadopoulo (bib0084) 2010; 32 Tadel, Bock, Niso, Mosher, Cousineau, Pantazis, Leahy, Baillet (bib0080) 2019; 13 Pascual-Marqui (bib0060) 2002; 24 Vorwerk, Oostenveld, Piastra, Magyari, Wolters (bib0093) 2018; 17 Marin, Guerin, Baillet, Garnero, Meunier (bib0048) 1998; 6 Antonakakis, Schrader, Aydin, Khan, Gross, Zervakis, Rampp, Wolters (bib0003) 2020; 223 Saturnino, Puonti, Nielsen, Antonenko, Madsen, Thielscher (bib0071) 2019 Gramfort, Papadopoulo, Olivi, Clerc (bib0029) 2011; 2011 Schrader, Antonakakis, Rampp, Engwer, Wolters (bib0073) 2020; 65 Ad-Dab'bagh, Y., Lyttelton, O., Muehlboeck, J.S., Lepage, C., Einarson, D., Mok, K., Ivanov, O., Vincent, R.D., Lerch, J., Fombonne, E., others, 2006. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research, in: Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping. Florence, p. 2266. Hallez, Vanrumste, Grech, Muscat, De Clercq, Vergult, D'Asseler, Camilleri, Fabri, Van Huffel, Lemahieu (bib0032) 2007; 4 Rivière, Régis, Cointepas, Papadopoulos-Orfanos, Cachia, Mangin (bib0066) 2003; 19 Vorwerk, Clerc, Burger, Wolters (bib0091) 2012; 57 Yan, Nunez, Hart (bib0101) 1991; 29 Höltershinken, M., Lange, P., Wallois, F., Buyx, A., Pursiainen, S., Engwer, C., Wolters, C., 2022. The localized subtraction approach for EEG and MEG forward modeling. Proc. Work. BIOSIGNAL. 10.1016/j.neuroimage.2019.116039 Tanzer, Järvenpää, Nenonen, Somersalo (bib0081) 2005; 50 Vidaurre, Sander, Schlögl (bib0088) 2011; 2011 Zhang (bib0102) 1995; 40 Wang, Zhu, Mueller, Lim, Liu, He, Member, He (bib0094) 2008; 55 Oostenveld, Fries, Maris, Schoffelen (bib0059) 2011; 2011 Soares, Marques, Alves, Sousa (bib0077) 2013; 7 de Munck, Peters (bib0020) 1993; 40 Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1994. Statistical parametric maps in functional imaging: A general linear approach, 2, 189-210. doi Erdbrügger, T., Westhoff, A., Hoeltershinken, M., Radecke, J., Buschermoehle, Y., Buyx, A., Wallois, F., Pursiainen, S., Gross, J., Lencer, R., Engwer, C., Wolters, C., 2022. CutFEM forward modeling for EEG source analysis. Akalin Acar, Makeig (bib0002) 2008; 2008 Ruthotto, Kugel, Olesch, Fischer, Modersitzki, Burger, Wolters (bib0068) 2012; 57 Engwer, Vorwerk, Ludewig, Wolters (bib0023) 2017; 39 Geuzaine, Remacle (bib0027) 2009; 79 Weinstein, Zhukov, Johnson (bib0095) 2000; 28 Baillet, Mosher, Leahy (bib0007) 2001; 18 Antonakakis, Schrader, Wollbrink, Oostenveld, Rampp, Haueisen, Wolters (bib0004) 2019; 40 Lee, S., Cho, M., Kim, T., Kim, I., Oh, S., 2006. Electrical conductivity estimation from diffusion tensor and T2: a silk yarn phantom study. Proc. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 26, 3034. Beltrachini (bib0011) 2019; 66 (Doctoral dissertation, Universitäts-und Landesbibliothek Münster). Güllmar, Haueisen, Reichenbach (bib0031) 2010; 51 Rullmann, Anwander, Dannhauer, Warfield, Duffy, Wolters (bib0067) 2009; 44 Tuch, Wedeen, Dale, George, Belliveau (bib0083) 2001; 98 Stenroos (bib0050) 2016; 7 Wolters, Grasedyck, Hackbusch (bib0099) 2004; 20 Medani, T., Mosher, J.C., Joshi, A.A., Taylor, K.N., Nair, D.R., Wolters, C.H., Leahy, R.M., 2022. SEEG source analysis of intracranial stimulation with realistic head modeling: a validation study, in: OHBM (Ed.), OHBM Annual Meeting. 10.1117/12.2580935 Piastra, Nüßing, Vorwerk, Bornfleth, Oostenveld, Engwer, Wolters (bib0061) 2018; 12 Drechsler, Wolters, Dierkes, Si, Grasedyck (bib0022) 2009; 46 Vorwerk, Hanrath, Wolters, Grasedyck (bib0092) 2019; 201 Vermaas, Piastra, Oostendorp, Ramsey, Tiesinga (bib0087) 2020; 18 Malmivuo, Plonsey (bib0047) 2012; 1–506 Strang, Fix (bib0078) 1974 Wolters, C.H., Anwander, A., Koch, M.A., Reitzinger, S., Kuhn, M., Svensen, M., 2001. Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver, in: “Forschung Und Forschung Und Wissenschaftliches Rechnen” Contributions to the Heinz-Billing Award. pp. 111–157. Vorwerk, Aydin, Wolters, Butson (bib0089) 2019; 13 Piastra, M.C., Schrader, S., Nüßing, A., Antonakakis, M., Medani, T., Wollbrink, A., Engwer, C., Wolters, C.H., 2020. The WWU DUNEuro reference data set for combined EEG/MEG source analysis. 10.5281/ZENODO.3888381 Sheng Bao, Liu, Zhang (bib0076) 2011; 2011 Bastian, Blatt, Dedner, Dreier, Engwer, Fritze, Gräser, Grüninger, Kempf, Klöfkorn, Ohlberger, Sander (bib0009) 2021; 81 Gross, Junghöfer, Wolters (bib0030) 2021; 0 Mosher, Leahy, Lewis (bib0055) 1999; 46 Jaiswal, Nenonen, Stenroos, Gramfort, Dalal, Westner, Litvak, Mosher, Schoffelen, Witton, Oostenveld, Parkkonen (bib0040) 2020; 216 Brette, Destexhe (bib0013) 2012 Wolters, Köstler, Möller, Härdtlein, Grasedyck, Hackbusch (bib0100) 2007; 30 Dannhauer, Lanfer, Wolters, Knösche (bib0019) 2011; 32 Aydin, Vorwerk, Küpper, Heers, Kugel, Galka, Hamid, Wellmer, Kellinghaus, Rampp, Wolters (bib0006) 2014; 9 Dale, Liu, Fischl, Buckner, Belliveau, Lewine, Halgren (bib0018) 2000; 26 Montes-Restrepo, van Mierlo, Strobbe, Staelens, Vandenberghe, Hallez (bib0054) 2014; 27 Shattuck, Leahy (bib0075) 2002; 6 Henschel, Conjeti, Estrada, Diers, Fischl, Reuter (bib0036) 2020; 219 Tadel, Baillet, Mosher, Pantazis, Leahy (bib0079) 2011; 2011 Dale, Fischl, Sereno (bib0017) 1999; 9 Tran, Yan, Fang (bib0082) 2020; 7 Mosher, Lewis, Leahy (bib0056) 1992; 39 Drechsler, F., Vorwerk, J., Haueisen, J., Grasedyck, L., Wolters, C.H., 2022. Validation of EEG forward modeling approaches in the presence of anisotropy in the source space. 10.48550/arXiv.2208.03081 Schrader, Westhoff, Piastra, Miinalainen, Pursiainen, Vorwerk, Brinck, Wolters, Engwer (bib0074) 2021; 16 Shattuck (10.1016/j.neuroimage.2022.119851_bib0075) 2002; 6 Ashburner (10.1016/j.neuroimage.2022.119851_bib0005) 2005; 26 Huang (10.1016/j.neuroimage.2022.119851_bib0039) 2019; 12 Schrader (10.1016/j.neuroimage.2022.119851_bib0073) 2020; 65 Huang (10.1016/j.neuroimage.2022.119851_bib0038) 1999; 44 10.1016/j.neuroimage.2022.119851_bib0097 Mosher (10.1016/j.neuroimage.2022.119851_bib0055) 1999; 46 Tadel (10.1016/j.neuroimage.2022.119851_bib0080) 2019; 13 10.1016/j.neuroimage.2022.119851_bib0096 Cook (10.1016/j.neuroimage.2022.119851_bib0015) 2006 Dale (10.1016/j.neuroimage.2022.119851_bib0017) 1999; 9 Medani (10.1016/j.neuroimage.2022.119851_bib0052) 2015; 153 Pursiainen (10.1016/j.neuroimage.2022.119851_bib0063) 2011; 27 Brette (10.1016/j.neuroimage.2022.119851_bib0013) 2012 Drechsler (10.1016/j.neuroimage.2022.119851_bib0022) 2009; 46 Vorwerk (10.1016/j.neuroimage.2022.119851_bib0093) 2018; 17 Rullmann (10.1016/j.neuroimage.2022.119851_bib0067) 2009; 44 Tadel (10.1016/j.neuroimage.2022.119851_bib0079) 2011; 2011 Antonakakis (10.1016/j.neuroimage.2022.119851_bib0003) 2020; 223 Jaiswal (10.1016/j.neuroimage.2022.119851_bib0040) 2020; 216 Vorwerk (10.1016/j.neuroimage.2022.119851_bib0089) 2019; 13 He (10.1016/j.neuroimage.2022.119851_bib0035) 2020; 18 Gaser (10.1016/j.neuroimage.2022.119851_bib0026) 2016; 32 Soares (10.1016/j.neuroimage.2022.119851_bib0077) 2013; 7 Vorwerk (10.1016/j.neuroimage.2022.119851_bib0091) 2012; 57 Montes-Restrepo (10.1016/j.neuroimage.2022.119851_bib0054) 2014; 27 Baillet (10.1016/j.neuroimage.2022.119851_bib0007) 2001; 18 Leahy (10.1016/j.neuroimage.2022.119851_bib0042) 1998; 107 10.1016/j.neuroimage.2022.119851_bib0001 Oostenveld (10.1016/j.neuroimage.2022.119851_bib0059) 2011; 2011 Schrader (10.1016/j.neuroimage.2022.119851_bib0074) 2021; 16 Malmivuo (10.1016/j.neuroimage.2022.119851_bib0047) 2012; 1–506 Hallez (10.1016/j.neuroimage.2022.119851_bib0032) 2007; 4 Fang (10.1016/j.neuroimage.2022.119851_bib0065) 2009 Marin (10.1016/j.neuroimage.2022.119851_bib0048) 1998; 6 Gramfort (10.1016/j.neuroimage.2022.119851_bib0028) 2014; 86 Antonakakis (10.1016/j.neuroimage.2022.119851_bib0004) 2019; 40 Vermaas (10.1016/j.neuroimage.2022.119851_bib0087) 2020; 18 Pascual-Marqui (10.1016/j.neuroimage.2022.119851_bib0060) 2002; 24 Van Uitert (10.1016/j.neuroimage.2022.119851_bib0085) 2004; 51 Wolters (10.1016/j.neuroimage.2022.119851_bib0099) 2004; 20 Yan (10.1016/j.neuroimage.2022.119851_bib0101) 1991; 29 Vorwerk (10.1016/j.neuroimage.2022.119851_bib0090) 2014; 100 Weinstein (10.1016/j.neuroimage.2022.119851_bib0095) 2000; 28 Tanzer (10.1016/j.neuroimage.2022.119851_bib0081) 2005; 50 Bastian (10.1016/j.neuroimage.2022.119851_bib0009) 2021; 81 Dale (10.1016/j.neuroimage.2022.119851_bib0018) 2000; 26 10.1016/j.neuroimage.2022.119851_bib0062 Vidaurre (10.1016/j.neuroimage.2022.119851_bib0088) 2011; 2011 Zhang (10.1016/j.neuroimage.2022.119851_bib0102) 1995; 40 Ruthotto (10.1016/j.neuroimage.2022.119851_bib0068) 2012; 57 Gramfort (10.1016/j.neuroimage.2022.119851_bib0029) 2011; 2011 Vallaghé (10.1016/j.neuroimage.2022.119851_bib0084) 2010; 32 Pursiainen (10.1016/j.neuroimage.2022.119851_bib0064) 2016; 61 Sheng Bao (10.1016/j.neuroimage.2022.119851_bib0076) 2011; 2011 Wang (10.1016/j.neuroimage.2022.119851_bib0094) 2008; 55 10.1016/j.neuroimage.2022.119851_bib0053 Akalin Acar (10.1016/j.neuroimage.2022.119851_bib0002) 2008; 2008 Dannhauer (10.1016/j.neuroimage.2022.119851_bib0019) 2011; 32 10.1016/j.neuroimage.2022.119851_bib0051 Güllmar (10.1016/j.neuroimage.2022.119851_bib0031) 2010; 51 Schimpf (10.1016/j.neuroimage.2022.119851_bib0072) 2002; 49 10.1016/j.neuroimage.2022.119851_bib0057 Henschel (10.1016/j.neuroimage.2022.119851_bib0036) 2020; 219 Salayev (10.1016/j.neuroimage.2022.119851_bib0069) 2006; 117 Makarov (10.1016/j.neuroimage.2022.119851_bib0046) 2021; 68 Engwer (10.1016/j.neuroimage.2022.119851_bib0023) 2017; 39 de Munck (10.1016/j.neuroimage.2022.119851_bib0020) 1993; 40 Tuch (10.1016/j.neuroimage.2022.119851_bib0083) 2001; 98 Aydin (10.1016/j.neuroimage.2022.119851_bib0006) 2014; 9 Stenroos (10.1016/j.neuroimage.2022.119851_bib0050) 2016; 7 Haueisen (10.1016/j.neuroimage.2022.119851_bib0034) 2002; 15 Dalal (10.1016/j.neuroimage.2022.119851_bib0016) 2011; 2011 10.1016/j.neuroimage.2022.119851_bib0043 Marino (10.1016/j.neuroimage.2022.119851_bib0049) 2021; 15 Wolters (10.1016/j.neuroimage.2022.119851_bib0100) 2007; 30 Tran (10.1016/j.neuroimage.2022.119851_bib0082) 2020; 7 Lew (10.1016/j.neuroimage.2022.119851_bib0044) 2007; 1300 Vatta (10.1016/j.neuroimage.2022.119851_bib0086) 2010; 2010 Vorwerk (10.1016/j.neuroimage.2022.119851_bib0092) 2019; 201 Bastian (10.1016/j.neuroimage.2022.119851_bib0010) 2008; 822 Nüßing (10.1016/j.neuroimage.2022.119851_bib0058) 2016; 63 10.1016/j.neuroimage.2022.119851_bib0037 Baillet (10.1016/j.neuroimage.2022.119851_bib0008) 2010 Lew (10.1016/j.neuroimage.2022.119851_bib0045) 2009; 30 Rivière (10.1016/j.neuroimage.2022.119851_bib0066) 2003; 19 Beltrachini (10.1016/j.neuroimage.2022.119851_bib0011) 2019; 66 Geuzaine (10.1016/j.neuroimage.2022.119851_bib0027) 2009; 79 Strang (10.1016/j.neuroimage.2022.119851_bib0078) 1974 Salmelin (10.1016/j.neuroimage.2022.119851_bib0070) 2009; 30 Buchner (10.1016/j.neuroimage.2022.119851_bib0014) 1995; 96 Piastra (10.1016/j.neuroimage.2022.119851_bib0061) 2018; 12 Saturnino (10.1016/j.neuroimage.2022.119851_bib0071) 2019 Mosher (10.1016/j.neuroimage.2022.119851_bib0056) 1992; 39 Hämäläinen (10.1016/j.neuroimage.2022.119851_bib0033) 1993; 65 Wolters (10.1016/j.neuroimage.2022.119851_bib0098) 2006; 30 Gross (10.1016/j.neuroimage.2022.119851_bib0030) 2021; 0 Lanfer (10.1016/j.neuroimage.2022.119851_bib0041) 2012; 62 10.1016/j.neuroimage.2022.119851_bib0025 Beltrachini (10.1016/j.neuroimage.2022.119851_bib0012) 2019; 16 10.1016/j.neuroimage.2022.119851_bib0024 10.1016/j.neuroimage.2022.119851_bib0021  | 
    
| References_xml | – volume: 50 start-page: 3023 year: 2005 end-page: 3039 ident: bib0081 article-title: Representation of bioelectric current sources using Whitney elements in the finite element method publication-title: Phys. Med. Biol. – volume: 2011 start-page: 1 year: 2011 end-page: 13 ident: bib0079 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. – volume: 9 start-page: e93154 year: 2014 ident: bib0006 article-title: Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model publication-title: PLoS ONE – volume: 81 start-page: 75 year: 2021 end-page: 112 ident: bib0009 article-title: The DUNE framework: basic concepts and recent developments publication-title: Comput. Math. Appl. – volume: 13 year: 2019 ident: bib0080 article-title: MEG/EEG group analysis with brainstorm publication-title: Front. Neurosci. – reference: Ad-Dab'bagh, Y., Lyttelton, O., Muehlboeck, J.S., Lepage, C., Einarson, D., Mok, K., Ivanov, O., Vincent, R.D., Lerch, J., Fombonne, E., others, 2006. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research, in: Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping. Florence, p. 2266. – reference: Medani, T., Lautru, D., Ren, Z., Schwartz, D., Sou, G., 2014. Improving the FEM resolution of the EEG forward problem using the dipole model based on Saint Venant's approach. International workshop on Biomaterial Innovations: Toward Repair of the Human Body. doi: – volume: 39 start-page: B138 year: 2017 end-page: B164 ident: bib0023 article-title: A discontinuous Galerkin method to solve the EEG forward problem using the subtraction approach publication-title: SIAM J. Sci. Comput. – volume: 1300 start-page: 149 year: 2007 end-page: 152 ident: bib0044 article-title: Low resolution conductivity estimation to improve source localization publication-title: Int. Congr. Ser. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib0017 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage – volume: 32 start-page: 336 year: 2016 end-page: 348 ident: bib0026 article-title: CAT-A computational anatomy toolbox for the analysis of structural MRI Data publication-title: Hum. Brain Mapp. – volume: 16 year: 2019 ident: bib0012 article-title: The analytical subtraction approach for solving the forward problem in EEG publication-title: J. Neural Eng. – volume: 55 start-page: 2481 year: 2008 end-page: 2486 ident: bib0094 article-title: A new method to derive white matter conductivity from diffusion tensor MRI publication-title: IEEE Trans. Biomed. Eng. – volume: 15 start-page: 159 year: 2002 end-page: 166 ident: bib0034 article-title: The influence of brain tissue anisotropy on human EEG and MEG publication-title: Neuroimage – volume: 61 start-page: 8502 year: 2016 end-page: 8520 ident: bib0064 article-title: Electroencephalography (EEG) forward modeling via H (div) finite element sources with focal interpolation publication-title: Phys. Med. Biol. – volume: 13 start-page: 531 year: 2019 ident: bib0089 article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction publication-title: Front. Neurosci. – volume: 32 start-page: 2379 year: 2010 end-page: 2394 ident: bib0084 article-title: A trilinear immersed finite element method for solving the electroencephalography forward problem publication-title: SIAM J. Sci. Comput. – volume: 62 start-page: 418 year: 2012 end-page: 431 ident: bib0041 article-title: Influences of skull segmentation inaccuracies on EEG source analysis publication-title: Neuroimage – volume: 32 start-page: 1383 year: 2011 end-page: 1399 ident: bib0019 article-title: Modeling of the human skull in EEG source analysis publication-title: Hum. Brain Mapp. – volume: 19 start-page: 934 year: 2003 ident: bib0066 article-title: A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci publication-title: Neuroimage – volume: 66 start-page: 273 year: 2019 end-page: 282 ident: bib0011 article-title: Sensitivity of the projected subtraction approach to mesh degeneracies and its impact on the forward problem in EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 44 start-page: 423 year: 1999 end-page: 440 ident: bib0038 article-title: A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG publication-title: Phys. Med. Biol. – volume: 27 start-page: 95 year: 2014 end-page: 111 ident: bib0054 article-title: Influence of skull modeling approaches on EEG source localization publication-title: Brain Topogr. – year: 1974 ident: bib0078 article-title: An Analysis of the Finite Element Method, Mathematics of Computation – volume: 29 start-page: 475 year: 1991 end-page: 481 ident: bib0101 article-title: Finite-element model of the human head: scalp potentials due to dipole sources publication-title: Med. Biol. Eng. Comput. – volume: 79 start-page: 1309 year: 2009 end-page: 1331 ident: bib0027 article-title: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities publication-title: Int. J. Numer. Methods Eng. – volume: 16 year: 2021 ident: bib0074 article-title: DUNEuro—a software toolbox for forward modeling in bioelectromagnetism publication-title: PLoS ONE – volume: 26 start-page: 55 year: 2000 end-page: 67 ident: bib0018 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron – volume: 96 start-page: 121 year: 1995 end-page: 134 ident: bib0014 article-title: Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography publication-title: Electroencephalogr. Clin. Neurophysiol. – reference: . doi: – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib0005 article-title: Unified segmentation publication-title: Neuroimage – volume: 20 start-page: 1099 year: 2004 end-page: 1116 ident: bib0099 article-title: Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem publication-title: Inverse Probl. – volume: 0 year: 2021 ident: bib0030 article-title: Bioelectromagnetism in human brain research: new applications, new questions publication-title: Neuroscientist – volume: 28 start-page: 1059 year: 2000 end-page: 1065 ident: bib0095 article-title: Lead-field bases for electroencephalography source imaging publication-title: Ann. Biomed. Eng. – volume: 153 start-page: 11 year: 2015 end-page: 22 ident: bib0052 article-title: FEM method for the EEG forward problem and improvement based on modification of the Saint Venant's method publication-title: Prog. Electromagn. Res. – volume: 18 start-page: 14 year: 2001 end-page: 30 ident: bib0007 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. – volume: 15 year: 2021 ident: bib0049 article-title: Conductivity tensor imaging of the human brain using water mapping techniques publication-title: Front. Neurosci. – volume: 2011 year: 2011 ident: bib0029 article-title: Forward field computation with OpenMEEG publication-title: Comput. Intell. Neurosci. – volume: 2008 start-page: 3991 year: 2008 end-page: 3994 ident: bib0002 article-title: Neuroelectromagnetic forward modeling toolbox publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 6 start-page: 129 year: 2002 end-page: 142 ident: bib0075 article-title: Brainsuite: an automated cortical surface identification tool publication-title: Med. Image Anal. – volume: 24 start-page: 5 year: 2002 end-page: 12 ident: bib0060 article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – reference: Erdbrügger, T., Westhoff, A., Hoeltershinken, M., Radecke, J., Buschermoehle, Y., Buyx, A., Wallois, F., Pursiainen, S., Gross, J., Lencer, R., Engwer, C., Wolters, C., 2022. CutFEM forward modeling for EEG source analysis. – volume: 86 start-page: 446 year: 2014 end-page: 460 ident: bib0028 article-title: MNE software for processing MEG and EEG data publication-title: Neuroimage – volume: 40 start-page: 5011 year: 2019 end-page: 5028 ident: bib0004 article-title: The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component publication-title: Hum. Brain Mapp. – volume: 6 start-page: 250 year: 1998 end-page: 269 ident: bib0048 article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models publication-title: Hum. Brain Mapp. – reference: Wolters, C.H., Anwander, A., Koch, M.A., Reitzinger, S., Kuhn, M., Svensen, M., 2001. Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver, in: “Forschung Und Forschung Und Wissenschaftliches Rechnen” Contributions to the Heinz-Billing Award. pp. 111–157. – volume: 57 start-page: 5715 year: 2012 end-page: 5731 ident: bib0068 article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images publication-title: Phys. Med. Biol. – reference: Lee, S., Cho, M., Kim, T., Kim, I., Oh, S., 2006. Electrical conductivity estimation from diffusion tensor and T2: a silk yarn phantom study. Proc. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 26, 3034. – volume: 57 start-page: 795 year: 2012 end-page: 798 ident: bib0091 article-title: Comparison of boundary element and finite element approaches to the EEG forward problem publication-title: Biomed. Eng. /Biomed. Tech. – reference: Höltershinken, M., Lange, P., Wallois, F., Buyx, A., Pursiainen, S., Engwer, C., Wolters, C., 2022. The localized subtraction approach for EEG and MEG forward modeling. Proc. Work. BIOSIGNAL. 10.1016/j.neuroimage.2019.116039 – reference: Wolters, C.H., 2003. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain. Leipzig. 239267 – volume: 44 start-page: 399 year: 2009 end-page: 410 ident: bib0067 article-title: EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model publication-title: Neuroimage – volume: 12 year: 2018 ident: bib0061 article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem publication-title: Front. Neurosci. – volume: 40 start-page: 335 year: 1995 end-page: 349 ident: bib0102 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Phys. Med. Biol. – volume: 46 start-page: 1055 year: 2009 end-page: 1065 ident: bib0022 article-title: A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation publication-title: Neuroimage – volume: 2011 start-page: 1 year: 2011 end-page: 9 ident: bib0059 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib0033 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 7 start-page: 1 year: 2020 ident: bib0082 article-title: Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models publication-title: Neurophotonics – volume: 98 start-page: 11697 year: 2001 end-page: 11701 ident: bib0083 article-title: Conductivity tensor mapping of the human brain using diffusion tensor MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2010 start-page: 1 year: 2010 end-page: 11 ident: bib0086 article-title: Realistic and spherical head modeling for EEG forward problem solution: a comparative cortex-based analysis publication-title: Comput. Intell. Neurosci. – volume: 49 start-page: 409 year: 2002 end-page: 418 ident: bib0072 article-title: Dipole models for the EEG and MEG publication-title: IEEE Trans. Biomed. Eng. – volume: 27 year: 2011 ident: bib0063 article-title: Forward simulation and inverse dipole localization with the lowest order Raviart - Thomas elements for electroencephalography publication-title: Inverse Probl. – volume: 117 start-page: 1836 year: 2006 end-page: 1843 ident: bib0069 article-title: Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole publication-title: Clin. Neurophysiol. – volume: 39 start-page: 541 year: 1992 end-page: 557 ident: bib0056 article-title: Multiple dipole modeling and localization from spatio-temporal MEG data publication-title: IEEE Trans. Biomed. Eng. – start-page: 1142 year: 2009 end-page: 1145 ident: bib0065 article-title: Tetrahedral mesh generation from volumetric binary and grayscale images publication-title: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE – start-page: 4536 year: 2006 end-page: 4539 ident: bib0015 article-title: A high-resolution anisotropic finite-volume head model for EEG source analysis publication-title: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE – volume: 107 start-page: 159 year: 1998 end-page: 173 ident: bib0042 article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 4 start-page: 46 year: 2007 ident: bib0032 article-title: Review on solving the forward problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. – start-page: 101 year: 2010 end-page: 104 ident: bib0008 article-title: Academic software toolboxes for the analysis of MEG data publication-title: IFMBE Proceedings – volume: 216 year: 2020 ident: bib0040 article-title: Comparison of beamformer implementations for MEG source localization publication-title: Neuroimage – volume: 2011 start-page: 12 year: 2011 ident: bib0088 article-title: Open source software library for biomedical signal processing publication-title: Comput. Intell. Neurosci. – year: 2012 ident: bib0013 publication-title: Handbook of Neural Activity Measurement, Handbook of Neural Activity Measurement – volume: 51 start-page: 2129 year: 2004 end-page: 2137 ident: bib0085 article-title: Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models publication-title: IEEE Trans. Biomed. Eng. – volume: 822 start-page: 121 year: 2008 end-page: 138 ident: bib0010 article-title: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE publication-title: Computing – volume: 7 start-page: 31 year: 2013 ident: bib0077 article-title: A hitchhiker's guide to diffusion tensor imaging publication-title: Front. Neurosci. – reference: Drechsler, F., Vorwerk, J., Haueisen, J., Grasedyck, L., Wolters, C.H., 2022. Validation of EEG forward modeling approaches in the presence of anisotropy in the source space. 10.48550/arXiv.2208.03081 – reference: Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1994. Statistical parametric maps in functional imaging: A general linear approach, 2, 189-210. doi: – volume: 2011 year: 2011 ident: bib0076 article-title: PyEEG: an open source python module for EEG/MEG feature extraction publication-title: Comput. Intell. Neurosci. – volume: 2011 start-page: 1 year: 2011 end-page: 17 ident: bib0016 article-title: MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG publication-title: Comput. Intell. Neurosci. – volume: 30 start-page: 2862 year: 2009 end-page: 2878 ident: bib0045 article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model publication-title: Hum. Brain Mapp. – volume: 7 start-page: 343 year: 2016 end-page: 354 ident: bib0050 article-title: Helsinki BEM framework LCISA solver publication-title: Uniw. Śl. – reference: Medani, T., Mosher, J.C., Joshi, A.A., Taylor, K.N., Nair, D.R., Wolters, C.H., Leahy, R.M., 2022. SEEG source analysis of intracranial stimulation with realistic head modeling: a validation study, in: OHBM (Ed.), OHBM Annual Meeting. 10.1117/12.2580935 – reference: (Doctoral dissertation, Universitäts-und Landesbibliothek Münster). – year: 2019 ident: bib0071 article-title: SimNIBS 2.1: a Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation, Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018 – volume: 219 year: 2020 ident: bib0036 article-title: FastSurfer—a fast and accurate deep learning based neuroimaging pipeline publication-title: Neuroimage – volume: 12 year: 2019 ident: bib0039 article-title: ROAST: a fully-automated, open-source, realistic volumetric-approach-based simulator for TES publication-title: Brain Stimul. – volume: 18 start-page: 237 year: 2020 end-page: 250 ident: bib0035 article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated fem tool for forward and inverse computations in MATLAB publication-title: Neuroinformatics – volume: 68 start-page: 308 year: 2021 end-page: 318 ident: bib0046 article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 37 year: 2018 ident: bib0093 article-title: The FieldTrip-SimBio pipeline for EEG forward solutions publication-title: Biomed. Eng. Online – volume: 30 start-page: 813 year: 2006 end-page: 826 ident: bib0098 article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling publication-title: Neuroimage – volume: 30 start-page: 24 year: 2007 end-page: 45 ident: bib0100 article-title: Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models publication-title: SIAM J. Sci. Comput. – reference: Piastra, M.C., Schrader, S., Nüßing, A., Antonakakis, M., Medani, T., Wollbrink, A., Engwer, C., Wolters, C.H., 2020. The WWU DUNEuro reference data set for combined EEG/MEG source analysis. 10.5281/ZENODO.3888381 – volume: 51 start-page: 145 year: 2010 end-page: 163 ident: bib0031 article-title: Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study publication-title: Neuroimage – volume: 1–506 year: 2012 ident: bib0047 article-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields publication-title: Bioelectromagn. Princ. Appl. Bioelectr. Biomagn. Fields – volume: 18 start-page: 569 year: 2020 end-page: 580 ident: bib0087 article-title: FEMfuns: a volume conduction modeling pipeline that includes resistive, capacitive or dispersive tissue and electrodes publication-title: Neuroinformatics – reference: . – volume: 201 year: 2019 ident: bib0092 article-title: The multipole approach for EEG forward modeling using the finite element method publication-title: Neuroimage – volume: 46 start-page: 245 year: 1999 end-page: 259 ident: bib0055 article-title: EEG and MEG: forward solutions for inverse methods publication-title: IEEE Trans. Biomed. Eng. – reference: Nüßing, A. (2018). – volume: 100 start-page: 590 year: 2014 end-page: 607 ident: bib0090 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: Neuroimage – volume: 40 start-page: 1166 year: 1993 end-page: 1174 ident: bib0020 article-title: A fast method to compute the potential in the multisphere model publication-title: IEEE Trans. Biomed. Eng. – volume: 30 start-page: 1753 year: 2009 end-page: 1757 ident: bib0070 article-title: Electromagnetic brain imaging publication-title: Hum. Brain Mapp. – volume: 63 start-page: 2564 year: 2016 end-page: 2575 ident: bib0058 article-title: The unfitted discontinuous galerkin method for solving the EEG forward problem publication-title: IEEE Trans. Biomed. Eng. – volume: 65 year: 2020 ident: bib0073 article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model publication-title: Phys. Med. Biol. – volume: 223 year: 2020 ident: bib0003 article-title: Inter-subject variability of skull conductivity and thickness in calibrated realistic head models publication-title: Neuroimage – volume: 1300 start-page: 149 year: 2007 ident: 10.1016/j.neuroimage.2022.119851_bib0044 article-title: Low resolution conductivity estimation to improve source localization publication-title: Int. Congr. Ser. doi: 10.1016/j.ics.2006.12.058 – volume: 24 start-page: 5 year: 2002 ident: 10.1016/j.neuroimage.2022.119851_bib0060 article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0080 article-title: MEG/EEG group analysis with brainstorm publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00076 – volume: 51 start-page: 2129 year: 2004 ident: 10.1016/j.neuroimage.2022.119851_bib0085 article-title: Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836490 – volume: 201 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0092 article-title: The multipole approach for EEG forward modeling using the finite element method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116039 – volume: 40 start-page: 1166 year: 1993 ident: 10.1016/j.neuroimage.2022.119851_bib0020 article-title: A fast method to compute the potential in the multisphere model publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.245635 – volume: 96 start-page: 121 year: 1995 ident: 10.1016/j.neuroimage.2022.119851_bib0014 article-title: Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(94)00228-7 – ident: 10.1016/j.neuroimage.2022.119851_bib0025 doi: 10.1002/hbm.460020402 – volume: 50 start-page: 3023 year: 2005 ident: 10.1016/j.neuroimage.2022.119851_bib0081 article-title: Representation of bioelectric current sources using Whitney elements in the finite element method publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/50/13/004 – ident: 10.1016/j.neuroimage.2022.119851_bib0096 – volume: 100 start-page: 590 year: 2014 ident: 10.1016/j.neuroimage.2022.119851_bib0090 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.040 – volume: 223 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0003 article-title: Inter-subject variability of skull conductivity and thickness in calibrated realistic head models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117353 – volume: 12 year: 2018 ident: 10.1016/j.neuroimage.2022.119851_bib0061 article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00030 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2022.119851_bib0017 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0071 – volume: 49 start-page: 409 year: 2002 ident: 10.1016/j.neuroimage.2022.119851_bib0072 article-title: Dipole models for the EEG and MEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.995679 – volume: 32 start-page: 1383 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0019 article-title: Modeling of the human skull in EEG source analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21114 – volume: 0 issue: 0 year: 2021 ident: 10.1016/j.neuroimage.2022.119851_bib0030 article-title: Bioelectromagnetism in human brain research: new applications, new questions publication-title: Neuroscientist – volume: 216 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0040 article-title: Comparison of beamformer implementations for MEG source localization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116797 – volume: 55 start-page: 2481 year: 2008 ident: 10.1016/j.neuroimage.2022.119851_bib0094 article-title: A new method to derive white matter conductivity from diffusion tensor MRI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.923159 – volume: 15 issue: 976 year: 2021 ident: 10.1016/j.neuroimage.2022.119851_bib0049 article-title: Conductivity tensor imaging of the human brain using water mapping techniques publication-title: Front. Neurosci. – volume: 65 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0073 article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abc5aa – volume: 7 start-page: 343 year: 2016 ident: 10.1016/j.neuroimage.2022.119851_bib0050 article-title: Helsinki BEM framework LCISA solver publication-title: Uniw. Śl. – ident: 10.1016/j.neuroimage.2022.119851_bib0062 – volume: 46 start-page: 1055 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0022 article-title: A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.024 – volume: 219 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0036 article-title: FastSurfer—a fast and accurate deep learning based neuroimaging pipeline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117012 – volume: 66 start-page: 273 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0011 article-title: Sensitivity of the projected subtraction approach to mesh degeneracies and its impact on the forward problem in EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2828336 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0079 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 81 start-page: 75 year: 2021 ident: 10.1016/j.neuroimage.2022.119851_bib0009 article-title: The DUNE framework: basic concepts and recent developments publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.06.007 – volume: 9 start-page: e93154 year: 2014 ident: 10.1016/j.neuroimage.2022.119851_bib0006 article-title: Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model publication-title: PLoS ONE doi: 10.1371/journal.pone.0093154 – volume: 27 start-page: 95 year: 2014 ident: 10.1016/j.neuroimage.2022.119851_bib0054 article-title: Influence of skull modeling approaches on EEG source localization publication-title: Brain Topogr. doi: 10.1007/s10548-013-0313-y – volume: 20 start-page: 1099 year: 2004 ident: 10.1016/j.neuroimage.2022.119851_bib0099 article-title: Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem publication-title: Inverse Probl. doi: 10.1088/0266-5611/20/4/007 – volume: 30 start-page: 1753 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0070 article-title: Electromagnetic brain imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20795 – volume: 17 start-page: 37 year: 2018 ident: 10.1016/j.neuroimage.2022.119851_bib0093 article-title: The FieldTrip-SimBio pipeline for EEG forward solutions publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0463-y – volume: 30 start-page: 24 year: 2007 ident: 10.1016/j.neuroimage.2022.119851_bib0100 article-title: Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models publication-title: SIAM J. Sci. Comput. doi: 10.1137/060659053 – volume: 2011 start-page: 12 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0088 article-title: Open source software library for biomedical signal processing publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/935364 – volume: 18 start-page: 14 year: 2001 ident: 10.1016/j.neuroimage.2022.119851_bib0007 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.962275 – volume: 39 start-page: 541 year: 1992 ident: 10.1016/j.neuroimage.2022.119851_bib0056 article-title: Multiple dipole modeling and localization from spatio-temporal MEG data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.141192 – volume: 16 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0012 article-title: The analytical subtraction approach for solving the forward problem in EEG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab2694 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0016 article-title: MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/758973 – year: 1974 ident: 10.1016/j.neuroimage.2022.119851_bib0078 – volume: 30 start-page: 2862 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0045 article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20714 – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2022.119851_bib0086 article-title: Realistic and spherical head modeling for EEG forward problem solution: a comparative cortex-based analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/972060 – volume: 2011 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0076 article-title: PyEEG: an open source python module for EEG/MEG feature extraction publication-title: Comput. Intell. Neurosci. – ident: 10.1016/j.neuroimage.2022.119851_bib0053 – volume: 32 start-page: 2379 year: 2010 ident: 10.1016/j.neuroimage.2022.119851_bib0084 article-title: A trilinear immersed finite element method for solving the electroencephalography forward problem publication-title: SIAM J. Sci. Comput. doi: 10.1137/09075038X – ident: 10.1016/j.neuroimage.2022.119851_bib0024 doi: 10.3389/fnhum.2023.1216758 – start-page: 101 year: 2010 ident: 10.1016/j.neuroimage.2022.119851_bib0008 article-title: Academic software toolboxes for the analysis of MEG data doi: 10.1007/978-3-642-12197-5_19 – volume: 13 start-page: 531 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0089 article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00531 – volume: 16 year: 2021 ident: 10.1016/j.neuroimage.2022.119851_bib0074 article-title: DUNEuro—a software toolbox for forward modeling in bioelectromagnetism publication-title: PLoS ONE doi: 10.1371/journal.pone.0252431 – volume: 153 start-page: 11 year: 2015 ident: 10.1016/j.neuroimage.2022.119851_bib0052 article-title: FEM method for the EEG forward problem and improvement based on modification of the Saint Venant's method publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER15050102 – volume: 28 start-page: 1059 year: 2000 ident: 10.1016/j.neuroimage.2022.119851_bib0095 article-title: Lead-field bases for electroencephalography source imaging publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1310220 – start-page: 1142 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0065 article-title: Tetrahedral mesh generation from volumetric binary and grayscale images – volume: 15 start-page: 159 year: 2002 ident: 10.1016/j.neuroimage.2022.119851_bib0034 article-title: The influence of brain tissue anisotropy on human EEG and MEG publication-title: Neuroimage doi: 10.1006/nimg.2001.0962 – volume: 30 start-page: 813 year: 2006 ident: 10.1016/j.neuroimage.2022.119851_bib0098 article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.10.014 – volume: 51 start-page: 145 year: 2010 ident: 10.1016/j.neuroimage.2022.119851_bib0031 article-title: Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.014 – volume: 18 start-page: 237 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0035 article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated fem tool for forward and inverse computations in MATLAB publication-title: Neuroinformatics doi: 10.1007/s12021-019-09436-9 – volume: 44 start-page: 423 year: 1999 ident: 10.1016/j.neuroimage.2022.119851_bib0038 article-title: A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/44/2/010 – volume: 62 start-page: 418 year: 2012 ident: 10.1016/j.neuroimage.2022.119851_bib0041 article-title: Influences of skull segmentation inaccuracies on EEG source analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.006 – volume: 46 start-page: 245 year: 1999 ident: 10.1016/j.neuroimage.2022.119851_bib0055 article-title: EEG and MEG: forward solutions for inverse methods publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.748978 – volume: 32 start-page: 336 year: 2016 ident: 10.1016/j.neuroimage.2022.119851_bib0026 article-title: CAT-A computational anatomy toolbox for the analysis of structural MRI Data publication-title: Hum. Brain Mapp. – volume: 26 start-page: 55 year: 2000 ident: 10.1016/j.neuroimage.2022.119851_bib0018 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron doi: 10.1016/S0896-6273(00)81138-1 – volume: 63 start-page: 2564 year: 2016 ident: 10.1016/j.neuroimage.2022.119851_bib0058 article-title: The unfitted discontinuous galerkin method for solving the EEG forward problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2590740 – volume: 12 issue: 391 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0039 article-title: ROAST: a fully-automated, open-source, realistic volumetric-approach-based simulator for TES publication-title: Brain Stimul. – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2022.119851_bib0033 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – ident: 10.1016/j.neuroimage.2022.119851_bib0051 – ident: 10.1016/j.neuroimage.2022.119851_bib0097 – volume: 6 start-page: 129 year: 2002 ident: 10.1016/j.neuroimage.2022.119851_bib0075 article-title: Brainsuite: an automated cortical surface identification tool publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00054-3 – volume: 107 start-page: 159 year: 1998 ident: 10.1016/j.neuroimage.2022.119851_bib0042 article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00057-1 – volume: 86 start-page: 446 year: 2014 ident: 10.1016/j.neuroimage.2022.119851_bib0028 article-title: MNE software for processing MEG and EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.027 – volume: 2011 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0029 article-title: Forward field computation with OpenMEEG publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/923703 – volume: 98 start-page: 11697 year: 2001 ident: 10.1016/j.neuroimage.2022.119851_bib0083 article-title: Conductivity tensor mapping of the human brain using diffusion tensor MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.171473898 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0082 article-title: Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models publication-title: Neurophotonics doi: 10.1117/1.NPh.7.1.015008 – volume: 822 start-page: 121 issue: 82 year: 2008 ident: 10.1016/j.neuroimage.2022.119851_bib0010 article-title: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE publication-title: Computing doi: 10.1007/s00607-008-0004-9 – volume: 40 start-page: 335 year: 1995 ident: 10.1016/j.neuroimage.2022.119851_bib0102 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/40/3/001 – ident: 10.1016/j.neuroimage.2022.119851_bib0037 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0059 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – start-page: 4536 year: 2006 ident: 10.1016/j.neuroimage.2022.119851_bib0015 article-title: A high-resolution anisotropic finite-volume head model for EEG source analysis – ident: 10.1016/j.neuroimage.2022.119851_bib0043 – volume: 27 year: 2011 ident: 10.1016/j.neuroimage.2022.119851_bib0063 article-title: Forward simulation and inverse dipole localization with the lowest order Raviart - Thomas elements for electroencephalography publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/4/045003 – volume: 1–506 year: 2012 ident: 10.1016/j.neuroimage.2022.119851_bib0047 article-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields publication-title: Bioelectromagn. Princ. Appl. Bioelectr. Biomagn. Fields – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2022.119851_bib0005 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 57 start-page: 795 year: 2012 ident: 10.1016/j.neuroimage.2022.119851_bib0091 article-title: Comparison of boundary element and finite element approaches to the EEG forward problem publication-title: Biomed. Eng. /Biomed. Tech. – volume: 117 start-page: 1836 year: 2006 ident: 10.1016/j.neuroimage.2022.119851_bib0069 article-title: Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.05.003 – volume: 7 start-page: 31 year: 2013 ident: 10.1016/j.neuroimage.2022.119851_bib0077 article-title: A hitchhiker's guide to diffusion tensor imaging publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00031 – volume: 18 start-page: 569 year: 2020 ident: 10.1016/j.neuroimage.2022.119851_bib0087 article-title: FEMfuns: a volume conduction modeling pipeline that includes resistive, capacitive or dispersive tissue and electrodes publication-title: Neuroinformatics doi: 10.1007/s12021-020-09458-8 – year: 2012 ident: 10.1016/j.neuroimage.2022.119851_bib0013 – volume: 2008 start-page: 3991 year: 2008 ident: 10.1016/j.neuroimage.2022.119851_bib0002 article-title: Neuroelectromagnetic forward modeling toolbox publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 79 start-page: 1309 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0027 article-title: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2579 – volume: 6 start-page: 250 year: 1998 ident: 10.1016/j.neuroimage.2022.119851_bib0048 article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2 – volume: 39 start-page: B138 year: 2017 ident: 10.1016/j.neuroimage.2022.119851_bib0023 article-title: A discontinuous Galerkin method to solve the EEG forward problem using the subtraction approach publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1048392 – volume: 19 start-page: 934 year: 2003 ident: 10.1016/j.neuroimage.2022.119851_bib0066 article-title: A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci publication-title: Neuroimage – volume: 57 start-page: 5715 year: 2012 ident: 10.1016/j.neuroimage.2022.119851_bib0068 article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/18/5715 – ident: 10.1016/j.neuroimage.2022.119851_bib0021 – volume: 61 start-page: 8502 year: 2016 ident: 10.1016/j.neuroimage.2022.119851_bib0064 article-title: Electroencephalography (EEG) forward modeling via H (div) finite element sources with focal interpolation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/24/8502 – volume: 29 start-page: 475 year: 1991 ident: 10.1016/j.neuroimage.2022.119851_bib0101 article-title: Finite-element model of the human head: scalp potentials due to dipole sources publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02442317 – volume: 4 start-page: 46 year: 2007 ident: 10.1016/j.neuroimage.2022.119851_bib0032 article-title: Review on solving the forward problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-4-46 – ident: 10.1016/j.neuroimage.2022.119851_bib0001 – volume: 44 start-page: 399 year: 2009 ident: 10.1016/j.neuroimage.2022.119851_bib0067 article-title: EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.009 – volume: 68 start-page: 308 year: 2021 ident: 10.1016/j.neuroimage.2022.119851_bib0046 article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.2999271 – volume: 40 start-page: 5011 year: 2019 ident: 10.1016/j.neuroimage.2022.119851_bib0004 article-title: The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24754 – ident: 10.1016/j.neuroimage.2022.119851_bib0057  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.5111957 | 
    
| Snippet | •Full FEM pipeline for electrophysiology (e-phys) forward modeling is proposed and integrated into brainstorm.•Realistic FEM mesh head models can be generated... Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields... Human brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 119851 | 
    
| SubjectTerms | Accuracy Alzheimer's disease Anisotropy Automation Brain - diagnostic imaging Brain - pathology Brain Mapping - methods Brainstorm Cerebrospinal fluid DUNEuro EEG EEG/MEG/SEEG Electric Conductivity Electroencephalography Electroencephalography - methods Electrophysiology Finite Element Analysis Finite element method Finite volume method Forward model Geometry Head Head modeling Humans Image processing Interfaces Inverse problems Libraries Localization Magnetic resonance imaging Magnetoencephalography Magnetoencephalography - methods Models, Neurological Nervous system Neuroimaging Open source software Scalp Segmentation Substantia alba  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxNRs7tmPDqS1dVUjbC6zUW-TEDgRts6uyK9QLv52ZxEmJelmJYxI7iWcmM9_E8yDkvZBBhFwphrtuTNqqZsYKzbzhNSCOTIWuS8TiQp8v5ZdLdXlATodcGAyrjLq_1-mdto5nZpGas03TzL4CMgBzAwhFdDVoMKNcyhy7GHz4cxvmYbns0-FUxnB0jObpY7y6mpHNFXy54CkKAfrDGsUnJqqr5D-xVHeR6N2Ayvu7duNufrvV6h9rNX9EHkaYSY_7lTwmB6F9Qu4t4kb6U7I7wdYQGBl5xT4vL_Cf_Ed63NKxeoSnrvUUf2GwGksh-9UNnTcIUOlZH3FOF13zaQqol3b9dMAI0thVB9baYnYkLfExFJMnsEfFM7Kcn307PWexAwOrtNVbZlzwdWWVS7kL2vm04r40qTdeeEAKJlXBSxW0KbPc-SB1ybWpXW7zSvHMVNlzctiu2_ASc8NDHkqTgfMOiMI762xtpdU2T0tpvEpIPhC9qGJ5cuySsSqGOLSfxS27CmRX0bMrIXycuelLdOwx5wT5Oo7HItvdifX19yJKWeGtktynLvXOSJeqsq4d1660ogRHOtiE2EEqiiGPFTQv3KjZ4wU-jXMn8r7n7KNBCIuoc34VIge0rbmxMiHvxsugLXALyLVhvevGoEfJjU7Ii15mRxpkWgFYNbCsfCLNEyJNr7TNj64iOUAacGNFQsQo93uz4tV_UeI1eQBHGIrAuDoih9vrXXgDMHFbvu30wF8_dGk7 priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3vi9MwGA7nDtQv4m-rp0Twa7BJkzRRRG66cQgbIg7uW0ib9JzsunluyP335m3TznIg-7om7ZK8efMked_nQegN4575XAgCt26E67IiSjNJnKJVQByZ8I1KxGwuzxb8y7k4P0LzLhcGwio7n9g4arcu4Yz8LcsDlpBUaf5x84uAahTcrnYSGjZKK7gPDcXYLXTMgBlrhI7Hk_nXb3saXsrb5DiREUWpjrE9bcRXwyC5vAzzOOwbGQveRCtBBwtWw-s_WLdu4tKb4ZV3dvXGXv-xq9U_a9f0ProXQSc-ba3kATry9UN0exav1R-h3RiEIiBO8pJ8XszhhP4dPq1xzyXhsK0dhgMNUgExsltd4-kS4CqetPHneNZIUeOAgXGjrhOWRBw1dkJba8iVxAV8BkMqBShWPEaL6eT7pzMS9RhIKbXcEmW9q0otbEqtl9alJXWFSp1yzAXcoFLhHRdeqiLLrfNcFlSqyuY6LwXNVJk9QaN6XftnkCnuc1-oLGzlA75wVltdaa6lztOCKycSlHedbspIVg6aGSvTRaX9NPvhMjBcph2uBNG-5qYl7DigzhjGtS8PlNvND-urCxNnsHFacOpSmzqruE1FUVWWSltoVoRttdcJ0p1VmC6rNfjh8KLlAX_gfV83Ip8W0RxY-6QzQhM90G-zny8Jet0_Dr4DLoRs7de7pgzsL6mSCXra2mzfB5kUAbqq0Kx8YM2DTho-qZc_Gn7yAHDCppYliPV2f_BQPP9_W16gu6EwRB4QKk7QaHu18y8DKtwWr-JU_wv-tWST priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTgJeuF8CAxmJV0-xEzs2PHWwakJqBRKVxlNkx44odNkErdD49ZzjXCBMQoXHJjlpcuxjfyfn8hHyQuRBhEJKhlE3lpuqZtoIxbzmNSCOTIbIEjFfqJNl_vZUnu6RtK-FGcXvYx5W7Ou4OgPrAm9OCLBxo7Fmel9JQN8Tsr9cvJt-jEFNmTHNI5cHT5GCUBZ98s7fbjXakWLj_tHGdBV4Xs2fvL5tLuzld7te_7Y5zW6R9_1rtTkpXw63G3dY_fij4-O_vPdtcrNDqnTaTq07ZC80d8m1eReLv0e2R8gugcmVZ-zNcoGf9V_SaUOHBhSe2sZT_ArCauym7NeXdLZCjEuP26R1Oo_81RSAM42UPLCP0o6YBx6pwQJL6vBvKNZfIM3FfbKcHX94fcI6EgdWKaM2TNvg68pIm3IblPVpxb3TqddeeAAbOpXB5zIo7bLC-pArx5WubWGKSvJMV9kDMmnOm_AIy8tDEZzOwP8HUOKtsaY2uVGmSF2uvUxI0Q9kWXUdzpFoY132qWyfy19aLVGrZavVhPBB8qLt8rGDzBHOleF67NMdD8Awlp3Zl97InPvUpt7q3KbS1bXlyjojHPjiwSTE9DOt7EthYfGGG612eIBXg2wHl1oYtKP0QT-xy27Z-laKAgC74trkCXk-nIYFB6NItgnn23gNOqVcq4Q8bO1g0EEGNmkAAsNIjCxkpKTxmWb1KTY1B1QEnrBIiBhsaeehePw_Qk_IDfiFSQyMywMy2XzdhqcAMDfuWbem_AReP3lI priority: 102 providerName: Unpaywall  | 
    
| Title | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922009727 https://dx.doi.org/10.1016/j.neuroimage.2022.119851 https://www.ncbi.nlm.nih.gov/pubmed/36599389 https://www.proquest.com/docview/2765061894 https://www.proquest.com/docview/2761182186 https://pubmed.ncbi.nlm.nih.gov/PMC9904282 https://doi.org/10.1016/j.neuroimage.2022.119851 https://doaj.org/article/d9541d0a0da84a05bffa16ab92b106e9  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 267 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkYAL4k1gqYzENRAnfsKphVYF1GiFqFROlh07oqibXUErtBd-O2PnwVZ7oAcuqdLETu2Zjr-JZ75B6GVOfe4FY2nYdUupqupUqpynTpIaEEfBfKwSsSj5fEk_rtjqUqmvEBPW0gO3E_faKUaJy0zmjKQmY7auDeHGqtyCN-Nj6l4mVe9M9XS7gPK7uJ02miuyQ65P4T8KPmGeg6VQkpG9xShy9u-tSVcx59XQyVu75txc_DKbzaV1aXYX3ekAJR63A7mHrvnmPrq56LbMH6DdJBSBCDGQp-n7ZRnevr_B4wYPPBEOm8bh8LIirQPpsdtc4Nk6QFE8bWPL8SKWmcaAb3GsnAPLHe7q58BYm5AHiW14DA5pEqEaxUO0nE2_vJunXa2FtOKKb1NpvKsrxUxGjOfGZRVxVmZOutwBJpAZ844yz6UthHGecku4rI1QomKkkFXxCB01Z41_ErLAvfBWFuCmA3ZwRhlVK6q4Epml0rEEiX7SddURkYd6GBvdR5x913_FpYO4dCuuBJGh5XlLxnFAm0mQ63B_oNOOX4CS6U7J9L-ULEGq1wrdZ6yCjYWO1gf8gLdD2w7VtGjlwNbHvRLqzrr81LkAXM2JVDRBL4bLYBfCZo9p_Nku3hN8RyJ5gh63OjvMQcEZwFIJwxJ72rw3SftXmvW3yD0O4AUc1jxB-aD3B4vi6f8QxTN0G7oMsQcpYcfoaPtj558DLtzaEbr-6jeBo1iJEbox_vBpXsLnZFqefB5F8wBny_Jk_PUP4gtsGw | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJHi1ix3Zs0IRW1qpja4XQKu0tc2IHirq0bK2m_nP8bZzzVapJqC97TXJJ7Lucfxff3Q-hd4w75mIhiN91I1xnOVGaSWIVzQFxRMKVLBGDoeyP-NczcbaF_jS1MD6tsvGJpaO208z_I__AYsASkirNP89-E88a5XdXGwoNU1Mr2P2yxVhd2HHsltcQwl3tHx2Cvt8z1uuefumTmmWAZFLLOVHG2TzTwoTUOGlsmFGbqtAqyyyshioUznLhpEqj2FjHZUqlyk2s40zQSGUR3PcO2uER1xD87XS6w2_fV21_Ka-K8UREFKW6ziWqMszKjpXjC_AbEKcyBt5LK0HXFsiSR2BtnbyJg2-mc-4uiplZXpvJ5J-1svcA3a9BLj6orPIh2nLFI3R3UG_jP0aLjiem8HmZF-RwNPQ7Ah_xQYHb3hUWm8Ji_wOF5L4Rs50scW_s4THuVvnueFBSX2PA3Lhk84ElGNecPjDWwtdm4tQ_BvvSDc-Q8QSNbkUzT9F2MS3cc1-Z7mKXqsilACC5NdroXHMtdRymXFkRoLiZ9CSrm6N7jo5J0mTB_UpW6kq8upJKXQGireSsahCygUzH67W93rf4Lg9ML38ktcdIrBac2tCE1ihuQpHmuaHSpJqlEMY7HSDdWEXSVNGC34cbjTd4gU-tbI20KgS1ofReY4RJ7fGuktX3GaC37WnwVX4DyhRuuiiv8fEsVTJAzyqbbecgkgKgsoJhxWvWvDZJ62eK8c-yHzoAKgiiWYBYa_cbq-LF_8fyBu32TwcnycnR8PglugeCPuuBULGHtueXC_cKEOk8fV1_9hid37an-QvOoKLh | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviM8RGGAkeLQWO_4EIbTRVRujFQ9U2ltwYgeKurRsrab-a_x1nPNVqkmoL3tN4iT2Xe5-F9_dD6E3jHvmlRAk7LoRbvKCaMMkcZoWgDgS4SuWiMFQHo_45zNxtoX-tLUwIa2ytYmVoXbTPPwj32cKsISk2vD9okmL-Nrrf5z9JoFBKuy0tnQatYqc-uUVhG-XH056IOu3jPWPvn06Jg3DAMmlkXOirXdFboSNqfXSujinLtOx04458IQ6Ft5x4aXOEmWd5zKjUhdWGZULmug8gfveQrdVkpiQTqjO1KrhL-V1GZ5IiKbUNFlEdW5Z1atyfA4WAyJUxsBuGS3ommusGATWPOR1BHw9kfPOopzZ5ZWdTP7xkv376F4Db_FBrY8P0JYvH6KdQbOB_wgtDgMlRcjIPCe90TDsBbzDByXuulY4bEuHw68TUoQWzG6yxP1xAMb4qM50x4OK9BoD2sYVjw84X9yw-cBcy1CVibPwGByKNgI3xmM0uhG5PEHb5bT0T0NNulc-04nPADpyZ401heFGGhVnXDsRIdUuepo3bdEDO8ckbfPffqUrcaVBXGktrgjRbuSsbg2ywZjDINfu-tDcuzowvfiRNrYidUZw6mIbO6u5jUVWFJZKmxmWQQDvTYRMqxVpWz8LFh9uNN7gBd53YxuMVWOnDUfvtUqYNrbuMl19mRF63Z0GKxW2nmzpp4vqmhDJUi0jtFvrbLcGiRQAkjVMS61p89oirZ8pxz-rTugApSB8ZhFind5vLIpn_5_LK7QD9iX9cjI8fY7uwriQ7kCo2EPb84uFfwFQdJ69rL55jL7ftJH5C29uoHs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTgJeuF8CAxmJV0-xEzs2PHWwakJqBRKVxlNkx44odNkErdD49ZzjXCBMQoXHJjlpcuxjfyfn8hHyQuRBhEJKhlE3lpuqZtoIxbzmNSCOTIbIEjFfqJNl_vZUnu6RtK-FGcXvYx5W7Ou4OgPrAm9OCLBxo7Fmel9JQN8Tsr9cvJt-jEFNmTHNI5cHT5GCUBZ98s7fbjXakWLj_tHGdBV4Xs2fvL5tLuzld7te_7Y5zW6R9_1rtTkpXw63G3dY_fij4-O_vPdtcrNDqnTaTq07ZC80d8m1eReLv0e2R8gugcmVZ-zNcoGf9V_SaUOHBhSe2sZT_ArCauym7NeXdLZCjEuP26R1Oo_81RSAM42UPLCP0o6YBx6pwQJL6vBvKNZfIM3FfbKcHX94fcI6EgdWKaM2TNvg68pIm3IblPVpxb3TqddeeAAbOpXB5zIo7bLC-pArx5WubWGKSvJMV9kDMmnOm_AIy8tDEZzOwP8HUOKtsaY2uVGmSF2uvUxI0Q9kWXUdzpFoY132qWyfy19aLVGrZavVhPBB8qLt8rGDzBHOleF67NMdD8Awlp3Zl97InPvUpt7q3KbS1bXlyjojHPjiwSTE9DOt7EthYfGGG612eIBXg2wHl1oYtKP0QT-xy27Z-laKAgC74trkCXk-nIYFB6NItgnn23gNOqVcq4Q8bO1g0EEGNmkAAsNIjCxkpKTxmWb1KTY1B1QEnrBIiBhsaeehePw_Qk_IDfiFSQyMywMy2XzdhqcAMDfuWbem_AReP3lI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brainstorm-DUNEuro%3A+An+integrated+and+user-friendly+Finite+Element+Method+for+modeling+electromagnetic+brain+activity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Takfarinas+Medani&rft.au=Juan+Garcia-Prieto&rft.au=Francois+Tadel&rft.au=Marios+Antonakakis&rft.date=2023-02-15&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=267&rft.spage=119851&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119851&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d9541d0a0da84a05bffa16ab92b106e9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |