Drug repositioning: a machine-learning approach through data integration

Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many di...

Full description

Saved in:
Bibliographic Details
Published inJournal of cheminformatics Vol. 5; no. 1; p. 30
Main Authors Napolitano, Francesco, Zhao, Yan, Moreira, Vânia M, Tagliaferri, Roberto, Kere, Juha, D’Amato, Mauro, Greco, Dario
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 22.06.2013
BioMed Central Ltd
Springer Nature B.V
BioMed Central
Subjects
Online AccessGet full text
ISSN1758-2946
1758-2946
DOI10.1186/1758-2946-5-30

Cover

Abstract Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
AbstractList : Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
Doc number: 30 Abstract: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. Keywords: Drug repositioning, Connectivity map, CMap, ATC code, Mode of action, Machine learning, SVM, Integrative genomics, SMILES, Anthelmintics, Antineoplastic, Oxamniquine, Niclosamide
ArticleNumber 30
Audience Academic
Author Moreira, Vânia M
Greco, Dario
Tagliaferri, Roberto
Zhao, Yan
Napolitano, Francesco
D’Amato, Mauro
Kere, Juha
AuthorAffiliation 4 Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
5 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
3 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
2 Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
1 Department of Computer Science, University of Salerno, Salerno, Italy
AuthorAffiliation_xml – name: 3 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
– name: 5 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
– name: 1 Department of Computer Science, University of Salerno, Salerno, Italy
– name: 4 Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– name: 2 Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
Author_xml – sequence: 1
  givenname: Francesco
  surname: Napolitano
  fullname: Napolitano, Francesco
  organization: Department of Computer Science, University of Salerno, Telethon Institute of Genetics and Medicine (TIGEM)
– sequence: 2
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: Research Unit of Molecular Medicine, University of Helsinki
– sequence: 3
  givenname: Vânia M
  surname: Moreira
  fullname: Moreira, Vânia M
  organization: Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki
– sequence: 4
  givenname: Roberto
  surname: Tagliaferri
  fullname: Tagliaferri, Roberto
  organization: Department of Computer Science, University of Salerno
– sequence: 5
  givenname: Juha
  surname: Kere
  fullname: Kere, Juha
  organization: Department of Biosciences and Nutrition, Karolinska Institutet
– sequence: 6
  givenname: Mauro
  surname: D’Amato
  fullname: D’Amato, Mauro
  organization: Department of Biosciences and Nutrition, Karolinska Institutet
– sequence: 7
  givenname: Dario
  surname: Greco
  fullname: Greco, Dario
  email: dario.greco@ki.se
  organization: Research Unit of Molecular Medicine, University of Helsinki, Department of Biosciences and Nutrition, Karolinska Institutet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23800010$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:126933416$$DView record from Swedish Publication Index
BookMark eNqFkktv1DAUhSNURB-wZYkisYFFWjuxY4cFUtUCrVQJicfacpybjEtip7YD5d_jTIfppCpCXsQ6_s6JdX0Okz1jDSTJS4yOMeblCWaUZ3lFyoxmBXqSHGyFvZ39fnLo_TVCJWWIPUv284IjhDA6SC7O3dSlDkbrddDWaNO9S2U6SLXSBrIepJu1VI6js1FMw8rZqVuljQwy1SZA5-RsfJ48bWXv4cXme5R8__jh29lFdvX50-XZ6VWmyqoMGUZNXlCFQCoJVUNxxamsFSNVW5O6zSmNuqqhzRljdcsZtC3mecM5UtCUeXGUZHe5_heMUy1GpwfpfgsrtdhIP-IOBM15iXDk39_x8WSARoEJTvYL2_LE6JXo7E9RMEQqQmLAm02AszcT-CAG7RX0vTRgJy8wwTnFnNHi_2hRVXlZonXq6wfotZ2ciZNbU4zgAqF7qpM9CG1aG6-o5lBxSgvCKsIrHqnjR6i4Ghi0in1pddQXhrcLQ2QC3IZOTt6Ly69fluyr3fltB_e3Qvd_V85676DdIhiJuaNirqGYayioKGYDeWBQOqw7FK-t-3_bTjYPH_NNB25nYo87_gDlrPdq
CitedBy_id crossref_primary_10_1186_s13040_022_00292_z
crossref_primary_10_2174_1574893614666190416151344
crossref_primary_10_3390_ijms25179576
crossref_primary_10_3390_ijms22168962
crossref_primary_10_3390_molecules27092723
crossref_primary_10_1002_widm_1248
crossref_primary_10_3389_fnins_2016_00265
crossref_primary_10_3389_fphar_2024_1337764
crossref_primary_10_1038_srep44912
crossref_primary_10_1016_j_pscia_2022_100002
crossref_primary_10_1145_3699713
crossref_primary_10_1186_s13293_022_00420_8
crossref_primary_10_1038_s41386_020_0752_6
crossref_primary_10_1109_TCSS_2023_3313208
crossref_primary_10_3389_fphar_2017_00729
crossref_primary_10_1186_1471_2105_15_210
crossref_primary_10_1007_s11684_021_0834_9
crossref_primary_10_1007_s11030_020_10144_9
crossref_primary_10_1039_C5MB00242G
crossref_primary_10_1016_j_jbi_2023_104528
crossref_primary_10_1109_JBHI_2018_2856535
crossref_primary_10_3390_pr8101230
crossref_primary_10_1186_s12859_020_03882_y
crossref_primary_10_1186_s12918_018_0658_7
crossref_primary_10_2174_1574893616666210825115406
crossref_primary_10_1007_s00535_022_01929_w
crossref_primary_10_1109_ACCESS_2019_2927491
crossref_primary_10_1186_s12859_019_2811_8
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1186_s12859_019_3165_y
crossref_primary_10_1042_BSR20160180
crossref_primary_10_1093_bioinformatics_btv477
crossref_primary_10_58647_DRUGREPO_24_1_0003
crossref_primary_10_1093_bioinformatics_btz156
crossref_primary_10_1186_1755_8794_8_S2_S1
crossref_primary_10_1007_s10441_018_9325_z
crossref_primary_10_1155_2015_964795
crossref_primary_10_3389_fonc_2020_01030
crossref_primary_10_1186_s12918_016_0371_3
crossref_primary_10_1186_s12967_022_03757_1
crossref_primary_10_37349_emed_2023_00125
crossref_primary_10_1002_2211_5463_12055
crossref_primary_10_1002_slct_202202306
crossref_primary_10_1093_bioinformatics_bty858
crossref_primary_10_1016_j_bbcan_2019_04_005
crossref_primary_10_1093_bioinformatics_btae347
crossref_primary_10_51847_brEvhxSqb9
crossref_primary_10_1038_nrd_2018_168
crossref_primary_10_1186_s12859_018_2575_6
crossref_primary_10_1021_acsptsci_3c00361
crossref_primary_10_2174_0929867327666200831141337
crossref_primary_10_1016_j_ymeth_2023_07_008
crossref_primary_10_3389_fphar_2022_1007315
crossref_primary_10_1002_pmic_201500396
crossref_primary_10_1007_s13042_015_0409_7
crossref_primary_10_1016_j_artmed_2019_03_003
crossref_primary_10_1021_acspolymersau_2c00009
crossref_primary_10_1093_bioinformatics_btaa437
crossref_primary_10_1021_acs_jcim_9b01008
crossref_primary_10_3389_fphar_2023_1205144
crossref_primary_10_1016_j_chemolab_2024_105224
crossref_primary_10_1371_journal_pone_0155530
crossref_primary_10_3390_pharmaceutics15010083
crossref_primary_10_1093_bib_bbaa118
crossref_primary_10_7759_cureus_44359
crossref_primary_10_1093_bib_bbw112
crossref_primary_10_1016_j_compbiolchem_2017_03_008
crossref_primary_10_1371_journal_pone_0204999
crossref_primary_10_1093_bib_bbv020
crossref_primary_10_1002_med_21764
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1186_s13321_017_0215_1
crossref_primary_10_1016_j_cytogfr_2022_04_007
crossref_primary_10_3390_ijms22073378
crossref_primary_10_2174_2589977513666210211163711
crossref_primary_10_1021_ci500670q
crossref_primary_10_1002_cbdv_202301228
crossref_primary_10_13005_bbra_3198
crossref_primary_10_1093_bib_bbz176
crossref_primary_10_2174_1381612826666200116145559
crossref_primary_10_53879_id_60_11_13058
crossref_primary_10_3389_fgene_2021_666575
crossref_primary_10_1021_acs_jmedchem_0c01148
crossref_primary_10_1093_bib_bbaa265
crossref_primary_10_1016_j_compbiolchem_2018_11_028
crossref_primary_10_1038_s41598_021_94897_9
crossref_primary_10_1038_s41598_018_37411_y
crossref_primary_10_3389_fphar_2022_1056605
crossref_primary_10_1089_cmb_2019_0063
crossref_primary_10_1038_s41540_024_00397_7
crossref_primary_10_1186_s12859_018_2123_4
crossref_primary_10_1002_wsbm_1337
crossref_primary_10_1016_j_compbiolchem_2021_107505
crossref_primary_10_1016_j_tranon_2024_102136
crossref_primary_10_1016_j_bioorg_2018_10_050
crossref_primary_10_1016_j_csbj_2023_09_007
crossref_primary_10_3390_v12091058
crossref_primary_10_1093_bioinformatics_btu611
crossref_primary_10_3390_ijms241612997
crossref_primary_10_1038_srep36325
crossref_primary_10_1186_s12859_024_05698_6
crossref_primary_10_1186_s12859_021_03988_x
crossref_primary_10_1016_j_tips_2019_06_003
crossref_primary_10_2174_0118715273329531240911075309
crossref_primary_10_33380_2305_2066_2023_12_1_182_190
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1093_bioinformatics_btaa1024
crossref_primary_10_1016_j_gpb_2020_05_006
crossref_primary_10_1093_bib_bbz157
crossref_primary_10_4155_fmc_14_137
crossref_primary_10_1371_journal_pone_0270852
crossref_primary_10_1016_j_eswa_2020_113640
crossref_primary_10_2174_1570180819666220114114752
crossref_primary_10_1093_bioinformatics_btz411
crossref_primary_10_1186_s12859_020_03682_4
crossref_primary_10_1080_07391102_2023_2199874
crossref_primary_10_1208_s12249_019_1333_z
crossref_primary_10_1016_j_ejmech_2015_01_065
crossref_primary_10_1002_advs_202101864
crossref_primary_10_1038_s41563_019_0338_z
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1007_s12257_020_0049_y
crossref_primary_10_1007_s13311_021_01014_9
crossref_primary_10_3390_cancers14082043
crossref_primary_10_1109_JBHI_2024_3372527
crossref_primary_10_1016_j_biopha_2024_116459
crossref_primary_10_1016_j_patter_2021_100307
crossref_primary_10_3934_mbe_2023632
crossref_primary_10_1021_acs_jpclett_0c02836
crossref_primary_10_1016_j_csbj_2020_06_015
crossref_primary_10_2174_1573409915666190613113822
crossref_primary_10_1002_cpt_769
crossref_primary_10_1016_j_drudis_2017_03_009
crossref_primary_10_1186_s12918_017_0480_7
crossref_primary_10_1016_j_gpb_2018_10_012
crossref_primary_10_1021_acscentsci_9b00476
crossref_primary_10_1021_acs_jcim_5b00330
crossref_primary_10_2174_1566524019666191115103307
crossref_primary_10_3390_nano10040708
crossref_primary_10_1016_j_omtn_2019_12_023
crossref_primary_10_1016_j_isci_2024_110025
crossref_primary_10_1038_s41598_017_07705_8
crossref_primary_10_1016_j_compbiolchem_2019_03_016
crossref_primary_10_1016_j_semcancer_2019_12_012
crossref_primary_10_1016_j_ebiom_2019_08_027
crossref_primary_10_1186_s12859_022_04662_6
crossref_primary_10_1007_s10618_023_00934_8
crossref_primary_10_1002_cmdc_201500123
crossref_primary_10_3390_cancers13092111
crossref_primary_10_1055_s_0043_1769903
crossref_primary_10_1186_s13321_018_0270_2
crossref_primary_10_1158_0008_5472_CAN_17_0096
crossref_primary_10_1016_j_eswa_2017_05_004
crossref_primary_10_1039_C6MB00635C
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1016_j_biortech_2022_128523
crossref_primary_10_1093_chromsci_bmac060
crossref_primary_10_1016_j_jbi_2015_09_016
crossref_primary_10_1016_j_eswa_2021_116165
crossref_primary_10_1021_acs_jmedchem_8b01044
crossref_primary_10_1109_JBHI_2020_2991763
crossref_primary_10_1016_j_artmed_2025_103090
crossref_primary_10_1002_wcms_1183
crossref_primary_10_1016_j_csbj_2020_02_023
crossref_primary_10_1016_j_jmgm_2018_08_005
crossref_primary_10_1016_j_ejmech_2019_111602
crossref_primary_10_2174_0115748936284973240105115444
crossref_primary_10_1016_j_drudis_2022_05_006
crossref_primary_10_3389_fphar_2022_974849
crossref_primary_10_1016_j_csbj_2019_12_006
crossref_primary_10_1098_rsif_2015_0571
crossref_primary_10_1016_j_imu_2023_101177
crossref_primary_10_3389_fchem_2019_00924
crossref_primary_10_1016_j_compbiomed_2023_107136
crossref_primary_10_1016_j_jbi_2021_103902
crossref_primary_10_4155_fmc_14_4
crossref_primary_10_1007_s10822_018_0117_y
crossref_primary_10_1007_s00441_017_2734_5
crossref_primary_10_1089_omi_2019_0151
crossref_primary_10_1021_acs_jcim_4c02424
crossref_primary_10_1016_j_semcancer_2019_09_023
crossref_primary_10_1371_journal_pone_0247059
crossref_primary_10_1093_bib_bbx149
crossref_primary_10_2174_011573398X283365240208195944
crossref_primary_10_1177_1176935119851518
crossref_primary_10_3390_life11111115
crossref_primary_10_1177_1460458220937101
crossref_primary_10_3803_EnM_2022_1404
crossref_primary_10_1208_s12249_018_1169_y
crossref_primary_10_1186_s12859_016_1336_7
crossref_primary_10_2147_DDDT_S424991
crossref_primary_10_1186_s13321_020_00450_7
crossref_primary_10_1109_TCBB_2019_2933825
crossref_primary_10_1134_S1068162023020139
crossref_primary_10_1016_j_compbiomed_2023_107261
crossref_primary_10_1093_bib_bbab507
crossref_primary_10_2174_0929867327999200817104912
crossref_primary_10_1016_j_semcancer_2019_09_012
crossref_primary_10_1186_s12859_022_05069_z
crossref_primary_10_1039_C4MB00014E
crossref_primary_10_1093_bib_bbw048
crossref_primary_10_1089_omi_2022_0026
crossref_primary_10_1093_bioinformatics_btaa063
crossref_primary_10_1093_bioinformatics_bty013
crossref_primary_10_12793_tcp_2019_27_2_59
crossref_primary_10_1016_j_mce_2024_112159
crossref_primary_10_3389_fmolb_2021_628144
crossref_primary_10_3390_fi13010014
crossref_primary_10_1177_1074248420928651
Cites_doi 10.1021/jm200504p
10.1158/1535-7163.MCT-12-0002
10.1074/jbc.M112.359638
10.1038/nmeth.1282
10.1093/bioinformatics/btg405
10.1038/msb.2011.26
10.1073/pnas.1000138107
10.1093/biostatistics/kxj037
10.1007/s00280-009-1157-8
10.1017/CBO9780511809682
10.1126/scitranslmed.3002648
10.4158/EP10390.CR
10.1371/journal.pone.0029290
10.1016/0035-9203(89)90508-7
10.1126/science.1132939
10.1007/s00280-007-0538-0
10.1093/biostatistics/4.2.249
10.1038/bcj.2011.38
10.1371/journal.pcbi.1000925
10.1158/1541-7786.MCR-07-2159
10.1093/nar/gni179
10.1093/nar/gkr967
10.1038/nrd1900
10.1371/journal.pone.0035254
10.1007/0-387-29362-0_23
10.1038/nrmicro1048
10.18637/jss.v018.i05
10.1038/nbt.2151
ContentType Journal Article
Copyright Napolitano et al.; licensee Chemistry Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2013 BioMed Central Ltd.
2013 Napolitano et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Napolitano et al.; licensee Chemistry Central Ltd. 2013 Napolitano et al.; licensee Chemistry Central Ltd.
Copyright_xml – notice: Napolitano et al.; licensee Chemistry Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Napolitano et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Napolitano et al.; licensee Chemistry Central Ltd. 2013 Napolitano et al.; licensee Chemistry Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1186/1758-2946-5-30
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database



Engineering Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 30
ExternalDocumentID oai_swepub_ki_se_528601
PMC3704944
3018699171
A534794898
23800010
10_1186_1758_2946_5_30
Genre Journal Article
GrantInformation_xml – fundername: Telethon
  grantid: TGM11SB1
GroupedDBID -5F
-5G
-A0
-BR
0R~
29K
2WC
3V.
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
EJD
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
IPNFZ
ISR
ITC
KB.
KQ8
LK8
M48
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RIG
RNS
ROL
RPM
RSV
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PQGLB
PMFND
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
2VQ
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c696t-10d235c0eacae9d51985abc749fb4bf255caecbef2777bf87eff182d880ced623
IEDL.DBID M48
ISSN 1758-2946
IngestDate Wed Sep 24 03:34:53 EDT 2025
Thu Aug 21 14:20:52 EDT 2025
Fri Sep 05 12:53:32 EDT 2025
Sun Aug 24 03:07:25 EDT 2025
Fri Jul 25 19:03:53 EDT 2025
Tue Jun 17 22:07:27 EDT 2025
Tue Jun 10 21:03:18 EDT 2025
Fri Jun 27 05:44:38 EDT 2025
Mon Jul 21 06:05:07 EDT 2025
Tue Jul 01 03:49:21 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Fri Feb 21 02:26:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ATC code
CMap
Antineoplastic
Drug repositioning
Anthelmintics
Niclosamide
SMILES
SVM
Integrative genomics
Mode of action
Machine learning
Oxamniquine
Connectivity map
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-10d235c0eacae9d51985abc749fb4bf255caecbef2777bf87eff182d880ced623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://link.springer.com/10.1186/1758-2946-5-30
PMID 23800010
PQID 1399741300
PQPubID 54992
PageCount 1
ParticipantIDs swepub_primary_oai_swepub_ki_se_528601
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704944
proquest_miscellaneous_1412518753
proquest_miscellaneous_1399266044
proquest_journals_1399741300
gale_infotracmisc_A534794898
gale_infotracacademiconefile_A534794898
gale_incontextgauss_ISR_A534794898
pubmed_primary_23800010
crossref_primary_10_1186_1758_2946_5_30
crossref_citationtrail_10_1186_1758_2946_5_30
springer_journals_10_1186_1758_2946_5_30
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-22
PublicationDateYYYYMMDD 2013-06-22
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-22
  day: 22
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2013
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BioMed Central
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BioMed Central
References Sanseau, Agarwal, Barnes, Pastinen, Richards, Cardon, Mooser (CR7) 2012; 30
Khanim, Merrick, Giles, Jankute, Jackson, Giles, Birtwistle, Bunce, Drayson (CR21) 2011; 1
Johnson, Li, Rabinovic (CR35) 2007; 8
Dudley, Sirota, Shenoy, Pai, Roedder, Chiang, Morgan, Sarwal, Pasricha, Butte (CR6) 2011; 3
Borg, Groenen (CR10) 2005
Ren, Duan, He, Zhang, Zhou, Wu, Pan, Pei, Ding (CR27) 2010; 1
Pica-Mattoccia, Cioli, Archer (CR28) 1989; 83
Martarelli, Pompei, Baldi, Mazzoni (CR15) 2007; 61
Wu, Vallenius, Ovaska, Westermarck, MÃďkelÃď, Hautaniemi (CR41) 2009; 6
Pourgholami, Szwajcer, Chin, Liauw, Seef, Galettis, Morris, Links (CR13) 2009; 65
Gautier, Cope, Bolstad, Irizarry (CR30) 2004; 20
Dai, Wang, Boyd, Kostov, Athey, Jones, Bunney, Myers, Speed, Akil, Watson, Meng (CR33) 2005; 33
(CR29) 2009
Jin, Lu, Ding, Li, Du, Chen, Sun, Wu, Zhou, Pan (CR24) 2010
Bai, Staedtke, Aprhys, MGallia, Riggins (CR16) 2011
Sack, Walther, Scudiero, Selby, Kobelt, Lemm, Fichtner, Schlag, Shoemaker, Stein (CR23) 2011
Guha (CR39) 2007; 18
Irizarry, Hobbs, Collin, BeazerŘBarclay Antonellis KJ (CR34) 2003; 4
Park, Kang, Cho (CR22) 2011; 44
Shawe-Taylor, Cristianini (CR9) 2004
Fonseca, Diering, Bidinosti, Dalal, Alain, Balgi, Forestieri, Nodwell, Rajadurai, Gunaratnam, Tee, Duong, Andersen, Orlowski, Numata, Sonenberg, Roberge (CR26) 2012; 287
Cowley, Pinese, Kassahn, Waddell, Pearson, Grimmond, Biankin, Hautaniemi, Wu (CR40) 2012; 40
Smyth, Gentleman, Carey, Huber (CR36) 2005
Lamb, Crawford, Peck, Modell, Blat, Wrobel, Lerner, Brunet, Subramanian, Ross, Reich, Hieronymus, Wei, Armstrong, Haggarty, Clemons, Wei, Carr, Lander, Golub (CR3) 2006; 313
Walters, Green, Weiss, Murcko (CR1) 2011; 54
Parman, Halling, Gentleman (CR31) 2011
Iorio, Bosotti, Scacheri, Belcastro, Mithbaokar, Ferriero, Murino, Tagliaferri, Brunetti-Pierri, Isacchi (CR4) 2010; 107
Wishart, Knox, Guo, Cheng, Shrivastava, Tzur, Gautam, Hassanali (CR38) 2008; 36
Wheeler, Barrett, Benson, Bryant, Canese, Chetvernin, Church, DiCuccio, Edgar, Federhen, Geer, Kapustin, Khovayko, Landsman, Lipman, Madden, Maglott, Ostell, Miller, Pruitt, Schuler, Sequeira, Sherry, Sirotkin, Souvorov, Starchenko, Tatusov, Tatusova, Wagner, Yaschenko (CR32) 2007; 35
Doudican, Rodriguez, Osman, Orlow (CR14) 2008; 6
Mukhopadhyay, Sasaki, Ramesh, Roth (CR17) 2002
Lu, Lin, Roberts, Waud, Piazza, Li (CR20) 2011; 6
Omura, Crump (CR12) 2004; 2
Yo, Lin, Wang, Balch, Huang, Chan, Sytwu, Chen, Chang, Nephew, Huang, Yu, Lai (CR19) 2012; 11
Iskar, Campillos, Kuhn, Jensen, van Noort, Bork (CR5) 2010; 6
Chen, Zeng, Cai, Feng, Chou (CR11) 2012; 7
Crammer, Singer (CR42) 2002; 2
(CR37) 1987
Gottlieb, Stein, Ruppin, Sharan (CR8) 2011; 7
Dobrosotskaya, Hammer, Schteingart, Maturen, Worden (CR18) 2011; 17
Chen, Wang, Lu, Bond, Ren, Lyerly, Barak, Chen (CR25) 2009; 48
O’Connor, Roth (CR2) 2005; 4
D Martarelli (471_CR15) 2007; 61
X Ren (471_CR27) 2010; 1
N Doudican (471_CR14) 2008; 6
T Mukhopadhyay (471_CR17) 2002
J Shawe-Taylor (471_CR9) 2004
F Iorio (471_CR4) 2010; 107
SJ Park (471_CR22) 2011; 44
WE Johnson (471_CR35) 2007; 8
P Sanseau (471_CR7) 2012; 30
J Wu (471_CR41) 2009; 6
DL Wheeler (471_CR32) 2007; 35
FL Khanim (471_CR21) 2011; 1
Anderson E (471_CR37) 1987
I Borg (471_CR10) 2005
RY Bai (471_CR16) 2011
Y Jin (471_CR24) 2010
M Chen (471_CR25) 2009; 48
IY Dobrosotskaya (471_CR18) 2011; 17
YT Yo (471_CR19) 2012; 11
K Crammer (471_CR42) 2002; 2
U Sack (471_CR23) 2011
C Parman (471_CR31) 2011
BD Fonseca (471_CR26) 2012; 287
M Iskar (471_CR5) 2010; 6
A Gottlieb (471_CR8) 2011; 7
MJ Cowley (471_CR40) 2012; 40
JT Dudley (471_CR6) 2011; 3
L Gautier (471_CR30) 2004; 20
J Lamb (471_CR3) 2006; 313
L Chen (471_CR11) 2012; 7
W Lu (471_CR20) 2011; 6
RA Irizarry (471_CR34) 2003; 4
GK Smyth (471_CR36) 2005
KA O’Connor (471_CR2) 2005; 4
R Development Core Team (471_CR29) 2009
S Omura (471_CR12) 2004; 2
WP Walters (471_CR1) 2011; 54
R Guha (471_CR39) 2007; 18
MH Pourgholami (471_CR13) 2009; 65
M Dai (471_CR33) 2005; 33
L Pica-Mattoccia (471_CR28) 1989; 83
DS Wishart (471_CR38) 2008; 36
References_xml – volume: 54
  start-page: 6405
  issue: 19
  year: 2011
  end-page: 6416
  ident: CR1
  article-title: What do medicinal chemists actually make? A 50-year retrospective
  publication-title: J Med Chem
  doi: 10.1021/jm200504p
– volume: 11
  start-page: 1703
  issue: 8
  year: 2012
  end-page: 1712
  ident: CR19
  article-title: Growth inhibition of ovarian tumor-initiating cells by Niclosamide
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-0002
– volume: 2
  start-page: 265
  year: 2002
  end-page: 292
  ident: CR42
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: J Mach Learn Res
– volume: 48
  start-page: 10267
  issue: 43
  year: 2009
  end-page: 10274
  ident: CR25
  article-title: The anti-helminthic Niclosamide inhibits Wnt/Frizzled1 signaling
  publication-title: J Med Chem
– volume: 287
  start-page: 17530
  issue: 21
  year: 2012
  end-page: 17545
  ident: CR26
  article-title: Structure-activity analysis of Niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of Rapamycin complex 1 (mTORC1) signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.359638
– volume: 6
  start-page: 75
  year: 2009
  end-page: 77
  ident: CR41
  article-title: Integrated network analysis platform for protein-protein interactions
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1282
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  end-page: 315
  ident: CR30
  article-title: affy–analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– volume: 35
  start-page: D5—D12
  issue: suppl 1
  year: 2007
  ident: CR32
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res
– year: 2010
  ident: CR24
  publication-title: Antineoplastic mechanisms of Niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-B pathway and generation of reactive oxygen species
– volume: 7
  start-page: 496
  year: 2011
  ident: CR8
  article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– volume: 107
  start-page: 14621
  issue: 33
  year: 2010
  end-page: 6
  ident: CR4
  article-title: Discovery of drug mode of action and drug repositioning from transcriptional responses
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1000138107
– year: 2011
  ident: CR31
  publication-title: affyQCReport: A package to generate QC reports for Affymetrix array data
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  ident: CR35
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 65
  start-page: 597
  issue: 3
  year: 2009
  end-page: 605
  ident: CR13
  article-title: Phase I clinical trial to determine maximum tolerated dose of oral albendazole in patients with advanced cancer
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-009-1157-8
– year: 2004
  ident: CR9
  publication-title: Kernel Methods for Pattern Analysis
  doi: 10.1017/CBO9780511809682
– volume: 3
  start-page: 96ra76
  issue: 96
  year: 2011
  end-page: 96ra76
  ident: CR6
  article-title: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.3002648
– year: 2009
  ident: CR29
  article-title: R: A language and environment for statistical computing
  publication-title: Vienna: R Foundation for Statistical Computing
– volume: 17
  start-page: e59—e62
  issue: 3
  year: 2011
  ident: CR18
  article-title: Mebendazole monotherapy and long-term disease control in metastatic adrenocortical carcinoma
  publication-title: Endocr Pract
  doi: 10.4158/EP10390.CR
– year: 2002
  ident: CR17
  publication-title: Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo
– volume: 6
  start-page: e29290
  issue: 12
  year: 2011
  ident: CR20
  article-title: Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/-Catenin pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029290
– volume: 44
  start-page: 517
  issue: 8
  year: 2011
  end-page: 522
  ident: CR22
  article-title: Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death
  publication-title: Biochem Mol Bio Rep
– volume: 36
  start-page: D901—D906
  issue: Database issue
  year: 2008
  ident: CR38
  article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res
– year: 2011
  ident: CR16
  publication-title: Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme
– year: 2011
  ident: CR23
  publication-title: Novel effect of Antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer
– volume: 83
  start-page: 373
  issue: 3
  year: 1989
  end-page: 376
  ident: CR28
  article-title: Binding of oxamniquine to the DNA of schistosomes
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/0035-9203(89)90508-7
– year: 1987
  ident: CR37
  publication-title: SMILES, a line notation and computerized interpreter for chemical structures
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  end-page: 1935
  ident: CR3
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 61
  start-page: 809
  issue: 5
  year: 2007
  end-page: 817
  ident: CR15
  article-title: Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-007-0538-0
– volume: 4
  start-page: 249
  issue: 2
  year: 2003
  end-page: 264
  ident: CR34
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 1
  start-page: e39
  issue: 10
  year: 2011
  ident: CR21
  article-title: Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production
  publication-title: Blood Cancer J
  doi: 10.1038/bcj.2011.38
– volume: 6
  start-page: e1000925
  issue: 9
  year: 2010
  ident: CR5
  article-title: Drug-induced regulation of target expression
  publication-title: PLoS Comput Bio
  doi: 10.1371/journal.pcbi.1000925
– volume: 6
  start-page: 1308
  issue: 8
  year: 2008
  end-page: 1315
  ident: CR14
  article-title: Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-2159
– volume: 1
  start-page: 454
  issue: 9
  year: 2010
  end-page: 459
  ident: CR27
  article-title: Identification of Niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway
  publication-title: J Med Chem
– volume: 33
  start-page: e175—e175
  issue: 20
  year: 2005
  ident: CR33
  article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni179
– volume: 40
  start-page: D862
  issue: Database issue
  year: 2012
  end-page: 865
  ident: CR40
  article-title: PINA v2.0: mining interactome modules
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr967
– year: 2005
  ident: CR10
  publication-title: Modern Multidimensional Scaling: Theory and Applications, 2nd edition
– volume: 4
  start-page: 1005
  issue: 12
  year: 2005
  end-page: 1014
  ident: CR2
  article-title: Finding new tricks for old drugs: an efficient route for public-sector drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1900
– volume: 7
  start-page: e35254
  issue: 4
  year: 2012
  ident: CR11
  article-title: Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035254
– start-page: 397
  year: 2005
  end-page: 420
  ident: CR36
  article-title: limma: Linear Models for Microarray Data
  publication-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health
  doi: 10.1007/0-387-29362-0_23
– volume: 2
  start-page: 984
  issue: 12
  year: 2004
  end-page: 989
  ident: CR12
  article-title: The life and times of ivermectin - a success story
  publication-title: Nature Rev Microbiol
  doi: 10.1038/nrmicro1048
– volume: 18
  start-page: 1
  issue: 5
  year: 2007
  end-page: 16
  ident: CR39
  article-title: Chemical informatics functionality in R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v018.i05
– volume: 30
  start-page: 317
  issue: 4
  year: 2012
  end-page: 320
  ident: CR7
  article-title: Use of genome-wide association studies for drug repositioning
  publication-title: Nat Biotech
  doi: 10.1038/nbt.2151
– volume-title: Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme
  year: 2011
  ident: 471_CR16
– volume-title: affyQCReport: A package to generate QC reports for Affymetrix array data
  year: 2011
  ident: 471_CR31
– volume: 36
  start-page: D901—D906
  issue: Database issue
  year: 2008
  ident: 471_CR38
  publication-title: Nucleic Acids Res
– volume: 1
  start-page: e39
  issue: 10
  year: 2011
  ident: 471_CR21
  publication-title: Blood Cancer J
  doi: 10.1038/bcj.2011.38
– volume: 4
  start-page: 1005
  issue: 12
  year: 2005
  ident: 471_CR2
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1900
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  ident: 471_CR3
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 48
  start-page: 10267
  issue: 43
  year: 2009
  ident: 471_CR25
  publication-title: J Med Chem
– start-page: 397
  volume-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health
  year: 2005
  ident: 471_CR36
  doi: 10.1007/0-387-29362-0_23
– volume: 2
  start-page: 265
  year: 2002
  ident: 471_CR42
  publication-title: J Mach Learn Res
– volume-title: Antineoplastic mechanisms of Niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-B pathway and generation of reactive oxygen species
  year: 2010
  ident: 471_CR24
– volume: 35
  start-page: D5—D12
  issue: suppl 1
  year: 2007
  ident: 471_CR32
  publication-title: Nucleic Acids Res
– volume: 33
  start-page: e175—e175
  issue: 20
  year: 2005
  ident: 471_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni179
– volume: 4
  start-page: 249
  issue: 2
  year: 2003
  ident: 471_CR34
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 54
  start-page: 6405
  issue: 19
  year: 2011
  ident: 471_CR1
  publication-title: J Med Chem
  doi: 10.1021/jm200504p
– volume: 3
  start-page: 96ra76
  issue: 96
  year: 2011
  ident: 471_CR6
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.3002648
– volume: 65
  start-page: 597
  issue: 3
  year: 2009
  ident: 471_CR13
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-009-1157-8
– volume-title: Vienna: R Foundation for Statistical Computing
  year: 2009
  ident: 471_CR29
– volume: 6
  start-page: 1308
  issue: 8
  year: 2008
  ident: 471_CR14
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-2159
– volume: 17
  start-page: e59—e62
  issue: 3
  year: 2011
  ident: 471_CR18
  publication-title: Endocr Pract
  doi: 10.4158/EP10390.CR
– volume-title: Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo
  year: 2002
  ident: 471_CR17
– volume: 11
  start-page: 1703
  issue: 8
  year: 2012
  ident: 471_CR19
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-0002
– volume: 287
  start-page: 17530
  issue: 21
  year: 2012
  ident: 471_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.359638
– volume: 1
  start-page: 454
  issue: 9
  year: 2010
  ident: 471_CR27
  publication-title: J Med Chem
– volume: 6
  start-page: 75
  year: 2009
  ident: 471_CR41
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1282
– volume: 61
  start-page: 809
  issue: 5
  year: 2007
  ident: 471_CR15
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-007-0538-0
– volume: 83
  start-page: 373
  issue: 3
  year: 1989
  ident: 471_CR28
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/0035-9203(89)90508-7
– volume: 7
  start-page: 496
  year: 2011
  ident: 471_CR8
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– volume-title: Novel effect of Antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer
  year: 2011
  ident: 471_CR23
– volume: 30
  start-page: 317
  issue: 4
  year: 2012
  ident: 471_CR7
  publication-title: Nat Biotech
  doi: 10.1038/nbt.2151
– volume: 18
  start-page: 1
  issue: 5
  year: 2007
  ident: 471_CR39
  publication-title: J Stat Softw
  doi: 10.18637/jss.v018.i05
– volume-title: SMILES, a line notation and computerized interpreter for chemical structures
  year: 1987
  ident: 471_CR37
– volume-title: Modern Multidimensional Scaling: Theory and Applications, 2nd edition
  year: 2005
  ident: 471_CR10
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  ident: 471_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– volume: 40
  start-page: D862
  issue: Database issue
  year: 2012
  ident: 471_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr967
– volume: 44
  start-page: 517
  issue: 8
  year: 2011
  ident: 471_CR22
  publication-title: Biochem Mol Bio Rep
– volume: 2
  start-page: 984
  issue: 12
  year: 2004
  ident: 471_CR12
  publication-title: Nature Rev Microbiol
  doi: 10.1038/nrmicro1048
– volume: 7
  start-page: e35254
  issue: 4
  year: 2012
  ident: 471_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035254
– volume-title: Kernel Methods for Pattern Analysis
  year: 2004
  ident: 471_CR9
  doi: 10.1017/CBO9780511809682
– volume: 6
  start-page: e29290
  issue: 12
  year: 2011
  ident: 471_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029290
– volume: 8
  start-page: 118
  year: 2007
  ident: 471_CR35
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 107
  start-page: 14621
  issue: 33
  year: 2010
  ident: 471_CR4
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1000138107
– volume: 6
  start-page: e1000925
  issue: 9
  year: 2010
  ident: 471_CR5
  publication-title: PLoS Comput Bio
  doi: 10.1371/journal.pcbi.1000925
SSID ssj0065707
Score 2.4546194
Snippet Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease...
: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease...
Doc number: 30 Abstract: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment,...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Algorithms
Chemistry
Chemistry and Materials Science
Classification
Colleges & universities
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Data mining
Disease
Documentation and Information in Chemistry
Drugs
Gene expression
Genes
Health aspects
Machine learning
Methods
Pharmaceuticals
Protein-protein interactions
Proteins
Research Article
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wAviO8VBgoIAS_W0sSJHSSExthUkKjQYNLeLMc-FwSkY23_f-4SOzSVtrcovtjJ-Xy-i-9-x9hLIQEq6YED5J4Lk0pemRS4mkDqM5_aylKi8JdZOT0Tn8-L8x02i7kwFFYZdWKrqN3C0j_yA7RU0PSlw5f3F385VY2i09VYQsOE0gruXQsxdoPtokou0hHb_XA8-3oadTPFecgA3ThR5QHunZSDIEpecIqD3tiathX0xg61HT3ZH6FuwY22W9TJHXY72JbJYScMd9kONPfYzaNY0u0-m368XM8TOiboIrWwu7eJSf60AZXAQwWJeRKBxpNQxSehONIkIkvggw_Y2cnx96MpD6UUuC2rcoXK1mV5YVNUswYqh2abKkxtpah8LWqPfgXetzX4TEpZeyXBe_Q8HK5uCw5NpIds1Cwa2GMJKOkzyIvKSyMsyMpK5WxqJ7UzUE7cmPHIRW0DzjiVu_itW39DlZq4ronrutB5Omave_qLDmHjSsoXNCmaYCsaiouZm_VyqT99O9WHBWXEClUp7C4Q-QUOa01IM8CXJ6SrAeX-gBLnwg6b49zrsK6X-r8UjtnzvpmepFi1BhbrjgbNnlSIa2gEGZbkK47Zo06c-o9HI4osbxxBDgStJyBE8GFL8_NHiwyeS4L7wXHfRJHcePUrePqqE9lB7-HWL7wCXWQKvfbH17PjCbuVdYVCeJbts9Hqcg1P0Vxb1c_CGvwHTOdBQA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  dbid: 40G
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoAL4pstBQWEgIuFN7Fjm1tVKAsSHIBKvVmOM14QNIu6u_-fmcSOmkVF3KJ4bCdje_xGHr9h7LnUAFZH4ABV5NILza0XwM0cRCyjCDbQReFPn-vFqfx4ps72mMh3Yfpo93wk2Vvqflmb-jXuc3RfQNZc8Qqd9GsKoTEF8UnxPtteiuPQiZrx7zqTrWfXAF_agXajI8cj0h060X4LOrnFbibsWBwNg32b7UF3h10_zinb7rLF24vtsqBjgCESC5t7U_jivA-YBJ4yRCyLTCRepCw9BcWJFpk5AiveY6cn774dL3hKlcBDbesNGtO2rFQQaEY92BZhmVG-CVra2Mgmot-A70MDsdRaN9FoiBHV1-LqDdAiBLrP9rtVBw9ZAUbHEiplo_YygLZBmzaIMG9aD_W8nTGetehC4hGndBa_XO9PmNqR1h1p3SlXiRl7Ocr_Hhg0rpR8RoPiiJaio7iXpd-u1-7D1y_uSNGNV2msweaSUFxht8GnawT48cRkNZE8nEjiWIRpcR57l9bt2iEeRgeLjvhm7OlYTDUpFq2D1XaQQVgjpPyHjCTgSL7gjD0YptP48wiSCFljD3oy0UYBYvyelnQ_vvfM35UmOh_s91Wekpc-_Qqdvhim7KT19OonPoFTpUGv_OD_23zEbpRDUhBelodsf3OxhccIzTbNk341_gEfZjV_
  priority: 102
  providerName: Springer Nature
Title Drug repositioning: a machine-learning approach through data integration
URI https://link.springer.com/article/10.1186/1758-2946-5-30
https://www.ncbi.nlm.nih.gov/pubmed/23800010
https://www.proquest.com/docview/1399741300
https://www.proquest.com/docview/1399266044
https://www.proquest.com/docview/1412518753
https://pubmed.ncbi.nlm.nih.gov/PMC3704944
http://kipublications.ki.se/Default.aspx?queryparsed=id:126933416
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge4AXxDcdowoIAS9mqePEDhJCpawrSExoUKlvVuKcC9pIoR8S_PfcJU5YCkO8WEl8tpPz2b6Lz79j7LFUAKlywAEix2UWKp5mIXA9gNAJF9rU0kHh98fJZCrfzeLZb_8nz8DVX007iic1XZ49__H95ysc8C-rAa-TA1wB6SSBTHjMIzTfd6u9InLjk-2OAnl4VIFWGloP4Phn-c4CtT1Nn1untn0o243ULdDRaqEaX2fXvIYZDGuRuMEuQXmTXRk1gd1uscmb5WYe0GZB7a-F1b0IsuBr5VYJ3MeRmAcN3HjgY_kE5E0aNPgSWPA2m44PP40m3AdU4DZJkzVOuYWIYhviZJtBWqDypuMst0qmLpe5Q-sCn9scnFBK5U4rcA7tjwLHuIUCFaU7bKdclHCPBaCVExDFqVOZtKBSq3RhQzvIiwySQdFjvOGisR5tnIJenJnK6tCJIa4b4rqJTRT22NOW_luNs3Eh5SPqFEPgFSV5x8yzzWpl3n48McOYzsVKnWqszhO5BTZrM3_YAF-e8K46lPsdSuwL281u-t40wmlQa0YzjDYCe-xhm00lyWOthMWmpkHlJ5TyHzSS1EuyGHvsbi1O7cejKkX6N7agOoLWEhAueDen_PK5wgePFIH-YLvPGpE89-oX8PRJLbKd2v2jU7wCEwuNtvve_zD_Prsq6qAhXIh9trNebuABqm7rvM8uy_AIUzVTmOoxXu--Pjz-cIJ3IyEpTUb96scIpkezQb8axZhOxfAXXK5Jig
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7aFcEG-WFjCI18VqHk6cIFWo9KFd2q5QaaXeTOKMlwrIlu6uEH-O38ZM4oTNSu2tt1U8sZPxrOdzPPMNY6-kAkiVBQEQWiEzT4k080AkPng2sJ5JDSUKH43iwan8dBadrbC_TS4MhVU2a2K1UBcTQ9_INxGpIPSlw5cPF78EVY2i09WmhEbmSisUWxXFmEvsOIA_v3ELN90a7uJ8vw6C_b2TnYFwVQaEidN4hutQEYSR8XAFyiAtENEkUZYbJVOby9wi5MbrJgcbKKVymyiwFkF5gYZvoIiJ-ABdwKqkDyg9tvpxb_T5uPEFFFeiHFWkn8Sb6Ksp50HGIhIUd73gCpcdwoJHXI7WbI9sl-hNK5e4f4fddliWb9fGd5etQHmPre00JeTus8Hu5XzM6ViijgzD7t7zjP-sAjhBuIoVY94Qm3NXNYhT3CpvmCzwxgfs9EaU-pD1ykkJjxmHRNkAwii1KpMGVGpUUhjP-HmRQewXfSYaLWrjeM2pvMYPXe1vkliT1jVpXUc69PrsbSt_UTN6XCn5kiZFE01GSXE442w-nerhl2O9HVEGrkzSBLtzQnaCw5rMpTXgwxOzVkdyoyOJc2G6zc3ca7eOTPV_q--zF20z3UmxcSVM5rUMwixPymtkJAFZ2pv22aPanNqXR9BGSB9HUB1DawWIgbzbUp5_q5jIQ0X0Qjjuu8YkFx79Cp2-qU2207u79B1_gY6CJPb8J9er4zlbG5wcHerD4ehgnd0K6iIlIgg2WG92OYenCBVn-TP3f-Ts600vAf8AgO6AtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN90DAiIrxerSerECdKExrqqZVBNg0l7M4lzLhOQjrUV4l_kr-IusUNTaXvbWxVfbPd8vjvHd79j7IWQAKk0wAH6hovMlzzNfOBJAL4Jja9TTYnCnybx6Fh8OIlONthflwtDYZVOJ1aKuphp-kbeQ08FXV-6fOkZGxZxOBi-O_vFqYIU3bS6chqZLbNQ7FRwYzbJ4wD-_Mbj3HxnPMC1fxmGw_0veyNuKw5wHafxAnVSEfYj7aM2yiAt0LtJoizXUqQmF7lB9xuf6xxMKKXMTSLBGHTQC9wEGoqYQBDQHGxKmmuHbb7fnxweObtAMSbSwkYGSdxDu035DyLmEacY7BWzuG4cVqzjeuRmc327BnVamcfhLXbT-rXebi2It9kGlHfY9T1XTu4uGw3Ol1OPrijqKDHs7q2XeT-rYE7gtnrF1HMg556tIORRDKvnUC3wxXvs-EqYep91ylkJD5kHiTQh9KPUyExokKmWSaF9HeRFBnFQdBl3XFTaYpxTqY0fqjrrJLEiriviuopU3--y1w39WY3ucSHlc1oURZAZJQnfNFvO52r8-UjtRpSNK5I0we4skZnhsDqzKQ44eULZalFutyhxLXS72a29sjplrv7vgC571jTTmxQnV8JsWdOgy-ULcQmNIKeWzqld9qAWp-bPowNHXj-OIFuC1hAQGnm7pTz9VqGS9yVBDeG4b5xIrkz9Ap6-qkW21bt99B1_gYrCJPaDrcvZ8ZRdQ1WgPo4nB4_YjbCuV8LDcJt1FudLeIxe4yJ_Yrejx75etQb4B5F2hPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+repositioning%3A+a+machine-learning+approach+through+data+integration&rft.jtitle=Journal+of+cheminformatics&rft.au=Napolitano%2C+Francesco&rft.au=Zhao%2C+Yan&rft.au=Moreira%2C+V%C3%83%C2%A2nia+M&rft.au=Tagliaferri%2C+Roberto&rft.date=2013-06-22&rft.pub=BioMed+Central+Ltd&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=5&rft_id=info:doi/10.1186%2F1758-2946-5-30&rft.externalDBID=ISR&rft.externalDocID=A534794898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon