Drug repositioning: a machine-learning approach through data integration
Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many di...
Saved in:
Published in | Journal of cheminformatics Vol. 5; no. 1; p. 30 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
22.06.2013
BioMed Central Ltd Springer Nature B.V BioMed Central |
Subjects | |
Online Access | Get full text |
ISSN | 1758-2946 1758-2946 |
DOI | 10.1186/1758-2946-5-30 |
Cover
Abstract | Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. |
---|---|
AbstractList | : Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. : Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. Doc number: 30 Abstract: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. Keywords: Drug repositioning, Connectivity map, CMap, ATC code, Mode of action, Machine learning, SVM, Integrative genomics, SMILES, Anthelmintics, Antineoplastic, Oxamniquine, Niclosamide |
ArticleNumber | 30 |
Audience | Academic |
Author | Moreira, Vânia M Greco, Dario Tagliaferri, Roberto Zhao, Yan Napolitano, Francesco D’Amato, Mauro Kere, Juha |
AuthorAffiliation | 4 Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland 5 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden 3 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland 2 Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy 1 Department of Computer Science, University of Salerno, Salerno, Italy |
AuthorAffiliation_xml | – name: 3 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland – name: 5 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden – name: 1 Department of Computer Science, University of Salerno, Salerno, Italy – name: 4 Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – name: 2 Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy |
Author_xml | – sequence: 1 givenname: Francesco surname: Napolitano fullname: Napolitano, Francesco organization: Department of Computer Science, University of Salerno, Telethon Institute of Genetics and Medicine (TIGEM) – sequence: 2 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: Research Unit of Molecular Medicine, University of Helsinki – sequence: 3 givenname: Vânia M surname: Moreira fullname: Moreira, Vânia M organization: Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki – sequence: 4 givenname: Roberto surname: Tagliaferri fullname: Tagliaferri, Roberto organization: Department of Computer Science, University of Salerno – sequence: 5 givenname: Juha surname: Kere fullname: Kere, Juha organization: Department of Biosciences and Nutrition, Karolinska Institutet – sequence: 6 givenname: Mauro surname: D’Amato fullname: D’Amato, Mauro organization: Department of Biosciences and Nutrition, Karolinska Institutet – sequence: 7 givenname: Dario surname: Greco fullname: Greco, Dario email: dario.greco@ki.se organization: Research Unit of Molecular Medicine, University of Helsinki, Department of Biosciences and Nutrition, Karolinska Institutet |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23800010$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:126933416$$DView record from Swedish Publication Index |
BookMark | eNqFkktv1DAUhSNURB-wZYkisYFFWjuxY4cFUtUCrVQJicfacpybjEtip7YD5d_jTIfppCpCXsQ6_s6JdX0Okz1jDSTJS4yOMeblCWaUZ3lFyoxmBXqSHGyFvZ39fnLo_TVCJWWIPUv284IjhDA6SC7O3dSlDkbrddDWaNO9S2U6SLXSBrIepJu1VI6js1FMw8rZqVuljQwy1SZA5-RsfJ48bWXv4cXme5R8__jh29lFdvX50-XZ6VWmyqoMGUZNXlCFQCoJVUNxxamsFSNVW5O6zSmNuqqhzRljdcsZtC3mecM5UtCUeXGUZHe5_heMUy1GpwfpfgsrtdhIP-IOBM15iXDk39_x8WSARoEJTvYL2_LE6JXo7E9RMEQqQmLAm02AszcT-CAG7RX0vTRgJy8wwTnFnNHi_2hRVXlZonXq6wfotZ2ciZNbU4zgAqF7qpM9CG1aG6-o5lBxSgvCKsIrHqnjR6i4Ghi0in1pddQXhrcLQ2QC3IZOTt6Ly69fluyr3fltB_e3Qvd_V85676DdIhiJuaNirqGYayioKGYDeWBQOqw7FK-t-3_bTjYPH_NNB25nYo87_gDlrPdq |
CitedBy_id | crossref_primary_10_1186_s13040_022_00292_z crossref_primary_10_2174_1574893614666190416151344 crossref_primary_10_3390_ijms25179576 crossref_primary_10_3390_ijms22168962 crossref_primary_10_3390_molecules27092723 crossref_primary_10_1002_widm_1248 crossref_primary_10_3389_fnins_2016_00265 crossref_primary_10_3389_fphar_2024_1337764 crossref_primary_10_1038_srep44912 crossref_primary_10_1016_j_pscia_2022_100002 crossref_primary_10_1145_3699713 crossref_primary_10_1186_s13293_022_00420_8 crossref_primary_10_1038_s41386_020_0752_6 crossref_primary_10_1109_TCSS_2023_3313208 crossref_primary_10_3389_fphar_2017_00729 crossref_primary_10_1186_1471_2105_15_210 crossref_primary_10_1007_s11684_021_0834_9 crossref_primary_10_1007_s11030_020_10144_9 crossref_primary_10_1039_C5MB00242G crossref_primary_10_1016_j_jbi_2023_104528 crossref_primary_10_1109_JBHI_2018_2856535 crossref_primary_10_3390_pr8101230 crossref_primary_10_1186_s12859_020_03882_y crossref_primary_10_1186_s12918_018_0658_7 crossref_primary_10_2174_1574893616666210825115406 crossref_primary_10_1007_s00535_022_01929_w crossref_primary_10_1109_ACCESS_2019_2927491 crossref_primary_10_1186_s12859_019_2811_8 crossref_primary_10_1021_acs_chemrev_8b00728 crossref_primary_10_1186_s12859_019_3165_y crossref_primary_10_1042_BSR20160180 crossref_primary_10_1093_bioinformatics_btv477 crossref_primary_10_58647_DRUGREPO_24_1_0003 crossref_primary_10_1093_bioinformatics_btz156 crossref_primary_10_1186_1755_8794_8_S2_S1 crossref_primary_10_1007_s10441_018_9325_z crossref_primary_10_1155_2015_964795 crossref_primary_10_3389_fonc_2020_01030 crossref_primary_10_1186_s12918_016_0371_3 crossref_primary_10_1186_s12967_022_03757_1 crossref_primary_10_37349_emed_2023_00125 crossref_primary_10_1002_2211_5463_12055 crossref_primary_10_1002_slct_202202306 crossref_primary_10_1093_bioinformatics_bty858 crossref_primary_10_1016_j_bbcan_2019_04_005 crossref_primary_10_1093_bioinformatics_btae347 crossref_primary_10_51847_brEvhxSqb9 crossref_primary_10_1038_nrd_2018_168 crossref_primary_10_1186_s12859_018_2575_6 crossref_primary_10_1021_acsptsci_3c00361 crossref_primary_10_2174_0929867327666200831141337 crossref_primary_10_1016_j_ymeth_2023_07_008 crossref_primary_10_3389_fphar_2022_1007315 crossref_primary_10_1002_pmic_201500396 crossref_primary_10_1007_s13042_015_0409_7 crossref_primary_10_1016_j_artmed_2019_03_003 crossref_primary_10_1021_acspolymersau_2c00009 crossref_primary_10_1093_bioinformatics_btaa437 crossref_primary_10_1021_acs_jcim_9b01008 crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1016_j_chemolab_2024_105224 crossref_primary_10_1371_journal_pone_0155530 crossref_primary_10_3390_pharmaceutics15010083 crossref_primary_10_1093_bib_bbaa118 crossref_primary_10_7759_cureus_44359 crossref_primary_10_1093_bib_bbw112 crossref_primary_10_1016_j_compbiolchem_2017_03_008 crossref_primary_10_1371_journal_pone_0204999 crossref_primary_10_1093_bib_bbv020 crossref_primary_10_1002_med_21764 crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1186_s13321_017_0215_1 crossref_primary_10_1016_j_cytogfr_2022_04_007 crossref_primary_10_3390_ijms22073378 crossref_primary_10_2174_2589977513666210211163711 crossref_primary_10_1021_ci500670q crossref_primary_10_1002_cbdv_202301228 crossref_primary_10_13005_bbra_3198 crossref_primary_10_1093_bib_bbz176 crossref_primary_10_2174_1381612826666200116145559 crossref_primary_10_53879_id_60_11_13058 crossref_primary_10_3389_fgene_2021_666575 crossref_primary_10_1021_acs_jmedchem_0c01148 crossref_primary_10_1093_bib_bbaa265 crossref_primary_10_1016_j_compbiolchem_2018_11_028 crossref_primary_10_1038_s41598_021_94897_9 crossref_primary_10_1038_s41598_018_37411_y crossref_primary_10_3389_fphar_2022_1056605 crossref_primary_10_1089_cmb_2019_0063 crossref_primary_10_1038_s41540_024_00397_7 crossref_primary_10_1186_s12859_018_2123_4 crossref_primary_10_1002_wsbm_1337 crossref_primary_10_1016_j_compbiolchem_2021_107505 crossref_primary_10_1016_j_tranon_2024_102136 crossref_primary_10_1016_j_bioorg_2018_10_050 crossref_primary_10_1016_j_csbj_2023_09_007 crossref_primary_10_3390_v12091058 crossref_primary_10_1093_bioinformatics_btu611 crossref_primary_10_3390_ijms241612997 crossref_primary_10_1038_srep36325 crossref_primary_10_1186_s12859_024_05698_6 crossref_primary_10_1186_s12859_021_03988_x crossref_primary_10_1016_j_tips_2019_06_003 crossref_primary_10_2174_0118715273329531240911075309 crossref_primary_10_33380_2305_2066_2023_12_1_182_190 crossref_primary_10_1098_rsif_2017_0387 crossref_primary_10_1093_bioinformatics_btaa1024 crossref_primary_10_1016_j_gpb_2020_05_006 crossref_primary_10_1093_bib_bbz157 crossref_primary_10_4155_fmc_14_137 crossref_primary_10_1371_journal_pone_0270852 crossref_primary_10_1016_j_eswa_2020_113640 crossref_primary_10_2174_1570180819666220114114752 crossref_primary_10_1093_bioinformatics_btz411 crossref_primary_10_1186_s12859_020_03682_4 crossref_primary_10_1080_07391102_2023_2199874 crossref_primary_10_1208_s12249_019_1333_z crossref_primary_10_1016_j_ejmech_2015_01_065 crossref_primary_10_1002_advs_202101864 crossref_primary_10_1038_s41563_019_0338_z crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1007_s12257_020_0049_y crossref_primary_10_1007_s13311_021_01014_9 crossref_primary_10_3390_cancers14082043 crossref_primary_10_1109_JBHI_2024_3372527 crossref_primary_10_1016_j_biopha_2024_116459 crossref_primary_10_1016_j_patter_2021_100307 crossref_primary_10_3934_mbe_2023632 crossref_primary_10_1021_acs_jpclett_0c02836 crossref_primary_10_1016_j_csbj_2020_06_015 crossref_primary_10_2174_1573409915666190613113822 crossref_primary_10_1002_cpt_769 crossref_primary_10_1016_j_drudis_2017_03_009 crossref_primary_10_1186_s12918_017_0480_7 crossref_primary_10_1016_j_gpb_2018_10_012 crossref_primary_10_1021_acscentsci_9b00476 crossref_primary_10_1021_acs_jcim_5b00330 crossref_primary_10_2174_1566524019666191115103307 crossref_primary_10_3390_nano10040708 crossref_primary_10_1016_j_omtn_2019_12_023 crossref_primary_10_1016_j_isci_2024_110025 crossref_primary_10_1038_s41598_017_07705_8 crossref_primary_10_1016_j_compbiolchem_2019_03_016 crossref_primary_10_1016_j_semcancer_2019_12_012 crossref_primary_10_1016_j_ebiom_2019_08_027 crossref_primary_10_1186_s12859_022_04662_6 crossref_primary_10_1007_s10618_023_00934_8 crossref_primary_10_1002_cmdc_201500123 crossref_primary_10_3390_cancers13092111 crossref_primary_10_1055_s_0043_1769903 crossref_primary_10_1186_s13321_018_0270_2 crossref_primary_10_1158_0008_5472_CAN_17_0096 crossref_primary_10_1016_j_eswa_2017_05_004 crossref_primary_10_1039_C6MB00635C crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1016_j_biortech_2022_128523 crossref_primary_10_1093_chromsci_bmac060 crossref_primary_10_1016_j_jbi_2015_09_016 crossref_primary_10_1016_j_eswa_2021_116165 crossref_primary_10_1021_acs_jmedchem_8b01044 crossref_primary_10_1109_JBHI_2020_2991763 crossref_primary_10_1016_j_artmed_2025_103090 crossref_primary_10_1002_wcms_1183 crossref_primary_10_1016_j_csbj_2020_02_023 crossref_primary_10_1016_j_jmgm_2018_08_005 crossref_primary_10_1016_j_ejmech_2019_111602 crossref_primary_10_2174_0115748936284973240105115444 crossref_primary_10_1016_j_drudis_2022_05_006 crossref_primary_10_3389_fphar_2022_974849 crossref_primary_10_1016_j_csbj_2019_12_006 crossref_primary_10_1098_rsif_2015_0571 crossref_primary_10_1016_j_imu_2023_101177 crossref_primary_10_3389_fchem_2019_00924 crossref_primary_10_1016_j_compbiomed_2023_107136 crossref_primary_10_1016_j_jbi_2021_103902 crossref_primary_10_4155_fmc_14_4 crossref_primary_10_1007_s10822_018_0117_y crossref_primary_10_1007_s00441_017_2734_5 crossref_primary_10_1089_omi_2019_0151 crossref_primary_10_1021_acs_jcim_4c02424 crossref_primary_10_1016_j_semcancer_2019_09_023 crossref_primary_10_1371_journal_pone_0247059 crossref_primary_10_1093_bib_bbx149 crossref_primary_10_2174_011573398X283365240208195944 crossref_primary_10_1177_1176935119851518 crossref_primary_10_3390_life11111115 crossref_primary_10_1177_1460458220937101 crossref_primary_10_3803_EnM_2022_1404 crossref_primary_10_1208_s12249_018_1169_y crossref_primary_10_1186_s12859_016_1336_7 crossref_primary_10_2147_DDDT_S424991 crossref_primary_10_1186_s13321_020_00450_7 crossref_primary_10_1109_TCBB_2019_2933825 crossref_primary_10_1134_S1068162023020139 crossref_primary_10_1016_j_compbiomed_2023_107261 crossref_primary_10_1093_bib_bbab507 crossref_primary_10_2174_0929867327999200817104912 crossref_primary_10_1016_j_semcancer_2019_09_012 crossref_primary_10_1186_s12859_022_05069_z crossref_primary_10_1039_C4MB00014E crossref_primary_10_1093_bib_bbw048 crossref_primary_10_1089_omi_2022_0026 crossref_primary_10_1093_bioinformatics_btaa063 crossref_primary_10_1093_bioinformatics_bty013 crossref_primary_10_12793_tcp_2019_27_2_59 crossref_primary_10_1016_j_mce_2024_112159 crossref_primary_10_3389_fmolb_2021_628144 crossref_primary_10_3390_fi13010014 crossref_primary_10_1177_1074248420928651 |
Cites_doi | 10.1021/jm200504p 10.1158/1535-7163.MCT-12-0002 10.1074/jbc.M112.359638 10.1038/nmeth.1282 10.1093/bioinformatics/btg405 10.1038/msb.2011.26 10.1073/pnas.1000138107 10.1093/biostatistics/kxj037 10.1007/s00280-009-1157-8 10.1017/CBO9780511809682 10.1126/scitranslmed.3002648 10.4158/EP10390.CR 10.1371/journal.pone.0029290 10.1016/0035-9203(89)90508-7 10.1126/science.1132939 10.1007/s00280-007-0538-0 10.1093/biostatistics/4.2.249 10.1038/bcj.2011.38 10.1371/journal.pcbi.1000925 10.1158/1541-7786.MCR-07-2159 10.1093/nar/gni179 10.1093/nar/gkr967 10.1038/nrd1900 10.1371/journal.pone.0035254 10.1007/0-387-29362-0_23 10.1038/nrmicro1048 10.18637/jss.v018.i05 10.1038/nbt.2151 |
ContentType | Journal Article |
Copyright | Napolitano et al.; licensee Chemistry Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2013 BioMed Central Ltd. 2013 Napolitano et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Napolitano et al.; licensee Chemistry Central Ltd. 2013 Napolitano et al.; licensee Chemistry Central Ltd. |
Copyright_xml | – notice: Napolitano et al.; licensee Chemistry Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Napolitano et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Napolitano et al.; licensee Chemistry Central Ltd. 2013 Napolitano et al.; licensee Chemistry Central Ltd. |
DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7X7 7XB 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P P5Z P62 P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1186/1758-2946-5-30 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1758-2946 |
EndPage | 30 |
ExternalDocumentID | oai_swepub_ki_se_528601 PMC3704944 3018699171 A534794898 23800010 10_1186_1758_2946_5_30 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Telethon grantid: TGM11SB1 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 29K 2WC 3V. 4.4 40G 53G 5VS 7X7 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIHN ACIWK ACPRK ACUHS ACULB ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AEUYN AFGXO AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU D-I D1I DIK E3Z EBLON EBS EJD ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE IAO IGS IHR IPNFZ ISR ITC KB. KQ8 LK8 M48 M7P MK0 M~E O5R O5S OK1 P62 PDBOC PGMZT PIMPY PQQKQ PROAC RBZ RIG RNS ROL RPM RSV RVI SOJ SPH TR2 TUS U2A UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PQGLB PMFND 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI 7X8 PUEGO 5PM 2VQ ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c696t-10d235c0eacae9d51985abc749fb4bf255caecbef2777bf87eff182d880ced623 |
IEDL.DBID | M48 |
ISSN | 1758-2946 |
IngestDate | Wed Sep 24 03:34:53 EDT 2025 Thu Aug 21 14:20:52 EDT 2025 Fri Sep 05 12:53:32 EDT 2025 Sun Aug 24 03:07:25 EDT 2025 Fri Jul 25 19:03:53 EDT 2025 Tue Jun 17 22:07:27 EDT 2025 Tue Jun 10 21:03:18 EDT 2025 Fri Jun 27 05:44:38 EDT 2025 Mon Jul 21 06:05:07 EDT 2025 Tue Jul 01 03:49:21 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Fri Feb 21 02:26:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ATC code CMap Antineoplastic Drug repositioning Anthelmintics Niclosamide SMILES SVM Integrative genomics Mode of action Machine learning Oxamniquine Connectivity map |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c696t-10d235c0eacae9d51985abc749fb4bf255caecbef2777bf87eff182d880ced623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://link.springer.com/10.1186/1758-2946-5-30 |
PMID | 23800010 |
PQID | 1399741300 |
PQPubID | 54992 |
PageCount | 1 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_528601 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704944 proquest_miscellaneous_1412518753 proquest_miscellaneous_1399266044 proquest_journals_1399741300 gale_infotracmisc_A534794898 gale_infotracacademiconefile_A534794898 gale_incontextgauss_ISR_A534794898 pubmed_primary_23800010 crossref_primary_10_1186_1758_2946_5_30 crossref_citationtrail_10_1186_1758_2946_5_30 springer_journals_10_1186_1758_2946_5_30 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-22 |
PublicationDateYYYYMMDD | 2013-06-22 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | Journal of cheminformatics |
PublicationTitleAbbrev | J Cheminform |
PublicationTitleAlternate | J Cheminform |
PublicationYear | 2013 |
Publisher | Springer International Publishing BioMed Central Ltd Springer Nature B.V BioMed Central |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd – name: Springer Nature B.V – name: BioMed Central |
References | Sanseau, Agarwal, Barnes, Pastinen, Richards, Cardon, Mooser (CR7) 2012; 30 Khanim, Merrick, Giles, Jankute, Jackson, Giles, Birtwistle, Bunce, Drayson (CR21) 2011; 1 Johnson, Li, Rabinovic (CR35) 2007; 8 Dudley, Sirota, Shenoy, Pai, Roedder, Chiang, Morgan, Sarwal, Pasricha, Butte (CR6) 2011; 3 Borg, Groenen (CR10) 2005 Ren, Duan, He, Zhang, Zhou, Wu, Pan, Pei, Ding (CR27) 2010; 1 Pica-Mattoccia, Cioli, Archer (CR28) 1989; 83 Martarelli, Pompei, Baldi, Mazzoni (CR15) 2007; 61 Wu, Vallenius, Ovaska, Westermarck, MÃďkelÃď, Hautaniemi (CR41) 2009; 6 Pourgholami, Szwajcer, Chin, Liauw, Seef, Galettis, Morris, Links (CR13) 2009; 65 Gautier, Cope, Bolstad, Irizarry (CR30) 2004; 20 Dai, Wang, Boyd, Kostov, Athey, Jones, Bunney, Myers, Speed, Akil, Watson, Meng (CR33) 2005; 33 (CR29) 2009 Jin, Lu, Ding, Li, Du, Chen, Sun, Wu, Zhou, Pan (CR24) 2010 Bai, Staedtke, Aprhys, MGallia, Riggins (CR16) 2011 Sack, Walther, Scudiero, Selby, Kobelt, Lemm, Fichtner, Schlag, Shoemaker, Stein (CR23) 2011 Guha (CR39) 2007; 18 Irizarry, Hobbs, Collin, BeazerŘBarclay Antonellis KJ (CR34) 2003; 4 Park, Kang, Cho (CR22) 2011; 44 Shawe-Taylor, Cristianini (CR9) 2004 Fonseca, Diering, Bidinosti, Dalal, Alain, Balgi, Forestieri, Nodwell, Rajadurai, Gunaratnam, Tee, Duong, Andersen, Orlowski, Numata, Sonenberg, Roberge (CR26) 2012; 287 Cowley, Pinese, Kassahn, Waddell, Pearson, Grimmond, Biankin, Hautaniemi, Wu (CR40) 2012; 40 Smyth, Gentleman, Carey, Huber (CR36) 2005 Lamb, Crawford, Peck, Modell, Blat, Wrobel, Lerner, Brunet, Subramanian, Ross, Reich, Hieronymus, Wei, Armstrong, Haggarty, Clemons, Wei, Carr, Lander, Golub (CR3) 2006; 313 Walters, Green, Weiss, Murcko (CR1) 2011; 54 Parman, Halling, Gentleman (CR31) 2011 Iorio, Bosotti, Scacheri, Belcastro, Mithbaokar, Ferriero, Murino, Tagliaferri, Brunetti-Pierri, Isacchi (CR4) 2010; 107 Wishart, Knox, Guo, Cheng, Shrivastava, Tzur, Gautam, Hassanali (CR38) 2008; 36 Wheeler, Barrett, Benson, Bryant, Canese, Chetvernin, Church, DiCuccio, Edgar, Federhen, Geer, Kapustin, Khovayko, Landsman, Lipman, Madden, Maglott, Ostell, Miller, Pruitt, Schuler, Sequeira, Sherry, Sirotkin, Souvorov, Starchenko, Tatusov, Tatusova, Wagner, Yaschenko (CR32) 2007; 35 Doudican, Rodriguez, Osman, Orlow (CR14) 2008; 6 Mukhopadhyay, Sasaki, Ramesh, Roth (CR17) 2002 Lu, Lin, Roberts, Waud, Piazza, Li (CR20) 2011; 6 Omura, Crump (CR12) 2004; 2 Yo, Lin, Wang, Balch, Huang, Chan, Sytwu, Chen, Chang, Nephew, Huang, Yu, Lai (CR19) 2012; 11 Iskar, Campillos, Kuhn, Jensen, van Noort, Bork (CR5) 2010; 6 Chen, Zeng, Cai, Feng, Chou (CR11) 2012; 7 Crammer, Singer (CR42) 2002; 2 (CR37) 1987 Gottlieb, Stein, Ruppin, Sharan (CR8) 2011; 7 Dobrosotskaya, Hammer, Schteingart, Maturen, Worden (CR18) 2011; 17 Chen, Wang, Lu, Bond, Ren, Lyerly, Barak, Chen (CR25) 2009; 48 O’Connor, Roth (CR2) 2005; 4 D Martarelli (471_CR15) 2007; 61 X Ren (471_CR27) 2010; 1 N Doudican (471_CR14) 2008; 6 T Mukhopadhyay (471_CR17) 2002 J Shawe-Taylor (471_CR9) 2004 F Iorio (471_CR4) 2010; 107 SJ Park (471_CR22) 2011; 44 WE Johnson (471_CR35) 2007; 8 P Sanseau (471_CR7) 2012; 30 J Wu (471_CR41) 2009; 6 DL Wheeler (471_CR32) 2007; 35 FL Khanim (471_CR21) 2011; 1 Anderson E (471_CR37) 1987 I Borg (471_CR10) 2005 RY Bai (471_CR16) 2011 Y Jin (471_CR24) 2010 M Chen (471_CR25) 2009; 48 IY Dobrosotskaya (471_CR18) 2011; 17 YT Yo (471_CR19) 2012; 11 K Crammer (471_CR42) 2002; 2 U Sack (471_CR23) 2011 C Parman (471_CR31) 2011 BD Fonseca (471_CR26) 2012; 287 M Iskar (471_CR5) 2010; 6 A Gottlieb (471_CR8) 2011; 7 MJ Cowley (471_CR40) 2012; 40 JT Dudley (471_CR6) 2011; 3 L Gautier (471_CR30) 2004; 20 J Lamb (471_CR3) 2006; 313 L Chen (471_CR11) 2012; 7 W Lu (471_CR20) 2011; 6 RA Irizarry (471_CR34) 2003; 4 GK Smyth (471_CR36) 2005 KA O’Connor (471_CR2) 2005; 4 R Development Core Team (471_CR29) 2009 S Omura (471_CR12) 2004; 2 WP Walters (471_CR1) 2011; 54 R Guha (471_CR39) 2007; 18 MH Pourgholami (471_CR13) 2009; 65 M Dai (471_CR33) 2005; 33 L Pica-Mattoccia (471_CR28) 1989; 83 DS Wishart (471_CR38) 2008; 36 |
References_xml | – volume: 54 start-page: 6405 issue: 19 year: 2011 end-page: 6416 ident: CR1 article-title: What do medicinal chemists actually make? A 50-year retrospective publication-title: J Med Chem doi: 10.1021/jm200504p – volume: 11 start-page: 1703 issue: 8 year: 2012 end-page: 1712 ident: CR19 article-title: Growth inhibition of ovarian tumor-initiating cells by Niclosamide publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-0002 – volume: 2 start-page: 265 year: 2002 end-page: 292 ident: CR42 article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: J Mach Learn Res – volume: 48 start-page: 10267 issue: 43 year: 2009 end-page: 10274 ident: CR25 article-title: The anti-helminthic Niclosamide inhibits Wnt/Frizzled1 signaling publication-title: J Med Chem – volume: 287 start-page: 17530 issue: 21 year: 2012 end-page: 17545 ident: CR26 article-title: Structure-activity analysis of Niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of Rapamycin complex 1 (mTORC1) signaling publication-title: J Biol Chem doi: 10.1074/jbc.M112.359638 – volume: 6 start-page: 75 year: 2009 end-page: 77 ident: CR41 article-title: Integrated network analysis platform for protein-protein interactions publication-title: Nature Methods doi: 10.1038/nmeth.1282 – volume: 20 start-page: 307 issue: 3 year: 2004 end-page: 315 ident: CR30 article-title: affy–analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 35 start-page: D5—D12 issue: suppl 1 year: 2007 ident: CR32 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Res – year: 2010 ident: CR24 publication-title: Antineoplastic mechanisms of Niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-B pathway and generation of reactive oxygen species – volume: 7 start-page: 496 year: 2011 ident: CR8 article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – volume: 107 start-page: 14621 issue: 33 year: 2010 end-page: 6 ident: CR4 article-title: Discovery of drug mode of action and drug repositioning from transcriptional responses publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1000138107 – year: 2011 ident: CR31 publication-title: affyQCReport: A package to generate QC reports for Affymetrix array data – volume: 8 start-page: 118 year: 2007 end-page: 127 ident: CR35 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 65 start-page: 597 issue: 3 year: 2009 end-page: 605 ident: CR13 article-title: Phase I clinical trial to determine maximum tolerated dose of oral albendazole in patients with advanced cancer publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-009-1157-8 – year: 2004 ident: CR9 publication-title: Kernel Methods for Pattern Analysis doi: 10.1017/CBO9780511809682 – volume: 3 start-page: 96ra76 issue: 96 year: 2011 end-page: 96ra76 ident: CR6 article-title: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease publication-title: Sci Trans Med doi: 10.1126/scitranslmed.3002648 – year: 2009 ident: CR29 article-title: R: A language and environment for statistical computing publication-title: Vienna: R Foundation for Statistical Computing – volume: 17 start-page: e59—e62 issue: 3 year: 2011 ident: CR18 article-title: Mebendazole monotherapy and long-term disease control in metastatic adrenocortical carcinoma publication-title: Endocr Pract doi: 10.4158/EP10390.CR – year: 2002 ident: CR17 publication-title: Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo – volume: 6 start-page: e29290 issue: 12 year: 2011 ident: CR20 article-title: Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/-Catenin pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0029290 – volume: 44 start-page: 517 issue: 8 year: 2011 end-page: 522 ident: CR22 article-title: Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death publication-title: Biochem Mol Bio Rep – volume: 36 start-page: D901—D906 issue: Database issue year: 2008 ident: CR38 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res – year: 2011 ident: CR16 publication-title: Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme – year: 2011 ident: CR23 publication-title: Novel effect of Antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer – volume: 83 start-page: 373 issue: 3 year: 1989 end-page: 376 ident: CR28 article-title: Binding of oxamniquine to the DNA of schistosomes publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/0035-9203(89)90508-7 – year: 1987 ident: CR37 publication-title: SMILES, a line notation and computerized interpreter for chemical structures – volume: 313 start-page: 1929 issue: 5795 year: 2006 end-page: 1935 ident: CR3 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 – volume: 61 start-page: 809 issue: 5 year: 2007 end-page: 817 ident: CR15 article-title: Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-007-0538-0 – volume: 4 start-page: 249 issue: 2 year: 2003 end-page: 264 ident: CR34 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 1 start-page: e39 issue: 10 year: 2011 ident: CR21 article-title: Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production publication-title: Blood Cancer J doi: 10.1038/bcj.2011.38 – volume: 6 start-page: e1000925 issue: 9 year: 2010 ident: CR5 article-title: Drug-induced regulation of target expression publication-title: PLoS Comput Bio doi: 10.1371/journal.pcbi.1000925 – volume: 6 start-page: 1308 issue: 8 year: 2008 end-page: 1315 ident: CR14 article-title: Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-07-2159 – volume: 1 start-page: 454 issue: 9 year: 2010 end-page: 459 ident: CR27 article-title: Identification of Niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway publication-title: J Med Chem – volume: 33 start-page: e175—e175 issue: 20 year: 2005 ident: CR33 article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data publication-title: Nucleic Acids Res doi: 10.1093/nar/gni179 – volume: 40 start-page: D862 issue: Database issue year: 2012 end-page: 865 ident: CR40 article-title: PINA v2.0: mining interactome modules publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr967 – year: 2005 ident: CR10 publication-title: Modern Multidimensional Scaling: Theory and Applications, 2nd edition – volume: 4 start-page: 1005 issue: 12 year: 2005 end-page: 1014 ident: CR2 article-title: Finding new tricks for old drugs: an efficient route for public-sector drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1900 – volume: 7 start-page: e35254 issue: 4 year: 2012 ident: CR11 article-title: Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities publication-title: PLoS ONE doi: 10.1371/journal.pone.0035254 – start-page: 397 year: 2005 end-page: 420 ident: CR36 article-title: limma: Linear Models for Microarray Data publication-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health doi: 10.1007/0-387-29362-0_23 – volume: 2 start-page: 984 issue: 12 year: 2004 end-page: 989 ident: CR12 article-title: The life and times of ivermectin - a success story publication-title: Nature Rev Microbiol doi: 10.1038/nrmicro1048 – volume: 18 start-page: 1 issue: 5 year: 2007 end-page: 16 ident: CR39 article-title: Chemical informatics functionality in R publication-title: J Stat Softw doi: 10.18637/jss.v018.i05 – volume: 30 start-page: 317 issue: 4 year: 2012 end-page: 320 ident: CR7 article-title: Use of genome-wide association studies for drug repositioning publication-title: Nat Biotech doi: 10.1038/nbt.2151 – volume-title: Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme year: 2011 ident: 471_CR16 – volume-title: affyQCReport: A package to generate QC reports for Affymetrix array data year: 2011 ident: 471_CR31 – volume: 36 start-page: D901—D906 issue: Database issue year: 2008 ident: 471_CR38 publication-title: Nucleic Acids Res – volume: 1 start-page: e39 issue: 10 year: 2011 ident: 471_CR21 publication-title: Blood Cancer J doi: 10.1038/bcj.2011.38 – volume: 4 start-page: 1005 issue: 12 year: 2005 ident: 471_CR2 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1900 – volume: 313 start-page: 1929 issue: 5795 year: 2006 ident: 471_CR3 publication-title: Science doi: 10.1126/science.1132939 – volume: 48 start-page: 10267 issue: 43 year: 2009 ident: 471_CR25 publication-title: J Med Chem – start-page: 397 volume-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health year: 2005 ident: 471_CR36 doi: 10.1007/0-387-29362-0_23 – volume: 2 start-page: 265 year: 2002 ident: 471_CR42 publication-title: J Mach Learn Res – volume-title: Antineoplastic mechanisms of Niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-B pathway and generation of reactive oxygen species year: 2010 ident: 471_CR24 – volume: 35 start-page: D5—D12 issue: suppl 1 year: 2007 ident: 471_CR32 publication-title: Nucleic Acids Res – volume: 33 start-page: e175—e175 issue: 20 year: 2005 ident: 471_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gni179 – volume: 4 start-page: 249 issue: 2 year: 2003 ident: 471_CR34 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 54 start-page: 6405 issue: 19 year: 2011 ident: 471_CR1 publication-title: J Med Chem doi: 10.1021/jm200504p – volume: 3 start-page: 96ra76 issue: 96 year: 2011 ident: 471_CR6 publication-title: Sci Trans Med doi: 10.1126/scitranslmed.3002648 – volume: 65 start-page: 597 issue: 3 year: 2009 ident: 471_CR13 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-009-1157-8 – volume-title: Vienna: R Foundation for Statistical Computing year: 2009 ident: 471_CR29 – volume: 6 start-page: 1308 issue: 8 year: 2008 ident: 471_CR14 publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-07-2159 – volume: 17 start-page: e59—e62 issue: 3 year: 2011 ident: 471_CR18 publication-title: Endocr Pract doi: 10.4158/EP10390.CR – volume-title: Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo year: 2002 ident: 471_CR17 – volume: 11 start-page: 1703 issue: 8 year: 2012 ident: 471_CR19 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-0002 – volume: 287 start-page: 17530 issue: 21 year: 2012 ident: 471_CR26 publication-title: J Biol Chem doi: 10.1074/jbc.M112.359638 – volume: 1 start-page: 454 issue: 9 year: 2010 ident: 471_CR27 publication-title: J Med Chem – volume: 6 start-page: 75 year: 2009 ident: 471_CR41 publication-title: Nature Methods doi: 10.1038/nmeth.1282 – volume: 61 start-page: 809 issue: 5 year: 2007 ident: 471_CR15 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-007-0538-0 – volume: 83 start-page: 373 issue: 3 year: 1989 ident: 471_CR28 publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/0035-9203(89)90508-7 – volume: 7 start-page: 496 year: 2011 ident: 471_CR8 publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – volume-title: Novel effect of Antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer year: 2011 ident: 471_CR23 – volume: 30 start-page: 317 issue: 4 year: 2012 ident: 471_CR7 publication-title: Nat Biotech doi: 10.1038/nbt.2151 – volume: 18 start-page: 1 issue: 5 year: 2007 ident: 471_CR39 publication-title: J Stat Softw doi: 10.18637/jss.v018.i05 – volume-title: SMILES, a line notation and computerized interpreter for chemical structures year: 1987 ident: 471_CR37 – volume-title: Modern Multidimensional Scaling: Theory and Applications, 2nd edition year: 2005 ident: 471_CR10 – volume: 20 start-page: 307 issue: 3 year: 2004 ident: 471_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 40 start-page: D862 issue: Database issue year: 2012 ident: 471_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr967 – volume: 44 start-page: 517 issue: 8 year: 2011 ident: 471_CR22 publication-title: Biochem Mol Bio Rep – volume: 2 start-page: 984 issue: 12 year: 2004 ident: 471_CR12 publication-title: Nature Rev Microbiol doi: 10.1038/nrmicro1048 – volume: 7 start-page: e35254 issue: 4 year: 2012 ident: 471_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0035254 – volume-title: Kernel Methods for Pattern Analysis year: 2004 ident: 471_CR9 doi: 10.1017/CBO9780511809682 – volume: 6 start-page: e29290 issue: 12 year: 2011 ident: 471_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029290 – volume: 8 start-page: 118 year: 2007 ident: 471_CR35 publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 107 start-page: 14621 issue: 33 year: 2010 ident: 471_CR4 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1000138107 – volume: 6 start-page: e1000925 issue: 9 year: 2010 ident: 471_CR5 publication-title: PLoS Comput Bio doi: 10.1371/journal.pcbi.1000925 |
SSID | ssj0065707 |
Score | 2.4546194 |
Snippet | Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease... : Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease... Doc number: 30 Abstract: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment,... |
SourceID | swepub pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Algorithms Chemistry Chemistry and Materials Science Classification Colleges & universities Computational Biology/Bioinformatics Computer Applications in Chemistry Data mining Disease Documentation and Information in Chemistry Drugs Gene expression Genes Health aspects Machine learning Methods Pharmaceuticals Protein-protein interactions Proteins Research Article Theoretical and Computational Chemistry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wAviO8VBgoIAS_W0sSJHSSExthUkKjQYNLeLMc-FwSkY23_f-4SOzSVtrcovtjJ-Xy-i-9-x9hLIQEq6YED5J4Lk0pemRS4mkDqM5_aylKi8JdZOT0Tn8-L8x02i7kwFFYZdWKrqN3C0j_yA7RU0PSlw5f3F385VY2i09VYQsOE0gruXQsxdoPtokou0hHb_XA8-3oadTPFecgA3ThR5QHunZSDIEpecIqD3tiathX0xg61HT3ZH6FuwY22W9TJHXY72JbJYScMd9kONPfYzaNY0u0-m368XM8TOiboIrWwu7eJSf60AZXAQwWJeRKBxpNQxSehONIkIkvggw_Y2cnx96MpD6UUuC2rcoXK1mV5YVNUswYqh2abKkxtpah8LWqPfgXetzX4TEpZeyXBe_Q8HK5uCw5NpIds1Cwa2GMJKOkzyIvKSyMsyMpK5WxqJ7UzUE7cmPHIRW0DzjiVu_itW39DlZq4ronrutB5Omave_qLDmHjSsoXNCmaYCsaiouZm_VyqT99O9WHBWXEClUp7C4Q-QUOa01IM8CXJ6SrAeX-gBLnwg6b49zrsK6X-r8UjtnzvpmepFi1BhbrjgbNnlSIa2gEGZbkK47Zo06c-o9HI4osbxxBDgStJyBE8GFL8_NHiwyeS4L7wXHfRJHcePUrePqqE9lB7-HWL7wCXWQKvfbH17PjCbuVdYVCeJbts9Hqcg1P0Vxb1c_CGvwHTOdBQA priority: 102 providerName: ProQuest – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoAL4pstBQWEgIuFN7Fjm1tVKAsSHIBKvVmOM14QNIu6u_-fmcSOmkVF3KJ4bCdje_xGHr9h7LnUAFZH4ABV5NILza0XwM0cRCyjCDbQReFPn-vFqfx4ps72mMh3Yfpo93wk2Vvqflmb-jXuc3RfQNZc8Qqd9GsKoTEF8UnxPtteiuPQiZrx7zqTrWfXAF_agXajI8cj0h060X4LOrnFbibsWBwNg32b7UF3h10_zinb7rLF24vtsqBjgCESC5t7U_jivA-YBJ4yRCyLTCRepCw9BcWJFpk5AiveY6cn774dL3hKlcBDbesNGtO2rFQQaEY92BZhmVG-CVra2Mgmot-A70MDsdRaN9FoiBHV1-LqDdAiBLrP9rtVBw9ZAUbHEiplo_YygLZBmzaIMG9aD_W8nTGetehC4hGndBa_XO9PmNqR1h1p3SlXiRl7Ocr_Hhg0rpR8RoPiiJaio7iXpd-u1-7D1y_uSNGNV2msweaSUFxht8GnawT48cRkNZE8nEjiWIRpcR57l9bt2iEeRgeLjvhm7OlYTDUpFq2D1XaQQVgjpPyHjCTgSL7gjD0YptP48wiSCFljD3oy0UYBYvyelnQ_vvfM35UmOh_s91Wekpc-_Qqdvhim7KT19OonPoFTpUGv_OD_23zEbpRDUhBelodsf3OxhccIzTbNk341_gEfZjV_ priority: 102 providerName: Springer Nature |
Title | Drug repositioning: a machine-learning approach through data integration |
URI | https://link.springer.com/article/10.1186/1758-2946-5-30 https://www.ncbi.nlm.nih.gov/pubmed/23800010 https://www.proquest.com/docview/1399741300 https://www.proquest.com/docview/1399266044 https://www.proquest.com/docview/1412518753 https://pubmed.ncbi.nlm.nih.gov/PMC3704944 http://kipublications.ki.se/Default.aspx?queryparsed=id:126933416 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge4AXxDcdowoIAS9mqePEDhJCpawrSExoUKlvVuKcC9pIoR8S_PfcJU5YCkO8WEl8tpPz2b6Lz79j7LFUAKlywAEix2UWKp5mIXA9gNAJF9rU0kHh98fJZCrfzeLZb_8nz8DVX007iic1XZ49__H95ysc8C-rAa-TA1wB6SSBTHjMIzTfd6u9InLjk-2OAnl4VIFWGloP4Phn-c4CtT1Nn1untn0o243ULdDRaqEaX2fXvIYZDGuRuMEuQXmTXRk1gd1uscmb5WYe0GZB7a-F1b0IsuBr5VYJ3MeRmAcN3HjgY_kE5E0aNPgSWPA2m44PP40m3AdU4DZJkzVOuYWIYhviZJtBWqDypuMst0qmLpe5Q-sCn9scnFBK5U4rcA7tjwLHuIUCFaU7bKdclHCPBaCVExDFqVOZtKBSq3RhQzvIiwySQdFjvOGisR5tnIJenJnK6tCJIa4b4rqJTRT22NOW_luNs3Eh5SPqFEPgFSV5x8yzzWpl3n48McOYzsVKnWqszhO5BTZrM3_YAF-e8K46lPsdSuwL281u-t40wmlQa0YzjDYCe-xhm00lyWOthMWmpkHlJ5TyHzSS1EuyGHvsbi1O7cejKkX6N7agOoLWEhAueDen_PK5wgePFIH-YLvPGpE89-oX8PRJLbKd2v2jU7wCEwuNtvve_zD_Prsq6qAhXIh9trNebuABqm7rvM8uy_AIUzVTmOoxXu--Pjz-cIJ3IyEpTUb96scIpkezQb8axZhOxfAXXK5Jig |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7aFcEG-WFjCI18VqHk6cIFWo9KFd2q5QaaXeTOKMlwrIlu6uEH-O38ZM4oTNSu2tt1U8sZPxrOdzPPMNY6-kAkiVBQEQWiEzT4k080AkPng2sJ5JDSUKH43iwan8dBadrbC_TS4MhVU2a2K1UBcTQ9_INxGpIPSlw5cPF78EVY2i09WmhEbmSisUWxXFmEvsOIA_v3ELN90a7uJ8vw6C_b2TnYFwVQaEidN4hutQEYSR8XAFyiAtENEkUZYbJVOby9wi5MbrJgcbKKVymyiwFkF5gYZvoIiJ-ABdwKqkDyg9tvpxb_T5uPEFFFeiHFWkn8Sb6Ksp50HGIhIUd73gCpcdwoJHXI7WbI9sl-hNK5e4f4fddliWb9fGd5etQHmPre00JeTus8Hu5XzM6ViijgzD7t7zjP-sAjhBuIoVY94Qm3NXNYhT3CpvmCzwxgfs9EaU-pD1ykkJjxmHRNkAwii1KpMGVGpUUhjP-HmRQewXfSYaLWrjeM2pvMYPXe1vkliT1jVpXUc69PrsbSt_UTN6XCn5kiZFE01GSXE442w-nerhl2O9HVEGrkzSBLtzQnaCw5rMpTXgwxOzVkdyoyOJc2G6zc3ca7eOTPV_q--zF20z3UmxcSVM5rUMwixPymtkJAFZ2pv22aPanNqXR9BGSB9HUB1DawWIgbzbUp5_q5jIQ0X0Qjjuu8YkFx79Cp2-qU2207u79B1_gY6CJPb8J9er4zlbG5wcHerD4ehgnd0K6iIlIgg2WG92OYenCBVn-TP3f-Ts600vAf8AgO6AtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN90DAiIrxerSerECdKExrqqZVBNg0l7M4lzLhOQjrUV4l_kr-IusUNTaXvbWxVfbPd8vjvHd79j7IWQAKk0wAH6hovMlzzNfOBJAL4Jja9TTYnCnybx6Fh8OIlONthflwtDYZVOJ1aKuphp-kbeQ08FXV-6fOkZGxZxOBi-O_vFqYIU3bS6chqZLbNQ7FRwYzbJ4wD-_Mbj3HxnPMC1fxmGw_0veyNuKw5wHafxAnVSEfYj7aM2yiAt0LtJoizXUqQmF7lB9xuf6xxMKKXMTSLBGHTQC9wEGoqYQBDQHGxKmmuHbb7fnxweObtAMSbSwkYGSdxDu035DyLmEacY7BWzuG4cVqzjeuRmc327BnVamcfhLXbT-rXebi2It9kGlHfY9T1XTu4uGw3Ol1OPrijqKDHs7q2XeT-rYE7gtnrF1HMg556tIORRDKvnUC3wxXvs-EqYep91ylkJD5kHiTQh9KPUyExokKmWSaF9HeRFBnFQdBl3XFTaYpxTqY0fqjrrJLEiriviuopU3--y1w39WY3ucSHlc1oURZAZJQnfNFvO52r8-UjtRpSNK5I0we4skZnhsDqzKQ44eULZalFutyhxLXS72a29sjplrv7vgC571jTTmxQnV8JsWdOgy-ULcQmNIKeWzqld9qAWp-bPowNHXj-OIFuC1hAQGnm7pTz9VqGS9yVBDeG4b5xIrkz9Ap6-qkW21bt99B1_gYrCJPaDrcvZ8ZRdQ1WgPo4nB4_YjbCuV8LDcJt1FudLeIxe4yJ_Yrejx75etQb4B5F2hPk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+repositioning%3A+a+machine-learning+approach+through+data+integration&rft.jtitle=Journal+of+cheminformatics&rft.au=Napolitano%2C+Francesco&rft.au=Zhao%2C+Yan&rft.au=Moreira%2C+V%C3%83%C2%A2nia+M&rft.au=Tagliaferri%2C+Roberto&rft.date=2013-06-22&rft.pub=BioMed+Central+Ltd&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=5&rft_id=info:doi/10.1186%2F1758-2946-5-30&rft.externalDBID=ISR&rft.externalDocID=A534794898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon |