Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic

In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions ( e.g . physical or social d...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 3; p. e1008776
Main Authors Richard, Quentin, Alizon, Samuel, Choisy, Marc, Sofonea, Mircea T., Djidjou-Demasse, Ramsès
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.03.2021
PLOS
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1008776

Cover

Abstract In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions ( e.g . physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing.
AbstractList In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions (e.g. physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing.In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions (e.g. physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing.
In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions (e.g. physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing.
While much remains unknown about the COVID-19 epidemics, evidence to date suggests that mortality among people who have been tested positive for the coronavirus is substantially higher at older ages and near zero for young children [3, 21]. [...]the infectiousness of an individual has been reported to vary as a function of time since infection [22], which is known to affect epidemic spread [23–26]. [...]we compare the performance of optimal control in terms of deaths and hospitalizations for different costs of the control measure. [...]we compare our optimal control strategy to two other strategies that use the same amount of resources to control the outbreak. [...]the average latency from exposed to asymptomatic (ilat) is simply mentioned to define the average time to infectiousness onset (isympt), and also to help the readers to understand the model flow diagram (Fig 1).
In an epidemic, individuals can widely differ in the way they spread the infection, for instance depending on their age or on the number of days they have been infected for. The latter allows to take into account the variation of infectiousness as a function of time since infection. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions (e.g. social distancing) are of great importance to mitigate the pandemic. We propose a model with a double continuous structure by host age and time since infection. By applying optimal control theory to our age-structured model, we identify a solution minimizing deaths and costs associated with the implementation of the control strategy itself. This strategy depends on the age heterogeneity between individuals and consists in a relatively high isolation intensity over the older populations during a hundred days, followed by a steady decrease in a way that depends on the cost associated to a such control. The isolation of the younger population is weaker and occurs only if the cost associated with the control is relatively low. We show that the optimal control strategy strongly outperforms other strategies such as uniform constant control over the whole populations or over its younger fraction. These results bring new facts the debate about age-based control interventions and open promising avenues of research, for instance of age-based contact tracing.
In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions ( e.g . physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing.
In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for. In the absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions ( e.g . physical or social distancing) are essential to mitigate the pandemic. We develop an original approach to identify the optimal age-stratified control strategy to implement as a function of the time since the onset of the epidemic. This is based on a model with a double continuous structure in terms of host age and time since infection. By applying optimal control theory to this model, we identify a solution that minimizes deaths and costs associated with the implementation of the control strategy itself. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Overall, the optimal strategy varies throughout the epidemic, with a more intense control early on, and depending on host age, with a stronger control for the older population, except in the scenario where the cost associated with the control is low. In the latter scenario, we find strong differences across countries because the control extends to the younger population for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform control exerted over the whole population or over its younger fraction. This improved understanding of the effect of age-based control interventions opens new perspectives for the field, especially for age-based contact tracing. COVID-19 infected individuals differ in the way they spread the infection depending on their age or on the number of days elapsed since the contamination. This individual heterogeneity can impact the design of public health control measures to contain epidemics. Using optimal control theory, we identify a strategy that minimizes deaths and costs due to the implementation of the control measures themselves. We also implement this strategy for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). This strategy consists in rapidly intervening in older populations to protect the older people during the initial phase of the epidemic and (if the cost is intermediate or low) to control the epidemic, before progressively alleviating this control. Interventions in the younger population can occur later if the cost associated with the intervention is low. Such interventions targeted at younger people aim at suppressing the epidemic.
While much remains unknown about the COVID-19 epidemics, evidence to date suggests that mortality among people who have been tested positive for the coronavirus is substantially higher at older ages and near zero for young children [3, 21]. [...]the infectiousness of an individual has been reported to vary as a function of time since infection [22], which is known to affect epidemic spread [23–26]. [...]we compare the performance of optimal control in terms of deaths and hospitalizations for different costs of the control measure. [...]we compare our optimal control strategy to two other strategies that use the same amount of resources to control the outbreak. [...]the average latency from exposed to asymptomatic (ilat) is simply mentioned to define the average time to infectiousness onset (isympt), and also to help the readers to understand the model flow diagram (Fig 1).
Audience Academic
Author Choisy, Marc
Sofonea, Mircea T.
Richard, Quentin
Alizon, Samuel
Djidjou-Demasse, Ramsès
AuthorAffiliation 1 MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
Stony Brook University, UNITED STATES
2 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
3 Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
AuthorAffiliation_xml – name: 3 Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
– name: 1 MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
– name: 2 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
– name: Stony Brook University, UNITED STATES
Author_xml – sequence: 1
  givenname: Quentin
  orcidid: 0000-0003-2450-3350
  surname: Richard
  fullname: Richard, Quentin
– sequence: 2
  givenname: Samuel
  orcidid: 0000-0002-0779-9543
  surname: Alizon
  fullname: Alizon, Samuel
– sequence: 3
  givenname: Marc
  orcidid: 0000-0002-5187-6390
  surname: Choisy
  fullname: Choisy, Marc
– sequence: 4
  givenname: Mircea T.
  orcidid: 0000-0002-4499-0435
  surname: Sofonea
  fullname: Sofonea, Mircea T.
– sequence: 5
  givenname: Ramsès
  orcidid: 0000-0003-1684-5190
  surname: Djidjou-Demasse
  fullname: Djidjou-Demasse, Ramsès
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33661890$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02879512$$DView record in HAL
BookMark eNqVU9uK2zAQNWVL99L-QWkNfek-OJUs69aHQkgvGwhd6I2-CVmWEgXHciU7tH9feeNd1mEpFBssRuecmTmeOU9OGtfoJHkOwQwiCt9sXe8bWc9aVdoZBIBRSh4lZxBjlFGE2cm982lyHsIWgHjk5ElyihAhkHFwlvycr3UWOt-rrve6SmOSrN1Iv5NK951Vsk5t02m_101nXRNS43zq2s7u4o1yTeddnTqTLq5_LN9nkKe6tZXeWfU0eWxkHfSz8XuRfP_44dviKltdf1ou5qtMEY67jBPMC4VKyGFZIc0pUIpzVvGCSkO0NIoyWeICAlOWsKSaGV0SXOaKY5gzgy6SlwfdtnZBjKYEkWOICCsgQhGxPCAqJ7ei9bF0_0c4acVNwPm1kD62WmtBecGYzhWS0BQFw1xiAguJUKwOUZVHrXdjtr7c6UpFV7ysJ6LTm8ZuxNrtozJBgMMocHkQ2BzRruYrMcRAzujQ2n4o_PWYzLtfvQ6d2NmgdF3LRrs-9lhwFl9cgAh9dQR92IkRtZaxWdsYF2tUg6iYE8woxJCSiJo9gIrPzX-NQ2hsjE8IlxPCMBb6d7eWfQhi-fXLf2A_T7Ev7pt9Z9ft9EZAcQAo70Lw2txBIBDDkty6IIYlEeOSRNrbI5qynRzGOzZq63-T_wIbmxbA
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108680
crossref_primary_10_1038_s41598_024_54955_4
crossref_primary_10_1016_j_chaos_2022_112562
crossref_primary_10_1016_j_matcom_2022_10_017
crossref_primary_10_1093_emph_eoac002
crossref_primary_10_1007_s00285_021_01669_0
crossref_primary_10_1016_j_idm_2022_08_006
crossref_primary_10_1051_mmnp_2022008
crossref_primary_10_1371_journal_pone_0278882
crossref_primary_10_1038_s41598_022_21553_1
crossref_primary_10_3390_sym16111448
crossref_primary_10_3389_fmicb_2022_889643
crossref_primary_10_1016_j_jtbi_2025_112072
crossref_primary_10_1016_j_accpm_2021_100943
crossref_primary_10_1016_j_accpm_2021_101017
crossref_primary_10_1140_epjs_s11734_023_00801_z
crossref_primary_10_1016_j_idm_2023_05_012
crossref_primary_10_1109_TASE_2021_3111338
crossref_primary_10_1155_2022_1914996
crossref_primary_10_2139_ssrn_4389024
crossref_primary_10_1016_j_epidem_2022_100559
crossref_primary_10_1016_j_cma_2025_117796
crossref_primary_10_1007_s40314_024_02897_y
crossref_primary_10_1038_s41598_025_87566_8
crossref_primary_10_1007_s12064_023_00388_y
crossref_primary_10_1007_s00285_024_02168_8
crossref_primary_10_2139_ssrn_4550707
crossref_primary_10_1007_s40574_025_00477_4
crossref_primary_10_1016_j_jfranklin_2022_06_036
crossref_primary_10_1111_jpet_12604
crossref_primary_10_1002_mma_9675
crossref_primary_10_1016_j_nonrwa_2021_103393
crossref_primary_10_1016_j_idm_2024_04_007
crossref_primary_10_3390_jcm10132813
crossref_primary_10_1016_j_jtbi_2023_111596
crossref_primary_10_1007_s12046_023_02268_z
crossref_primary_10_1016_j_ejor_2024_11_006
crossref_primary_10_1371_journal_pone_0259031
Cites_doi 10.1186/1471-2334-10-32
10.1101/2020.03.21.20040154
10.1007/978-3-030-67670-4_10
10.57262/die/1379101977
10.1016/j.jmaa.2003.11.031
10.1201/9781420011418
10.1101/2020.04.02.20049189
10.1098/rspa.1927.0118
10.3934/mbe.2015.12.23
10.1137/120890351
10.1038/nature04017
10.3934/mbe.2013.10.1615
10.1101/2020.05.13.20100727
10.1023/A:1021865709529
10.1038/d41586-020-01003-6
10.1515/9781400840915
10.1007/BF00276550
10.1016/0016-0032(74)90037-4
10.1073/pnas.0307506101
10.1056/NEJMoa2001316
10.1137/S0036144500371907
10.1016/j.mbs.2005.12.017
10.1001/jama.292.11.1333
10.1016/S1473-3099(20)30243-7
10.1016/0022-247X(74)90025-0
10.1101/2020.06.12.20129221
10.1186/s13362-020-00091-3
10.1101/2020.04.25.20079103
10.1016/j.jmaa.2003.07.001
10.1101/2020.05.22.20110593
10.1016/j.ijid.2004.04.013
10.1371/journal.pcbi.1005697
10.3934/dcdsb.2017155
10.1016/0025-5564(84)90063-4
10.1093/aje/kwi257
10.1016/j.epidem.2014.07.003
10.1101/2020.04.22.20076018
10.1007/s00028-015-0303-5
10.1007/s00285-015-0952-6
10.3934/mbe.2012.9.819
10.1007/BF00178326
10.3934/mbe.2019375
10.1101/2020.04.20.20072413
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Richard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2021 Richard et al 2021 Richard et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Richard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 Richard et al 2021 Richard et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pcbi.1008776
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




CrossRef

MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
DocumentTitleAlternate Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic
EISSN 1553-7358
ExternalDocumentID 2513684133
oai_doaj_org_article_79488e2c3a1f44859a5614a3391b37c2
PMC7963091
oai_HAL_hal_02879512v3
A658715176
33661890
10_1371_journal_pcbi_1008776
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
Vietnam
Burkina Faso
GeographicLocations_xml – name: Vietnam
– name: Burkina Faso
– name: France
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 16-CE35-0007
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
1XC
VOOES
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c695t-96594c3b191bd3e970cc998d947af6eafc78ab5410fbb1b7e8feb65b2c95128f3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:11:57 EST 2021
Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:01:52 EDT 2025
Fri Sep 12 12:53:20 EDT 2025
Fri Sep 05 05:11:44 EDT 2025
Fri Jul 25 10:25:52 EDT 2025
Tue Jun 17 21:49:12 EDT 2025
Tue Jun 10 20:42:56 EDT 2025
Fri Jun 27 03:46:18 EDT 2025
Fri Jun 27 03:47:44 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Tue Jul 01 04:05:03 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords COVID-19
Age-structured model
Outbreak
Age of infection
Epidemiology
Optimal control
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c695t-96594c3b191bd3e970cc998d947af6eafc78ab5410fbb1b7e8feb65b2c95128f3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-4499-0435
0000-0003-1684-5190
0000-0002-0779-9543
0000-0003-2450-3350
0000-0002-5187-6390
0000-0001-9161-8890
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008776
PMID 33661890
PQID 2513684133
PQPubID 1436340
ParticipantIDs plos_journals_2513684133
doaj_primary_oai_doaj_org_article_79488e2c3a1f44859a5614a3391b37c2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7963091
hal_primary_oai_HAL_hal_02879512v3
proquest_miscellaneous_2498498540
proquest_journals_2513684133
gale_infotracmisc_A658715176
gale_infotracacademiconefile_A658715176
gale_incontextgauss_ISR_A658715176
gale_incontextgauss_ISN_A658715176
pubmed_primary_33661890
crossref_primary_10_1371_journal_pcbi_1008776
crossref_citationtrail_10_1371_journal_pcbi_1008776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
PLOS
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: PLOS
– name: Public Library of Science (PLoS)
References JS Brownstein (pcbi.1008776.ref018) 2005; 162
HW Hethcote (pcbi.1008776.ref025) 2000; 42
pcbi.1008776.ref066
pcbi.1008776.ref067
RM Anderson (pcbi.1008776.ref024) 1991
Y Zhou (pcbi.1008776.ref037) 2002
pcbi.1008776.ref028
RM May (pcbi.1008776.ref070) 1984; 72
pcbi.1008776.ref063
pcbi.1008776.ref064
S Lenhart (pcbi.1008776.ref008) 2007
RD Demasse (pcbi.1008776.ref046) 2013; 73
K Prem (pcbi.1008776.ref043) 2017; 13
H Inaba (pcbi.1008776.ref029) 1990; 28
R Djidjou Demasse (pcbi.1008776.ref013) 2016; 73
V Barbu (pcbi.1008776.ref015) 1999; 102
EP Scully (pcbi.1008776.ref068) 2020
KR Fister (pcbi.1008776.ref016) 2004; 291
YN Arguedas (pcbi.1008776.ref038) 2019; 16
pcbi.1008776.ref011
pcbi.1008776.ref055
pcbi.1008776.ref012
pcbi.1008776.ref056
C Fraser (pcbi.1008776.ref071) 2004; 101
pcbi.1008776.ref057
pcbi.1008776.ref058
F Hoppensteadt (pcbi.1008776.ref032) 1974; 297
pcbi.1008776.ref059
G Onder (pcbi.1008776.ref021) 2020
pcbi.1008776.ref017
JT Wu (pcbi.1008776.ref005) 2020
pcbi.1008776.ref051
pcbi.1008776.ref052
pcbi.1008776.ref053
pcbi.1008776.ref010
pcbi.1008776.ref054
HR Thieme (pcbi.1008776.ref044) 1990; 3
JB Burie (pcbi.1008776.ref031) 2017; 22
E Shim (pcbi.1008776.ref042) 2013; 10
K Dietz (pcbi.1008776.ref030) 1985; 22
CDCMMWR (pcbi.1008776.ref060) 2020; 69
KTD Eames (pcbi.1008776.ref041) 2012; 8
P Magal (pcbi.1008776.ref047) 2018
S Anita (pcbi.1008776.ref014) 2000
H Inaba (pcbi.1008776.ref033) 2006; 201
pcbi.1008776.ref001
pcbi.1008776.ref045
pcbi.1008776.ref002
pcbi.1008776.ref004
pcbi.1008776.ref048
D Adam (pcbi.1008776.ref006) 2020; 580
F Zhou (pcbi.1008776.ref050) 2020
I Ekeland (pcbi.1008776.ref062) 1974; 47
H Inaba (pcbi.1008776.ref034) 2016; 9
pcbi.1008776.ref040
L Pellis (pcbi.1008776.ref069) 2015; vol. 10
F Lin (pcbi.1008776.ref009) 2010; 10
A Sakurai (pcbi.1008776.ref065) 2020; 0
WO Kermack (pcbi.1008776.ref023) 1927; 115
NM Ferguson (pcbi.1008776.ref026) 2005; 437
AM McBean (pcbi.1008776.ref019) 2004; 8
G Feichtinger (pcbi.1008776.ref061) 2003; 288
L Ferretti (pcbi.1008776.ref022) 2020
Q Li (pcbi.1008776.ref049) 2020; 382
SP OTTO (pcbi.1008776.ref007) 2007
B Laroche (pcbi.1008776.ref036) 2016; 16
pcbi.1008776.ref039
G Kapitanov (pcbi.1008776.ref035) 2015; 12
CC McCluskey (pcbi.1008776.ref027) 2012; 9
WW Thompson (pcbi.1008776.ref020) 2004; 292
R Verity (pcbi.1008776.ref003) 2020; 20
References_xml – volume: 10
  start-page: 32
  issue: 1
  year: 2010
  ident: pcbi.1008776.ref009
  article-title: An Optimal Control Theory Approach to Non-Pharmaceutical Interventions
  publication-title: BMC Infectious Diseases
  doi: 10.1186/1471-2334-10-32
– ident: pcbi.1008776.ref028
  doi: 10.1101/2020.03.21.20040154
– ident: pcbi.1008776.ref056
– ident: pcbi.1008776.ref039
  doi: 10.1007/978-3-030-67670-4_10
– volume: 3
  start-page: 1035
  issue: 6
  year: 1990
  ident: pcbi.1008776.ref044
  article-title: Semiflows Generated by Lipschitz Perturbations of Non-Densely Defined Operators
  publication-title: Differential and Integral Equations
  doi: 10.57262/die/1379101977
– volume: 291
  start-page: 526
  issue: 2
  year: 2004
  ident: pcbi.1008776.ref016
  article-title: Optimal Control of a Competitive System with Age-Structure
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/j.jmaa.2003.11.031
– start-page: 313
  year: 2002
  ident: pcbi.1008776.ref037
– volume: 69
  year: 2020
  ident: pcbi.1008776.ref060
  article-title: Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)—United States, February 12–March 16, 2020
  publication-title: MMWR Morbidity and Mortality Weekly Report
– volume-title: Optimal Control Applied to Biological Models
  year: 2007
  ident: pcbi.1008776.ref008
  doi: 10.1201/9781420011418
– ident: pcbi.1008776.ref010
  doi: 10.1101/2020.04.02.20049189
– ident: pcbi.1008776.ref052
– volume: 115
  start-page: 700
  year: 1927
  ident: pcbi.1008776.ref023
  article-title: A Contribution to the Mathematical Theory of Epidemics
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.1927.0118
– year: 2020
  ident: pcbi.1008776.ref050
  article-title: Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study
  publication-title: The Lancet
– ident: pcbi.1008776.ref017
– year: 2020
  ident: pcbi.1008776.ref022
  article-title: Quantifying SARS-CoV-2 Transmission Suggests Epidemic Control with Digital Contact Tracing
  publication-title: Science
– volume: 12
  start-page: 23
  issue: 1
  year: 2015
  ident: pcbi.1008776.ref035
  article-title: A Double Age-Structured Model of the Co-Infection of Tuberculosis and HIV
  publication-title: Mathematical biosciences and engineering: MBE
  doi: 10.3934/mbe.2015.12.23
– ident: pcbi.1008776.ref001
– volume: 73
  start-page: 572
  issue: 1
  year: 2013
  ident: pcbi.1008776.ref046
  article-title: An Age-Structured Within-Host Model for Multistrain Malaria Infections
  publication-title: SIAM Journal on Applied Mathematics
  doi: 10.1137/120890351
– start-page: 1
  year: 2020
  ident: pcbi.1008776.ref005
  article-title: Estimating Clinical Severity of COVID-19 from the Transmission Dynamics in Wuhan, China
  publication-title: Nature Medicine
– volume: 437
  start-page: 209
  issue: 7056
  year: 2005
  ident: pcbi.1008776.ref026
  article-title: Strategies for Containing an Emerging Influenza Pandemic in Southeast Asia
  publication-title: Nature
  doi: 10.1038/nature04017
– ident: pcbi.1008776.ref055
– volume-title: Dynamics and Control
  year: 1991
  ident: pcbi.1008776.ref024
– volume: 10
  start-page: 1615
  issue: 5-6
  year: 2013
  ident: pcbi.1008776.ref042
  article-title: Optimal Strategies of Social Distancing and Vaccination against Seasonal Influenza
  publication-title: Mathematical biosciences and engineering: MBE
  doi: 10.3934/mbe.2013.10.1615
– ident: pcbi.1008776.ref059
  doi: 10.1101/2020.05.13.20100727
– volume: 102
  start-page: 1
  issue: 1
  year: 1999
  ident: pcbi.1008776.ref015
  article-title: Optimal Control of Population Dynamics
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1021865709529
– volume: 580
  start-page: 316
  issue: 7803
  year: 2020
  ident: pcbi.1008776.ref006
  article-title: Special Report: The Simulations Driving the World’s Response to COVID-19
  publication-title: Nature
  doi: 10.1038/d41586-020-01003-6
– ident: pcbi.1008776.ref051
– volume-title: A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution
  year: 2007
  ident: pcbi.1008776.ref007
  doi: 10.1515/9781400840915
– volume: 22
  start-page: 117
  issue: 1
  year: 1985
  ident: pcbi.1008776.ref030
  article-title: Proportionate Mixing Models for Age-Dependent Infection Transmission
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/BF00276550
– volume: 297
  start-page: 325
  issue: 5
  year: 1974
  ident: pcbi.1008776.ref032
  article-title: An Age Dependent Epidemic Model
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/0016-0032(74)90037-4
– volume: 8
  issue: 3
  year: 2012
  ident: pcbi.1008776.ref041
  article-title: Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza
  publication-title: PLoS Computational Biology
– volume: 101
  start-page: 6146
  issue: 16
  year: 2004
  ident: pcbi.1008776.ref071
  article-title: Factors That Make an Infectious Disease Outbreak Controllable
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0307506101
– volume: 382
  start-page: 1199
  issue: 13
  year: 2020
  ident: pcbi.1008776.ref049
  article-title: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa2001316
– year: 2020
  ident: pcbi.1008776.ref021
  article-title: Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy
  publication-title: JAMA
– volume: 42
  start-page: 599
  issue: 4
  year: 2000
  ident: pcbi.1008776.ref025
  article-title: The Mathematics of Infectious Diseases
  publication-title: SIAM review
  doi: 10.1137/S0036144500371907
– volume: 201
  start-page: 15
  issue: 1-2
  year: 2006
  ident: pcbi.1008776.ref033
  article-title: Endemic Threshold Results in an Age-Duration-Structured Population Model for HIV Infection
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2005.12.017
– ident: pcbi.1008776.ref048
– volume-title: Mathematical Modelling: Theory and Applications
  year: 2000
  ident: pcbi.1008776.ref014
– ident: pcbi.1008776.ref040
– ident: pcbi.1008776.ref002
– volume: 292
  start-page: 1333
  issue: 11
  year: 2004
  ident: pcbi.1008776.ref020
  article-title: Influenza-Associated Hospitalizations in the United States
  publication-title: JAMA
  doi: 10.1001/jama.292.11.1333
– volume: 20
  start-page: 669
  issue: 6
  year: 2020
  ident: pcbi.1008776.ref003
  article-title: Estimates of the Severity of Coronavirus Disease 2019: A Model-Based Analysis
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30243-7
– volume: 47
  start-page: 324
  issue: 2
  year: 1974
  ident: pcbi.1008776.ref062
  article-title: On the Variational Principle
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(74)90025-0
– ident: pcbi.1008776.ref067
  doi: 10.1101/2020.06.12.20129221
– ident: pcbi.1008776.ref054
– ident: pcbi.1008776.ref011
  doi: 10.1186/s13362-020-00091-3
– ident: pcbi.1008776.ref058
– ident: pcbi.1008776.ref066
  doi: 10.1101/2020.04.25.20079103
– volume: 288
  start-page: 47
  issue: 1
  year: 2003
  ident: pcbi.1008776.ref061
  article-title: Optimality Conditions for Age-Structured Control Systems
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/j.jmaa.2003.07.001
– ident: pcbi.1008776.ref064
  doi: 10.1101/2020.05.22.20110593
– volume: 8
  start-page: 227
  issue: 4
  year: 2004
  ident: pcbi.1008776.ref019
  article-title: New Estimates of Influenza-Related Pneumonia and Influenza Hospitalizations among the Elderly
  publication-title: International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases
  doi: 10.1016/j.ijid.2004.04.013
– volume: 13
  start-page: e1005697
  issue: 9
  year: 2017
  ident: pcbi.1008776.ref043
  article-title: Projecting Social Contact Matrices in 152 Countries Using Contact Surveys and Demographic Data
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005697
– ident: pcbi.1008776.ref045
– volume: 22
  start-page: 2879
  issue: 7
  year: 2017
  ident: pcbi.1008776.ref031
  article-title: Asymptotic Behaviour of an Age and Infection Age Structured Model for the Propagation of Fungal Diseases in Plants
  publication-title: Discrete & Continuous Dynamical Systems—B
  doi: 10.3934/dcdsb.2017155
– volume: 9
  start-page: 105
  year: 2016
  ident: pcbi.1008776.ref034
  article-title: Endemic Threshold Analysis for the Kermack-McKendrick Reinfection Model
  publication-title: Josai mathematical monographs
– volume: 72
  start-page: 83
  issue: 1
  year: 1984
  ident: pcbi.1008776.ref070
  article-title: Spatial Heterogeneity and the Design of Immunization Programs
  publication-title: Mathematical Biosciences
  doi: 10.1016/0025-5564(84)90063-4
– volume: 162
  start-page: 686
  issue: 7
  year: 2005
  ident: pcbi.1008776.ref018
  article-title: Identifying Pediatric Age Groups for Influenza Vaccination Using a Real-Time Regional Surveillance System
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwi257
– volume: vol. 10
  start-page: 58
  year: 2015
  ident: pcbi.1008776.ref069
  article-title: Eight challenges for network epidemic models
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2014.07.003
– volume: 0
  start-page: null
  issue: 0
  year: 2020
  ident: pcbi.1008776.ref065
  article-title: Natural History of Asymptomatic SARS-CoV-2 Infection
  publication-title: New England Journal of Medicine
– ident: pcbi.1008776.ref012
  doi: 10.1101/2020.04.22.20076018
– ident: pcbi.1008776.ref053
– volume: 16
  start-page: 293
  issue: 2
  year: 2016
  ident: pcbi.1008776.ref036
  article-title: Threshold Behaviour of a SI Epidemiological Model with Two Structuring Variables
  publication-title: Journal of Evolution Equations
  doi: 10.1007/s00028-015-0303-5
– ident: pcbi.1008776.ref057
– start-page: 1
  year: 2020
  ident: pcbi.1008776.ref068
  article-title: Considering How Biological Sex Impacts Immune Responses and COVID-19 Outcomes
  publication-title: Nature Reviews Immunology
– volume-title: Applied Mathematical Sciences
  year: 2018
  ident: pcbi.1008776.ref047
– volume: 73
  start-page: 305
  issue: 2
  year: 2016
  ident: pcbi.1008776.ref013
  article-title: Optimal Control for an Age-Structured Model for the Transmission of Hepatitis B
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/s00285-015-0952-6
– volume: 9
  start-page: 819
  issue: 4
  year: 2012
  ident: pcbi.1008776.ref027
  article-title: Global Stability for an SEI Epidemiological Model with Continuous Age-Structure in the Exposed and Infectious Classes
  publication-title: Mathematical biosciences and engineering: MBE
  doi: 10.3934/mbe.2012.9.819
– volume: 28
  start-page: 411
  issue: 4
  year: 1990
  ident: pcbi.1008776.ref029
  article-title: Threshold and Stability Results for an Age-Structured Epidemic Model
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/BF00178326
– volume: 16
  start-page: 7477
  issue: 6
  year: 2019
  ident: pcbi.1008776.ref038
  article-title: Transmission Dynamics of Acute Respiratory Diseases in a Population Structured by Age
  publication-title: Mathematical biosciences and engineering: MBE
  doi: 10.3934/mbe.2019375
– ident: pcbi.1008776.ref004
– ident: pcbi.1008776.ref063
  doi: 10.1101/2020.04.20.20072413
SSID ssj0035896
Score 2.5216086
Snippet In an epidemic, individuals can widely differ in the way they spread the infection depending on their age or on the number of days they have been infected for....
While much remains unknown about the COVID-19 epidemics, evidence to date suggests that mortality among people who have been tested positive for the...
In an epidemic, individuals can widely differ in the way they spread the infection, for instance depending on their age or on the number of days they have been...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008776
SubjectTerms Adolescent
Adult
Age
Age Distribution
Age factors in disease
Aged
Aged, 80 and over
Analysis
Asymptomatic
Basic Reproduction Number - statistics & numerical data
Biology and Life Sciences
Burkina Faso
Burkina Faso - epidemiology
Child
Child, Preschool
Children
Communicable Disease Control - methods
Communicable Disease Control - statistics & numerical data
Computational Biology
Computer and Information Sciences
Contact tracing
Contact Tracing - methods
Contact Tracing - statistics & numerical data
Control
Control theory
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - prevention & control
COVID-19 - transmission
Demographic aspects
Disease control
Disease transmission
Distribution
Engineering and Technology
Epidemics
Female
France
France - epidemiology
Human health and pathology
Humans
Infant
Infant, Newborn
Infections
Influenza
Intervention
Latency
Life Sciences
Male
Mathematical Concepts
Mathematics
Medicine and Health Sciences
Middle Aged
Models, Biological
Models, Statistical
Mortality
Optimal control
Ordinary differential equations
Pandemics
Pandemics - prevention & control
Pandemics - statistics & numerical data
Partial differential equations
People and Places
Pharmaceuticals
Physical Distancing
Physical Sciences
Population
Respiratory diseases
SARS-CoV-2
Vietnam
Vietnam - epidemiology
Viral diseases
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dj9MwDI9gEhIviO8bDFQQEk_h2qZtksdxcNohOCTg0N6ixE1vk451ojck_nvsNqtadOhekPZUe0tiO87PnWMz9qp0woFINU88SI4OD7hSuB-lVqXKrYI4o8vJn06LxVn2YZkvB62-KCesKw_cCe4Q7UUpn4KwSYWhRK4t1a60QujECQmt98VjbB9MdT5Y5KrtzEVNcbgU2TJcmhMyOQw6erMFt6YcASWp3sjgUGpr9_ce-uaKEiQn24u6uQqE_p1LOTicju-yOwFVRvNuNffYDb-5z251fSZ_P2DL-bnnXaXY3U9fRhjy8-1q-DI7Wg9yH5sIkWxUozP5gZSQzB7VVXT0-fvJO57oyHd9ZeEhOzt-_-1owUNLBQ6Fzi85lQ_MQDiM0lwpvJYxAAZcpc6krQpvK5DKujxL4sq5xEmvKu-K3KWASCxVlXjEJjhHf8AiCtYKG1sbA_6kE7ZQvigdQJ45XcXJlIm9TA2EeuPU9uLCtH-iSYw7OuEY0oQJmpgy3n9r29XbuIb_Lamr56Vq2e0DtCETbMhcZ0NT9pKUbagexoYSbs7trmnMyddTM0eEJhEV0Uj_YPoyYnodmKoaFws2XHJAkVGdrRHnbMSJuxrGo61oqYNlLeYfDT1DwUvSxi8xZQdkl3vBNAbBqigU4hIkzfa2ejX5RU-mkSnTbuPrHfJkWuEHgfyUPe5Mu5-FEIjmlEaKHBn9aJpjyma9amuWS3T0CE2f_A91PWW3U8osokzAbMYmuH38M4SGl-556wX-AD9IXaU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw0GJFSLwgvlcYKCAknsySOImdJ1QGpUMwJGCob5Z9cdpKownLisS_5y5xS4IGSH3KXWP7vnznnO8Ye1ZYYUHEOY8cSI4GD7hSqI8yV4VKjYIwocvJH06y2Wnybp7O_YFb49MqtzaxNdRFBXRGfoj7sMgUmlzxsv7OqWsUfV31LTT22NUoRkmim-LTt1tLLFLV9uei1jhcimTur84JGR16Tr2owa4oU0BJqjrS25raCv47O723pDTJUX1WNZe5on9mVPa2qOlNdsP7lsGkE4Zb7Ipb32bXum6TP--w-WTheFcvdnPuigADf14v-0fawaqXAdkE6M8GFZqUbwjxKe1BVQZHH78ev-ZRHriuuyzcZafTN1-OZtw3VuCQ5ekFpyKCCQiLsZothMtlCIBhV5En0pSZMyVIZWyaRGFpbWSlU6WzWWpjQH8sVqW4x0Y4R7fPAgrZMhMaEwK-0gqTKZcVFiBNbF6G0ZiJLU01-Krj1PziTLef0iRGHx1xNHFCe06MGd_9q-6qbvwH_xWxa4dLNbPbB9X5QnsV1Gh5lHIxCBOVGJSmuaEqqEYIpIKQEI_ZU2K2pqoYa0q7WZhN0-jjzyd6gn6aRN-IRvoL0qcB0nOPVFa4WDD-qgOSjKptDTAPBpio2zAcbUlL7S1rNnmv6RkSXhI3fogx2ye53BKm0b9VBV-_ldXLwU92YBqZ8u3WrtogTpIr_KE7P2b3O9HezUII9OlUjhA5EPrBNIeQ9WrZVi6XaO7RQX3w72k9ZNdjyhyiTL_kgI1QMdwjdP0u7ONWv38B1ZFWbg
  priority: 102
  providerName: ProQuest
Title Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic
URI https://www.ncbi.nlm.nih.gov/pubmed/33661890
https://www.proquest.com/docview/2513684133
https://www.proquest.com/docview/2498498540
https://hal.science/hal-02879512
https://pubmed.ncbi.nlm.nih.gov/PMC7963091
https://doaj.org/article/79488e2c3a1f44859a5614a3391b37c2
http://dx.doi.org/10.1371/journal.pcbi.1008776
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdNymAvZd_NmgVvDPbkYlu2JT-MkbTN0rFmo1tG3oQky0kgs9O4Get_vzvbMfFI2SA44Dtb0ukk_c463RHyNlZUaepFtms0s2HC0zbnMB5ZxGMeSK4dHw8nX43D0cT_NA2mB2Sbs7USYL7XtMN8UpP18vT3zd0HGPDvi6wNzN0-dLrSaoG7_pyxsEUOYW3yUM-v_HpfgQa8yNiFyXJsRv1pdZjuvrc0Fqsipn89c7fm6DjZXi2zfB84_dvHcmfRGj4iRxXatPqlejwmByZ9Qh6U-SfvnpJpf2bsMoLsZm1iK81SezXf_chtLXZ8InMLEK6VwSTzEyiVk7uVJdbZlx-X57YbWabMN6ufkcnw4vvZyK5SLdg6jIJbG8MK-poqsN5UTE3EHK3BEIsjn8kkNDLRjEsV-K6TKOUqZnhiVBgoTwNC83hCn5M21NEcEwuNuFA6UjoaXqmoDLkJY6V14KsocdwOoVuZCl3FIcd0GEtRbK4xsEdK4QjsCVH1RIfY9VOrMg7HP_gH2F01L0bRLm5k65moBqWAuYhz42kq3QTM1CCSGBdVUgpSoEx7HfIGO1tgnIwUHXFmcpPn4vLbWPQBuTFAS1jSPUzXDaZ3FVOSQWO1rA4_gMgw_laDs9vghNGum6XNsak7zRr1Pwu8B4Jn2Bu_aIcco15uBZMLALE05IBXgNTd6up-8uuajCWjB15qsg3w-BGHHwD8DnlRqnZdC0oB5fEIKKyh9I1qNinpYl7EMmewAABkffk_QjwhDz30KEIPQL9L2jA8zCuAhLeqR1psyuDKhx975LA_OB8M4X9wMf563Ss-s_SKeeAP_CNkIA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IgQviO8VBgQE4sksiZPYeUCobEwt64oEG-qbsR2nrTSSsqyg_VP8jdzliwYNeJrUp_jqj7vz-S45_46Q54lm2jA_pp41nILBM1QI2I88FokIlTBugJeTDyfR8Dh4Pw2nG-RncxcG0yobm1ga6iQ3-I58B85hFgkwuezN8hvFqlH4dbUpoVGpxYE9_wEhW_F6tAfyfeH7---Odoe0ripATRSHZxQR9ALDNAQqOmE25q4xEHMkccBVGlmVGi6UDgPPTbX2NLcitToKtW_AGfFFyqDfTXIlYG6AWP182gZ4LBRlPTAsxUM5C6b1VT3GvZ1aM14tjV5gZoLgiHKydhSWFQPac2FzjmmZveVJXlzk-v6Zwbl2JO7fJDdqX9YZVMp3i2zY7Da5WlW3PL9DpoOZpRU-7erUJk6WZ3Q5X3-F7izWMi4LB_xnJwcT9hVa6hR6J0-d3Q-fR3vUix1bVbM1d8nxpbD8HunBHO0WcTBEjJSrlGugS81UJGyUaGPCQMep6_UJa3gqTY1yjsU2TmT56Y5DtFMxR6IkZC2JPqHtv5YVysd_6N-iuFpaxOguH-SnM1lveQmWTgjrG6a8FILgMFaIuqoYAy4wbvw-eYbClojCkWGaz0ytikKOPk3kAPxCDr4YjvQXoo8dopc1UZrDYo2qr1YAyxDdq0O53aEEW2K6o81xqWvLGg7GEp8B4zlK4zvrky3Uy4Yxhfy9NaH7Rlcvbn7aNuPImN-X2XwFNEEs4AfhQ5_cr1S7nQVj4EOKGFp4R-k70-y2ZIt5iZTO4XgBh_jBv6f1hFwbHh2O5Xg0OXhIrvuYtYRZhsE26cEmsY_A7TzTj8u97pAvl21cfgHdCZR8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0NqKQLwgvlcYEBCIJ9MkTmLnAaGyUrVsFARs6puxHaetNJKyrqD9NX4dd_miQQOeJvUpd_XHffkuOd8R8jTRTBvmx9SzhlMweIYKAfrIY5GIUAnjBng5-d0kGh0Gb6fhdIv8rO_CYFplbRMLQ53kBt-R9-AcZpEAk8t6aZUW8WEwfLX8RrGDFH5prdtplCKyb89-QPi2ejkeAK-f-f7wzee9Ea06DFATxeEpxWp6gWEaghadMBtz1xiIP5I44CqNrEoNF0qHgeemWnuaW5FaHYXaN-CY-CJlMO42ucRZwDCdjE-bYI-FougNhm15KMCn1bU9xr1eJSUvlkYvMEtBcKx4snEsFt0DmjNie44pmp3lcb46zw3-M5tz43gcXifXKr_W6ZeCeINs2ewmuVx2ujy7Rab9maVlrdr1iU2cLM_ocr75Ot1ZbGRfrhzwpZ0czNlXgFTp9E6eOnvvj8YD6sWOLTvbmtvk8EJIfod0YI12hzgYLkbKVco1MKRmKhI2SrQxYaDj1PW6hNU0laaqeI6NN45l8RmPQ-RTEkciJ2TFiS6hzb-WZcWP_-C_RnY1uFivu3iQn8xkpf4SrJ4Q1jdMeSkExGGssAKrYgyowLjxu-QJMltiRY4MZXum1quVHH-ayD74iBz8MpzpL0gfW0jPK6Q0h80aVV2zAJJhpa8W5m4LE-yKac82x61ubGvUP5D4DAjPkRvfWZfsoFzWhFnJ32oKw9eyej74cQPGmTHXL7P5GnCCWMAPQokuuVuKdrMKxsCfFDFAeEvoW8tsQ7LFvKiazuGoAef43r-X9YhcAbMiD8aT_fvkqo8JTJhwGOySDuiIfQAe6Kl-WKi6Q75ctG35Bf34mLc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-structured+non-pharmaceutical+interventions+for+optimal+control+of+COVID-19+epidemic&rft.jtitle=PLoS+computational+biology&rft.au=Richard%2C+Quentin&rft.au=Alizon%2C+Samuel&rft.au=Choisy%2C+Marc&rft.au=Sofonea%2C+Mircea+T&rft.date=2021-03-04&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008776&rft.externalDBID=ISR&rft.externalDocID=A658715176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon