Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better un...
Saved in:
Published in | Respiratory research Vol. 13; no. 1; p. 92 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
12.10.2012
BioMed Central Ltd Nature Publishing Group BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1465-993X 1465-9921 1465-993X |
DOI | 10.1186/1465-9921-13-92 |
Cover
Abstract | Background
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells.
Nrf2
knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.
Methods
Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.
Results
An anti-correlated gene set (inversely regulated by
NRF2
and
KEAP1
RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as
NRF2
or
KEAP1
knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.
Conclusions
These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. |
---|---|
AbstractList | Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Keywords: Asthma, NRF2, KEAP1, Oxidative stress, Eotaxin regulation, Microarray profiling Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Abstract Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.BACKGROUNDOxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.METHODSNormal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.RESULTSAn anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.CONCLUSIONSThese data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Doc number: 92 Abstract Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. |
ArticleNumber | 92 |
Audience | Academic |
Author | Claveau, David Crackower, Michael A Fourtounis, Jimmy Peters, Mette A Therien, Alex G Boie, Yves Wang, I-Ming Loo, Tenneille Mathieu, Marie-Claude Jackson, Aimee L |
AuthorAffiliation | 1 Department of Respiratory and Immunology, Merck Research Laboratories, BMB10-128, 33 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA 2 Exploratory and Translational Sciences, Merck Research Laboratories, West Point, Pennsylvania, USA 3 Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey, USA |
AuthorAffiliation_xml | – name: 2 Exploratory and Translational Sciences, Merck Research Laboratories, West Point, Pennsylvania, USA – name: 1 Department of Respiratory and Immunology, Merck Research Laboratories, BMB10-128, 33 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA – name: 3 Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey, USA |
Author_xml | – sequence: 1 givenname: Jimmy surname: Fourtounis fullname: Fourtounis, Jimmy organization: Department of Respiratory and Immunology, Merck Research Laboratories – sequence: 2 givenname: I-Ming surname: Wang fullname: Wang, I-Ming organization: Exploratory and Translational Sciences, Merck Research Laboratories – sequence: 3 givenname: Marie-Claude surname: Mathieu fullname: Mathieu, Marie-Claude organization: Department of Respiratory and Immunology, Merck Research Laboratories – sequence: 4 givenname: David surname: Claveau fullname: Claveau, David organization: Department of Respiratory and Immunology, Merck Research Laboratories – sequence: 5 givenname: Tenneille surname: Loo fullname: Loo, Tenneille organization: Department of Respiratory and Immunology, Merck Research Laboratories – sequence: 6 givenname: Aimee L surname: Jackson fullname: Jackson, Aimee L organization: Exploratory and Translational Sciences, Merck Research Laboratories – sequence: 7 givenname: Mette A surname: Peters fullname: Peters, Mette A organization: Exploratory and Translational Sciences, Merck Research Laboratories – sequence: 8 givenname: Alex G surname: Therien fullname: Therien, Alex G organization: Infectious Diseases, Merck Research Laboratories – sequence: 9 givenname: Yves surname: Boie fullname: Boie, Yves organization: Department of Respiratory and Immunology, Merck Research Laboratories – sequence: 10 givenname: Michael A surname: Crackower fullname: Crackower, Michael A email: michael_crackower@merck.com organization: Department of Respiratory and Immunology, Merck Research Laboratories |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23061798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAYhSNURC-wZocssWGT1vckG6TRaFoqqoIqkNhZji-p24w92ElbXoTnxWFKmam4yAtbzndOfh-d_WLHB2-K4iWChwjV_AhRzsqmwahEpGzwk2Lv_oZ82dk47xb7KV1BiKq6Ys-KXUwgR1VT7xXfT4w3wNytoknJBQ9WMVjXO98BG_o-3E6n84tjDKTX4P1i9hGB5C7OZ-DaB3Wtw60HzoPLcSk96MdJ5toY2l6mIQGnjR-cdSaB-fwMoaNFGOSd8yUCMgEJfLgx_do-mm7s5WA06PJEz4unVvbJvLjfD4rPx4tP83fl2YeT0_nsrFS8oUNJuWGylpxYJqXBmHHEG6Z41SpGbNvSWmPEKWYVZdSaWhtqMYTM0Ea2WCpyUJyufXWQV2IV3VLGbyJIJ35ehNgJGQeneiNqWCnd6lplD8psK3VNNLQMtlYb2-Ls9XbttRrbpdEqPz3Kfst0-4t3l6ILN4IwymtKs8Gbe4MYvo4mDWLpkjJ9L70JYxKoYjWmEDH4fxRXhBOEMMvo60foVRijz6lmijccQUqq31Qn81udtyGPqCZTMWOEYtJUvMnU4R-ovLRZOpWrmatjtgWvNjN5CONXATNwtAZUDClFYx8QBMVUcTGVWEwVF4iIZoqZPVIoN8ghdzfP4vp_6OBal_IffGfiRg5_kfwAfkYMsA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0184299 crossref_primary_10_3390_ijms21124370 crossref_primary_10_1016_j_placenta_2014_11_004 crossref_primary_10_1080_02770903_2019_1571081 crossref_primary_10_1016_j_pupt_2014_04_004 crossref_primary_10_1155_2019_4654206 crossref_primary_10_1007_s00403_015_1554_2 crossref_primary_10_14356_kona_2017005 crossref_primary_10_1016_j_trsl_2016_12_002 crossref_primary_10_31083_RCM26020 crossref_primary_10_1016_j_biochi_2021_09_006 crossref_primary_10_18632_aging_103777 crossref_primary_10_2147_IJN_S268203 crossref_primary_10_1124_dmd_117_078741 crossref_primary_10_3109_15419061_2013_775257 crossref_primary_10_1016_j_jff_2017_11_044 crossref_primary_10_1016_j_heliyon_2017_e00277 crossref_primary_10_1038_s41380_023_02034_x crossref_primary_10_1111_cea_12212 crossref_primary_10_3390_nu16162783 crossref_primary_10_1016_j_addr_2014_05_018 crossref_primary_10_1073_pnas_1415111112 crossref_primary_10_3390_antiox10030416 crossref_primary_10_1080_08830185_2017_1363198 crossref_primary_10_1155_2018_7042105 crossref_primary_10_1155_2017_1284804 |
Cites_doi | 10.1038/sj.bjp.0706176 10.1146/annurev.pharmtox.43.100901.140229 10.1089/ars.2005.7.385 10.1002/jps.21311 10.1378/chest.08-0440 10.1021/tx8001934 10.1016/j.lfs.2006.06.019 10.1016/j.advenzreg.2006.01.007 10.1016/j.bcp.2006.07.004 10.1016/j.ejphar.2005.12.087 10.1055/s-2001-11532 10.1016/j.jaci.2003.07.005 10.1074/jbc.M109358200 10.1074/jbc.M211558200 10.1007/s11882-004-0054-9 10.1080/019021401750069401 10.1172/JCI200421146 10.1016/j.jaci.2011.04.047 10.1165/ajrcmb.25.3.4437 10.1152/ajplung.00310.2007 10.1128/MCB.01080-08 10.1164/rccm.200804-535OC 10.1378/chest.120.4.1136 10.1016/S0091-6749(98)70269-6 10.1046/j.1365-2222.2000.00753.x 10.1006/bbrc.1997.7169 10.1164/rccm.200803-380OC 10.1016/j.canlet.2005.11.050 10.1152/physiolgenomics.00126.2007 10.1038/ng1248 10.1016/j.toxlet.2006.10.012 10.1089/ars.2006.8.76 10.1165/ajrcmb.26.2.4501 10.1016/j.freeradbiomed.2004.10.013 10.1146/annurev.immunol.24.021605.090720 10.1152/ajplung.90215.2008 10.4049/jimmunol.1102760 10.1158/0008-5472.CAN-04-4539 10.4049/jimmunol.169.8.4613 10.1002/bjs.1800810913 10.1016/j.clim.2003.08.006 10.1152/ajpheart.00651.2005 10.1016/j.bbrc.2006.10.102 10.1093/toxsci/kfp298 10.1152/ajplung.00208.2006 10.1111/j.1365-2443.2005.00905.x 10.4049/jimmunol.166.7.4507 10.1016/j.yjmcc.2006.09.012 10.1074/jbc.M211898200 10.1128/MCB.26.1.221-229.2006 10.1016/j.phrs.2008.05.009 10.1016/j.jaci.2008.08.004 10.1016/j.rmed.2004.04.017 10.1021/jm0002230 10.1016/j.pharmthera.2005.10.015 10.1021/jf802601j 10.1016/j.cellsig.2010.05.017 10.3109/10715769409056561 10.1128/MCB.24.16.7130-7139.2004 10.1046/j.1365-2222.2000.00750.x 10.1089/ars.2005.7.1648 10.1038/nm0496-449 10.1016/j.bcp.2008.07.017 10.1038/sj.bjc.6604703 10.1016/S0165-2478(02)00183-9 10.1016/j.bmcl.2004.05.041 10.1091/mbc.E03-11-0799 10.1038/nbt831 10.1056/NEJMe048182 10.1006/clim.2000.4921 10.1378/chest.07-2245 10.1128/MCB.25.14.5933-5946.2005 10.1084/jem.20050538 10.1073/pnas.0804333106 10.1038/nmeth1005-779 10.4049/jimmunol.168.5.2560 10.1016/S0891-5849(96)00550-3 10.1164/rccm.200701-060OC 10.1046/j.1365-2443.2002.00561.x 10.1073/pnas.94.10.5361 10.1164/rccm.200607-931OC 10.1089/ars.2006.8.88 10.1016/j.intimp.2005.08.025 10.4049/jimmunol.163.12.6876 10.2174/138955706777934937 10.1165/rcmb.2007-0295OC 10.1093/toxsci/kfn079 |
ContentType | Journal Article |
Copyright | Fourtounis et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2012 BioMed Central Ltd. 2012 Fourtounis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Fourtounis et al.; licensee BioMed Central Ltd. 2012 Fourtounis et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Fourtounis et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Fourtounis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Fourtounis et al.; licensee BioMed Central Ltd. 2012 Fourtounis et al.; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7U7 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 8FD FR3 P64 RC3 5PM DOA |
DOI | 10.1186/1465-9921-13-92 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1465-993X |
EndPage | 92 |
ExternalDocumentID | oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2 PMC3546844 2866259641 A534239769 23061798 10_1186_1465_9921_13_92 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29P 2VQ 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR IPNFZ ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QL 7U7 7U9 7XB 8FK AZQEC C1K DWQXO H94 K9. M7N PKEHL PQEST PQUKI 7X8 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c694t-46e5a8a63f5aae22561695c67bc53fbb48d2164257454fe8de4f2005e49ab2ac3 |
IEDL.DBID | M48 |
ISSN | 1465-993X 1465-9921 |
IngestDate | Wed Aug 27 01:29:55 EDT 2025 Thu Aug 21 14:34:39 EDT 2025 Thu Sep 04 23:55:21 EDT 2025 Thu Sep 04 19:24:33 EDT 2025 Thu Sep 18 13:10:51 EDT 2025 Tue Jun 17 22:05:39 EDT 2025 Tue Jun 10 21:03:17 EDT 2025 Mon Jul 21 05:57:08 EDT 2025 Tue Jul 01 02:43:03 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Sat Sep 06 07:28:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Oxidative stress KEAP1 NRF2 Microarray profiling Eotaxin regulation Asthma |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c694t-46e5a8a63f5aae22561695c67bc53fbb48d2164257454fe8de4f2005e49ab2ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1465-9921-13-92 |
PMID | 23061798 |
PQID | 1269610437 |
PQPubID | 42864 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3546844 proquest_miscellaneous_1758240150 proquest_miscellaneous_1273631125 proquest_journals_1269610437 gale_infotracmisc_A534239769 gale_infotracacademiconefile_A534239769 pubmed_primary_23061798 crossref_primary_10_1186_1465_9921_13_92 crossref_citationtrail_10_1186_1465_9921_13_92 springer_journals_10_1186_1465_9921_13_92 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-12 |
PublicationDateYYYYMMDD | 2012-10-12 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Respiratory research |
PublicationTitleAbbrev | Respir Res |
PublicationTitleAlternate | Respir Res |
PublicationYear | 2012 |
Publisher | BioMed Central BioMed Central Ltd Nature Publishing Group BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Nature Publishing Group – name: BMC |
References | I Rahman (1290_CR2) 2006; 533 F Sabatini (1290_CR76) 2002; 84 JM Lee (1290_CR37) 2003; 278 LJ Smith (1290_CR5) 1997; 22 D Mandal (1290_CR88) 2010; 22 WW Wasserman (1290_CR80) 1997; 94 D Diaz-Sanchez (1290_CR11) 2000; 97 MJ Whitekus (1290_CR17) 2002; 168 A Kobayashi (1290_CR23) 2006; 26 H Hein (1290_CR84) 1997; 237 SE Purdom-Dickinson (1290_CR39) 2007; 42 S Matsukura (1290_CR85) 1999; 163 GJ Quinlan (1290_CR7) 1994; 21 M Hao (1290_CR12) 2003; 112 G Shen (1290_CR82) 2005; 7 AE Nel (1290_CR15) 1998; 102 RM Roumen (1290_CR8) 1994; 81 RK Thimmulappa (1290_CR47) 2002; 62 K Liby (1290_CR62) 2005; 65 AL Jackson (1290_CR55) 2003; 21 HY Cho (1290_CR1) 2006; 8 IM Adcock (1290_CR18) 2008; 134 ME Rothenberg (1290_CR56) 2006; 24 MA Huber (1290_CR59) 2002; 277 M Kobayashi (1290_CR21) 2006; 46 N Li (1290_CR14) 2003; 109 MK Kwak (1290_CR45) 2003; 278 SE Wenzel (1290_CR79) 2002; 169 S Nair (1290_CR60) 2008; 99 Z Ammous (1290_CR65) 2008; 133 EA Garcia-Zepeda (1290_CR73) 1996; 2 H Yang (1290_CR83) 2005; 25 HY Cho (1290_CR34) 2009; 179 S Al Muhsen (1290_CR49) 2011; 128 X Zhou (1290_CR51) 2012; 188 D Malhotra (1290_CR28) 2008; 178 R Hu (1290_CR44) 2006; 243 RK Thimmulappa (1290_CR68) 2006; 351 T Rangasamy (1290_CR32) 2004; 114 R Hu (1290_CR43) 2006; 79 W Li (1290_CR58) 2008; 76 H Abdala-Valencia (1290_CR9) 2007; 292 CA Thompson (1290_CR40) 2008; 21 M Kobayashi (1290_CR20) 2002; 7 T Iizuka (1290_CR31) 2005; 10 S Pierrou (1290_CR27) 2007; 175 I Rahman (1290_CR72) 2006; 72 J Ciencewicki (1290_CR10) 2008; 122 T Nguyen (1290_CR19) 2003; 43 T Murata (1290_CR52) 2004; 14 B Jayaprakasam (1290_CR69) 2009; 57 N Wakabayashi (1290_CR26) 2003; 35 HY Cho (1290_CR33) 2002; 26 HY Cho (1290_CR36) 2005; 38 L Zhu (1290_CR41) 2008; 294 EM Minshall (1290_CR74) 2000; 30 A Richter (1290_CR75) 2001; 25 N Terada (1290_CR78) 2000; 30 A Emelyanov (1290_CR4) 2001; 120 J Hoeck (1290_CR86) 2001; 166 M Kobayashi (1290_CR25) 2009; 29 TL Adair-Kirk (1290_CR29) 2008; 39 JI Murray (1290_CR63) 2004; 15 A Kobayashi (1290_CR22) 2004; 24 WB Gerritsen (1290_CR6) 2005; 99 S Matsui (1290_CR87) 2006; 6 N Li (1290_CR57) 2006; 8 NH Nam (1290_CR71) 2006; 6 NM Reddy (1290_CR46) 2007; 32 A Barve (1290_CR42) 2008; 97 WO Osburn (1290_CR67) 2008; 104 TE Sussan (1290_CR35) 2009; 106 K Ziegelbauer (1290_CR61) 2005; 145 P Kirkham (1290_CR13) 2006; 111 S Nair (1290_CR38) 2007; 168 CA Pope III (1290_CR3) 2004; 351 G Pickett (1290_CR64) 2010; 114 PR Johnson (1290_CR50) 2004; 4 T Rangasamy (1290_CR30) 2005; 202 XL Chen (1290_CR66) 2006; 290 M Kobayashi (1290_CR24) 2005; 7 T Honda (1290_CR53) 2000; 43 T Nakajima (1290_CR70) 2001; 67 E Sato (1290_CR77) 2001; 27 S Papaiahgari (1290_CR16) 2007; 176 ES Kang (1290_CR81) 2008; 58 CJ Baglole (1290_CR48) 2008; 295 R Kittler (1290_CR54) 2005; 2 10586089 - J Immunol. 1999 Dec 15;163(12):6876-83 14697739 - Clin Immunol. 2003 Dec;109(3):250-65 14769258 - Curr Allergy Asthma Rep. 2004 Mar;4(2):102-8 9299399 - Biochem Biophys Res Commun. 1997 Aug 28;237(3):537-42 19001094 - Mol Cell Biol. 2009 Jan;29(2):493-502 15706085 - Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):385-94 16356127 - Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1648-63 20015843 - Toxicol Sci. 2010 Mar;114(1):79-89 17901416 - Am J Respir Crit Care Med. 2007 Dec 15;176(12):1222-35 12370400 - J Immunol. 2002 Oct 15;169(8):4613-9 10691892 - Clin Exp Allergy. 2000 Mar;30(3):348-55 16516379 - Cancer Lett. 2006 Nov 18;243(2):170-92 11588018 - Am J Respir Cell Mol Biol. 2001 Sep;25(3):385-91 15753951 - Br J Pharmacol. 2005 May;145(2):178-92 7921168 - Free Radic Res. 1994 Aug;21(2):95-106 16487040 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):76-87 18339782 - Chest. 2008 Jun;133(6):1344-53 18236473 - J Pharm Sci. 2008 Oct;97(10):4528-45 11804867 - Am J Respir Cell Mol Biol. 2002 Feb;26(2):175-82 16354693 - Mol Cell Biol. 2006 Jan;26(1):221-9 17895394 - Physiol Genomics. 2007 Dec 19;32(1):74-81 18556627 - Am J Respir Crit Care Med. 2008 Sep 15;178(6):592-604 14517554 - Nat Genet. 2003 Nov;35(3):238-45 15520857 - J Clin Invest. 2004 Nov;114(9):1248-59 11591550 - Chest. 2001 Oct;120(4):1136-9 9098106 - Free Radic Biol Med. 1997;22(7):1301-7 18774381 - J Allergy Clin Immunol. 2008 Sep;122(3):456-68; quiz 469-70 16920072 - Biochem Pharmacol. 2006 Nov 30;72(11):1439-52 10691884 - Clin Exp Allergy. 2000 Mar;30(3):301-3 21636119 - J Allergy Clin Immunol. 2011 Sep;128(3):451-62; quiz 463-4 11027454 - Clin Immunol. 2000 Nov;97(2):140-5 15282312 - Mol Cell Biol. 2004 Aug;24(16):7130-9 18417483 - Toxicol Sci. 2008 Jul;104(1):218-27 15672854 - Respir Med. 2005 Jan;99(1):84-90 16500642 - Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39 19548348 - Chem Res Toxicol. 2008 Dec;21(12):2245-56 19132888 - J Agric Food Chem. 2009 Feb 11;57(3):820-5 18588981 - Pharmacol Res. 2008 Jul;58(1):15-21 7953392 - Br J Surg. 1994 Sep;81(9):1300-5 11063620 - J Med Chem. 2000 Nov 2;43(22):4233-46 11301858 - Planta Med. 2001 Mar;67(2):132-5 17097057 - Biochem Biophys Res Commun. 2006 Dec 29;351(4):883-9 19104057 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5 11694538 - J Biol Chem. 2002 Jan 11;277(2):1268-75 12359864 - Annu Rev Pharmacol Toxicol. 2003;43:233-60 16887173 - Adv Enzyme Regul. 2006;46:113-40 15225718 - Bioorg Med Chem Lett. 2004 Aug 2;14(15):4019-22 20570727 - Cell Signal. 2010 Oct;22(10):1485-94 15988009 - Mol Cell Biol. 2005 Jul;25(14):5933-46 8597956 - Nat Med. 1996 Apr;2(4):449-56 12234984 - Cancer Res. 2002 Sep 15;62(18):5196-203 18694732 - Biochem Pharmacol. 2008 Dec 1;76(11):1485-9 17127020 - Toxicol Lett. 2007 Jan 10;168(1):21-39 15629862 - Free Radic Biol Med. 2005 Feb 1;38(3):325-43 9802360 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):539-54 16339837 - Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1862-70 22573806 - J Immunol. 2012 Jun 15;188(12):6046-54 16918500 - Mini Rev Med Chem. 2006 Aug;6(8):945-51 16324149 - Genes Cells. 2005 Dec;10(12):1113-25 19050705 - Br J Cancer. 2008 Dec 16;99(12):2070-82 16551246 - Annu Rev Immunol. 2006;24:147-74 15356311 - N Engl J Med. 2004 Sep 9;351(11):1132-4 16458359 - Pharmacol Ther. 2006 Aug;111(2):476-94 11859152 - J Immunol. 2002 Mar 1;168(5):2560-7 18156441 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L469-77 11258804 - Exp Lung Res. 2001 Mar;27(2):173-83 15004229 - Mol Biol Cell. 2004 May;15(5):2361-74 16487041 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):88-98 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14 17158281 - Am J Respir Crit Care Med. 2007 Mar 15;175(6):577-86 9144242 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361-6 12506115 - J Biol Chem. 2003 Mar 7;278(10):8135-45 11254707 - J Immunol. 2001 Apr 1;166(7):4507-15 15998787 - J Exp Med. 2005 Jul 4;202(1):47-59 16428072 - Int Immunopharmacol. 2006 Mar;6(3):369-75 18441282 - Am J Respir Cell Mol Biol. 2008 Oct;39(4):400-11 18682458 - Chest. 2008 Aug;134(2):394-401 15930299 - Cancer Res. 2005 Jun 1;65(11):4789-98 16828809 - Life Sci. 2006 Oct 12;79(20):1944-55 12556532 - J Biol Chem. 2003 Apr 4;278(14):12029-38 12167159 - Genes Cells. 2002 Aug;7(8):807-20 12413733 - Immunol Lett. 2002 Dec 3;84(3):173-8 17293377 - Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1111-25 18931336 - Am J Respir Crit Care Med. 2009 Jan 15;179(2):138-50 17081560 - J Mol Cell Cardiol. 2007 Jan;42(1):159-76 12754523 - Nat Biotechnol. 2003 Jun;21(6):635-7 18689604 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L624-36 16179925 - Nat Methods. 2005 Oct;2(10):779-84 |
References_xml | – volume: 145 start-page: 178 year: 2005 ident: 1290_CR61 publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0706176 – volume: 43 start-page: 233 year: 2003 ident: 1290_CR19 publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev.pharmtox.43.100901.140229 – volume: 7 start-page: 385 year: 2005 ident: 1290_CR24 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2005.7.385 – volume: 97 start-page: 4528 year: 2008 ident: 1290_CR42 publication-title: J Pharm Sci doi: 10.1002/jps.21311 – volume: 134 start-page: 394 year: 2008 ident: 1290_CR18 publication-title: Chest doi: 10.1378/chest.08-0440 – volume: 21 start-page: 2245 year: 2008 ident: 1290_CR40 publication-title: Chem Res Toxicol doi: 10.1021/tx8001934 – volume: 79 start-page: 1944 year: 2006 ident: 1290_CR43 publication-title: Life Sci doi: 10.1016/j.lfs.2006.06.019 – volume: 46 start-page: 113 year: 2006 ident: 1290_CR21 publication-title: Adv Enzyme Regul doi: 10.1016/j.advenzreg.2006.01.007 – volume: 72 start-page: 1439 year: 2006 ident: 1290_CR72 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2006.07.004 – volume: 533 start-page: 222 year: 2006 ident: 1290_CR2 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2005.12.087 – volume: 67 start-page: 132 year: 2001 ident: 1290_CR70 publication-title: Planta Med doi: 10.1055/s-2001-11532 – volume: 112 start-page: 905 year: 2003 ident: 1290_CR12 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2003.07.005 – volume: 62 start-page: 5196 year: 2002 ident: 1290_CR47 publication-title: Cancer Res – volume: 277 start-page: 1268 year: 2002 ident: 1290_CR59 publication-title: J Biol Chem doi: 10.1074/jbc.M109358200 – volume: 278 start-page: 12029 year: 2003 ident: 1290_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M211558200 – volume: 4 start-page: 102 year: 2004 ident: 1290_CR50 publication-title: Curr Allergy Asthma Rep doi: 10.1007/s11882-004-0054-9 – volume: 27 start-page: 173 year: 2001 ident: 1290_CR77 publication-title: Exp Lung Res doi: 10.1080/019021401750069401 – volume: 114 start-page: 1248 year: 2004 ident: 1290_CR32 publication-title: J Clin Invest doi: 10.1172/JCI200421146 – volume: 128 start-page: 451 year: 2011 ident: 1290_CR49 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2011.04.047 – volume: 25 start-page: 385 year: 2001 ident: 1290_CR75 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/ajrcmb.25.3.4437 – volume: 294 start-page: L469 year: 2008 ident: 1290_CR41 publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00310.2007 – volume: 29 start-page: 493 year: 2009 ident: 1290_CR25 publication-title: Mol Cell Biol doi: 10.1128/MCB.01080-08 – volume: 179 start-page: 138 year: 2009 ident: 1290_CR34 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200804-535OC – volume: 120 start-page: 1136 year: 2001 ident: 1290_CR4 publication-title: Chest doi: 10.1378/chest.120.4.1136 – volume: 102 start-page: 539 year: 1998 ident: 1290_CR15 publication-title: J Allergy Clin Immunol doi: 10.1016/S0091-6749(98)70269-6 – volume: 30 start-page: 301 year: 2000 ident: 1290_CR74 publication-title: Clin Exp Allergy doi: 10.1046/j.1365-2222.2000.00753.x – volume: 237 start-page: 537 year: 1997 ident: 1290_CR84 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1997.7169 – volume: 178 start-page: 592 year: 2008 ident: 1290_CR28 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200803-380OC – volume: 243 start-page: 170 year: 2006 ident: 1290_CR44 publication-title: Cancer Lett doi: 10.1016/j.canlet.2005.11.050 – volume: 32 start-page: 74 year: 2007 ident: 1290_CR46 publication-title: Physiol Genomics doi: 10.1152/physiolgenomics.00126.2007 – volume: 35 start-page: 238 year: 2003 ident: 1290_CR26 publication-title: Nat Genet doi: 10.1038/ng1248 – volume: 168 start-page: 21 year: 2007 ident: 1290_CR38 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2006.10.012 – volume: 8 start-page: 76 year: 2006 ident: 1290_CR1 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2006.8.76 – volume: 26 start-page: 175 year: 2002 ident: 1290_CR33 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/ajrcmb.26.2.4501 – volume: 38 start-page: 325 year: 2005 ident: 1290_CR36 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2004.10.013 – volume: 24 start-page: 147 year: 2006 ident: 1290_CR56 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.24.021605.090720 – volume: 295 start-page: L624 year: 2008 ident: 1290_CR48 publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.90215.2008 – volume: 188 start-page: 6046 year: 2012 ident: 1290_CR51 publication-title: J Immunol doi: 10.4049/jimmunol.1102760 – volume: 65 start-page: 4789 year: 2005 ident: 1290_CR62 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4539 – volume: 169 start-page: 4613 year: 2002 ident: 1290_CR79 publication-title: J Immunol doi: 10.4049/jimmunol.169.8.4613 – volume: 81 start-page: 1300 year: 1994 ident: 1290_CR8 publication-title: Br J Surg doi: 10.1002/bjs.1800810913 – volume: 109 start-page: 250 year: 2003 ident: 1290_CR14 publication-title: Clin Immunol doi: 10.1016/j.clim.2003.08.006 – volume: 290 start-page: H1862 year: 2006 ident: 1290_CR66 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00651.2005 – volume: 351 start-page: 883 year: 2006 ident: 1290_CR68 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.10.102 – volume: 114 start-page: 79 year: 2010 ident: 1290_CR64 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfp298 – volume: 292 start-page: L1111 year: 2007 ident: 1290_CR9 publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00208.2006 – volume: 10 start-page: 1113 year: 2005 ident: 1290_CR31 publication-title: Genes Cells doi: 10.1111/j.1365-2443.2005.00905.x – volume: 166 start-page: 4507 year: 2001 ident: 1290_CR86 publication-title: J Immunol doi: 10.4049/jimmunol.166.7.4507 – volume: 42 start-page: 159 year: 2007 ident: 1290_CR39 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2006.09.012 – volume: 278 start-page: 8135 year: 2003 ident: 1290_CR45 publication-title: J Biol Chem doi: 10.1074/jbc.M211898200 – volume: 26 start-page: 221 year: 2006 ident: 1290_CR23 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.1.221-229.2006 – volume: 58 start-page: 15 year: 2008 ident: 1290_CR81 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2008.05.009 – volume: 122 start-page: 456 year: 2008 ident: 1290_CR10 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2008.08.004 – volume: 99 start-page: 84 year: 2005 ident: 1290_CR6 publication-title: Respir Med doi: 10.1016/j.rmed.2004.04.017 – volume: 43 start-page: 4233 year: 2000 ident: 1290_CR53 publication-title: J Med Chem doi: 10.1021/jm0002230 – volume: 111 start-page: 476 year: 2006 ident: 1290_CR13 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2005.10.015 – volume: 57 start-page: 820 year: 2009 ident: 1290_CR69 publication-title: J Agric Food Chem doi: 10.1021/jf802601j – volume: 22 start-page: 1485 year: 2010 ident: 1290_CR88 publication-title: Cell Signal doi: 10.1016/j.cellsig.2010.05.017 – volume: 21 start-page: 95 year: 1994 ident: 1290_CR7 publication-title: Free Radic Res doi: 10.3109/10715769409056561 – volume: 24 start-page: 7130 year: 2004 ident: 1290_CR22 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.16.7130-7139.2004 – volume: 30 start-page: 348 year: 2000 ident: 1290_CR78 publication-title: Clin Exp Allergy doi: 10.1046/j.1365-2222.2000.00750.x – volume: 7 start-page: 1648 year: 2005 ident: 1290_CR82 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2005.7.1648 – volume: 2 start-page: 449 year: 1996 ident: 1290_CR73 publication-title: Nat Med doi: 10.1038/nm0496-449 – volume: 76 start-page: 1485 year: 2008 ident: 1290_CR58 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2008.07.017 – volume: 99 start-page: 2070 year: 2008 ident: 1290_CR60 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604703 – volume: 84 start-page: 173 year: 2002 ident: 1290_CR76 publication-title: Immunol Lett doi: 10.1016/S0165-2478(02)00183-9 – volume: 14 start-page: 4019 year: 2004 ident: 1290_CR52 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2004.05.041 – volume: 15 start-page: 2361 year: 2004 ident: 1290_CR63 publication-title: Mol Biol Cell doi: 10.1091/mbc.E03-11-0799 – volume: 21 start-page: 635 year: 2003 ident: 1290_CR55 publication-title: Nat Biotechnol doi: 10.1038/nbt831 – volume: 351 start-page: 1132 year: 2004 ident: 1290_CR3 publication-title: N Engl J Med doi: 10.1056/NEJMe048182 – volume: 97 start-page: 140 year: 2000 ident: 1290_CR11 publication-title: Clin Immunol doi: 10.1006/clim.2000.4921 – volume: 133 start-page: 1344 year: 2008 ident: 1290_CR65 publication-title: Chest doi: 10.1378/chest.07-2245 – volume: 25 start-page: 5933 year: 2005 ident: 1290_CR83 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.14.5933-5946.2005 – volume: 202 start-page: 47 year: 2005 ident: 1290_CR30 publication-title: J Exp Med doi: 10.1084/jem.20050538 – volume: 106 start-page: 250 year: 2009 ident: 1290_CR35 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804333106 – volume: 2 start-page: 779 year: 2005 ident: 1290_CR54 publication-title: Nat Methods doi: 10.1038/nmeth1005-779 – volume: 168 start-page: 2560 year: 2002 ident: 1290_CR17 publication-title: J Immunol doi: 10.4049/jimmunol.168.5.2560 – volume: 22 start-page: 1301 year: 1997 ident: 1290_CR5 publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(96)00550-3 – volume: 176 start-page: 1222 year: 2007 ident: 1290_CR16 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200701-060OC – volume: 7 start-page: 807 year: 2002 ident: 1290_CR20 publication-title: Genes Cells doi: 10.1046/j.1365-2443.2002.00561.x – volume: 94 start-page: 5361 year: 1997 ident: 1290_CR80 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.10.5361 – volume: 175 start-page: 577 year: 2007 ident: 1290_CR27 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200607-931OC – volume: 8 start-page: 88 year: 2006 ident: 1290_CR57 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2006.8.88 – volume: 6 start-page: 369 year: 2006 ident: 1290_CR87 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2005.08.025 – volume: 163 start-page: 6876 year: 1999 ident: 1290_CR85 publication-title: J Immunol doi: 10.4049/jimmunol.163.12.6876 – volume: 6 start-page: 945 year: 2006 ident: 1290_CR71 publication-title: Mini Rev Med Chem doi: 10.2174/138955706777934937 – volume: 39 start-page: 400 year: 2008 ident: 1290_CR29 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2007-0295OC – volume: 104 start-page: 218 year: 2008 ident: 1290_CR67 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn079 – reference: 16354693 - Mol Cell Biol. 2006 Jan;26(1):221-9 – reference: 18682458 - Chest. 2008 Aug;134(2):394-401 – reference: 15998787 - J Exp Med. 2005 Jul 4;202(1):47-59 – reference: 19548348 - Chem Res Toxicol. 2008 Dec;21(12):2245-56 – reference: 16487040 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):76-87 – reference: 8597956 - Nat Med. 1996 Apr;2(4):449-56 – reference: 15672854 - Respir Med. 2005 Jan;99(1):84-90 – reference: 18694732 - Biochem Pharmacol. 2008 Dec 1;76(11):1485-9 – reference: 11254707 - J Immunol. 2001 Apr 1;166(7):4507-15 – reference: 11258804 - Exp Lung Res. 2001 Mar;27(2):173-83 – reference: 15004229 - Mol Biol Cell. 2004 May;15(5):2361-74 – reference: 18931336 - Am J Respir Crit Care Med. 2009 Jan 15;179(2):138-50 – reference: 15753951 - Br J Pharmacol. 2005 May;145(2):178-92 – reference: 14697739 - Clin Immunol. 2003 Dec;109(3):250-65 – reference: 18156441 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L469-77 – reference: 17097057 - Biochem Biophys Res Commun. 2006 Dec 29;351(4):883-9 – reference: 11301858 - Planta Med. 2001 Mar;67(2):132-5 – reference: 20570727 - Cell Signal. 2010 Oct;22(10):1485-94 – reference: 18689604 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L624-36 – reference: 18556627 - Am J Respir Crit Care Med. 2008 Sep 15;178(6):592-604 – reference: 17895394 - Physiol Genomics. 2007 Dec 19;32(1):74-81 – reference: 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14 – reference: 15520857 - J Clin Invest. 2004 Nov;114(9):1248-59 – reference: 12754523 - Nat Biotechnol. 2003 Jun;21(6):635-7 – reference: 11591550 - Chest. 2001 Oct;120(4):1136-9 – reference: 16324149 - Genes Cells. 2005 Dec;10(12):1113-25 – reference: 16500642 - Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39 – reference: 11694538 - J Biol Chem. 2002 Jan 11;277(2):1268-75 – reference: 16828809 - Life Sci. 2006 Oct 12;79(20):1944-55 – reference: 9802360 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):539-54 – reference: 19104057 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5 – reference: 18417483 - Toxicol Sci. 2008 Jul;104(1):218-27 – reference: 16356127 - Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1648-63 – reference: 12506115 - J Biol Chem. 2003 Mar 7;278(10):8135-45 – reference: 11027454 - Clin Immunol. 2000 Nov;97(2):140-5 – reference: 15629862 - Free Radic Biol Med. 2005 Feb 1;38(3):325-43 – reference: 12167159 - Genes Cells. 2002 Aug;7(8):807-20 – reference: 18339782 - Chest. 2008 Jun;133(6):1344-53 – reference: 17081560 - J Mol Cell Cardiol. 2007 Jan;42(1):159-76 – reference: 16920072 - Biochem Pharmacol. 2006 Nov 30;72(11):1439-52 – reference: 9098106 - Free Radic Biol Med. 1997;22(7):1301-7 – reference: 9299399 - Biochem Biophys Res Commun. 1997 Aug 28;237(3):537-42 – reference: 15282312 - Mol Cell Biol. 2004 Aug;24(16):7130-9 – reference: 15988009 - Mol Cell Biol. 2005 Jul;25(14):5933-46 – reference: 19001094 - Mol Cell Biol. 2009 Jan;29(2):493-502 – reference: 17158281 - Am J Respir Crit Care Med. 2007 Mar 15;175(6):577-86 – reference: 9144242 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361-6 – reference: 16551246 - Annu Rev Immunol. 2006;24:147-74 – reference: 16918500 - Mini Rev Med Chem. 2006 Aug;6(8):945-51 – reference: 12556532 - J Biol Chem. 2003 Apr 4;278(14):12029-38 – reference: 18774381 - J Allergy Clin Immunol. 2008 Sep;122(3):456-68; quiz 469-70 – reference: 16458359 - Pharmacol Ther. 2006 Aug;111(2):476-94 – reference: 10691884 - Clin Exp Allergy. 2000 Mar;30(3):301-3 – reference: 20015843 - Toxicol Sci. 2010 Mar;114(1):79-89 – reference: 12370400 - J Immunol. 2002 Oct 15;169(8):4613-9 – reference: 18588981 - Pharmacol Res. 2008 Jul;58(1):15-21 – reference: 7953392 - Br J Surg. 1994 Sep;81(9):1300-5 – reference: 14517554 - Nat Genet. 2003 Nov;35(3):238-45 – reference: 18441282 - Am J Respir Cell Mol Biol. 2008 Oct;39(4):400-11 – reference: 12359864 - Annu Rev Pharmacol Toxicol. 2003;43:233-60 – reference: 15225718 - Bioorg Med Chem Lett. 2004 Aug 2;14(15):4019-22 – reference: 16887173 - Adv Enzyme Regul. 2006;46:113-40 – reference: 12413733 - Immunol Lett. 2002 Dec 3;84(3):173-8 – reference: 7921168 - Free Radic Res. 1994 Aug;21(2):95-106 – reference: 12234984 - Cancer Res. 2002 Sep 15;62(18):5196-203 – reference: 18236473 - J Pharm Sci. 2008 Oct;97(10):4528-45 – reference: 10691892 - Clin Exp Allergy. 2000 Mar;30(3):348-55 – reference: 11859152 - J Immunol. 2002 Mar 1;168(5):2560-7 – reference: 16487041 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):88-98 – reference: 16179925 - Nat Methods. 2005 Oct;2(10):779-84 – reference: 15930299 - Cancer Res. 2005 Jun 1;65(11):4789-98 – reference: 16428072 - Int Immunopharmacol. 2006 Mar;6(3):369-75 – reference: 15356311 - N Engl J Med. 2004 Sep 9;351(11):1132-4 – reference: 14769258 - Curr Allergy Asthma Rep. 2004 Mar;4(2):102-8 – reference: 11063620 - J Med Chem. 2000 Nov 2;43(22):4233-46 – reference: 16339837 - Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1862-70 – reference: 16516379 - Cancer Lett. 2006 Nov 18;243(2):170-92 – reference: 15706085 - Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):385-94 – reference: 17901416 - Am J Respir Crit Care Med. 2007 Dec 15;176(12):1222-35 – reference: 21636119 - J Allergy Clin Immunol. 2011 Sep;128(3):451-62; quiz 463-4 – reference: 19132888 - J Agric Food Chem. 2009 Feb 11;57(3):820-5 – reference: 17293377 - Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1111-25 – reference: 19050705 - Br J Cancer. 2008 Dec 16;99(12):2070-82 – reference: 17127020 - Toxicol Lett. 2007 Jan 10;168(1):21-39 – reference: 11588018 - Am J Respir Cell Mol Biol. 2001 Sep;25(3):385-91 – reference: 22573806 - J Immunol. 2012 Jun 15;188(12):6046-54 – reference: 10586089 - J Immunol. 1999 Dec 15;163(12):6876-83 – reference: 11804867 - Am J Respir Cell Mol Biol. 2002 Feb;26(2):175-82 |
SSID | ssj0017875 |
Score | 2.1755142 |
Snippet | Background
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant... Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in... Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant... Doc number: 92 Abstract Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator... Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant... Abstract Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 92 |
SubjectTerms | Animals Asthma Binding sites Biosynthesis Cells, Cultured Chemokine CCL11 - metabolism Chronic obstructive pulmonary disease Development and progression Disease DNA microarrays Eotaxin regulation Fibroblasts - metabolism Gene expression Gene Expression Profiling Gene Expression Regulation - physiology Gene Knockdown Techniques Genes Heme Homeostasis Humans Intracellular Signaling Peptides and Proteins - metabolism KEAP1 Kelch-Like ECH-Associated Protein 1 Kinases Lungs Medicine Medicine & Public Health Mice Microarray profiling NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism NRF2 Outdoor air quality Oxidative stress Oxidizing agents Physiological aspects Pneumology/Respiratory System Respiratory diseases RNA, Small Interfering - genetics Rodents Studies Xenobiotics |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXxJvAgoyEBBxCk_gR-1iqVitgK7Ripb1ZfopqKwdt2939JfxexklaNcvrQk5RbEex5_N4Jh5_g9Br5zRcskq8rTqnjtNc2kLkwdXGWhOoKdMB5-M5PzqlH8_Y2V6qrxQT1tEDdwM3EkVtnXHCehooC0Y7QVwRWGGC88G02reQxdaZ6vcPAIasO1fEcimrsif1KQUf7Z7lJcllNViPWtr-X5Xz3up0M3LyxvZpuyrN7qG7vTmJx1037qNbPj5At4_7DfOH6Eeilcb-ug93jbjL0Q3vwgEQ0Fylu_nJrMI6OvxpOv5S4tXiZD7G5xE0pQMfHS8ibjP54eUmNQP_ujFgc69XeOG6WCO_wpPJ57IcTZu1vl7EvMR6hTWOzaVfdq-_6HLee4cBsf4ROp1Nv06O8j4VQ265pOuccs-00JwEprUHHcBLLpnlIFBGgjFUuAocL5j_lNHghQNppf9VnkptKm3JY3QQm-ifIuwkeCku1CaAZUHAwtCVsBz0DCGEc2My9H4rEGV7nvKULmOpWn9F8OStMJUkqEqiZJWht7sG3zuKjj9X_ZAkvKuWuLXbB4A41SNO_QtxGXqT8KGSBoAPs7o_yADdS1xaasxaVsWaywwdDmrCzLXD4i3CVK85VqqsuASTlpI6Q692xallioaLvtmkOjXhBCxl9pc64AiCtQb2foaedKDddTu5nYmoLkP1AM6DcRmWxMW3lnucMMoFpRl6twX-3qf_ftCf_Y9Bf47ugKla5W0s0SE6WF9s_AswB9fmZTvzfwIey1u- priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgSIgXxJ3AQEZCAh7M6viS5AmVqtUErEITk_oW-ToqqmQ0LeyX8Hs5TtywDFifqvjYiuPPx-fYx99B6KW1Cn5FGnhbFeFWclKYUU68zbQx2nNNwwXno7k8POEfFmIRN9yaGFa504mtora1CXvkBzSVBSz1nGXvzr6TkDUqnK7GFBrX0Q0KlkhI3ZAteoeLAhhFd7tIkKJIaaT2obk86J8RykiRDlallrz_bxV9YY26HD956RC1XZtmd9DtaFTicYeCu-iaq-6hm0fx2Pw--hXIpbE7j0GvFe4ydUNb2AMO6p_h3_x4lmJVWfxxOv5McbM8no_xtwr0pQVPHS8r3Obzw6ttqAZedq3B8t40eGm7iCPX4MnkE6UH03qjzpcVoVg1WOGq_uFWXfPrLvO9sxhw6x6gk9n0y-SQxIQMxMiCbwiXTqhcSeaFUg40gaSyEEbCsArmtea5TcH9Ai3ABfcut477sGvleKF0qgx7iPaqunKPEbYwWtL6THuwLxjYGSrNjQRtwxiTUusEvd0NSGkiW3lImrEqW68ll8FnEWUYwZKyskgT9LqvcNYRdfxf9H0Y4V4sMGy3D-r1aRknbJmPMmO1zQ30gQuvlc2ZHXkx0t46r6GRVwEfZdAD8GJGxesM0L3AqFWORcutmMkiQfsDSZi_Zli8Q1gZ9UdT_kF7gl70xaFmiImrXL0NMhmTDOxlcYUMuINgs4HVn6BHHWj7bgfnM9DVJSgbwHnwXYYl1fJry0DOBJc55wl6swP-hVf_90d_cnU3n6JbYIqmpI0V2kd7m_XWPQNzb6Oft3P6N7WbUHw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFA6ygvgi3h1dJYKgPsRtJpdJHmtpWdQtsriwb0OuWCwZ2ba6v8Tf68nMtHTWVbBPpTkJkzmXfKc5-YLQK-8NfHSZeVsN4V5yot1Ikegr65yN3NJ8wPlkLo_P-Idzcd6TJOWzMPv791TJI3BkQbQuKaGMaIi1NwVE3WzKEznZbReA1Ymet-eaToMlp2Xm_zP-7i1AV4sjr-yQtgvP7C660yNGPO5UfA_dCOk-unXS74k_QL8yczQOl31Fa8LdNdwwFo6g5OZn_jY_nZXYJI8_TsefKV4tTudj_C1BMPSQhuNFwu1lfXi5yd0ghW4swOr1Ci98V04UVngy-UTp0bRZm8tFIhSbFTY4NT_Cshv-orvWPngMRhkeorPZ9MvkmPS3LRAnNV8TLoMwykgWhTEB3FxSqYWToDPBorVc-RJyK3BxLngMygce819SgWtjS-PYI3SQmhSeIOw1qMjHykYADwxAhCmVkxBKGGNSWlugd1uF1K6nIs83YizrNiVRMickos4arCmrdVmgN7sO3zsWjr-Lvs8a3oll-uz2B7CquvfGWo0q561XDubARbTGK-ZHUYxs9CFaGOR1to86Ozk8mDP9WQWYXqbLqseiJU6spC7Q4UASnNMNm7cWVvfBYVXTUmpArZxVBXq5a849c8FbCs0my1RMMgDD4h8ykOsBIANIX6DHndHupp0zy8xFV6BqYM6D9zJsSYuvLb04E1wqzgv0dmv4e49-_Ut_-h-yz9BtAJ0laauCDtHB-mITngOwW9sXrVP_BsTZReA priority: 102 providerName: Springer Nature |
Title | Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene |
URI | https://link.springer.com/article/10.1186/1465-9921-13-92 https://www.ncbi.nlm.nih.gov/pubmed/23061798 https://www.proquest.com/docview/1269610437 https://www.proquest.com/docview/1273631125 https://www.proquest.com/docview/1758240150 https://pubmed.ncbi.nlm.nih.gov/PMC3546844 https://doaj.org/article/807cdbd8ce4f45fbad83d0f50bfdefb2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgkxAviG8CozISEvCQrYk_kjwglFWtpsKqqVCpb5E_R0WVQD-g_CP8vZydtFvG4Im8JIrPVmzfne_i8-8Qeqm1gCuLHW6rCKnmNMxUNw2tTqRS0lIZuQPOpyN-MqHDKZtepANqBnB5rWvn8klNFvPDzbef70Dg33qBT_kRCDsLsyyOwoiEGejjfb9Z5OL46MWWAnAmq48a1cQNzs81DbSWKI_k_6e-vrRgXQ2mvLKj6heqwV10p7EwcV6zxD10w5T30a3TZg_9AfrlkKax2TQRsCWu03ZDW9gCU1Q_3NNoPIixKDV-38_PIrycjUc5_lKC8tTgtuNZiX1yPzxfu2rgclcSzPDVEs90HX5klrjX-xBFR_1qJTazMoywWGKBy-q7mdfNL8y5yx1mNAYmNg_RZND_1DsJm-wMoeIZXYWUGyZSwYllQhhQCzziGVMc5pgRKyVNdQy-GKgEyqg1qTbUul9YhmZCxkKRR2ivrErzBGGdgeOibSItGBsEjA4Rp4qD6iGEcC5lgA63E1KoBrrcZdCYF96FSblzYFjhZrCISJHFAXq9q_C1Ru34O-mxm-EdmYPb9i-qxXnRSG-RdhOlpU4V9IEyK4VOie5a1pVWGyuhkVeOPwrHpvBhSjRnG6B7Dl6ryJkHWkx4FqCDFiUIs2oXbzms2MpCEcU8AyuXkiRAL3bFrqYLkCtNtXY0CeEEjGf2DxrwDcGAAxcgQI9rpt1123miDrsuQEmLnVvj0i4pZ589HDlhlKeUBujNlvEvffr1g_70fwz6M3QbrNc49OFFB2hvtVib52AhrmQH3UymSQft5_nw4xDux_3R2Rje9niv4_-6dLxu-A3_6Gcb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviG8CA4wEAh5Cm_gjycOEutJpY201TZu0t8yfo2JKxtrR8Y_w5_C3cZekZR2wt-Upis-WnTuf7-zz7wh5ba2CJ4sRt1WF3EoeZqadht4m2hjtuY7wgvNgKDf3-ecDcbBEfs3uwmBY5UwnVoralgb3yFtRLDNY6jlLPp58CzFrFJ6uzlJoqCa1gl2rIMaaix3b7scUXLjx2tYn4PebON7o7XU3wybLQGhkxichl06oVEnmhVIOxFtGMhNGQl8F81rz1MbgU4Boc8G9S63jHrdiHM-UjpVh0O4NssJxA2WZrKz3hju783MMmA6ivt8kwiyLowZcKEpla_4tjFiYxQvrYpU-4O9F4sIqeTmC89IxbrU6btwldxqzlnZqObxHllxxn9wcNAf3D8hPhLem7rwJuy1onSsc2qIeJLGc4ttwdyOmqrB0u9fZieh4tDvs0K8FaGxbTgs6KmiVUZAen2E18PNLDbb_ZExHto55cmPa7fajqNUrJ-p8VIQRVWOqaFF-d8d186fuCBOWOUth5riHZP9amPWILBdl4Z4QajPwlqxPtAcLh4Glo-LUSNB3jDEptQ7IhxlDctPgpWPajuO88ptSiV6TyJGDecTyLA7Iu3mFkxoq5P-k68jhORlifFcfytOjvFEZedpOjNU2NTAGLrxWNmW27UVbe-u8hkbeonzkqImgY0Y1FypgeIjplXdEhe6YyCwgqwuUoEHMYvFMwvJGg43zP_MtIK_mxVgTo_IKV54hTcIkA4tdXEEDDilYjeB3BORxLbTzYaP7i4B5AUkWxHnhvyyWFKMvFQY6zDaZch6Q9zPBv9D1f__0p1cP8yW5tbk36Of9reH2M3IbDOM4rCKXVsny5PTMPQfjc6JfNDOcksPrViq_ASMmk8o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJk28IL4JDDASEvAQ2sQfiR9DaTW6rZoGk_YW-RMqKmdqWthfwt_LOUmrZQwk-lTVZyvO3dm_q8-_Q-i1MRI-Ig28rTKmhtNY6GEeO5MprZWjKgkXnI9n_OCMTs_ZeZebU2-y3TdHku2dhsDS5FeDC-NaF8_5ANybxUKkSZyQWMAKvJszISD22i2K6efp9hgBrJF1fD43dOttRQ1j_5_r8pWN6XrS5LWT02ZDmtxFdzokiYtW9ffQLevvo73j7qz8AfoVGKWxvewyXT1uy3PDWNiB8quf4dvsdJJi6Q0-HBcnCa7np7MCf_ewSBoIz_Hc46aIH16sQzcIrSsFcHtV47lp04xsjUejoyQZjKuVvJz7OMGyxhL76oddtMMv23L31mAwVvsQnU3GX0YHcVeFIdZc0FVMuWUyl5w4JqUF9-cJF0xz0CUjTimamxRiLnB9yqizubHUhb-qLBVSpVKTR2jHV94-QdgICFCMy5QDUEEAXMg01xyWGEII50pF6P1GIaXuKMpDpYxF2YQqOQ-BCiuDBsuElCKN0Ntth4uWnePvoh-ChrdigVa7-aFafi07Ly3zYaaNMrmGOVDmlDQ5MUPHhsoZ6xQM8ibYRxmcHx5My-4OA0wv0GiVBWsIFTMuIrTfkwSn1f3mjYWV3aJRl0nKBaBZSrIIvdo2h54hEc7bah1kMsIJgGT2DxmIAQGoAdSP0OPWaLfTDhFn4KiLUNYz59576bf4-beGdpwwynNKI_RuY_hXHv3ml_70P2Rfor2Tj5Py6NPs8Bm6Dbg0jZvEoX20s1qu7XPAfiv1ovPw37e0Uo0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+profiling+following+NRF2+and+KEAP1+siRNA+knockdown+in+human+lung+fibroblasts+identifies+CCL11%2FEotaxin-1+as+a+novel+NRF2+regulated+gene&rft.jtitle=Respiratory+research&rft.au=Fourtounis+Jimmy&rft.au=Wang+I-Ming&rft.au=Mathieu+Marie-Claude&rft.au=Claveau+David&rft.date=2012-10-12&rft.pub=BMC&rft.issn=1465-9921&rft.volume=13&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1186%2F1465-9921-13-92&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-993X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-993X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-993X&client=summon |