Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better un...

Full description

Saved in:
Bibliographic Details
Published inRespiratory research Vol. 13; no. 1; p. 92
Main Authors Fourtounis, Jimmy, Wang, I-Ming, Mathieu, Marie-Claude, Claveau, David, Loo, Tenneille, Jackson, Aimee L, Peters, Mette A, Therien, Alex G, Boie, Yves, Crackower, Michael A
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.10.2012
BioMed Central Ltd
Nature Publishing Group
BMC
Subjects
Online AccessGet full text
ISSN1465-993X
1465-9921
1465-993X
DOI10.1186/1465-9921-13-92

Cover

Abstract Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
AbstractList Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. Keywords: Asthma, NRF2, KEAP1, Oxidative stress, Eotaxin regulation, Microarray profiling
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Abstract Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.BACKGROUNDOxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.METHODSNormal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.RESULTSAn anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.CONCLUSIONSThese data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Doc number: 92 Abstract Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
ArticleNumber 92
Audience Academic
Author Claveau, David
Crackower, Michael A
Fourtounis, Jimmy
Peters, Mette A
Therien, Alex G
Boie, Yves
Wang, I-Ming
Loo, Tenneille
Mathieu, Marie-Claude
Jackson, Aimee L
AuthorAffiliation 1 Department of Respiratory and Immunology, Merck Research Laboratories, BMB10-128, 33 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
2 Exploratory and Translational Sciences, Merck Research Laboratories, West Point, Pennsylvania, USA
3 Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey, USA
AuthorAffiliation_xml – name: 2 Exploratory and Translational Sciences, Merck Research Laboratories, West Point, Pennsylvania, USA
– name: 1 Department of Respiratory and Immunology, Merck Research Laboratories, BMB10-128, 33 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
– name: 3 Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey, USA
Author_xml – sequence: 1
  givenname: Jimmy
  surname: Fourtounis
  fullname: Fourtounis, Jimmy
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
– sequence: 2
  givenname: I-Ming
  surname: Wang
  fullname: Wang, I-Ming
  organization: Exploratory and Translational Sciences, Merck Research Laboratories
– sequence: 3
  givenname: Marie-Claude
  surname: Mathieu
  fullname: Mathieu, Marie-Claude
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
– sequence: 4
  givenname: David
  surname: Claveau
  fullname: Claveau, David
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
– sequence: 5
  givenname: Tenneille
  surname: Loo
  fullname: Loo, Tenneille
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
– sequence: 6
  givenname: Aimee L
  surname: Jackson
  fullname: Jackson, Aimee L
  organization: Exploratory and Translational Sciences, Merck Research Laboratories
– sequence: 7
  givenname: Mette A
  surname: Peters
  fullname: Peters, Mette A
  organization: Exploratory and Translational Sciences, Merck Research Laboratories
– sequence: 8
  givenname: Alex G
  surname: Therien
  fullname: Therien, Alex G
  organization: Infectious Diseases, Merck Research Laboratories
– sequence: 9
  givenname: Yves
  surname: Boie
  fullname: Boie, Yves
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
– sequence: 10
  givenname: Michael A
  surname: Crackower
  fullname: Crackower, Michael A
  email: michael_crackower@merck.com
  organization: Department of Respiratory and Immunology, Merck Research Laboratories
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23061798$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAYhSNURC-wZocssWGT1vckG6TRaFoqqoIqkNhZji-p24w92ElbXoTnxWFKmam4yAtbzndOfh-d_WLHB2-K4iWChwjV_AhRzsqmwahEpGzwk2Lv_oZ82dk47xb7KV1BiKq6Ys-KXUwgR1VT7xXfT4w3wNytoknJBQ9WMVjXO98BG_o-3E6n84tjDKTX4P1i9hGB5C7OZ-DaB3Wtw60HzoPLcSk96MdJ5toY2l6mIQGnjR-cdSaB-fwMoaNFGOSd8yUCMgEJfLgx_do-mm7s5WA06PJEz4unVvbJvLjfD4rPx4tP83fl2YeT0_nsrFS8oUNJuWGylpxYJqXBmHHEG6Z41SpGbNvSWmPEKWYVZdSaWhtqMYTM0Ea2WCpyUJyufXWQV2IV3VLGbyJIJ35ehNgJGQeneiNqWCnd6lplD8psK3VNNLQMtlYb2-Ls9XbttRrbpdEqPz3Kfst0-4t3l6ILN4IwymtKs8Gbe4MYvo4mDWLpkjJ9L70JYxKoYjWmEDH4fxRXhBOEMMvo60foVRijz6lmijccQUqq31Qn81udtyGPqCZTMWOEYtJUvMnU4R-ovLRZOpWrmatjtgWvNjN5CONXATNwtAZUDClFYx8QBMVUcTGVWEwVF4iIZoqZPVIoN8ghdzfP4vp_6OBal_IffGfiRg5_kfwAfkYMsA
CitedBy_id crossref_primary_10_1371_journal_pone_0184299
crossref_primary_10_3390_ijms21124370
crossref_primary_10_1016_j_placenta_2014_11_004
crossref_primary_10_1080_02770903_2019_1571081
crossref_primary_10_1016_j_pupt_2014_04_004
crossref_primary_10_1155_2019_4654206
crossref_primary_10_1007_s00403_015_1554_2
crossref_primary_10_14356_kona_2017005
crossref_primary_10_1016_j_trsl_2016_12_002
crossref_primary_10_31083_RCM26020
crossref_primary_10_1016_j_biochi_2021_09_006
crossref_primary_10_18632_aging_103777
crossref_primary_10_2147_IJN_S268203
crossref_primary_10_1124_dmd_117_078741
crossref_primary_10_3109_15419061_2013_775257
crossref_primary_10_1016_j_jff_2017_11_044
crossref_primary_10_1016_j_heliyon_2017_e00277
crossref_primary_10_1038_s41380_023_02034_x
crossref_primary_10_1111_cea_12212
crossref_primary_10_3390_nu16162783
crossref_primary_10_1016_j_addr_2014_05_018
crossref_primary_10_1073_pnas_1415111112
crossref_primary_10_3390_antiox10030416
crossref_primary_10_1080_08830185_2017_1363198
crossref_primary_10_1155_2018_7042105
crossref_primary_10_1155_2017_1284804
Cites_doi 10.1038/sj.bjp.0706176
10.1146/annurev.pharmtox.43.100901.140229
10.1089/ars.2005.7.385
10.1002/jps.21311
10.1378/chest.08-0440
10.1021/tx8001934
10.1016/j.lfs.2006.06.019
10.1016/j.advenzreg.2006.01.007
10.1016/j.bcp.2006.07.004
10.1016/j.ejphar.2005.12.087
10.1055/s-2001-11532
10.1016/j.jaci.2003.07.005
10.1074/jbc.M109358200
10.1074/jbc.M211558200
10.1007/s11882-004-0054-9
10.1080/019021401750069401
10.1172/JCI200421146
10.1016/j.jaci.2011.04.047
10.1165/ajrcmb.25.3.4437
10.1152/ajplung.00310.2007
10.1128/MCB.01080-08
10.1164/rccm.200804-535OC
10.1378/chest.120.4.1136
10.1016/S0091-6749(98)70269-6
10.1046/j.1365-2222.2000.00753.x
10.1006/bbrc.1997.7169
10.1164/rccm.200803-380OC
10.1016/j.canlet.2005.11.050
10.1152/physiolgenomics.00126.2007
10.1038/ng1248
10.1016/j.toxlet.2006.10.012
10.1089/ars.2006.8.76
10.1165/ajrcmb.26.2.4501
10.1016/j.freeradbiomed.2004.10.013
10.1146/annurev.immunol.24.021605.090720
10.1152/ajplung.90215.2008
10.4049/jimmunol.1102760
10.1158/0008-5472.CAN-04-4539
10.4049/jimmunol.169.8.4613
10.1002/bjs.1800810913
10.1016/j.clim.2003.08.006
10.1152/ajpheart.00651.2005
10.1016/j.bbrc.2006.10.102
10.1093/toxsci/kfp298
10.1152/ajplung.00208.2006
10.1111/j.1365-2443.2005.00905.x
10.4049/jimmunol.166.7.4507
10.1016/j.yjmcc.2006.09.012
10.1074/jbc.M211898200
10.1128/MCB.26.1.221-229.2006
10.1016/j.phrs.2008.05.009
10.1016/j.jaci.2008.08.004
10.1016/j.rmed.2004.04.017
10.1021/jm0002230
10.1016/j.pharmthera.2005.10.015
10.1021/jf802601j
10.1016/j.cellsig.2010.05.017
10.3109/10715769409056561
10.1128/MCB.24.16.7130-7139.2004
10.1046/j.1365-2222.2000.00750.x
10.1089/ars.2005.7.1648
10.1038/nm0496-449
10.1016/j.bcp.2008.07.017
10.1038/sj.bjc.6604703
10.1016/S0165-2478(02)00183-9
10.1016/j.bmcl.2004.05.041
10.1091/mbc.E03-11-0799
10.1038/nbt831
10.1056/NEJMe048182
10.1006/clim.2000.4921
10.1378/chest.07-2245
10.1128/MCB.25.14.5933-5946.2005
10.1084/jem.20050538
10.1073/pnas.0804333106
10.1038/nmeth1005-779
10.4049/jimmunol.168.5.2560
10.1016/S0891-5849(96)00550-3
10.1164/rccm.200701-060OC
10.1046/j.1365-2443.2002.00561.x
10.1073/pnas.94.10.5361
10.1164/rccm.200607-931OC
10.1089/ars.2006.8.88
10.1016/j.intimp.2005.08.025
10.4049/jimmunol.163.12.6876
10.2174/138955706777934937
10.1165/rcmb.2007-0295OC
10.1093/toxsci/kfn079
ContentType Journal Article
Copyright Fourtounis et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2012 BioMed Central Ltd.
2012 Fourtounis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Fourtounis et al.; licensee BioMed Central Ltd. 2012 Fourtounis et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Fourtounis et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Fourtounis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Fourtounis et al.; licensee BioMed Central Ltd. 2012 Fourtounis et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7U7
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
8FD
FR3
P64
RC3
5PM
DOA
DOI 10.1186/1465-9921-13-92
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList


MEDLINE

MEDLINE - Academic
Genetics Abstracts
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1465-993X
EndPage 92
ExternalDocumentID oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2
PMC3546844
2866259641
A534239769
23061798
10_1186_1465_9921_13_92
Genre Journal Article
GroupedDBID ---
0R~
29P
2VQ
2WC
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QL
7U7
7U9
7XB
8FK
AZQEC
C1K
DWQXO
H94
K9.
M7N
PKEHL
PQEST
PQUKI
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c694t-46e5a8a63f5aae22561695c67bc53fbb48d2164257454fe8de4f2005e49ab2ac3
IEDL.DBID M48
ISSN 1465-993X
1465-9921
IngestDate Wed Aug 27 01:29:55 EDT 2025
Thu Aug 21 14:34:39 EDT 2025
Thu Sep 04 23:55:21 EDT 2025
Thu Sep 04 19:24:33 EDT 2025
Thu Sep 18 13:10:51 EDT 2025
Tue Jun 17 22:05:39 EDT 2025
Tue Jun 10 21:03:17 EDT 2025
Mon Jul 21 05:57:08 EDT 2025
Tue Jul 01 02:43:03 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Sat Sep 06 07:28:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Oxidative stress
KEAP1
NRF2
Microarray profiling
Eotaxin regulation
Asthma
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c694t-46e5a8a63f5aae22561695c67bc53fbb48d2164257454fe8de4f2005e49ab2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1465-9921-13-92
PMID 23061798
PQID 1269610437
PQPubID 42864
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3546844
proquest_miscellaneous_1758240150
proquest_miscellaneous_1273631125
proquest_journals_1269610437
gale_infotracmisc_A534239769
gale_infotracacademiconefile_A534239769
pubmed_primary_23061798
crossref_primary_10_1186_1465_9921_13_92
crossref_citationtrail_10_1186_1465_9921_13_92
springer_journals_10_1186_1465_9921_13_92
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-12
PublicationDateYYYYMMDD 2012-10-12
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Respiratory research
PublicationTitleAbbrev Respir Res
PublicationTitleAlternate Respir Res
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Nature Publishing Group
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Nature Publishing Group
– name: BMC
References I Rahman (1290_CR2) 2006; 533
F Sabatini (1290_CR76) 2002; 84
JM Lee (1290_CR37) 2003; 278
LJ Smith (1290_CR5) 1997; 22
D Mandal (1290_CR88) 2010; 22
WW Wasserman (1290_CR80) 1997; 94
D Diaz-Sanchez (1290_CR11) 2000; 97
MJ Whitekus (1290_CR17) 2002; 168
A Kobayashi (1290_CR23) 2006; 26
H Hein (1290_CR84) 1997; 237
SE Purdom-Dickinson (1290_CR39) 2007; 42
S Matsukura (1290_CR85) 1999; 163
GJ Quinlan (1290_CR7) 1994; 21
M Hao (1290_CR12) 2003; 112
G Shen (1290_CR82) 2005; 7
AE Nel (1290_CR15) 1998; 102
RM Roumen (1290_CR8) 1994; 81
RK Thimmulappa (1290_CR47) 2002; 62
K Liby (1290_CR62) 2005; 65
AL Jackson (1290_CR55) 2003; 21
HY Cho (1290_CR1) 2006; 8
IM Adcock (1290_CR18) 2008; 134
ME Rothenberg (1290_CR56) 2006; 24
MA Huber (1290_CR59) 2002; 277
M Kobayashi (1290_CR21) 2006; 46
N Li (1290_CR14) 2003; 109
MK Kwak (1290_CR45) 2003; 278
SE Wenzel (1290_CR79) 2002; 169
S Nair (1290_CR60) 2008; 99
Z Ammous (1290_CR65) 2008; 133
EA Garcia-Zepeda (1290_CR73) 1996; 2
H Yang (1290_CR83) 2005; 25
HY Cho (1290_CR34) 2009; 179
S Al Muhsen (1290_CR49) 2011; 128
X Zhou (1290_CR51) 2012; 188
D Malhotra (1290_CR28) 2008; 178
R Hu (1290_CR44) 2006; 243
RK Thimmulappa (1290_CR68) 2006; 351
T Rangasamy (1290_CR32) 2004; 114
R Hu (1290_CR43) 2006; 79
W Li (1290_CR58) 2008; 76
H Abdala-Valencia (1290_CR9) 2007; 292
CA Thompson (1290_CR40) 2008; 21
M Kobayashi (1290_CR20) 2002; 7
T Iizuka (1290_CR31) 2005; 10
S Pierrou (1290_CR27) 2007; 175
I Rahman (1290_CR72) 2006; 72
J Ciencewicki (1290_CR10) 2008; 122
T Nguyen (1290_CR19) 2003; 43
T Murata (1290_CR52) 2004; 14
B Jayaprakasam (1290_CR69) 2009; 57
N Wakabayashi (1290_CR26) 2003; 35
HY Cho (1290_CR33) 2002; 26
HY Cho (1290_CR36) 2005; 38
L Zhu (1290_CR41) 2008; 294
EM Minshall (1290_CR74) 2000; 30
A Richter (1290_CR75) 2001; 25
N Terada (1290_CR78) 2000; 30
A Emelyanov (1290_CR4) 2001; 120
J Hoeck (1290_CR86) 2001; 166
M Kobayashi (1290_CR25) 2009; 29
TL Adair-Kirk (1290_CR29) 2008; 39
JI Murray (1290_CR63) 2004; 15
A Kobayashi (1290_CR22) 2004; 24
WB Gerritsen (1290_CR6) 2005; 99
S Matsui (1290_CR87) 2006; 6
N Li (1290_CR57) 2006; 8
NH Nam (1290_CR71) 2006; 6
NM Reddy (1290_CR46) 2007; 32
A Barve (1290_CR42) 2008; 97
WO Osburn (1290_CR67) 2008; 104
TE Sussan (1290_CR35) 2009; 106
K Ziegelbauer (1290_CR61) 2005; 145
P Kirkham (1290_CR13) 2006; 111
S Nair (1290_CR38) 2007; 168
CA Pope III (1290_CR3) 2004; 351
G Pickett (1290_CR64) 2010; 114
PR Johnson (1290_CR50) 2004; 4
T Rangasamy (1290_CR30) 2005; 202
XL Chen (1290_CR66) 2006; 290
M Kobayashi (1290_CR24) 2005; 7
T Honda (1290_CR53) 2000; 43
T Nakajima (1290_CR70) 2001; 67
E Sato (1290_CR77) 2001; 27
S Papaiahgari (1290_CR16) 2007; 176
ES Kang (1290_CR81) 2008; 58
CJ Baglole (1290_CR48) 2008; 295
R Kittler (1290_CR54) 2005; 2
10586089 - J Immunol. 1999 Dec 15;163(12):6876-83
14697739 - Clin Immunol. 2003 Dec;109(3):250-65
14769258 - Curr Allergy Asthma Rep. 2004 Mar;4(2):102-8
9299399 - Biochem Biophys Res Commun. 1997 Aug 28;237(3):537-42
19001094 - Mol Cell Biol. 2009 Jan;29(2):493-502
15706085 - Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):385-94
16356127 - Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1648-63
20015843 - Toxicol Sci. 2010 Mar;114(1):79-89
17901416 - Am J Respir Crit Care Med. 2007 Dec 15;176(12):1222-35
12370400 - J Immunol. 2002 Oct 15;169(8):4613-9
10691892 - Clin Exp Allergy. 2000 Mar;30(3):348-55
16516379 - Cancer Lett. 2006 Nov 18;243(2):170-92
11588018 - Am J Respir Cell Mol Biol. 2001 Sep;25(3):385-91
15753951 - Br J Pharmacol. 2005 May;145(2):178-92
7921168 - Free Radic Res. 1994 Aug;21(2):95-106
16487040 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):76-87
18339782 - Chest. 2008 Jun;133(6):1344-53
18236473 - J Pharm Sci. 2008 Oct;97(10):4528-45
11804867 - Am J Respir Cell Mol Biol. 2002 Feb;26(2):175-82
16354693 - Mol Cell Biol. 2006 Jan;26(1):221-9
17895394 - Physiol Genomics. 2007 Dec 19;32(1):74-81
18556627 - Am J Respir Crit Care Med. 2008 Sep 15;178(6):592-604
14517554 - Nat Genet. 2003 Nov;35(3):238-45
15520857 - J Clin Invest. 2004 Nov;114(9):1248-59
11591550 - Chest. 2001 Oct;120(4):1136-9
9098106 - Free Radic Biol Med. 1997;22(7):1301-7
18774381 - J Allergy Clin Immunol. 2008 Sep;122(3):456-68; quiz 469-70
16920072 - Biochem Pharmacol. 2006 Nov 30;72(11):1439-52
10691884 - Clin Exp Allergy. 2000 Mar;30(3):301-3
21636119 - J Allergy Clin Immunol. 2011 Sep;128(3):451-62; quiz 463-4
11027454 - Clin Immunol. 2000 Nov;97(2):140-5
15282312 - Mol Cell Biol. 2004 Aug;24(16):7130-9
18417483 - Toxicol Sci. 2008 Jul;104(1):218-27
15672854 - Respir Med. 2005 Jan;99(1):84-90
16500642 - Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39
19548348 - Chem Res Toxicol. 2008 Dec;21(12):2245-56
19132888 - J Agric Food Chem. 2009 Feb 11;57(3):820-5
18588981 - Pharmacol Res. 2008 Jul;58(1):15-21
7953392 - Br J Surg. 1994 Sep;81(9):1300-5
11063620 - J Med Chem. 2000 Nov 2;43(22):4233-46
11301858 - Planta Med. 2001 Mar;67(2):132-5
17097057 - Biochem Biophys Res Commun. 2006 Dec 29;351(4):883-9
19104057 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5
11694538 - J Biol Chem. 2002 Jan 11;277(2):1268-75
12359864 - Annu Rev Pharmacol Toxicol. 2003;43:233-60
16887173 - Adv Enzyme Regul. 2006;46:113-40
15225718 - Bioorg Med Chem Lett. 2004 Aug 2;14(15):4019-22
20570727 - Cell Signal. 2010 Oct;22(10):1485-94
15988009 - Mol Cell Biol. 2005 Jul;25(14):5933-46
8597956 - Nat Med. 1996 Apr;2(4):449-56
12234984 - Cancer Res. 2002 Sep 15;62(18):5196-203
18694732 - Biochem Pharmacol. 2008 Dec 1;76(11):1485-9
17127020 - Toxicol Lett. 2007 Jan 10;168(1):21-39
15629862 - Free Radic Biol Med. 2005 Feb 1;38(3):325-43
9802360 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):539-54
16339837 - Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1862-70
22573806 - J Immunol. 2012 Jun 15;188(12):6046-54
16918500 - Mini Rev Med Chem. 2006 Aug;6(8):945-51
16324149 - Genes Cells. 2005 Dec;10(12):1113-25
19050705 - Br J Cancer. 2008 Dec 16;99(12):2070-82
16551246 - Annu Rev Immunol. 2006;24:147-74
15356311 - N Engl J Med. 2004 Sep 9;351(11):1132-4
16458359 - Pharmacol Ther. 2006 Aug;111(2):476-94
11859152 - J Immunol. 2002 Mar 1;168(5):2560-7
18156441 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L469-77
11258804 - Exp Lung Res. 2001 Mar;27(2):173-83
15004229 - Mol Biol Cell. 2004 May;15(5):2361-74
16487041 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):88-98
14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14
17158281 - Am J Respir Crit Care Med. 2007 Mar 15;175(6):577-86
9144242 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361-6
12506115 - J Biol Chem. 2003 Mar 7;278(10):8135-45
11254707 - J Immunol. 2001 Apr 1;166(7):4507-15
15998787 - J Exp Med. 2005 Jul 4;202(1):47-59
16428072 - Int Immunopharmacol. 2006 Mar;6(3):369-75
18441282 - Am J Respir Cell Mol Biol. 2008 Oct;39(4):400-11
18682458 - Chest. 2008 Aug;134(2):394-401
15930299 - Cancer Res. 2005 Jun 1;65(11):4789-98
16828809 - Life Sci. 2006 Oct 12;79(20):1944-55
12556532 - J Biol Chem. 2003 Apr 4;278(14):12029-38
12167159 - Genes Cells. 2002 Aug;7(8):807-20
12413733 - Immunol Lett. 2002 Dec 3;84(3):173-8
17293377 - Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1111-25
18931336 - Am J Respir Crit Care Med. 2009 Jan 15;179(2):138-50
17081560 - J Mol Cell Cardiol. 2007 Jan;42(1):159-76
12754523 - Nat Biotechnol. 2003 Jun;21(6):635-7
18689604 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L624-36
16179925 - Nat Methods. 2005 Oct;2(10):779-84
References_xml – volume: 145
  start-page: 178
  year: 2005
  ident: 1290_CR61
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0706176
– volume: 43
  start-page: 233
  year: 2003
  ident: 1290_CR19
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev.pharmtox.43.100901.140229
– volume: 7
  start-page: 385
  year: 2005
  ident: 1290_CR24
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2005.7.385
– volume: 97
  start-page: 4528
  year: 2008
  ident: 1290_CR42
  publication-title: J Pharm Sci
  doi: 10.1002/jps.21311
– volume: 134
  start-page: 394
  year: 2008
  ident: 1290_CR18
  publication-title: Chest
  doi: 10.1378/chest.08-0440
– volume: 21
  start-page: 2245
  year: 2008
  ident: 1290_CR40
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx8001934
– volume: 79
  start-page: 1944
  year: 2006
  ident: 1290_CR43
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2006.06.019
– volume: 46
  start-page: 113
  year: 2006
  ident: 1290_CR21
  publication-title: Adv Enzyme Regul
  doi: 10.1016/j.advenzreg.2006.01.007
– volume: 72
  start-page: 1439
  year: 2006
  ident: 1290_CR72
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2006.07.004
– volume: 533
  start-page: 222
  year: 2006
  ident: 1290_CR2
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2005.12.087
– volume: 67
  start-page: 132
  year: 2001
  ident: 1290_CR70
  publication-title: Planta Med
  doi: 10.1055/s-2001-11532
– volume: 112
  start-page: 905
  year: 2003
  ident: 1290_CR12
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2003.07.005
– volume: 62
  start-page: 5196
  year: 2002
  ident: 1290_CR47
  publication-title: Cancer Res
– volume: 277
  start-page: 1268
  year: 2002
  ident: 1290_CR59
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109358200
– volume: 278
  start-page: 12029
  year: 2003
  ident: 1290_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211558200
– volume: 4
  start-page: 102
  year: 2004
  ident: 1290_CR50
  publication-title: Curr Allergy Asthma Rep
  doi: 10.1007/s11882-004-0054-9
– volume: 27
  start-page: 173
  year: 2001
  ident: 1290_CR77
  publication-title: Exp Lung Res
  doi: 10.1080/019021401750069401
– volume: 114
  start-page: 1248
  year: 2004
  ident: 1290_CR32
  publication-title: J Clin Invest
  doi: 10.1172/JCI200421146
– volume: 128
  start-page: 451
  year: 2011
  ident: 1290_CR49
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2011.04.047
– volume: 25
  start-page: 385
  year: 2001
  ident: 1290_CR75
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/ajrcmb.25.3.4437
– volume: 294
  start-page: L469
  year: 2008
  ident: 1290_CR41
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00310.2007
– volume: 29
  start-page: 493
  year: 2009
  ident: 1290_CR25
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01080-08
– volume: 179
  start-page: 138
  year: 2009
  ident: 1290_CR34
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200804-535OC
– volume: 120
  start-page: 1136
  year: 2001
  ident: 1290_CR4
  publication-title: Chest
  doi: 10.1378/chest.120.4.1136
– volume: 102
  start-page: 539
  year: 1998
  ident: 1290_CR15
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/S0091-6749(98)70269-6
– volume: 30
  start-page: 301
  year: 2000
  ident: 1290_CR74
  publication-title: Clin Exp Allergy
  doi: 10.1046/j.1365-2222.2000.00753.x
– volume: 237
  start-page: 537
  year: 1997
  ident: 1290_CR84
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1997.7169
– volume: 178
  start-page: 592
  year: 2008
  ident: 1290_CR28
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200803-380OC
– volume: 243
  start-page: 170
  year: 2006
  ident: 1290_CR44
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2005.11.050
– volume: 32
  start-page: 74
  year: 2007
  ident: 1290_CR46
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00126.2007
– volume: 35
  start-page: 238
  year: 2003
  ident: 1290_CR26
  publication-title: Nat Genet
  doi: 10.1038/ng1248
– volume: 168
  start-page: 21
  year: 2007
  ident: 1290_CR38
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2006.10.012
– volume: 8
  start-page: 76
  year: 2006
  ident: 1290_CR1
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2006.8.76
– volume: 26
  start-page: 175
  year: 2002
  ident: 1290_CR33
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/ajrcmb.26.2.4501
– volume: 38
  start-page: 325
  year: 2005
  ident: 1290_CR36
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2004.10.013
– volume: 24
  start-page: 147
  year: 2006
  ident: 1290_CR56
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.24.021605.090720
– volume: 295
  start-page: L624
  year: 2008
  ident: 1290_CR48
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.90215.2008
– volume: 188
  start-page: 6046
  year: 2012
  ident: 1290_CR51
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102760
– volume: 65
  start-page: 4789
  year: 2005
  ident: 1290_CR62
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-4539
– volume: 169
  start-page: 4613
  year: 2002
  ident: 1290_CR79
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.8.4613
– volume: 81
  start-page: 1300
  year: 1994
  ident: 1290_CR8
  publication-title: Br J Surg
  doi: 10.1002/bjs.1800810913
– volume: 109
  start-page: 250
  year: 2003
  ident: 1290_CR14
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2003.08.006
– volume: 290
  start-page: H1862
  year: 2006
  ident: 1290_CR66
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00651.2005
– volume: 351
  start-page: 883
  year: 2006
  ident: 1290_CR68
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2006.10.102
– volume: 114
  start-page: 79
  year: 2010
  ident: 1290_CR64
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfp298
– volume: 292
  start-page: L1111
  year: 2007
  ident: 1290_CR9
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00208.2006
– volume: 10
  start-page: 1113
  year: 2005
  ident: 1290_CR31
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2005.00905.x
– volume: 166
  start-page: 4507
  year: 2001
  ident: 1290_CR86
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.7.4507
– volume: 42
  start-page: 159
  year: 2007
  ident: 1290_CR39
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2006.09.012
– volume: 278
  start-page: 8135
  year: 2003
  ident: 1290_CR45
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211898200
– volume: 26
  start-page: 221
  year: 2006
  ident: 1290_CR23
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.1.221-229.2006
– volume: 58
  start-page: 15
  year: 2008
  ident: 1290_CR81
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2008.05.009
– volume: 122
  start-page: 456
  year: 2008
  ident: 1290_CR10
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2008.08.004
– volume: 99
  start-page: 84
  year: 2005
  ident: 1290_CR6
  publication-title: Respir Med
  doi: 10.1016/j.rmed.2004.04.017
– volume: 43
  start-page: 4233
  year: 2000
  ident: 1290_CR53
  publication-title: J Med Chem
  doi: 10.1021/jm0002230
– volume: 111
  start-page: 476
  year: 2006
  ident: 1290_CR13
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2005.10.015
– volume: 57
  start-page: 820
  year: 2009
  ident: 1290_CR69
  publication-title: J Agric Food Chem
  doi: 10.1021/jf802601j
– volume: 22
  start-page: 1485
  year: 2010
  ident: 1290_CR88
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2010.05.017
– volume: 21
  start-page: 95
  year: 1994
  ident: 1290_CR7
  publication-title: Free Radic Res
  doi: 10.3109/10715769409056561
– volume: 24
  start-page: 7130
  year: 2004
  ident: 1290_CR22
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.16.7130-7139.2004
– volume: 30
  start-page: 348
  year: 2000
  ident: 1290_CR78
  publication-title: Clin Exp Allergy
  doi: 10.1046/j.1365-2222.2000.00750.x
– volume: 7
  start-page: 1648
  year: 2005
  ident: 1290_CR82
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2005.7.1648
– volume: 2
  start-page: 449
  year: 1996
  ident: 1290_CR73
  publication-title: Nat Med
  doi: 10.1038/nm0496-449
– volume: 76
  start-page: 1485
  year: 2008
  ident: 1290_CR58
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2008.07.017
– volume: 99
  start-page: 2070
  year: 2008
  ident: 1290_CR60
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604703
– volume: 84
  start-page: 173
  year: 2002
  ident: 1290_CR76
  publication-title: Immunol Lett
  doi: 10.1016/S0165-2478(02)00183-9
– volume: 14
  start-page: 4019
  year: 2004
  ident: 1290_CR52
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2004.05.041
– volume: 15
  start-page: 2361
  year: 2004
  ident: 1290_CR63
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E03-11-0799
– volume: 21
  start-page: 635
  year: 2003
  ident: 1290_CR55
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt831
– volume: 351
  start-page: 1132
  year: 2004
  ident: 1290_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe048182
– volume: 97
  start-page: 140
  year: 2000
  ident: 1290_CR11
  publication-title: Clin Immunol
  doi: 10.1006/clim.2000.4921
– volume: 133
  start-page: 1344
  year: 2008
  ident: 1290_CR65
  publication-title: Chest
  doi: 10.1378/chest.07-2245
– volume: 25
  start-page: 5933
  year: 2005
  ident: 1290_CR83
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.14.5933-5946.2005
– volume: 202
  start-page: 47
  year: 2005
  ident: 1290_CR30
  publication-title: J Exp Med
  doi: 10.1084/jem.20050538
– volume: 106
  start-page: 250
  year: 2009
  ident: 1290_CR35
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804333106
– volume: 2
  start-page: 779
  year: 2005
  ident: 1290_CR54
  publication-title: Nat Methods
  doi: 10.1038/nmeth1005-779
– volume: 168
  start-page: 2560
  year: 2002
  ident: 1290_CR17
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.5.2560
– volume: 22
  start-page: 1301
  year: 1997
  ident: 1290_CR5
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(96)00550-3
– volume: 176
  start-page: 1222
  year: 2007
  ident: 1290_CR16
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200701-060OC
– volume: 7
  start-page: 807
  year: 2002
  ident: 1290_CR20
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2002.00561.x
– volume: 94
  start-page: 5361
  year: 1997
  ident: 1290_CR80
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.10.5361
– volume: 175
  start-page: 577
  year: 2007
  ident: 1290_CR27
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200607-931OC
– volume: 8
  start-page: 88
  year: 2006
  ident: 1290_CR57
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2006.8.88
– volume: 6
  start-page: 369
  year: 2006
  ident: 1290_CR87
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2005.08.025
– volume: 163
  start-page: 6876
  year: 1999
  ident: 1290_CR85
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.12.6876
– volume: 6
  start-page: 945
  year: 2006
  ident: 1290_CR71
  publication-title: Mini Rev Med Chem
  doi: 10.2174/138955706777934937
– volume: 39
  start-page: 400
  year: 2008
  ident: 1290_CR29
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2007-0295OC
– volume: 104
  start-page: 218
  year: 2008
  ident: 1290_CR67
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn079
– reference: 16354693 - Mol Cell Biol. 2006 Jan;26(1):221-9
– reference: 18682458 - Chest. 2008 Aug;134(2):394-401
– reference: 15998787 - J Exp Med. 2005 Jul 4;202(1):47-59
– reference: 19548348 - Chem Res Toxicol. 2008 Dec;21(12):2245-56
– reference: 16487040 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):76-87
– reference: 8597956 - Nat Med. 1996 Apr;2(4):449-56
– reference: 15672854 - Respir Med. 2005 Jan;99(1):84-90
– reference: 18694732 - Biochem Pharmacol. 2008 Dec 1;76(11):1485-9
– reference: 11254707 - J Immunol. 2001 Apr 1;166(7):4507-15
– reference: 11258804 - Exp Lung Res. 2001 Mar;27(2):173-83
– reference: 15004229 - Mol Biol Cell. 2004 May;15(5):2361-74
– reference: 18931336 - Am J Respir Crit Care Med. 2009 Jan 15;179(2):138-50
– reference: 15753951 - Br J Pharmacol. 2005 May;145(2):178-92
– reference: 14697739 - Clin Immunol. 2003 Dec;109(3):250-65
– reference: 18156441 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L469-77
– reference: 17097057 - Biochem Biophys Res Commun. 2006 Dec 29;351(4):883-9
– reference: 11301858 - Planta Med. 2001 Mar;67(2):132-5
– reference: 20570727 - Cell Signal. 2010 Oct;22(10):1485-94
– reference: 18689604 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L624-36
– reference: 18556627 - Am J Respir Crit Care Med. 2008 Sep 15;178(6):592-604
– reference: 17895394 - Physiol Genomics. 2007 Dec 19;32(1):74-81
– reference: 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14
– reference: 15520857 - J Clin Invest. 2004 Nov;114(9):1248-59
– reference: 12754523 - Nat Biotechnol. 2003 Jun;21(6):635-7
– reference: 11591550 - Chest. 2001 Oct;120(4):1136-9
– reference: 16324149 - Genes Cells. 2005 Dec;10(12):1113-25
– reference: 16500642 - Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39
– reference: 11694538 - J Biol Chem. 2002 Jan 11;277(2):1268-75
– reference: 16828809 - Life Sci. 2006 Oct 12;79(20):1944-55
– reference: 9802360 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):539-54
– reference: 19104057 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5
– reference: 18417483 - Toxicol Sci. 2008 Jul;104(1):218-27
– reference: 16356127 - Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1648-63
– reference: 12506115 - J Biol Chem. 2003 Mar 7;278(10):8135-45
– reference: 11027454 - Clin Immunol. 2000 Nov;97(2):140-5
– reference: 15629862 - Free Radic Biol Med. 2005 Feb 1;38(3):325-43
– reference: 12167159 - Genes Cells. 2002 Aug;7(8):807-20
– reference: 18339782 - Chest. 2008 Jun;133(6):1344-53
– reference: 17081560 - J Mol Cell Cardiol. 2007 Jan;42(1):159-76
– reference: 16920072 - Biochem Pharmacol. 2006 Nov 30;72(11):1439-52
– reference: 9098106 - Free Radic Biol Med. 1997;22(7):1301-7
– reference: 9299399 - Biochem Biophys Res Commun. 1997 Aug 28;237(3):537-42
– reference: 15282312 - Mol Cell Biol. 2004 Aug;24(16):7130-9
– reference: 15988009 - Mol Cell Biol. 2005 Jul;25(14):5933-46
– reference: 19001094 - Mol Cell Biol. 2009 Jan;29(2):493-502
– reference: 17158281 - Am J Respir Crit Care Med. 2007 Mar 15;175(6):577-86
– reference: 9144242 - Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361-6
– reference: 16551246 - Annu Rev Immunol. 2006;24:147-74
– reference: 16918500 - Mini Rev Med Chem. 2006 Aug;6(8):945-51
– reference: 12556532 - J Biol Chem. 2003 Apr 4;278(14):12029-38
– reference: 18774381 - J Allergy Clin Immunol. 2008 Sep;122(3):456-68; quiz 469-70
– reference: 16458359 - Pharmacol Ther. 2006 Aug;111(2):476-94
– reference: 10691884 - Clin Exp Allergy. 2000 Mar;30(3):301-3
– reference: 20015843 - Toxicol Sci. 2010 Mar;114(1):79-89
– reference: 12370400 - J Immunol. 2002 Oct 15;169(8):4613-9
– reference: 18588981 - Pharmacol Res. 2008 Jul;58(1):15-21
– reference: 7953392 - Br J Surg. 1994 Sep;81(9):1300-5
– reference: 14517554 - Nat Genet. 2003 Nov;35(3):238-45
– reference: 18441282 - Am J Respir Cell Mol Biol. 2008 Oct;39(4):400-11
– reference: 12359864 - Annu Rev Pharmacol Toxicol. 2003;43:233-60
– reference: 15225718 - Bioorg Med Chem Lett. 2004 Aug 2;14(15):4019-22
– reference: 16887173 - Adv Enzyme Regul. 2006;46:113-40
– reference: 12413733 - Immunol Lett. 2002 Dec 3;84(3):173-8
– reference: 7921168 - Free Radic Res. 1994 Aug;21(2):95-106
– reference: 12234984 - Cancer Res. 2002 Sep 15;62(18):5196-203
– reference: 18236473 - J Pharm Sci. 2008 Oct;97(10):4528-45
– reference: 10691892 - Clin Exp Allergy. 2000 Mar;30(3):348-55
– reference: 11859152 - J Immunol. 2002 Mar 1;168(5):2560-7
– reference: 16487041 - Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):88-98
– reference: 16179925 - Nat Methods. 2005 Oct;2(10):779-84
– reference: 15930299 - Cancer Res. 2005 Jun 1;65(11):4789-98
– reference: 16428072 - Int Immunopharmacol. 2006 Mar;6(3):369-75
– reference: 15356311 - N Engl J Med. 2004 Sep 9;351(11):1132-4
– reference: 14769258 - Curr Allergy Asthma Rep. 2004 Mar;4(2):102-8
– reference: 11063620 - J Med Chem. 2000 Nov 2;43(22):4233-46
– reference: 16339837 - Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1862-70
– reference: 16516379 - Cancer Lett. 2006 Nov 18;243(2):170-92
– reference: 15706085 - Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):385-94
– reference: 17901416 - Am J Respir Crit Care Med. 2007 Dec 15;176(12):1222-35
– reference: 21636119 - J Allergy Clin Immunol. 2011 Sep;128(3):451-62; quiz 463-4
– reference: 19132888 - J Agric Food Chem. 2009 Feb 11;57(3):820-5
– reference: 17293377 - Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1111-25
– reference: 19050705 - Br J Cancer. 2008 Dec 16;99(12):2070-82
– reference: 17127020 - Toxicol Lett. 2007 Jan 10;168(1):21-39
– reference: 11588018 - Am J Respir Cell Mol Biol. 2001 Sep;25(3):385-91
– reference: 22573806 - J Immunol. 2012 Jun 15;188(12):6046-54
– reference: 10586089 - J Immunol. 1999 Dec 15;163(12):6876-83
– reference: 11804867 - Am J Respir Cell Mol Biol. 2002 Feb;26(2):175-82
SSID ssj0017875
Score 2.1755142
Snippet Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant...
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in...
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant...
Doc number: 92 Abstract Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator...
Background: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant...
Abstract Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Animals
Asthma
Binding sites
Biosynthesis
Cells, Cultured
Chemokine CCL11 - metabolism
Chronic obstructive pulmonary disease
Development and progression
Disease
DNA microarrays
Eotaxin regulation
Fibroblasts - metabolism
Gene expression
Gene Expression Profiling
Gene Expression Regulation - physiology
Gene Knockdown Techniques
Genes
Heme
Homeostasis
Humans
Intracellular Signaling Peptides and Proteins - metabolism
KEAP1
Kelch-Like ECH-Associated Protein 1
Kinases
Lungs
Medicine
Medicine & Public Health
Mice
Microarray profiling
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
NRF2
Outdoor air quality
Oxidative stress
Oxidizing agents
Physiological aspects
Pneumology/Respiratory System
Respiratory diseases
RNA, Small Interfering - genetics
Rodents
Studies
Xenobiotics
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXxJvAgoyEBBxCk_gR-1iqVitgK7Ripb1ZfopqKwdt2939JfxexklaNcvrQk5RbEex5_N4Jh5_g9Br5zRcskq8rTqnjtNc2kLkwdXGWhOoKdMB5-M5PzqlH8_Y2V6qrxQT1tEDdwM3EkVtnXHCehooC0Y7QVwRWGGC88G02reQxdaZ6vcPAIasO1fEcimrsif1KQUf7Z7lJcllNViPWtr-X5Xz3up0M3LyxvZpuyrN7qG7vTmJx1037qNbPj5At4_7DfOH6Eeilcb-ug93jbjL0Q3vwgEQ0Fylu_nJrMI6OvxpOv5S4tXiZD7G5xE0pQMfHS8ibjP54eUmNQP_ujFgc69XeOG6WCO_wpPJ57IcTZu1vl7EvMR6hTWOzaVfdq-_6HLee4cBsf4ROp1Nv06O8j4VQ265pOuccs-00JwEprUHHcBLLpnlIFBGgjFUuAocL5j_lNHghQNppf9VnkptKm3JY3QQm-ifIuwkeCku1CaAZUHAwtCVsBz0DCGEc2My9H4rEGV7nvKULmOpWn9F8OStMJUkqEqiZJWht7sG3zuKjj9X_ZAkvKuWuLXbB4A41SNO_QtxGXqT8KGSBoAPs7o_yADdS1xaasxaVsWaywwdDmrCzLXD4i3CVK85VqqsuASTlpI6Q692xallioaLvtmkOjXhBCxl9pc64AiCtQb2foaedKDddTu5nYmoLkP1AM6DcRmWxMW3lnucMMoFpRl6twX-3qf_ftCf_Y9Bf47ugKla5W0s0SE6WF9s_AswB9fmZTvzfwIey1u-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgSIgXxJ3AQEZCAh7M6viS5AmVqtUErEITk_oW-ToqqmQ0LeyX8Hs5TtywDFifqvjYiuPPx-fYx99B6KW1Cn5FGnhbFeFWclKYUU68zbQx2nNNwwXno7k8POEfFmIRN9yaGFa504mtora1CXvkBzSVBSz1nGXvzr6TkDUqnK7GFBrX0Q0KlkhI3ZAteoeLAhhFd7tIkKJIaaT2obk86J8RykiRDlallrz_bxV9YY26HD956RC1XZtmd9DtaFTicYeCu-iaq-6hm0fx2Pw--hXIpbE7j0GvFe4ydUNb2AMO6p_h3_x4lmJVWfxxOv5McbM8no_xtwr0pQVPHS8r3Obzw6ttqAZedq3B8t40eGm7iCPX4MnkE6UH03qjzpcVoVg1WOGq_uFWXfPrLvO9sxhw6x6gk9n0y-SQxIQMxMiCbwiXTqhcSeaFUg40gaSyEEbCsArmtea5TcH9Ai3ABfcut477sGvleKF0qgx7iPaqunKPEbYwWtL6THuwLxjYGSrNjQRtwxiTUusEvd0NSGkiW3lImrEqW68ll8FnEWUYwZKyskgT9LqvcNYRdfxf9H0Y4V4sMGy3D-r1aRknbJmPMmO1zQ30gQuvlc2ZHXkx0t46r6GRVwEfZdAD8GJGxesM0L3AqFWORcutmMkiQfsDSZi_Zli8Q1gZ9UdT_kF7gl70xaFmiImrXL0NMhmTDOxlcYUMuINgs4HVn6BHHWj7bgfnM9DVJSgbwHnwXYYl1fJry0DOBJc55wl6swP-hVf_90d_cnU3n6JbYIqmpI0V2kd7m_XWPQNzb6Oft3P6N7WbUHw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFA6ygvgi3h1dJYKgPsRtJpdJHmtpWdQtsriwb0OuWCwZ2ba6v8Tf68nMtHTWVbBPpTkJkzmXfKc5-YLQK-8NfHSZeVsN4V5yot1Ikegr65yN3NJ8wPlkLo_P-Idzcd6TJOWzMPv791TJI3BkQbQuKaGMaIi1NwVE3WzKEznZbReA1Ymet-eaToMlp2Xm_zP-7i1AV4sjr-yQtgvP7C660yNGPO5UfA_dCOk-unXS74k_QL8yczQOl31Fa8LdNdwwFo6g5OZn_jY_nZXYJI8_TsefKV4tTudj_C1BMPSQhuNFwu1lfXi5yd0ghW4swOr1Ci98V04UVngy-UTp0bRZm8tFIhSbFTY4NT_Cshv-orvWPngMRhkeorPZ9MvkmPS3LRAnNV8TLoMwykgWhTEB3FxSqYWToDPBorVc-RJyK3BxLngMygce819SgWtjS-PYI3SQmhSeIOw1qMjHykYADwxAhCmVkxBKGGNSWlugd1uF1K6nIs83YizrNiVRMickos4arCmrdVmgN7sO3zsWjr-Lvs8a3oll-uz2B7CquvfGWo0q561XDubARbTGK-ZHUYxs9CFaGOR1to86Ozk8mDP9WQWYXqbLqseiJU6spC7Q4UASnNMNm7cWVvfBYVXTUmpArZxVBXq5a849c8FbCs0my1RMMgDD4h8ykOsBIANIX6DHndHupp0zy8xFV6BqYM6D9zJsSYuvLb04E1wqzgv0dmv4e49-_Ut_-h-yz9BtAJ0laauCDtHB-mITngOwW9sXrVP_BsTZReA
  priority: 102
  providerName: Springer Nature
Title Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene
URI https://link.springer.com/article/10.1186/1465-9921-13-92
https://www.ncbi.nlm.nih.gov/pubmed/23061798
https://www.proquest.com/docview/1269610437
https://www.proquest.com/docview/1273631125
https://www.proquest.com/docview/1758240150
https://pubmed.ncbi.nlm.nih.gov/PMC3546844
https://doaj.org/article/807cdbd8ce4f45fbad83d0f50bfdefb2
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgkxAviG8CozISEvCQrYk_kjwglFWtpsKqqVCpb5E_R0WVQD-g_CP8vZydtFvG4Im8JIrPVmzfne_i8-8Qeqm1gCuLHW6rCKnmNMxUNw2tTqRS0lIZuQPOpyN-MqHDKZtepANqBnB5rWvn8klNFvPDzbef70Dg33qBT_kRCDsLsyyOwoiEGejjfb9Z5OL46MWWAnAmq48a1cQNzs81DbSWKI_k_6e-vrRgXQ2mvLKj6heqwV10p7EwcV6zxD10w5T30a3TZg_9AfrlkKax2TQRsCWu03ZDW9gCU1Q_3NNoPIixKDV-38_PIrycjUc5_lKC8tTgtuNZiX1yPzxfu2rgclcSzPDVEs90HX5klrjX-xBFR_1qJTazMoywWGKBy-q7mdfNL8y5yx1mNAYmNg_RZND_1DsJm-wMoeIZXYWUGyZSwYllQhhQCzziGVMc5pgRKyVNdQy-GKgEyqg1qTbUul9YhmZCxkKRR2ivrErzBGGdgeOibSItGBsEjA4Rp4qD6iGEcC5lgA63E1KoBrrcZdCYF96FSblzYFjhZrCISJHFAXq9q_C1Ru34O-mxm-EdmYPb9i-qxXnRSG-RdhOlpU4V9IEyK4VOie5a1pVWGyuhkVeOPwrHpvBhSjRnG6B7Dl6ryJkHWkx4FqCDFiUIs2oXbzms2MpCEcU8AyuXkiRAL3bFrqYLkCtNtXY0CeEEjGf2DxrwDcGAAxcgQI9rpt1123miDrsuQEmLnVvj0i4pZ589HDlhlKeUBujNlvEvffr1g_70fwz6M3QbrNc49OFFB2hvtVib52AhrmQH3UymSQft5_nw4xDux_3R2Rje9niv4_-6dLxu-A3_6Gcb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviG8CA4wEAh5Cm_gjycOEutJpY201TZu0t8yfo2JKxtrR8Y_w5_C3cZekZR2wt-Upis-WnTuf7-zz7wh5ba2CJ4sRt1WF3EoeZqadht4m2hjtuY7wgvNgKDf3-ecDcbBEfs3uwmBY5UwnVoralgb3yFtRLDNY6jlLPp58CzFrFJ6uzlJoqCa1gl2rIMaaix3b7scUXLjx2tYn4PebON7o7XU3wybLQGhkxichl06oVEnmhVIOxFtGMhNGQl8F81rz1MbgU4Boc8G9S63jHrdiHM-UjpVh0O4NssJxA2WZrKz3hju783MMmA6ivt8kwiyLowZcKEpla_4tjFiYxQvrYpU-4O9F4sIqeTmC89IxbrU6btwldxqzlnZqObxHllxxn9wcNAf3D8hPhLem7rwJuy1onSsc2qIeJLGc4ttwdyOmqrB0u9fZieh4tDvs0K8FaGxbTgs6KmiVUZAen2E18PNLDbb_ZExHto55cmPa7fajqNUrJ-p8VIQRVWOqaFF-d8d186fuCBOWOUth5riHZP9amPWILBdl4Z4QajPwlqxPtAcLh4Glo-LUSNB3jDEptQ7IhxlDctPgpWPajuO88ptSiV6TyJGDecTyLA7Iu3mFkxoq5P-k68jhORlifFcfytOjvFEZedpOjNU2NTAGLrxWNmW27UVbe-u8hkbeonzkqImgY0Y1FypgeIjplXdEhe6YyCwgqwuUoEHMYvFMwvJGg43zP_MtIK_mxVgTo_IKV54hTcIkA4tdXEEDDilYjeB3BORxLbTzYaP7i4B5AUkWxHnhvyyWFKMvFQY6zDaZch6Q9zPBv9D1f__0p1cP8yW5tbk36Of9reH2M3IbDOM4rCKXVsny5PTMPQfjc6JfNDOcksPrViq_ASMmk8o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJk28IL4JDDASEvAQ2sQfiR9DaTW6rZoGk_YW-RMqKmdqWthfwt_LOUmrZQwk-lTVZyvO3dm_q8-_Q-i1MRI-Ig28rTKmhtNY6GEeO5MprZWjKgkXnI9n_OCMTs_ZeZebU2-y3TdHku2dhsDS5FeDC-NaF8_5ANybxUKkSZyQWMAKvJszISD22i2K6efp9hgBrJF1fD43dOttRQ1j_5_r8pWN6XrS5LWT02ZDmtxFdzokiYtW9ffQLevvo73j7qz8AfoVGKWxvewyXT1uy3PDWNiB8quf4dvsdJJi6Q0-HBcnCa7np7MCf_ewSBoIz_Hc46aIH16sQzcIrSsFcHtV47lp04xsjUejoyQZjKuVvJz7OMGyxhL76oddtMMv23L31mAwVvsQnU3GX0YHcVeFIdZc0FVMuWUyl5w4JqUF9-cJF0xz0CUjTimamxRiLnB9yqizubHUhb-qLBVSpVKTR2jHV94-QdgICFCMy5QDUEEAXMg01xyWGEII50pF6P1GIaXuKMpDpYxF2YQqOQ-BCiuDBsuElCKN0Ntth4uWnePvoh-ChrdigVa7-aFafi07Ly3zYaaNMrmGOVDmlDQ5MUPHhsoZ6xQM8ibYRxmcHx5My-4OA0wv0GiVBWsIFTMuIrTfkwSn1f3mjYWV3aJRl0nKBaBZSrIIvdo2h54hEc7bah1kMsIJgGT2DxmIAQGoAdSP0OPWaLfTDhFn4KiLUNYz59576bf4-beGdpwwynNKI_RuY_hXHv3ml_70P2Rfor2Tj5Py6NPs8Bm6Dbg0jZvEoX20s1qu7XPAfiv1ovPw37e0Uo0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+profiling+following+NRF2+and+KEAP1+siRNA+knockdown+in+human+lung+fibroblasts+identifies+CCL11%2FEotaxin-1+as+a+novel+NRF2+regulated+gene&rft.jtitle=Respiratory+research&rft.au=Fourtounis+Jimmy&rft.au=Wang+I-Ming&rft.au=Mathieu+Marie-Claude&rft.au=Claveau+David&rft.date=2012-10-12&rft.pub=BMC&rft.issn=1465-9921&rft.volume=13&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1186%2F1465-9921-13-92&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_807cdbd8ce4f45fbad83d0f50bfdefb2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-993X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-993X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-993X&client=summon