Combining enhanced spectral resolution of EMG and a deep learning approach for knee pathology diagnosis
Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The prin...
Saved in:
| Published in | PloS one Vol. 19; no. 5; p. e0302707 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.05.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0302707 |
Cover
| Abstract | Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals’ higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method’s superiority, some limitations still require special consideration and will be addressed in future research. |
|---|---|
| AbstractList | Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals’ higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method’s superiority, some limitations still require special consideration and will be addressed in future research. Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals' higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method's superiority, some limitations still require special consideration and will be addressed in future research.Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals' higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method's superiority, some limitations still require special consideration and will be addressed in future research. |
| Audience | Academic |
| Author | Zyout, Ala’a Khader, Ateka Al Fahoum, Amjed |
| AuthorAffiliation | Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid, Jordan Chongqing University Three Gorges Hospital, CHINA |
| AuthorAffiliation_xml | – name: Chongqing University Three Gorges Hospital, CHINA – name: Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid, Jordan |
| Author_xml | – sequence: 1 givenname: Ateka orcidid: 0000-0002-8168-6109 surname: Khader fullname: Khader, Ateka – sequence: 2 givenname: Ala’a surname: Zyout fullname: Zyout, Ala’a – sequence: 3 givenname: Amjed surname: Al Fahoum fullname: Al Fahoum, Amjed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38713653$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk-1r1TAUxotM3Iv-B6IFQfTDvaZJ0zZ-kXGZczAZ-PY1nKYnvbnmJrVp1f33prt3Y3cMGaW0nP6eJyfPaQ6TPecdJsnzjMwzVmbvVn7sHdh5F8tzwggtSfkoOcgEo7OCErZ3630_OQxhRQhnVVE8SfZZVWas4OwgaRd-XRtnXJuiW4JT2KShQzX0YNMeg7fjYLxLvU5PPp-m4JoU0gaxSy1Cf6WDrus9qGWqfZ_-dIhpB8PSW99epo2B1vlgwtPksQYb8Nn2eZR8_3jybfFpdn5xerY4Pp-pQrBhhiqHktPYZU0aplCUdV5ygQ0VUOVFqWtRZEWuSZOReNOGcah4hrpotICSsKPk5ca3sz7IbUZBMlIIWvGcFpE42xCNh5XserOG_lJ6MPKq4PtWQj8YZVESpotKcdXUNeRU5VWOApTmqCEnlFbRi2-8RtfB5R-w9sYwI3Ia03ULchqT3I4p6j5suxzrNTYK3ZT3TjO7X5xZytb_lllGSl7leXR4s3Xo_a8RwyDXJii0Fhz6cdowp1zkccYRfXUHvT-WLdVC3Llx2seF1WQqj0tBRSUYn6j5PVS8GlwbFbeoTazvCN7uCCIz4N-hhTEEefb1y8PZix-77Otb7BLBDsvrnzXsgi9uR32T8fURiEC-AVTvQ-hRP3SE7-_IlBlgWj4mYuz_xf8AUYYu0Q |
| CitedBy_id | crossref_primary_10_3389_fbioe_2024_1401153 crossref_primary_10_1016_j_bspc_2025_107800 crossref_primary_10_1007_s13369_024_09954_y |
| Cites_doi | 10.1002/art.24541 10.1016/j.cger.2010.03.001 10.1155/2022/3321810 10.32604/cmc.2022.018270 10.1109/TBME.2014.2307698 10.1016/j.bspc.2021.102406 10.1259/bjr.20180168 10.1109/TNSRE.2018.2796070 10.1097/00003677-200101000-00005 10.1109/79.221324 10.1016/j.clinbiomech.2010.11.018 10.3390/bioengineering10020249 10.1002/jor.23519 10.1016/j.neunet.2020.01.017 10.1109/IEMBS.2005.1616412 10.1016/j.apacoust.2021.108078 10.1016/B978-0-12-819361-7.00012-9 10.1016/j.joca.2007.03.024 10.32604/cmc.2023.037431 10.1016/S0033-8389(22)02734-8 10.1251/bpo115 10.1093/rheumatology/39.11.1218 10.1142/S0129065724500461 10.1016/j.ibmed.2023.100123 10.3390/genes11080854 10.1186/1471-2474-9-116 10.1109/CVPR.2016.90 10.1007/s11063-020-10361-1 10.1109/NKCon56289.2022.10126934 10.3109/03091902.2014.925983 10.1016/j.jbiomech.2019.109567 10.1016/j.clinbiomech.2013.07.008 10.1016/S1063-4584(03)00080-3 10.1007/s12178-016-9340-0 10.3390/s23062927 10.3390/s21155186 10.1109/ACCESS.2019.2950665 10.1186/s13104-018-3464-9 10.1504/IJECB.2014.060402 10.3390/diagnostics12122939 10.3390/electronics12071520 10.32604/cmc.2023.038304 10.1589/jpts.26.997 10.20965/jaciii.2022.p0722 10.1038/s41598-023-33934-1 10.3390/su142013464 10.1186/1749-799X-4-6 10.1109/ICCCA49541.2020.9250799 10.1371/journal.pone.0261862 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Khader et al 2024 Khader et al 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Khader et al 2024 Khader et al – notice: 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0302707 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Deep learning approach for detection knee pathology using EMG signal |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069285426 oai_doaj_org_article_03f68c5cdbba42c484e9acf5efa40228 10.1371/journal.pone.0302707 PMC11075844 A792989356 38713653 10_1371_journal_pone_0302707 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Jordan |
| GeographicLocations_xml | – name: Jordan |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c693t-ec4a752866b0d3ce97b4759ed29a8467fb96164f0d100d12d35a851ef6df9a703 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Nov 28 02:59:10 EST 2024 Fri Oct 03 12:26:05 EDT 2025 Sun Oct 26 04:12:51 EDT 2025 Tue Sep 30 17:08:53 EDT 2025 Sun Sep 28 07:36:29 EDT 2025 Tue Oct 07 07:21:15 EDT 2025 Mon Oct 20 22:53:22 EDT 2025 Mon Oct 20 16:58:41 EDT 2025 Thu Oct 16 16:20:52 EDT 2025 Thu Oct 16 16:01:40 EDT 2025 Thu May 22 21:24:02 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Wed Oct 01 00:48:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-ec4a752866b0d3ce97b4759ed29a8467fb96164f0d100d12d35a851ef6df9a703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8168-6109 |
| OpenAccessLink | https://doaj.org/article/03f68c5cdbba42c484e9acf5efa40228 |
| PMID | 38713653 |
| PQID | 3069285426 |
| PQPubID | 1436336 |
| PageCount | e0302707 |
| ParticipantIDs | plos_journals_3069285426 doaj_primary_oai_doaj_org_article_03f68c5cdbba42c484e9acf5efa40228 unpaywall_primary_10_1371_journal_pone_0302707 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11075844 proquest_miscellaneous_3052594653 proquest_journals_3069285426 gale_infotracmisc_A792989356 gale_infotracacademiconefile_A792989356 gale_incontextgauss_ISR_A792989356 gale_incontextgauss_IOV_A792989356 gale_healthsolutions_A792989356 pubmed_primary_38713653 crossref_primary_10_1371_journal_pone_0302707 crossref_citationtrail_10_1371_journal_pone_0302707 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-07 |
| PublicationDateYYYYMMDD | 2024-05-07 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | HS Al Amer (pone.0302707.ref021) 2018; 11 K Shamaei (pone.0302707.ref005) 2014; 61 pone.0302707.ref036 pone.0302707.ref035 pone.0302707.ref033 pone.0302707.ref030 A Al Fahoum (pone.0302707.ref045) 2023; 8 I Abu-Qasmieh (pone.0302707.ref023) 2023; 75 K Mills (pone.0302707.ref057) 2013; 28 C Chaisson (pone.0302707.ref008) 2000; 39 A Vijayvargiya (pone.0302707.ref052) 2021; 66 GR Naik (pone.0302707.ref011) 2018; 26 HR Rajamohan (pone.0302707.ref027) 2023; 13 A Vijayvargiya (pone.0302707.ref034) 2022; 2022 SM Ling (pone.0302707.ref020) 2007; 15 H Akbari (pone.0302707.ref048) 2021; 179 M Martínez (pone.0302707.ref042) 2020; 5 SAaS Sivagamasundari (pone.0302707.ref043) 2018; 5 pone.0302707.ref047 R Martinek (pone.0302707.ref039) 2021; 21 T de Dieu Uwisengeyimana JandIbrikci (pone.0302707.ref031) 2017; 2 MF Sowers (pone.0302707.ref006) 2003; 11 H Bansal (pone.0302707.ref032) 2022; 14 JM Nikias CLandMendel (pone.0302707.ref041) 1993; 10 AS Al-Fahoum (pone.0302707.ref016) 2014; 2 SM Ahmed (pone.0302707.ref029) 2022; 12 DJ Rutherford (pone.0302707.ref056) 2011; 26 SA Roelker (pone.0302707.ref038) 2021; 16 AS Al Fahoum (pone.0302707.ref024) 2023; 10 SJ Lu (pone.0302707.ref010) 2018; 91 A Al Fahoum (pone.0302707.ref025) 2023; 76 N. Parisi LandRaviChandran (pone.0302707.ref055) 2020; 52 S Raghu (pone.0302707.ref046) 2020; 124 JE Langer (pone.0302707.ref009) 1990; 28 A Swami (pone.0302707.ref044) 1998; 3 JM Zhang YandJordan (pone.0302707.ref001) 2010; 26 MB Raez (pone.0302707.ref014) 2006; 8 JF Hafer (pone.0302707.ref012) 2020; 99 A Khan (pone.0302707.ref049) 2022; 70 O. Sanchez JS (pone.0302707.ref051) 2014 M Al-Ayyad (pone.0302707.ref015) 2023; 12 W Staab (pone.0302707.ref013) 2014; 26 F Bruno (pone.0302707.ref050) 2018; 89 A Al-Fahoum (pone.0302707.ref037) 2014; 38 R Merletti (pone.0302707.ref040) 2001; 29 pone.0302707.ref026 K Amano (pone.0302707.ref019) 2016; 9 M Boyer (pone.0302707.ref022) 2023; 23 NA Segal (pone.0302707.ref004) 2009; 61 X Chen (pone.0302707.ref054) 2019; 7 A Al-Fahoum (pone.0302707.ref017) 2015; 27 D Primorac (pone.0302707.ref003) 2020; 11 J Zhao (pone.0302707.ref053) 2022; 26 A Vijayvargiya (pone.0302707.ref002) 2019 BG Ashinsky (pone.0302707.ref028) 2017; 35 G Li (pone.0302707.ref018) 2009; 4 PR Bedson JandCroft (pone.0302707.ref007) 2008; 9 |
| References_xml | – volume: 61 start-page: 1210 issue: 9 year: 2009 ident: pone.0302707.ref004 article-title: Effect of thigh strength on incident radiographic and symptomatic knee osteoarthritis in a longitudinal cohort publication-title: Arthritis Rheum doi: 10.1002/art.24541 – volume: 26 start-page: 355 issue: 3 year: 2010 ident: pone.0302707.ref001 article-title: Epidemiology of osteoarthritis publication-title: Clinics in Geriatric Medicine doi: 10.1016/j.cger.2010.03.001 – volume: 2022 year: 2022 ident: pone.0302707.ref034 article-title: Hybrid deep learning approaches for semg signal-based lower limb activity recognition publication-title: Mathematical Problems in Engineering doi: 10.1155/2022/3321810 – volume: 70 issue: 2 year: 2022 ident: pone.0302707.ref049 article-title: Human gait recognition using deep learning and improved ant colony optimization publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.018270 – volume: 61 start-page: 1809 issue: 6 year: 2014 ident: pone.0302707.ref005 article-title: Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2014.2307698 – volume: 66 start-page: 102406 year: 2021 ident: pone.0302707.ref052 article-title: Human knee abnormality detection from imbalanced semg data publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102406 – volume: 91 start-page: 20180168 issue: 1090 year: 2018 ident: pone.0302707.ref010 article-title: Radionuclide bone spect/ct in the evaluation of knee pain: Comparing two-phase bone scintigraphy, spect and spect/ct publication-title: Br J Radiol doi: 10.1259/bjr.20180168 – volume: 26 start-page: 675 issue: 3 year: 2018 ident: pone.0302707.ref011 article-title: An ica-ebm-based semg classifier for recognizing lower limb movements in individuals with and without knee pathology publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2018.2796070 – volume: 29 start-page: 20 issue: 1 year: 2001 ident: pone.0302707.ref040 article-title: Surface electromyography for noninvasive characterization of muscle publication-title: Exerc Sport Sci Rev doi: 10.1097/00003677-200101000-00005 – volume: 10 start-page: 10 issue: 3 year: 1993 ident: pone.0302707.ref041 article-title: Signal processing with higher-order spectra publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.221324 – volume: 26 start-page: 377 issue: 4 year: 2011 ident: pone.0302707.ref056 article-title: Neuromuscular alterations exist with knee osteoarthritis presence and severity despite walking velocity similarities publication-title: Clinical Biomechanics doi: 10.1016/j.clinbiomech.2010.11.018 – volume: 10 start-page: 249 issue: 2 year: 2023 ident: pone.0302707.ref024 article-title: Identification of coronary artery diseases using photoplethysmography signals and practical feature selection process publication-title: Bioengineering doi: 10.3390/bioengineering10020249 – volume: 35 start-page: 2243 issue: 10 year: 2017 ident: pone.0302707.ref028 article-title: Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative publication-title: J Orthop Res doi: 10.1002/jor.23519 – volume: 124 start-page: 202 year: 2020 ident: pone.0302707.ref046 article-title: Eeg based multi-class seizure type classification using convolutional neural network and transfer learning publication-title: Neural Networks doi: 10.1016/j.neunet.2020.01.017 – year: 2014 ident: pone.0302707.ref051 article-title: Emg dataset in lower limb publication-title: UCI Machine Learning Repository – ident: pone.0302707.ref036 doi: 10.1109/IEMBS.2005.1616412 – volume: 179 start-page: 108078 year: 2021 ident: pone.0302707.ref048 article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2021.108078 – start-page: 243 volume-title: Sensors for health monitoring year: 2019 ident: pone.0302707.ref002 doi: 10.1016/B978-0-12-819361-7.00012-9 – volume: 3 start-page: 22 year: 1998 ident: pone.0302707.ref044 article-title: Higher-order spectral analysis toolbox publication-title: The Mathworks Inc – volume: 15 start-page: 1134 issue: 10 year: 2007 ident: pone.0302707.ref020 article-title: Electromyographic patterns suggest changes in motor unit physiology associated with early osteoarthritis of the knee publication-title: Osteoarthritis and cartilage doi: 10.1016/j.joca.2007.03.024 – volume: 75 issue: 2 year: 2023 ident: pone.0302707.ref023 article-title: An innovative bispectral deep learning method for protein family classification publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2023.037431 – volume: 28 start-page: 975 issue: 5 year: 1990 ident: pone.0302707.ref009 article-title: Imaging of the knee publication-title: Radiologic Clinics of North America doi: 10.1016/S0033-8389(22)02734-8 – volume: 8 start-page: 11 year: 2006 ident: pone.0302707.ref014 article-title: Techniques of emg signal analysis: Detection, processing, classification and applications publication-title: Biol Proced Online doi: 10.1251/bpo115 – volume: 39 start-page: 1218 issue: 11 year: 2000 ident: pone.0302707.ref008 article-title: Detecting radiographic knee osteoarthritis: What combination of views is optimal? publication-title: Rheumatology doi: 10.1093/rheumatology/39.11.1218 – ident: pone.0302707.ref026 doi: 10.1142/S0129065724500461 – volume: 8 start-page: 100123 year: 2023 ident: pone.0302707.ref045 article-title: Early detection of neurological abnormalities using a combined phase space reconstruction and deep learning approach publication-title: Intelligence-Based Medicine doi: 10.1016/j.ibmed.2023.100123 – volume: 11 issue: 8 year: 2020 ident: pone.0302707.ref003 article-title: Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations publication-title: Genes (Basel) doi: 10.3390/genes11080854 – volume: 9 start-page: 116 issue: 1 year: 2008 ident: pone.0302707.ref007 article-title: The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature publication-title: BMC Musculoskeletal Disorders doi: 10.1186/1471-2474-9-116 – ident: pone.0302707.ref047 doi: 10.1109/CVPR.2016.90 – ident: pone.0302707.ref035 – volume: 52 start-page: 2565 issue: 3 year: 2020 ident: pone.0302707.ref055 article-title: Evolutionary denoising-based machine learning for detecting knee disorders publication-title: Neural Processing Letters doi: 10.1007/s11063-020-10361-1 – volume: 5 year: 2020 ident: pone.0302707.ref042 article-title: Higher-order spectral analysis of stray flux signals for faults detection in induction motors publication-title: Applied Mathematics and Nonlinear Sciences – volume: 89 start-page: 78 issue: 1-s year: 2018 ident: pone.0302707.ref050 article-title: Weight-bearing mri of the knee: A review of advantages and limits publication-title: Acta Biomed – ident: pone.0302707.ref030 doi: 10.1109/NKCon56289.2022.10126934 – volume: 38 start-page: 311 issue: 6 year: 2014 ident: pone.0302707.ref037 article-title: Detection of cardiac ischaemia using bispectral analysis approach publication-title: Journal of medical engineering & technology doi: 10.3109/03091902.2014.925983 – volume: 99 start-page: 109567 year: 2020 ident: pone.0302707.ref012 article-title: Measuring markers of aging and knee osteoarthritis gait using inertial measurement units publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2019.109567 – volume: 28 start-page: 713 issue: 7 year: 2013 ident: pone.0302707.ref057 article-title: A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/j.clinbiomech.2013.07.008 – volume: 11 start-page: 387 issue: 6 year: 2003 ident: pone.0302707.ref006 article-title: Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and x-ray-defined knee osteoarthritis publication-title: Osteoarthritis and Cartilage doi: 10.1016/S1063-4584(03)00080-3 – volume: 27 start-page: 1550023 issue: 03 year: 2015 ident: pone.0302707.ref017 article-title: Feasibility study for anfis and emg utilization in modeling prosthesis for trans-femoral cut rehabilitation and gait cycle restoration publication-title: Biomedical Engineering: Applications, Basis and Communications – volume: 9 start-page: 123 issue: 2 year: 2016 ident: pone.0302707.ref019 article-title: Functional knee assessment with advanced imaging publication-title: Curr Rev Musculoskelet Med doi: 10.1007/s12178-016-9340-0 – volume: 23 start-page: 2927 issue: 6 year: 2023 ident: pone.0302707.ref022 article-title: Reducing noise, artifacts and interference in single-channel emg signals: A review publication-title: Sensors doi: 10.3390/s23062927 – volume: 21 start-page: 5186 issue: 15 year: 2021 ident: pone.0302707.ref039 article-title: Advanced bioelectrical signal processing methods: Past, present and future approach—part i: Cardiac signals publication-title: Sensors doi: 10.3390/s21155186 – volume: 7 start-page: 164144 year: 2019 ident: pone.0302707.ref054 article-title: Entropy-based surface electromyogram feature extraction for knee osteoarthritis classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950665 – volume: 11 start-page: 1 year: 2018 ident: pone.0302707.ref021 article-title: Electromyographic activity of quadriceps muscle during sit-to-stand in patients with unilateral knee osteoarthritis publication-title: BMC research notes doi: 10.1186/s13104-018-3464-9 – volume: 2 start-page: 245 issue: 3 year: 2014 ident: pone.0302707.ref016 article-title: Prediction of sagittal lower limb joints moments under dynamic condition: Feasibility of using emg and arma model identification techniques publication-title: International Journal of Experimental and Computational Biomechanics doi: 10.1504/IJECB.2014.060402 – volume: 12 start-page: 2939 issue: 12 year: 2022 ident: pone.0302707.ref029 article-title: Identifying severity grading of knee osteoarthritis from x-ray images using an efficient mixture of deep learning and machine learning models publication-title: Diagnostics doi: 10.3390/diagnostics12122939 – volume: 12 start-page: 1520 issue: 7 year: 2023 ident: pone.0302707.ref015 article-title: Electromyography monitoring systems in rehabilitation: A review of clinical applications, wearable devices and signal acquisition methodologies publication-title: Electronics doi: 10.3390/electronics12071520 – volume: 76 issue: 1 year: 2023 ident: pone.0302707.ref025 article-title: A novel multi-stage bispectral deep learning method for protein family classification publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2023.038304 – volume: 2 start-page: 95 issue: 3 year: 2017 ident: pone.0302707.ref031 article-title: Diagnosing knee osteoarthritis using artificial neural networks and deep learning publication-title: Biomedical Statistics and Informatics – volume: 26 start-page: 997 issue: 7 year: 2014 ident: pone.0302707.ref013 article-title: Accelerometer and gyroscope based gait analysis using spectral analysis of patients with osteoarthritis of the knee publication-title: J Phys Ther Sci doi: 10.1589/jpts.26.997 – volume: 26 start-page: 722 issue: 5 year: 2022 ident: pone.0302707.ref053 article-title: Extreme gradient boosting for surface electromyography classification on time-domain features publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics doi: 10.20965/jaciii.2022.p0722 – volume: 5 start-page: 898 issue: 11 year: 2018 ident: pone.0302707.ref043 article-title: Bispectrum and bicoherence analysis using hosa (higher order spectral analysis)–a review publication-title: European Journal of Advances in Engineering and Technology – volume: 13 start-page: 6922 issue: 1 year: 2023 ident: pone.0302707.ref027 article-title: Prediction of total knee replacement using deep learning analysis of knee mri publication-title: Scientific Reports doi: 10.1038/s41598-023-33934-1 – volume: 14 start-page: 13464 year: 2022 ident: pone.0302707.ref032 article-title: An ensemble machine learning technique for detection of abnormalities in knee movement sustainability publication-title: Sustainability doi: 10.3390/su142013464 – volume: 4 start-page: 6 year: 2009 ident: pone.0302707.ref018 article-title: New fluoroscopic imaging technique for investigation of 6dof knee kinematics during treadmill gait publication-title: J Orthop Surg Res doi: 10.1186/1749-799X-4-6 – ident: pone.0302707.ref033 doi: 10.1109/ICCCA49541.2020.9250799 – volume: 16 start-page: e0261862 issue: 12 year: 2021 ident: pone.0302707.ref038 article-title: Effects of age and knee osteoarthritis on the modular control of walking: A pilot study publication-title: PLoS One doi: 10.1371/journal.pone.0261862 |
| SSID | ssj0053866 |
| Score | 2.4779034 |
| Snippet | Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0302707 |
| SubjectTerms | Accuracy Adult Aged Algorithms Arthritis Artificial intelligence Biology and Life Sciences Cartilage Computer and Information Sciences Data mining Datasets Deep Learning Diagnosis Electromyography Electromyography - methods Female Health aspects Humans Joints (anatomy) Knee Knee Joint - physiopathology Machine learning Magnetic resonance imaging Male Medical diagnosis Medical examination Medical imaging Medical research Medicine and Health Sciences Medicine, Experimental Methods Middle Aged Muscle function Muscle, Skeletal - physiopathology Muscles Osteoarthritis Osteoarthritis, Knee - diagnosis Osteoarthritis, Knee - physiopathology Pathology Quadriceps muscle Research and Analysis Methods Signal processing Signal Processing, Computer-Assisted Spectral analysis Spectral resolution Spectrum analysis Tomography X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTePYiY8FtRQkQAKKeosce7ytWGVXZFeIf8-M4402olJ74LCXzGSlzCsz8cw3jL1syhxURWVJbmRaSA9p5aRIJdgqt94rDMzUbfFZnZwWH8_k2daqL-oJ6-GBe8HtZ8KrykrrmsYUuS2qArSxXoI3BWG3UPTNKr0ppvoYjF6sVByUE-XBftTLdLloYZrRUR2tj916EQW8_iEqT5bzRXdZyvlv5-TNdbs0f36b-XzrtXR8h92O-SQ_7J9jh92A9i7biR7b8dcRVvrNPTZD12_COggO7Xk4-OdhzhLJHIvuaIN84fnRp_fctI4b7gCWPG6WmPENADnHTJf_bAE4LTQOH-a563v2Lrr77PT46Pu7kzSuWUit0mKVgi1MKXOUWJM5YUGXDYEAgsu1oezEN1phUeUzd5DhL3dCGszTwCvntcGI8YBNWhTsLuMYLYwFKZ0CV-Su1MY1ugJPG9ezRviEiY3MaxsxyGkVxrwOB2sl1iK92GrSVB01lbB0uGvZY3Bcwf-W1DnwEoJ2uIB2VUe7qq-yq4Q9I2Oo-3HUIQ7Uh6Um0HohVcJeBA5C0WipTWdm1l1Xf_jy4xpM376OmF5FJr9AcVgTRyPwmQida8S5N-LEWGBH5F0y3Y1UuhoLQk0zsjnduTHny8nPBzL9KbXetbBYE4_EEplg-BL2sLf-QbICy20RKNXIL0aiH1Pai_MAYk7fHTD5LRI2HVzoWtp99D-0-5jdyjE7DZ2r5R6brH6t4Qlml6vmaQgkfwHA1Xt- priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QFe0MbXCgMCQgIeerulTdo-ILShGwOJAw2G9lal-bhNnNpuvRPiv8dO07KKCfbQl9qtVMd27cT-mZAXRcKMSDEtYZKHMbcmTDWPQm5UypS1AhwzVlvMxOFx_PGEn6yRWdcLg2WVnU90jlpXCvfIdyC0zbDbj4m39XmIU6PwdLUboSH9aAX9xkGM3SDrDJGxRmR9fzr7ctT5ZrBuIXwDXZTs7vj1GtdVacYTPMLDsbKXflAOx7_31qN6UTVXhaJ_V1TeXJW1_PVTLhaXflcHG-S2jzPpXqsYm2TNlHfIprfkhr7ycNOv75I5uITCjYmgpjx1BQHU9V8CmUIy7nWTVpZOP72nstRUUm1MTf3EiTntgMkpRMD0R2kMxUHHbsOe6raW76y5R44Ppt_eHYZ-_EKoRBYtQ6NimXAGEismOlImSwoEBzSaZRKjFltkApItO9G7E7iYjriE-M1YoW0mwZPcJ6MSBLtFKHgRqQznWhgdM51kUhdZaixOYp8UkQ1I1Mk8Vx6bHEdkLHJ34JZAjtKKLceVyv1KBSTsn6pbbI7_8O_jcva8iKztblQX89wbKvBakSqudFHImKk4jU0mleXGyhixggLyFJUhb9tUe_-Q7yUZgtlHXATkueNAdI0Sy3fmctU0-YfP36_B9PVowPTSM9kKxKGkb5mAb0LUrgHn9oATfIQakLdQdTupNPkfa4InO3W-mvysJ-NLsSSvNNUKeTikzgjPF5AHrfb3ko0gDY8cJR3YxUD0Q0p5durAzXE_AoLiOCDj3oSutboP__0hj8gtBvGoq1VNtsloebEyjyGeXBZPvJP4DQkMeFc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wO8AONrhQEBIQESPbqmSdvHA20MpA0EHNqeqjQft2mn3oleheCvx07TaoUhjoe-1E6rOLFrN_bPhDwt09iIDMOSWPIw4daEmeYs5EZlsbJWgGHGbIsjcTBN3h_z4w3ysquFuXh-z9LdV16i4-WiMuMID9mwdHxTcPC8R2RzevRxctIeHMfwuoj56ri_DR18fRxIf2-KR8v5or7Mz_wzXfJKUy3lj-9yPr_wLdq_Tg67WbQpKOfjZlWO1c_fAB7XneYNcs07pXTS7qItsmGqm2TLq31Nn3ts6he3yAzsR-l6SlBTnbrsAeqKNYFMIXL3G5kuLN07fEtlpamk2pgl9e0pZrRDMafgLtPzyhiKXZHd332q28S_s_o2me7vfXlzEPpeDaESOVuFRiUy5XEmRBlppkyelogkaHScS3RxbJkLiMxspHcjuGLNuARnz1ihbS7B7Nwhowomv00omBypDOdaGJ3EOs2lLvPMWGzbHpXMBoR1a1goD2SO_TTmhTudSyGgacVWoDQLL82AhP2oZQvk8Q_-17g9el6E4XY3YNkKr9XAa0WmuNJlKZNYJVlicqksN1YmCCwUkEe4uYq2prU3JsUkzRH5nnERkCeOA6E4Ksz1mcmmrot3H76uwfT504DpmWeyCxCHkr6-AuaEEF8Dzp0BJxgUNSBvoyp0UqkLiCpzLLSNcWSnHpeTH_dkfCjm71Vm0SAPhzgbsfwCcrfVpl6yDGJ25ijZQM8Goh9SqrNTh4SOPy_Ag04CMu5Vcq3Vvfe_A-6TqzG4sy7VNd0ho9W3xjwAd3RVPvRW6BfMhIq2 priority: 102 providerName: Unpaywall |
| Title | Combining enhanced spectral resolution of EMG and a deep learning approach for knee pathology diagnosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38713653 https://www.proquest.com/docview/3069285426 https://www.proquest.com/docview/3052594653 https://pubmed.ncbi.nlm.nih.gov/PMC11075844 https://doi.org/10.1371/journal.pone.0302707 https://doaj.org/article/03f68c5cdbba42c484e9acf5efa40228 http://dx.doi.org/10.1371/journal.pone.0302707 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAXRHnVUMKCkICDI8f2-nFAKK2SFqSGqhCUnqz1PtKKyA5xIui_Z2aztrAIohzig2fWcmZnxzO7M98Q8iqPfRUlGJb4nLkh08pNJAtcpkTiC60jMMyYbTGOTibhxymb7pC6Z6sVYLU1tMN-UpPlvPfz-_V7WPDvTNeGuF8P6i3KQvU8PIjD8vJd-Fal2MzhNGzOFWB1m9NL9Frg7bzAFtP97Smtj5XB9G8sd2cxL6ttbumf2ZW318WCX__g8_lvn67RPXLX-px0sFGSPbKjivtkz67qir6x0NNvH5AZmIfctIygqrg0yQHU1GICmUJgbvWUlpoOT48pLyTlVCq1oLb7xIzWIOUUvGH6rVCKYtNjs3lP5Sav76p6SCaj4ZejE9e2YnBFlAYrV4mQx8wH6eWeDIRK4xyBApX0U44ejM7TCAIv7cm-Bz9fBoyDL6d0JHXKwao8Ip0CBLtPKFgULhRjMlIy9GWccpmnidLYld3LA-2QoJZ5JixOObbLmGfm8C2GeGUjtgxnKrMz5RC3GbXY4HT8g_8Qp7PhRZRtc6NczjK7aIFXR4lgQuY5D30RJqFKudBMaR4ibpBDnqMyZJuS1cZWZIM4RWD7gEUOeWk4EGmjwFSeGV9XVfbh09cbMH0-bzG9tky6BHEIbssn4D8hgleL86DFCfZCtMj7qLq1VKoMgsYU62h9HFmr83byi4aMD8X0vEKVa-RhEEYjVJ9DHm-0v5FsACF5YChJa120RN-mFFeXBugc9ybAQQ4d0muW0I1m98l_asNTcscHZ9UkssYHpLNartUzcDZXeZfciqcxXJOjPl5Hx12yezgcn513zfZN19gXuDcZnw0ufgEvgoZ_ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHl1oVCDQMAh220SO8kBoQItXfpAgrbaW3D82FasktDsquqf4jcy4zihERX00kMumUmkzIw_z8TzIORFFvmaxxiW-IJ5ITPaixULPKZl7EtjOAAzZlvs8-3D8POYjRfIr6YWBtMqG0y0QK0Kif_I18C1TbDaz-fvyp8eTo3C09VmhEZtFjv6_AxCturt6CPo96Xvb20efNj23FQBT_IkmHlahiJifsx5NlSB1EmUYc87rfxE4GZssoRDDGGGan0Il68CJsAt0YYrkwhYIPDeG-RmGACWwPqJxm2AB9jBuSvPC6L1NWcNg7LI9WCIB4Q4tPbC9menBLR7Qa-cFtVlju7f-ZqL87wU52diOr2wGW7dIbedF0s3arNbIgs6v0uWHE5U9LVrZv3mHpkA4GR2CAXV-bFNN6C2uhPIFEJ9Z_m0MHRz7xMVuaKCKq1L6uZZTGjT9pyCf01_5FpTHKNsjwOoqjMFT6r75PBa1PCA9HIQ7DKhgFFCasYU1yr0VZQIlSWxNjjnfZgFpk-CRuapdJ3PcQDHNLXHeRFEQLXYUtRU6jTVJ177VFl3_vgP_3tUZ8uLfbvtjeJ0kjoYAF7DY8mkyjIR-jKMQ50IaZg2IsRORH2yisaQ1kWwLfqkG1GCrfIDxvvkueXA3h05JgdNxLyq0tGXoyswffvaYXrlmEwB4pDCFWTAN2FPsA7nSocTEEh2yMtouo1UqvTPWoUnG3O-nPysJeNLMeEv18UceRgE5tj8r08e1tbfSjaAID-wlLizLjqi71Lyk2PbOh3_doDLHfbJoF1CV9Luo39_yCpZ3D7Y2013R_s7j8ktHzxfmxUbrZDe7HSun4DnOsueWrig5Pt149Nvl5muNg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCQ3W0SO8kBoUJbuhQKAor2Fhw_thWrZGl2VfWv8euYcZzQiAp66SGXeBIp8_g8E8-DkCd5HGieYFgSCOZHzGg_USz0mZZJII3hAMyYbbHHd_ajd2M2XiK_mloYTKtsMNECtSol_iMfgGubYrVfwAfGpUV82tx-Nfvp4wQpPGltxmnUKrKrT44hfKtejjZB1k-DYHvr65sd300Y8CVPw7mvZSRiFiSc50MVSp3GOfa_0ypIBW7MJk85xBNmqNaHcAUqZAJcFG24MqkAY4H3XiKX4zBMMZ0wHrfBHuAI565UL4zXB04z-rOy0P0hHhbiANtTW6GdGNDuC73ZtKzOcnr_zt28uihm4uRYTKenNsbtG-S682jpRq2Cy2RJFzfJssOMij53ja1f3CITAJ_cDqSgujiwqQfUVnrCMoWw31kBLQ3d-vCWikJRQZXWM-pmW0xo0wKdgq9NfxRaUxypbI8GqKqzBg-r22T_QsRwh_QKYOwKoYBXQmrGFNcqClScCpWniTY4832Yh8YjYcPzTLou6DiMY5rZo70YoqGabRlKKnOS8ojfPjWru4D8h_41irOlxR7e9kZ5NMkcJACt4YlkUuW5iAIZJZFOhTRMGxFhVyKPrKEyZHVBbItE2UacYtv8kHGPPLYU2MejQIuYiEVVZaOP385B9OVzh-iZIzIlsEMKV5wB34T9wTqUqx1KQCPZWV5B1W24UmV_7BaebNT57OVH7TK-FJP_Cl0ukIZBkI6NAD1yt9b-lrMhBPyhXUk6dtFhfXelODywbdTxzwe435FH-q0JnUu69_79IWvkCiBT9n60t3ufXAvACbYJsvEq6c2PFvoBOLHz_KFFC0q-XzQ8_Qb9L7J5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wO8AONrhQEBIQESPbqmSdvHA20MpA0EHNqeqjQft2mn3oleheCvx07TaoUhjoe-1E6rOLFrN_bPhDwt09iIDMOSWPIw4daEmeYs5EZlsbJWgGHGbIsjcTBN3h_z4w3ysquFuXh-z9LdV16i4-WiMuMID9mwdHxTcPC8R2RzevRxctIeHMfwuoj56ri_DR18fRxIf2-KR8v5or7Mz_wzXfJKUy3lj-9yPr_wLdq_Tg67WbQpKOfjZlWO1c_fAB7XneYNcs07pXTS7qItsmGqm2TLq31Nn3ts6he3yAzsR-l6SlBTnbrsAeqKNYFMIXL3G5kuLN07fEtlpamk2pgl9e0pZrRDMafgLtPzyhiKXZHd332q28S_s_o2me7vfXlzEPpeDaESOVuFRiUy5XEmRBlppkyelogkaHScS3RxbJkLiMxspHcjuGLNuARnz1ihbS7B7Nwhowomv00omBypDOdaGJ3EOs2lLvPMWGzbHpXMBoR1a1goD2SO_TTmhTudSyGgacVWoDQLL82AhP2oZQvk8Q_-17g9el6E4XY3YNkKr9XAa0WmuNJlKZNYJVlicqksN1YmCCwUkEe4uYq2prU3JsUkzRH5nnERkCeOA6E4Ksz1mcmmrot3H76uwfT504DpmWeyCxCHkr6-AuaEEF8Dzp0BJxgUNSBvoyp0UqkLiCpzLLSNcWSnHpeTH_dkfCjm71Vm0SAPhzgbsfwCcrfVpl6yDGJ25ijZQM8Goh9SqrNTh4SOPy_Ag04CMu5Vcq3Vvfe_A-6TqzG4sy7VNd0ho9W3xjwAd3RVPvRW6BfMhIq2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+enhanced+spectral+resolution+of+EMG+and+a+deep+learning+approach+for+knee+pathology+diagnosis&rft.jtitle=PloS+one&rft.au=Khader%2C+Ateka&rft.au=Zyout%2C+Ala%E2%80%99a&rft.au=Al+Fahoum%2C+Amjed&rft.date=2024-05-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0302707&rft_id=info:doi/10.1371%2Fjournal.pone.0302707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0302707 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |