Combining enhanced spectral resolution of EMG and a deep learning approach for knee pathology diagnosis

Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The prin...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 5; p. e0302707
Main Authors Khader, Ateka, Zyout, Ala’a, Al Fahoum, Amjed
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.05.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0302707

Cover

Abstract Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals’ higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method’s superiority, some limitations still require special consideration and will be addressed in future research.
AbstractList Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals’ higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method’s superiority, some limitations still require special consideration and will be addressed in future research.
Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals' higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method's superiority, some limitations still require special consideration and will be addressed in future research.Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography (EMG)-based method for diagnosing knee pathologies. EMG signals of the muscles surrounding the knee joint were examined and recorded. The principal components of the proposed method were preprocessing, high-order spectral analysis (HOSA), and diagnosis/recognition through deep learning. EMG signals from individuals with normal and OA knees while walking were extracted from a publicly available database. This examination focused on the quadriceps femoris, the medial gastrocnemius, the rectus femoris, the semitendinosus, and the vastus medialis. Filtration and rectification were utilized beforehand to eradicate noise and smooth EMG signals. Signals' higher-order spectra were analyzed with HOSA to obtain information about nonlinear interactions and phase coupling. Initially, the bicoherence representation of EMG signals was devised. The resulting images were fed into a deep-learning system for identification and analysis. A deep learning algorithm using adapted ResNet101 CNN model examined the images to determine whether the EMG signals were conventional or indicative of knee osteoarthritis. The validated test results demonstrated high accuracy and robust metrics, indicating that the proposed method is effective. The medial gastrocnemius (MG) muscle was able to distinguish Knee osteoarthritis (KOA) patients from normal with 96.3±1.7% accuracy and 0.994±0.008 AUC. MG has the highest prediction accuracy of KOA and can be used as the muscle of interest in future analysis. Despite the proposed method's superiority, some limitations still require special consideration and will be addressed in future research.
Audience Academic
Author Zyout, Ala’a
Khader, Ateka
Al Fahoum, Amjed
AuthorAffiliation Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid, Jordan
Chongqing University Three Gorges Hospital, CHINA
AuthorAffiliation_xml – name: Chongqing University Three Gorges Hospital, CHINA
– name: Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid, Jordan
Author_xml – sequence: 1
  givenname: Ateka
  orcidid: 0000-0002-8168-6109
  surname: Khader
  fullname: Khader, Ateka
– sequence: 2
  givenname: Ala’a
  surname: Zyout
  fullname: Zyout, Ala’a
– sequence: 3
  givenname: Amjed
  surname: Al Fahoum
  fullname: Al Fahoum, Amjed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38713653$$D View this record in MEDLINE/PubMed
BookMark eNqNk-1r1TAUxotM3Iv-B6IFQfTDvaZJ0zZ-kXGZczAZ-PY1nKYnvbnmJrVp1f33prt3Y3cMGaW0nP6eJyfPaQ6TPecdJsnzjMwzVmbvVn7sHdh5F8tzwggtSfkoOcgEo7OCErZ3630_OQxhRQhnVVE8SfZZVWas4OwgaRd-XRtnXJuiW4JT2KShQzX0YNMeg7fjYLxLvU5PPp-m4JoU0gaxSy1Cf6WDrus9qGWqfZ_-dIhpB8PSW99epo2B1vlgwtPksQYb8Nn2eZR8_3jybfFpdn5xerY4Pp-pQrBhhiqHktPYZU0aplCUdV5ygQ0VUOVFqWtRZEWuSZOReNOGcah4hrpotICSsKPk5ca3sz7IbUZBMlIIWvGcFpE42xCNh5XserOG_lJ6MPKq4PtWQj8YZVESpotKcdXUNeRU5VWOApTmqCEnlFbRi2-8RtfB5R-w9sYwI3Ia03ULchqT3I4p6j5suxzrNTYK3ZT3TjO7X5xZytb_lllGSl7leXR4s3Xo_a8RwyDXJii0Fhz6cdowp1zkccYRfXUHvT-WLdVC3Llx2seF1WQqj0tBRSUYn6j5PVS8GlwbFbeoTazvCN7uCCIz4N-hhTEEefb1y8PZix-77Otb7BLBDsvrnzXsgi9uR32T8fURiEC-AVTvQ-hRP3SE7-_IlBlgWj4mYuz_xf8AUYYu0Q
CitedBy_id crossref_primary_10_3389_fbioe_2024_1401153
crossref_primary_10_1016_j_bspc_2025_107800
crossref_primary_10_1007_s13369_024_09954_y
Cites_doi 10.1002/art.24541
10.1016/j.cger.2010.03.001
10.1155/2022/3321810
10.32604/cmc.2022.018270
10.1109/TBME.2014.2307698
10.1016/j.bspc.2021.102406
10.1259/bjr.20180168
10.1109/TNSRE.2018.2796070
10.1097/00003677-200101000-00005
10.1109/79.221324
10.1016/j.clinbiomech.2010.11.018
10.3390/bioengineering10020249
10.1002/jor.23519
10.1016/j.neunet.2020.01.017
10.1109/IEMBS.2005.1616412
10.1016/j.apacoust.2021.108078
10.1016/B978-0-12-819361-7.00012-9
10.1016/j.joca.2007.03.024
10.32604/cmc.2023.037431
10.1016/S0033-8389(22)02734-8
10.1251/bpo115
10.1093/rheumatology/39.11.1218
10.1142/S0129065724500461
10.1016/j.ibmed.2023.100123
10.3390/genes11080854
10.1186/1471-2474-9-116
10.1109/CVPR.2016.90
10.1007/s11063-020-10361-1
10.1109/NKCon56289.2022.10126934
10.3109/03091902.2014.925983
10.1016/j.jbiomech.2019.109567
10.1016/j.clinbiomech.2013.07.008
10.1016/S1063-4584(03)00080-3
10.1007/s12178-016-9340-0
10.3390/s23062927
10.3390/s21155186
10.1109/ACCESS.2019.2950665
10.1186/s13104-018-3464-9
10.1504/IJECB.2014.060402
10.3390/diagnostics12122939
10.3390/electronics12071520
10.32604/cmc.2023.038304
10.1589/jpts.26.997
10.20965/jaciii.2022.p0722
10.1038/s41598-023-33934-1
10.3390/su142013464
10.1186/1749-799X-4-6
10.1109/ICCCA49541.2020.9250799
10.1371/journal.pone.0261862
ContentType Journal Article
Copyright Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Khader et al 2024 Khader et al
2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Khader et al 2024 Khader et al
– notice: 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0302707
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database
CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Deep learning approach for detection knee pathology using EMG signal
EISSN 1932-6203
ExternalDocumentID 3069285426
oai_doaj_org_article_03f68c5cdbba42c484e9acf5efa40228
10.1371/journal.pone.0302707
PMC11075844
A792989356
38713653
10_1371_journal_pone_0302707
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Jordan
GeographicLocations_xml – name: Jordan
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-ec4a752866b0d3ce97b4759ed29a8467fb96164f0d100d12d35a851ef6df9a703
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:10 EST 2024
Fri Oct 03 12:26:05 EDT 2025
Sun Oct 26 04:12:51 EDT 2025
Tue Sep 30 17:08:53 EDT 2025
Sun Sep 28 07:36:29 EDT 2025
Tue Oct 07 07:21:15 EDT 2025
Mon Oct 20 22:53:22 EDT 2025
Mon Oct 20 16:58:41 EDT 2025
Thu Oct 16 16:20:52 EDT 2025
Thu Oct 16 16:01:40 EDT 2025
Thu May 22 21:24:02 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Wed Oct 01 00:48:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2024 Khader et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-ec4a752866b0d3ce97b4759ed29a8467fb96164f0d100d12d35a851ef6df9a703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8168-6109
OpenAccessLink https://doaj.org/article/03f68c5cdbba42c484e9acf5efa40228
PMID 38713653
PQID 3069285426
PQPubID 1436336
PageCount e0302707
ParticipantIDs plos_journals_3069285426
doaj_primary_oai_doaj_org_article_03f68c5cdbba42c484e9acf5efa40228
unpaywall_primary_10_1371_journal_pone_0302707
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11075844
proquest_miscellaneous_3052594653
proquest_journals_3069285426
gale_infotracmisc_A792989356
gale_infotracacademiconefile_A792989356
gale_incontextgauss_ISR_A792989356
gale_incontextgauss_IOV_A792989356
gale_healthsolutions_A792989356
pubmed_primary_38713653
crossref_primary_10_1371_journal_pone_0302707
crossref_citationtrail_10_1371_journal_pone_0302707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-07
PublicationDateYYYYMMDD 2024-05-07
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References HS Al Amer (pone.0302707.ref021) 2018; 11
K Shamaei (pone.0302707.ref005) 2014; 61
pone.0302707.ref036
pone.0302707.ref035
pone.0302707.ref033
pone.0302707.ref030
A Al Fahoum (pone.0302707.ref045) 2023; 8
I Abu-Qasmieh (pone.0302707.ref023) 2023; 75
K Mills (pone.0302707.ref057) 2013; 28
C Chaisson (pone.0302707.ref008) 2000; 39
A Vijayvargiya (pone.0302707.ref052) 2021; 66
GR Naik (pone.0302707.ref011) 2018; 26
HR Rajamohan (pone.0302707.ref027) 2023; 13
A Vijayvargiya (pone.0302707.ref034) 2022; 2022
SM Ling (pone.0302707.ref020) 2007; 15
H Akbari (pone.0302707.ref048) 2021; 179
M Martínez (pone.0302707.ref042) 2020; 5
SAaS Sivagamasundari (pone.0302707.ref043) 2018; 5
pone.0302707.ref047
R Martinek (pone.0302707.ref039) 2021; 21
T de Dieu Uwisengeyimana JandIbrikci (pone.0302707.ref031) 2017; 2
MF Sowers (pone.0302707.ref006) 2003; 11
H Bansal (pone.0302707.ref032) 2022; 14
JM Nikias CLandMendel (pone.0302707.ref041) 1993; 10
AS Al-Fahoum (pone.0302707.ref016) 2014; 2
SM Ahmed (pone.0302707.ref029) 2022; 12
DJ Rutherford (pone.0302707.ref056) 2011; 26
SA Roelker (pone.0302707.ref038) 2021; 16
AS Al Fahoum (pone.0302707.ref024) 2023; 10
SJ Lu (pone.0302707.ref010) 2018; 91
A Al Fahoum (pone.0302707.ref025) 2023; 76
N. Parisi LandRaviChandran (pone.0302707.ref055) 2020; 52
S Raghu (pone.0302707.ref046) 2020; 124
JE Langer (pone.0302707.ref009) 1990; 28
A Swami (pone.0302707.ref044) 1998; 3
JM Zhang YandJordan (pone.0302707.ref001) 2010; 26
MB Raez (pone.0302707.ref014) 2006; 8
JF Hafer (pone.0302707.ref012) 2020; 99
A Khan (pone.0302707.ref049) 2022; 70
O. Sanchez JS (pone.0302707.ref051) 2014
M Al-Ayyad (pone.0302707.ref015) 2023; 12
W Staab (pone.0302707.ref013) 2014; 26
F Bruno (pone.0302707.ref050) 2018; 89
A Al-Fahoum (pone.0302707.ref037) 2014; 38
R Merletti (pone.0302707.ref040) 2001; 29
pone.0302707.ref026
K Amano (pone.0302707.ref019) 2016; 9
M Boyer (pone.0302707.ref022) 2023; 23
NA Segal (pone.0302707.ref004) 2009; 61
X Chen (pone.0302707.ref054) 2019; 7
A Al-Fahoum (pone.0302707.ref017) 2015; 27
D Primorac (pone.0302707.ref003) 2020; 11
J Zhao (pone.0302707.ref053) 2022; 26
A Vijayvargiya (pone.0302707.ref002) 2019
BG Ashinsky (pone.0302707.ref028) 2017; 35
G Li (pone.0302707.ref018) 2009; 4
PR Bedson JandCroft (pone.0302707.ref007) 2008; 9
References_xml – volume: 61
  start-page: 1210
  issue: 9
  year: 2009
  ident: pone.0302707.ref004
  article-title: Effect of thigh strength on incident radiographic and symptomatic knee osteoarthritis in a longitudinal cohort
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24541
– volume: 26
  start-page: 355
  issue: 3
  year: 2010
  ident: pone.0302707.ref001
  article-title: Epidemiology of osteoarthritis
  publication-title: Clinics in Geriatric Medicine
  doi: 10.1016/j.cger.2010.03.001
– volume: 2022
  year: 2022
  ident: pone.0302707.ref034
  article-title: Hybrid deep learning approaches for semg signal-based lower limb activity recognition
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2022/3321810
– volume: 70
  issue: 2
  year: 2022
  ident: pone.0302707.ref049
  article-title: Human gait recognition using deep learning and improved ant colony optimization
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.018270
– volume: 61
  start-page: 1809
  issue: 6
  year: 2014
  ident: pone.0302707.ref005
  article-title: Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2014.2307698
– volume: 66
  start-page: 102406
  year: 2021
  ident: pone.0302707.ref052
  article-title: Human knee abnormality detection from imbalanced semg data
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102406
– volume: 91
  start-page: 20180168
  issue: 1090
  year: 2018
  ident: pone.0302707.ref010
  article-title: Radionuclide bone spect/ct in the evaluation of knee pain: Comparing two-phase bone scintigraphy, spect and spect/ct
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20180168
– volume: 26
  start-page: 675
  issue: 3
  year: 2018
  ident: pone.0302707.ref011
  article-title: An ica-ebm-based semg classifier for recognizing lower limb movements in individuals with and without knee pathology
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2018.2796070
– volume: 29
  start-page: 20
  issue: 1
  year: 2001
  ident: pone.0302707.ref040
  article-title: Surface electromyography for noninvasive characterization of muscle
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200101000-00005
– volume: 10
  start-page: 10
  issue: 3
  year: 1993
  ident: pone.0302707.ref041
  article-title: Signal processing with higher-order spectra
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.221324
– volume: 26
  start-page: 377
  issue: 4
  year: 2011
  ident: pone.0302707.ref056
  article-title: Neuromuscular alterations exist with knee osteoarthritis presence and severity despite walking velocity similarities
  publication-title: Clinical Biomechanics
  doi: 10.1016/j.clinbiomech.2010.11.018
– volume: 10
  start-page: 249
  issue: 2
  year: 2023
  ident: pone.0302707.ref024
  article-title: Identification of coronary artery diseases using photoplethysmography signals and practical feature selection process
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10020249
– volume: 35
  start-page: 2243
  issue: 10
  year: 2017
  ident: pone.0302707.ref028
  article-title: Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative
  publication-title: J Orthop Res
  doi: 10.1002/jor.23519
– volume: 124
  start-page: 202
  year: 2020
  ident: pone.0302707.ref046
  article-title: Eeg based multi-class seizure type classification using convolutional neural network and transfer learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.01.017
– year: 2014
  ident: pone.0302707.ref051
  article-title: Emg dataset in lower limb
  publication-title: UCI Machine Learning Repository
– ident: pone.0302707.ref036
  doi: 10.1109/IEMBS.2005.1616412
– volume: 179
  start-page: 108078
  year: 2021
  ident: pone.0302707.ref048
  article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2021.108078
– start-page: 243
  volume-title: Sensors for health monitoring
  year: 2019
  ident: pone.0302707.ref002
  doi: 10.1016/B978-0-12-819361-7.00012-9
– volume: 3
  start-page: 22
  year: 1998
  ident: pone.0302707.ref044
  article-title: Higher-order spectral analysis toolbox
  publication-title: The Mathworks Inc
– volume: 15
  start-page: 1134
  issue: 10
  year: 2007
  ident: pone.0302707.ref020
  article-title: Electromyographic patterns suggest changes in motor unit physiology associated with early osteoarthritis of the knee
  publication-title: Osteoarthritis and cartilage
  doi: 10.1016/j.joca.2007.03.024
– volume: 75
  issue: 2
  year: 2023
  ident: pone.0302707.ref023
  article-title: An innovative bispectral deep learning method for protein family classification
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2023.037431
– volume: 28
  start-page: 975
  issue: 5
  year: 1990
  ident: pone.0302707.ref009
  article-title: Imaging of the knee
  publication-title: Radiologic Clinics of North America
  doi: 10.1016/S0033-8389(22)02734-8
– volume: 8
  start-page: 11
  year: 2006
  ident: pone.0302707.ref014
  article-title: Techniques of emg signal analysis: Detection, processing, classification and applications
  publication-title: Biol Proced Online
  doi: 10.1251/bpo115
– volume: 39
  start-page: 1218
  issue: 11
  year: 2000
  ident: pone.0302707.ref008
  article-title: Detecting radiographic knee osteoarthritis: What combination of views is optimal?
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/39.11.1218
– ident: pone.0302707.ref026
  doi: 10.1142/S0129065724500461
– volume: 8
  start-page: 100123
  year: 2023
  ident: pone.0302707.ref045
  article-title: Early detection of neurological abnormalities using a combined phase space reconstruction and deep learning approach
  publication-title: Intelligence-Based Medicine
  doi: 10.1016/j.ibmed.2023.100123
– volume: 11
  issue: 8
  year: 2020
  ident: pone.0302707.ref003
  article-title: Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations
  publication-title: Genes (Basel)
  doi: 10.3390/genes11080854
– volume: 9
  start-page: 116
  issue: 1
  year: 2008
  ident: pone.0302707.ref007
  article-title: The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature
  publication-title: BMC Musculoskeletal Disorders
  doi: 10.1186/1471-2474-9-116
– ident: pone.0302707.ref047
  doi: 10.1109/CVPR.2016.90
– ident: pone.0302707.ref035
– volume: 52
  start-page: 2565
  issue: 3
  year: 2020
  ident: pone.0302707.ref055
  article-title: Evolutionary denoising-based machine learning for detecting knee disorders
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-020-10361-1
– volume: 5
  year: 2020
  ident: pone.0302707.ref042
  article-title: Higher-order spectral analysis of stray flux signals for faults detection in induction motors
  publication-title: Applied Mathematics and Nonlinear Sciences
– volume: 89
  start-page: 78
  issue: 1-s
  year: 2018
  ident: pone.0302707.ref050
  article-title: Weight-bearing mri of the knee: A review of advantages and limits
  publication-title: Acta Biomed
– ident: pone.0302707.ref030
  doi: 10.1109/NKCon56289.2022.10126934
– volume: 38
  start-page: 311
  issue: 6
  year: 2014
  ident: pone.0302707.ref037
  article-title: Detection of cardiac ischaemia using bispectral analysis approach
  publication-title: Journal of medical engineering & technology
  doi: 10.3109/03091902.2014.925983
– volume: 99
  start-page: 109567
  year: 2020
  ident: pone.0302707.ref012
  article-title: Measuring markers of aging and knee osteoarthritis gait using inertial measurement units
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2019.109567
– volume: 28
  start-page: 713
  issue: 7
  year: 2013
  ident: pone.0302707.ref057
  article-title: A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2013.07.008
– volume: 11
  start-page: 387
  issue: 6
  year: 2003
  ident: pone.0302707.ref006
  article-title: Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and x-ray-defined knee osteoarthritis
  publication-title: Osteoarthritis and Cartilage
  doi: 10.1016/S1063-4584(03)00080-3
– volume: 27
  start-page: 1550023
  issue: 03
  year: 2015
  ident: pone.0302707.ref017
  article-title: Feasibility study for anfis and emg utilization in modeling prosthesis for trans-femoral cut rehabilitation and gait cycle restoration
  publication-title: Biomedical Engineering: Applications, Basis and Communications
– volume: 9
  start-page: 123
  issue: 2
  year: 2016
  ident: pone.0302707.ref019
  article-title: Functional knee assessment with advanced imaging
  publication-title: Curr Rev Musculoskelet Med
  doi: 10.1007/s12178-016-9340-0
– volume: 23
  start-page: 2927
  issue: 6
  year: 2023
  ident: pone.0302707.ref022
  article-title: Reducing noise, artifacts and interference in single-channel emg signals: A review
  publication-title: Sensors
  doi: 10.3390/s23062927
– volume: 21
  start-page: 5186
  issue: 15
  year: 2021
  ident: pone.0302707.ref039
  article-title: Advanced bioelectrical signal processing methods: Past, present and future approach—part i: Cardiac signals
  publication-title: Sensors
  doi: 10.3390/s21155186
– volume: 7
  start-page: 164144
  year: 2019
  ident: pone.0302707.ref054
  article-title: Entropy-based surface electromyogram feature extraction for knee osteoarthritis classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950665
– volume: 11
  start-page: 1
  year: 2018
  ident: pone.0302707.ref021
  article-title: Electromyographic activity of quadriceps muscle during sit-to-stand in patients with unilateral knee osteoarthritis
  publication-title: BMC research notes
  doi: 10.1186/s13104-018-3464-9
– volume: 2
  start-page: 245
  issue: 3
  year: 2014
  ident: pone.0302707.ref016
  article-title: Prediction of sagittal lower limb joints moments under dynamic condition: Feasibility of using emg and arma model identification techniques
  publication-title: International Journal of Experimental and Computational Biomechanics
  doi: 10.1504/IJECB.2014.060402
– volume: 12
  start-page: 2939
  issue: 12
  year: 2022
  ident: pone.0302707.ref029
  article-title: Identifying severity grading of knee osteoarthritis from x-ray images using an efficient mixture of deep learning and machine learning models
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12122939
– volume: 12
  start-page: 1520
  issue: 7
  year: 2023
  ident: pone.0302707.ref015
  article-title: Electromyography monitoring systems in rehabilitation: A review of clinical applications, wearable devices and signal acquisition methodologies
  publication-title: Electronics
  doi: 10.3390/electronics12071520
– volume: 76
  issue: 1
  year: 2023
  ident: pone.0302707.ref025
  article-title: A novel multi-stage bispectral deep learning method for protein family classification
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2023.038304
– volume: 2
  start-page: 95
  issue: 3
  year: 2017
  ident: pone.0302707.ref031
  article-title: Diagnosing knee osteoarthritis using artificial neural networks and deep learning
  publication-title: Biomedical Statistics and Informatics
– volume: 26
  start-page: 997
  issue: 7
  year: 2014
  ident: pone.0302707.ref013
  article-title: Accelerometer and gyroscope based gait analysis using spectral analysis of patients with osteoarthritis of the knee
  publication-title: J Phys Ther Sci
  doi: 10.1589/jpts.26.997
– volume: 26
  start-page: 722
  issue: 5
  year: 2022
  ident: pone.0302707.ref053
  article-title: Extreme gradient boosting for surface electromyography classification on time-domain features
  publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics
  doi: 10.20965/jaciii.2022.p0722
– volume: 5
  start-page: 898
  issue: 11
  year: 2018
  ident: pone.0302707.ref043
  article-title: Bispectrum and bicoherence analysis using hosa (higher order spectral analysis)–a review
  publication-title: European Journal of Advances in Engineering and Technology
– volume: 13
  start-page: 6922
  issue: 1
  year: 2023
  ident: pone.0302707.ref027
  article-title: Prediction of total knee replacement using deep learning analysis of knee mri
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-33934-1
– volume: 14
  start-page: 13464
  year: 2022
  ident: pone.0302707.ref032
  article-title: An ensemble machine learning technique for detection of abnormalities in knee movement sustainability
  publication-title: Sustainability
  doi: 10.3390/su142013464
– volume: 4
  start-page: 6
  year: 2009
  ident: pone.0302707.ref018
  article-title: New fluoroscopic imaging technique for investigation of 6dof knee kinematics during treadmill gait
  publication-title: J Orthop Surg Res
  doi: 10.1186/1749-799X-4-6
– ident: pone.0302707.ref033
  doi: 10.1109/ICCCA49541.2020.9250799
– volume: 16
  start-page: e0261862
  issue: 12
  year: 2021
  ident: pone.0302707.ref038
  article-title: Effects of age and knee osteoarthritis on the modular control of walking: A pilot study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0261862
SSID ssj0053866
Score 2.4779034
Snippet Knee osteoarthritis (OA) is a prevalent, debilitating joint condition primarily affecting the elderly. This investigation aims to develop an electromyography...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0302707
SubjectTerms Accuracy
Adult
Aged
Algorithms
Arthritis
Artificial intelligence
Biology and Life Sciences
Cartilage
Computer and Information Sciences
Data mining
Datasets
Deep Learning
Diagnosis
Electromyography
Electromyography - methods
Female
Health aspects
Humans
Joints (anatomy)
Knee
Knee Joint - physiopathology
Machine learning
Magnetic resonance imaging
Male
Medical diagnosis
Medical examination
Medical imaging
Medical research
Medicine and Health Sciences
Medicine, Experimental
Methods
Middle Aged
Muscle function
Muscle, Skeletal - physiopathology
Muscles
Osteoarthritis
Osteoarthritis, Knee - diagnosis
Osteoarthritis, Knee - physiopathology
Pathology
Quadriceps muscle
Research and Analysis Methods
Signal processing
Signal Processing, Computer-Assisted
Spectral analysis
Spectral resolution
Spectrum analysis
Tomography
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTePYiY8FtRQkQAKKeosce7ytWGVXZFeIf8-M4402olJ74LCXzGSlzCsz8cw3jL1syhxURWVJbmRaSA9p5aRIJdgqt94rDMzUbfFZnZwWH8_k2daqL-oJ6-GBe8HtZ8KrykrrmsYUuS2qArSxXoI3BWG3UPTNKr0ppvoYjF6sVByUE-XBftTLdLloYZrRUR2tj916EQW8_iEqT5bzRXdZyvlv5-TNdbs0f36b-XzrtXR8h92O-SQ_7J9jh92A9i7biR7b8dcRVvrNPTZD12_COggO7Xk4-OdhzhLJHIvuaIN84fnRp_fctI4b7gCWPG6WmPENADnHTJf_bAE4LTQOH-a563v2Lrr77PT46Pu7kzSuWUit0mKVgi1MKXOUWJM5YUGXDYEAgsu1oezEN1phUeUzd5DhL3dCGszTwCvntcGI8YBNWhTsLuMYLYwFKZ0CV-Su1MY1ugJPG9ezRviEiY3MaxsxyGkVxrwOB2sl1iK92GrSVB01lbB0uGvZY3Bcwf-W1DnwEoJ2uIB2VUe7qq-yq4Q9I2Oo-3HUIQ7Uh6Um0HohVcJeBA5C0WipTWdm1l1Xf_jy4xpM376OmF5FJr9AcVgTRyPwmQida8S5N-LEWGBH5F0y3Y1UuhoLQk0zsjnduTHny8nPBzL9KbXetbBYE4_EEplg-BL2sLf-QbICy20RKNXIL0aiH1Pai_MAYk7fHTD5LRI2HVzoWtp99D-0-5jdyjE7DZ2r5R6brH6t4Qlml6vmaQgkfwHA1Xt-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QFe0MbXCgMCQgIeerulTdo-ILShGwOJAw2G9lal-bhNnNpuvRPiv8dO07KKCfbQl9qtVMd27cT-mZAXRcKMSDEtYZKHMbcmTDWPQm5UypS1AhwzVlvMxOFx_PGEn6yRWdcLg2WVnU90jlpXCvfIdyC0zbDbj4m39XmIU6PwdLUboSH9aAX9xkGM3SDrDJGxRmR9fzr7ctT5ZrBuIXwDXZTs7vj1GtdVacYTPMLDsbKXflAOx7_31qN6UTVXhaJ_V1TeXJW1_PVTLhaXflcHG-S2jzPpXqsYm2TNlHfIprfkhr7ycNOv75I5uITCjYmgpjx1BQHU9V8CmUIy7nWTVpZOP72nstRUUm1MTf3EiTntgMkpRMD0R2kMxUHHbsOe6raW76y5R44Ppt_eHYZ-_EKoRBYtQ6NimXAGEismOlImSwoEBzSaZRKjFltkApItO9G7E7iYjriE-M1YoW0mwZPcJ6MSBLtFKHgRqQznWhgdM51kUhdZaixOYp8UkQ1I1Mk8Vx6bHEdkLHJ34JZAjtKKLceVyv1KBSTsn6pbbI7_8O_jcva8iKztblQX89wbKvBakSqudFHImKk4jU0mleXGyhixggLyFJUhb9tUe_-Q7yUZgtlHXATkueNAdI0Sy3fmctU0-YfP36_B9PVowPTSM9kKxKGkb5mAb0LUrgHn9oATfIQakLdQdTupNPkfa4InO3W-mvysJ-NLsSSvNNUKeTikzgjPF5AHrfb3ko0gDY8cJR3YxUD0Q0p5durAzXE_AoLiOCDj3oSutboP__0hj8gtBvGoq1VNtsloebEyjyGeXBZPvJP4DQkMeFc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wO8AONrhQEBIQESPbqmSdvHA20MpA0EHNqeqjQft2mn3oleheCvx07TaoUhjoe-1E6rOLFrN_bPhDwt09iIDMOSWPIw4daEmeYs5EZlsbJWgGHGbIsjcTBN3h_z4w3ysquFuXh-z9LdV16i4-WiMuMID9mwdHxTcPC8R2RzevRxctIeHMfwuoj56ri_DR18fRxIf2-KR8v5or7Mz_wzXfJKUy3lj-9yPr_wLdq_Tg67WbQpKOfjZlWO1c_fAB7XneYNcs07pXTS7qItsmGqm2TLq31Nn3ts6he3yAzsR-l6SlBTnbrsAeqKNYFMIXL3G5kuLN07fEtlpamk2pgl9e0pZrRDMafgLtPzyhiKXZHd332q28S_s_o2me7vfXlzEPpeDaESOVuFRiUy5XEmRBlppkyelogkaHScS3RxbJkLiMxspHcjuGLNuARnz1ihbS7B7Nwhowomv00omBypDOdaGJ3EOs2lLvPMWGzbHpXMBoR1a1goD2SO_TTmhTudSyGgacVWoDQLL82AhP2oZQvk8Q_-17g9el6E4XY3YNkKr9XAa0WmuNJlKZNYJVlicqksN1YmCCwUkEe4uYq2prU3JsUkzRH5nnERkCeOA6E4Ksz1mcmmrot3H76uwfT504DpmWeyCxCHkr6-AuaEEF8Dzp0BJxgUNSBvoyp0UqkLiCpzLLSNcWSnHpeTH_dkfCjm71Vm0SAPhzgbsfwCcrfVpl6yDGJ25ijZQM8Goh9SqrNTh4SOPy_Ag04CMu5Vcq3Vvfe_A-6TqzG4sy7VNd0ho9W3xjwAd3RVPvRW6BfMhIq2
  priority: 102
  providerName: Unpaywall
Title Combining enhanced spectral resolution of EMG and a deep learning approach for knee pathology diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/38713653
https://www.proquest.com/docview/3069285426
https://www.proquest.com/docview/3052594653
https://pubmed.ncbi.nlm.nih.gov/PMC11075844
https://doi.org/10.1371/journal.pone.0302707
https://doaj.org/article/03f68c5cdbba42c484e9acf5efa40228
http://dx.doi.org/10.1371/journal.pone.0302707
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAXRHnVUMKCkICDI8f2-nFAKK2SFqSGqhCUnqz1PtKKyA5xIui_Z2aztrAIohzig2fWcmZnxzO7M98Q8iqPfRUlGJb4nLkh08pNJAtcpkTiC60jMMyYbTGOTibhxymb7pC6Z6sVYLU1tMN-UpPlvPfz-_V7WPDvTNeGuF8P6i3KQvU8PIjD8vJd-Fal2MzhNGzOFWB1m9NL9Frg7bzAFtP97Smtj5XB9G8sd2cxL6ttbumf2ZW318WCX__g8_lvn67RPXLX-px0sFGSPbKjivtkz67qir6x0NNvH5AZmIfctIygqrg0yQHU1GICmUJgbvWUlpoOT48pLyTlVCq1oLb7xIzWIOUUvGH6rVCKYtNjs3lP5Sav76p6SCaj4ZejE9e2YnBFlAYrV4mQx8wH6eWeDIRK4xyBApX0U44ejM7TCAIv7cm-Bz9fBoyDL6d0JHXKwao8Ip0CBLtPKFgULhRjMlIy9GWccpmnidLYld3LA-2QoJZ5JixOObbLmGfm8C2GeGUjtgxnKrMz5RC3GbXY4HT8g_8Qp7PhRZRtc6NczjK7aIFXR4lgQuY5D30RJqFKudBMaR4ibpBDnqMyZJuS1cZWZIM4RWD7gEUOeWk4EGmjwFSeGV9XVfbh09cbMH0-bzG9tky6BHEIbssn4D8hgleL86DFCfZCtMj7qLq1VKoMgsYU62h9HFmr83byi4aMD8X0vEKVa-RhEEYjVJ9DHm-0v5FsACF5YChJa120RN-mFFeXBugc9ybAQQ4d0muW0I1m98l_asNTcscHZ9UkssYHpLNartUzcDZXeZfciqcxXJOjPl5Hx12yezgcn513zfZN19gXuDcZnw0ufgEvgoZ_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHl1oVCDQMAh220SO8kBoQItXfpAgrbaW3D82FasktDsquqf4jcy4zihERX00kMumUmkzIw_z8TzIORFFvmaxxiW-IJ5ITPaixULPKZl7EtjOAAzZlvs8-3D8POYjRfIr6YWBtMqG0y0QK0Kif_I18C1TbDaz-fvyp8eTo3C09VmhEZtFjv6_AxCturt6CPo96Xvb20efNj23FQBT_IkmHlahiJifsx5NlSB1EmUYc87rfxE4GZssoRDDGGGan0Il68CJsAt0YYrkwhYIPDeG-RmGACWwPqJxm2AB9jBuSvPC6L1NWcNg7LI9WCIB4Q4tPbC9menBLR7Qa-cFtVlju7f-ZqL87wU52diOr2wGW7dIbedF0s3arNbIgs6v0uWHE5U9LVrZv3mHpkA4GR2CAXV-bFNN6C2uhPIFEJ9Z_m0MHRz7xMVuaKCKq1L6uZZTGjT9pyCf01_5FpTHKNsjwOoqjMFT6r75PBa1PCA9HIQ7DKhgFFCasYU1yr0VZQIlSWxNjjnfZgFpk-CRuapdJ3PcQDHNLXHeRFEQLXYUtRU6jTVJ177VFl3_vgP_3tUZ8uLfbvtjeJ0kjoYAF7DY8mkyjIR-jKMQ50IaZg2IsRORH2yisaQ1kWwLfqkG1GCrfIDxvvkueXA3h05JgdNxLyq0tGXoyswffvaYXrlmEwB4pDCFWTAN2FPsA7nSocTEEh2yMtouo1UqvTPWoUnG3O-nPysJeNLMeEv18UceRgE5tj8r08e1tbfSjaAID-wlLizLjqi71Lyk2PbOh3_doDLHfbJoF1CV9Luo39_yCpZ3D7Y2013R_s7j8ktHzxfmxUbrZDe7HSun4DnOsueWrig5Pt149Nvl5muNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCQ3W0SO8kBoUJbuhQKAor2Fhw_thWrZGl2VfWv8euYcZzQiAp66SGXeBIp8_g8E8-DkCd5HGieYFgSCOZHzGg_USz0mZZJII3hAMyYbbHHd_ajd2M2XiK_mloYTKtsMNECtSol_iMfgGubYrVfwAfGpUV82tx-Nfvp4wQpPGltxmnUKrKrT44hfKtejjZB1k-DYHvr65sd300Y8CVPw7mvZSRiFiSc50MVSp3GOfa_0ypIBW7MJk85xBNmqNaHcAUqZAJcFG24MqkAY4H3XiKX4zBMMZ0wHrfBHuAI565UL4zXB04z-rOy0P0hHhbiANtTW6GdGNDuC73ZtKzOcnr_zt28uihm4uRYTKenNsbtG-S682jpRq2Cy2RJFzfJssOMij53ja1f3CITAJ_cDqSgujiwqQfUVnrCMoWw31kBLQ3d-vCWikJRQZXWM-pmW0xo0wKdgq9NfxRaUxypbI8GqKqzBg-r22T_QsRwh_QKYOwKoYBXQmrGFNcqClScCpWniTY4832Yh8YjYcPzTLou6DiMY5rZo70YoqGabRlKKnOS8ojfPjWru4D8h_41irOlxR7e9kZ5NMkcJACt4YlkUuW5iAIZJZFOhTRMGxFhVyKPrKEyZHVBbItE2UacYtv8kHGPPLYU2MejQIuYiEVVZaOP385B9OVzh-iZIzIlsEMKV5wB34T9wTqUqx1KQCPZWV5B1W24UmV_7BaebNT57OVH7TK-FJP_Cl0ukIZBkI6NAD1yt9b-lrMhBPyhXUk6dtFhfXelODywbdTxzwe435FH-q0JnUu69_79IWvkCiBT9n60t3ufXAvACbYJsvEq6c2PFvoBOLHz_KFFC0q-XzQ8_Qb9L7J5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wO8AONrhQEBIQESPbqmSdvHA20MpA0EHNqeqjQft2mn3oleheCvx07TaoUhjoe-1E6rOLFrN_bPhDwt09iIDMOSWPIw4daEmeYs5EZlsbJWgGHGbIsjcTBN3h_z4w3ysquFuXh-z9LdV16i4-WiMuMID9mwdHxTcPC8R2RzevRxctIeHMfwuoj56ri_DR18fRxIf2-KR8v5or7Mz_wzXfJKUy3lj-9yPr_wLdq_Tg67WbQpKOfjZlWO1c_fAB7XneYNcs07pXTS7qItsmGqm2TLq31Nn3ts6he3yAzsR-l6SlBTnbrsAeqKNYFMIXL3G5kuLN07fEtlpamk2pgl9e0pZrRDMafgLtPzyhiKXZHd332q28S_s_o2me7vfXlzEPpeDaESOVuFRiUy5XEmRBlppkyelogkaHScS3RxbJkLiMxspHcjuGLNuARnz1ihbS7B7Nwhowomv00omBypDOdaGJ3EOs2lLvPMWGzbHpXMBoR1a1goD2SO_TTmhTudSyGgacVWoDQLL82AhP2oZQvk8Q_-17g9el6E4XY3YNkKr9XAa0WmuNJlKZNYJVlicqksN1YmCCwUkEe4uYq2prU3JsUkzRH5nnERkCeOA6E4Ksz1mcmmrot3H76uwfT504DpmWeyCxCHkr6-AuaEEF8Dzp0BJxgUNSBvoyp0UqkLiCpzLLSNcWSnHpeTH_dkfCjm71Vm0SAPhzgbsfwCcrfVpl6yDGJ25ijZQM8Goh9SqrNTh4SOPy_Ag04CMu5Vcq3Vvfe_A-6TqzG4sy7VNd0ho9W3xjwAd3RVPvRW6BfMhIq2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+enhanced+spectral+resolution+of+EMG+and+a+deep+learning+approach+for+knee+pathology+diagnosis&rft.jtitle=PloS+one&rft.au=Khader%2C+Ateka&rft.au=Zyout%2C+Ala%E2%80%99a&rft.au=Al+Fahoum%2C+Amjed&rft.date=2024-05-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0302707&rft_id=info:doi/10.1371%2Fjournal.pone.0302707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0302707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon