Deformable image registration based on single or multi-atlas methods for automatic muscle segmentation and the generation of augmented imaging datasets
Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the mu...
Saved in:
| Published in | PloS one Vol. 18; no. 3; p. e0273446 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
10.03.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0273446 |
Cover
| Abstract | Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data. |
|---|---|
| AbstractList | Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data. Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data.Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data. |
| Audience | Academic |
| Author | Henson, William H. Mazzá, Claudia Dall’Ara, Enrico |
| AuthorAffiliation | 3 Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom 1 Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom 2 INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom Medical University of Graz, AUSTRIA |
| AuthorAffiliation_xml | – name: 2 INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom – name: Medical University of Graz, AUSTRIA – name: 3 Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom – name: 1 Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom |
| Author_xml | – sequence: 1 givenname: William H. orcidid: 0000-0002-5001-772X surname: Henson fullname: Henson, William H. – sequence: 2 givenname: Claudia surname: Mazzá fullname: Mazzá, Claudia – sequence: 3 givenname: Enrico surname: Dall’Ara fullname: Dall’Ara, Enrico |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36897869$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5lS5bs3pSQngKBQE-3YiyNvQ6ytbXktnmSvm5nDwnZEGjwhcX4-_85yYfJ3uAHTJKnGZtnXGVvLvw0DuDmSwrPWa64EPJBcpBVPJ_JnPG9G-f95DCEC8YKXkr5KNnnsqxUKauD5O97bPzYQ-0w7XpoMR2x7UIcIXZ-SGsIaFM6hG5oCfFj2k8udjOIDkLaY1x4G1KySGGKvieVISIYYgO2PQ5xYwSDTeMC0xYH3Hr7hjRrhFKsclOK1EKklDE8Th424AI-2b6Pku8fP3w7-Tw7O_90enJ8NjOy4nFms9KyOpPGMtMUHAqDoCqbmTwXaIu8VAYEK-pc5NbyqsnKEhnaHJXKRMOQHyXPN75L54PezjToXJWF5LxUgojTDWE9XOjlSJWOl9pDp9cBP7YaRmrboTaAVqlCYgGVUKapoDbCylrWJitBNuRVbLymYQmXv8G5a8OM6dVar0rQq7Xq7VpJ925b5VT3aA3NbAS3U8zul6Fb6Nb_IlfGhKgKcni1dRj9zwlD1H0XDDoHA_pp3bBkVc4rTuiLW-jdY9lSLVDn3dB4SmxWpvpYCSZYWVWKqPkdFD0W-85Qi01H8R3B6x0BMRH_xBamEPTp1y_3Z89_7LIvb7ALBBcXwbtpdRPDLvjs5qivZ3z1yxDwdgOY0YcwYqNNt7nk1Frn_rdIcUt8r_3_A4rJQw8 |
| CitedBy_id | crossref_primary_10_3389_fbioe_2024_1355735 crossref_primary_10_1038_s41598_024_65802_x crossref_primary_10_1371_journal_pone_0308664 crossref_primary_10_1371_journal_pone_0299099 |
| Cites_doi | 10.1371/journal.pone.0112625 10.1016/j.crad.2006.08.012 10.2165/00007256-199214060-00005 10.1016/j.media.2007.06.011 10.1016/j.compbiomed.2020.103767 10.7861/clinmedicine.14-2-183 10.1080/03091900412331289889 10.1002/nbm.4609 10.1002/jmri.20804 10.1016/j.mri.2014.03.010 10.1007/s10278-019-00227-x 10.1152/jappl.1979.46.3.451 10.13005/bpj/2005 10.1016/j.jbiomech.2014.12.034 10.1016/j.humov.2007.01.008 10.1007/s10439-009-9852-5 10.3390/app10217823 10.1007/s10334-016-0535-6 10.1016/S1474-4422(15)00242-2 10.1109/TPAMI.1986.4767851 10.1146/annurev-bioeng-070909-105259 10.1016/j.jbiomech.2018.03.039 10.1186/s12880-017-0185-9 10.1016/j.mri.2017.12.014 10.1007/978-3-030-59716-0_31 10.1016/j.neuroimage.2012.01.128 10.1186/s40537-019-0197-0 10.1016/j.jbiomech.2014.07.019 10.1016/j.jbiomech.2013.12.002 10.1118/1.2842076 10.2307/1932409 10.1186/s13244-020-00946-8 10.1371/journal.pone.0132717 10.1371/journal.pone.0242973 10.1007/s11548-018-1758-y |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Henson et al 2023 Henson et al 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Henson et al 2023 Henson et al – notice: 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0273446 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints In Context (Gale) Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection ProQuest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Registration based automatic muscle segmentation and lower limb MRI augmentation |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2785633874 oai_doaj_org_article_caed7756e5a947cf9abc4d6b6bc18a6f 10.1371/journal.pone.0273446 PMC10004495 A740408997 36897869 10_1371_journal_pone_0273446 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: ; grantid: EP/K03877X/1 – fundername: ; grantid: EP/S032940/1 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c693t-d18d0b16cd0cf53a5cea79d1c224ed5287ca405b242dd39f188e0ed2e7714f0e3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun May 07 16:28:31 EDT 2023 Tue Oct 14 19:07:49 EDT 2025 Sun Oct 26 03:45:47 EDT 2025 Tue Sep 30 17:15:38 EDT 2025 Mon Sep 08 17:17:17 EDT 2025 Tue Oct 07 08:06:47 EDT 2025 Mon Oct 20 22:13:53 EDT 2025 Mon Oct 20 16:49:37 EDT 2025 Thu Oct 16 16:20:09 EDT 2025 Thu Oct 16 16:23:43 EDT 2025 Thu May 22 21:19:39 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Wed Oct 01 02:24:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-d18d0b16cd0cf53a5cea79d1c224ed5287ca405b242dd39f188e0ed2e7714f0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-5001-772X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0273446 |
| PMID | 36897869 |
| PQID | 2785633874 |
| PQPubID | 1436336 |
| PageCount | e0273446 |
| ParticipantIDs | plos_journals_2785633874 doaj_primary_oai_doaj_org_article_caed7756e5a947cf9abc4d6b6bc18a6f unpaywall_primary_10_1371_journal_pone_0273446 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10004495 proquest_miscellaneous_2786092393 proquest_journals_2785633874 gale_infotracmisc_A740408997 gale_infotracacademiconefile_A740408997 gale_incontextgauss_ISR_A740408997 gale_incontextgauss_IOV_A740408997 gale_healthsolutions_A740408997 pubmed_primary_36897869 crossref_citationtrail_10_1371_journal_pone_0273446 crossref_primary_10_1371_journal_pone_0273446 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-10 |
| PublicationDateYYYYMMDD | 2023-03-10 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | L Fontana (pone.0273446.ref025) 2020; 10 A Gholipour (pone.0273446.ref040) 2012; Volume 60 R. A. Fielding (pone.0273446.ref043) 2011; vol 12 J Ding (pone.0273446.ref019) 2020; 11 C Shorten (pone.0273446.ref035) 2019; 6 EM Arnold (pone.0273446.ref021) 2010; 38 A Karlsson (pone.0273446.ref029) 2014; Vol. 41 S. Klein (pone.0273446.ref031) 2008; 35 V Carbone (pone.0273446.ref016) 2015; 48 AJ Asman (pone.0273446.ref032) 2012; 15 pone.0273446.ref034 GV Suganthi (pone.0273446.ref017) 2020; 13 A Ogier (pone.0273446.ref023) 2017; 2017 GG Handsfield (pone.0273446.ref018) 2014; 47 L Larsson (pone.0273446.ref004) 1979; 46 L Modenese (pone.0273446.ref002) 2018; 73 MG Pandy (pone.0273446.ref001) 2010; 12 Y Aoyagi (pone.0273446.ref007) 1992; 14 MH Hesamian (pone.0273446.ref033) 2019; 32 F Yokota (pone.0273446.ref030) 2018; 13 J Nalepa (pone.0273446.ref036) 2019 DC Barber (pone.0273446.ref026) 2005; 29 DC Barber (pone.0273446.ref028) 2007; Volume 11 S Noguchi (pone.0273446.ref037) 2020; Volume 121 A Yoshiko (pone.0273446.ref008) 2017; 17 AJ Cruz-jentoft (pone.0273446.ref009) 2014; 14 MW Hamrick (pone.0273446.ref003) 2016 G Valente (pone.0273446.ref006) 2014; 9 pone.0273446.ref042 E Mercuri (pone.0273446.ref010) 2007; 25 LR Dice (pone.0273446.ref041) 1945; 26 JM Morrow (pone.0273446.ref011) 2016; 15 M Gadermayr (pone.0273446.ref013) 2018; 48 E Montefiori (pone.0273446.ref015) 2020; 15 J. Canny (pone.0273446.ref039) 1986; 8 J Zhu (pone.0273446.ref020) 2021; 34 E Lareau-Trudel (pone.0273446.ref014) 2015; 10 A Le Troter (pone.0273446.ref024) 2016; 29 C Li (pone.0273446.ref038) 2014; Volume 32 S Sookhoo (pone.0273446.ref012) 2007; 62 E Dall’Ara (pone.0273446.ref027) 2014; Volume 47 C Redl (pone.0273446.ref005) 2007; Volume 26 R Ni (pone.0273446.ref022) 2019; 6 |
| References_xml | – volume: 9 start-page: e112625 issue: 11 year: 2014 ident: pone.0273446.ref006 article-title: Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification? publication-title: PLoS ONE doi: 10.1371/journal.pone.0112625 – volume: 62 start-page: 160 issue: 2 year: 2007 ident: pone.0273446.ref012 article-title: MRI for the demonstration of subclinical muscle involvement in muscular dystrophy publication-title: Clin Radiol doi: 10.1016/j.crad.2006.08.012 – volume: 14 start-page: 376 issue: 6 year: 1992 ident: pone.0273446.ref007 article-title: Aging and muscle function publication-title: Sports Med doi: 10.2165/00007256-199214060-00005 – volume: Volume 11 start-page: 648 issue: Issue 6 year: 2007 ident: pone.0273446.ref028 article-title: Efficient computational fluid dynamics mesh generation by image registration publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.06.011 – volume: 15 start-page: 426 issue: Pt 3 year: 2012 ident: pone.0273446.ref032 article-title: Non-local STAPLE: an intensity-driven multi-atlas rater model publication-title: Med Image Comput Comput Assist Interv – volume: vol 12 start-page: 249 issue: issue 4 year: 2011 ident: pone.0273446.ref043 article-title: Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia publication-title: JAMDA – volume: Volume 121 start-page: 103767 year: 2020 ident: pone.0273446.ref037 article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103767 – volume: 14 start-page: 183 issue: 2 year: 2014 ident: pone.0273446.ref009 article-title: Sarcopenia publication-title: Clin Med (Lond) doi: 10.7861/clinmedicine.14-2-183 – volume: 29 start-page: 53 issue: 2 year: 2005 ident: pone.0273446.ref026 article-title: Automatic segmentation of medical images using image registration: diagnostic and simulation applications publication-title: J Med Eng Technol doi: 10.1080/03091900412331289889 – volume: 34 start-page: e4609 issue: 12 year: 2021 ident: pone.0273446.ref020 article-title: Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy publication-title: NMR Biomed doi: 10.1002/nbm.4609 – volume: 25 start-page: 433 issue: 2 year: 2007 ident: pone.0273446.ref010 article-title: Muscle MRI in inherited neuromuscular disorders: past, present, and future publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20804 – volume: Volume 32 start-page: 913 issue: issue 7 year: 2014 ident: pone.0273446.ref038 article-title: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2014.03.010 – volume: 2017 start-page: 317 year: 2017 ident: pone.0273446.ref023 article-title: Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 32 start-page: 582 year: 2019 ident: pone.0273446.ref033 article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges publication-title: J Digit Imaging doi: 10.1007/s10278-019-00227-x – volume: 46 start-page: 451 issue: 3 year: 1979 ident: pone.0273446.ref004 article-title: Muscle strength and speed of movement in relation to age and muscle morphology publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1979.46.3.451 – volume: 13 issue: 3 year: 2020 ident: pone.0273446.ref017 article-title: Pectoral muscle segmentation in mammograms publication-title: Biomed Pharmacol J doi: 10.13005/bpj/2005 – volume: 48 start-page: 734 issue: 5 year: 2015 ident: pone.0273446.ref016 article-title: TLEM 2.0—a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.12.034 – volume: Vol. 41 issue: issue 6 year: 2014 ident: pone.0273446.ref029 article-title: Automatic and quantitative assessment or regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI publication-title: JMRI – volume: Volume 26 start-page: 306 issue: Issue 2 year: 2007 ident: pone.0273446.ref005 article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties publication-title: Human Movement Science doi: 10.1016/j.humov.2007.01.008 – volume: 38 start-page: 269 year: 2010 ident: pone.0273446.ref021 article-title: A Model of the Lower Limb for Analysis of Human Movement publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9852-5 – volume: 10 start-page: 7823 issue: 21 year: 2020 ident: pone.0273446.ref025 article-title: Multi-Steps Registration Protocol for Multimodal MR Images of Hip Skeletal Muscles in a Longitudinal Study publication-title: Appl. Sci doi: 10.3390/app10217823 – volume: 29 start-page: 245 issue: 2 year: 2016 ident: pone.0273446.ref024 article-title: Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches publication-title: MAGMA doi: 10.1007/s10334-016-0535-6 – volume: 15 start-page: 65 issue: 1 year: 2016 ident: pone.0273446.ref011 article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)00242-2 – ident: pone.0273446.ref042 – volume: 8 start-page: 679 issue: 6 year: 1986 ident: pone.0273446.ref039 article-title: A Computational Approach To Edge Detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1986.4767851 – year: 2016 ident: pone.0273446.ref003 article-title: Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity publication-title: Front. Endocrinol. – volume: 12 start-page: 401 year: 2010 ident: pone.0273446.ref001 article-title: Muscle and joint function in human locomotion publication-title: Annual Rev Biomed Eng doi: 10.1146/annurev-bioeng-070909-105259 – volume: 73 start-page: 108 year: 2018 ident: pone.0273446.ref002 article-title: Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.03.039 – volume: 17 start-page: 1 issue: 1 year: 2017 ident: pone.0273446.ref008 article-title: Three-dimensional comparison of intramuscular fat content between young and old adults publication-title: BMC medical imaging doi: 10.1186/s12880-017-0185-9 – volume: 48 start-page: 20 year: 2018 ident: pone.0273446.ref013 article-title: A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2017.12.014 – ident: pone.0273446.ref034 doi: 10.1007/978-3-030-59716-0_31 – volume: Volume 60 start-page: 1819 issue: Issue 3 year: 2012 ident: pone.0273446.ref040 article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.128 – volume: 6 start-page: 60 year: 2019 ident: pone.0273446.ref035 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: Volume 47 start-page: 2956 issue: Issue 12 year: 2014 ident: pone.0273446.ref027 article-title: About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2014.07.019 – volume: 47 start-page: 631 issue: 3 year: 2014 ident: pone.0273446.ref018 article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.12.002 – volume: 35 start-page: 1407 year: 2008 ident: pone.0273446.ref031 article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information publication-title: Med. Phys doi: 10.1118/1.2842076 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: pone.0273446.ref041 article-title: Measures of the Amount of Ecologic Association Between Species publication-title: Ecology doi: 10.2307/1932409 – volume: 11 start-page: 128 year: 2020 ident: pone.0273446.ref019 article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI publication-title: Insights Imaging doi: 10.1186/s13244-020-00946-8 – volume: 6 start-page: 044009 issue: 4 year: 2019 ident: pone.0273446.ref022 article-title: Automatic segmentation of all lower limb muscles from high-resolution magnetic resonance imaging using a cascaded three-dimensional deep convolutional neural network publication-title: J Med Imaging (Bellingham) – volume: 10 start-page: e0132717 issue: 7 year: 2015 ident: pone.0273446.ref014 article-title: Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0132717 – volume: 15 start-page: e0242973 issue: 12 year: 2020 ident: pone.0273446.ref015 article-title: MRI-based anatomical characterisation of lower-limb muscles in older women publication-title: PLoS ONE doi: 10.1371/journal.pone.0242973 – volume: 13 start-page: 977 year: 2018 ident: pone.0273446.ref030 article-title: Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-018-1758-y – year: 2019 ident: pone.0273446.ref036 article-title: Data augmentation for brain-tumor segmentation: a review publication-title: Front. Comput. Neurosci. |
| SSID | ssj0053866 |
| Score | 2.4500394 |
| Snippet | Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry,... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0273446 |
| SubjectTerms | Accuracy Algorithms Biology and Life Sciences Computer and Information Sciences CT imaging Datasets Deep learning Deformation Formability Geometry Humans Image processing Image Processing, Computer-Assisted - methods Image registration Image segmentation Limbs Longitudinal studies Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medicine and Health Sciences Methods Muscles Physical work Physiological aspects Probabilistic methods Registration Research and Analysis Methods Segmentation Skeletal muscle |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GWjAICThkm6cfx_KoCgeQgKLeIr-yVNomqyYr1F_C32XG8UYbUak9cFvFn2N5Zjweb8bfEPIqTxwzqk5jpjMVF6K0sch0HWdMmZxJdJae7fMLOz4pPp-Wp1ulvjAnbKAHHgR3YJSznJfMlUoW3NRSaVNYppk2qVCsRu-bCLk5TA0-GFYxY-GiXM7Tg6CX-apt3NwzumDAu7UReb7-0SvPVsu2uyrk_Ddz8va6WanL32q53NqWju6RuyGepIfDPHbILdfcJzthxXb0TaCVfvuA_PngfICql46enYMboViUYUObS3E7sxR-4J8HAGkvqE82jFUPATYdKk13FF5B1bpvPdMrIDoYlXZucR7uMDVUNZZCVEkXfmT_qK2hj4fAEDg2DEExN7VzffeQnBx9_PH-OA5lGWLDZN7HNhU20SkzNjF1mavSOMWlTQ1EA86WcAQzCsJADZu_tbmsUyFc4mzmOE-LOnH5IzJrQBG7hCqrdGJYXSQFLwwvtZOW1ciAb0smtIxIvtFRZQJnOZbOWFb-QxyHs8sg5go1WwXNRiQee60Gzo5r8O9Q_SMWGbf9A7DDKthhdZ0dRuQ5Gk81XF8d_UZ1yGFy-G2VR-SlRyDrRoNpPQu17rrq09efNwB9_zYBvQ6gugVxGBWuUsCckM1rgtybIMF3mEnzLpr6RipdlXFRsjwXvICeG_O_uvnF2IwvxVS9xrVrj2GJRGa9iDweVsso2ZwJCc2gVzFZRxPRT1uas1-e9Dz1uQeyjMh8XHI30u6T_6Hdp-ROBtFt7BM598isv1i7fYhGe_3MO56_a06Ptg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQbZ52ckCohVaFw4IKRb1FfmWptE2WTVaIX8LfZcZxQiMq6C2KP8eyxzMex-NvCHkeB4YpUYY-k5HwkyzVfhbJ0o-YUDHL0Vhats8ZOzpJPpympxtk1t-FwbDK3iZaQ61rhf_IdyOepQz2Uzx5s_zuY9YoPF3tU2gIl1pBv7YUY9fIZoTMWBOyuX8w-3Tc22bQbsbcBbqYh7tOXtNlXZmpZXpBR_jCAmV5_AdrPVku6uYyV_TviMrr62opfv4Qi8WF5erwFrnp_Ey6102MLbJhqttky2lyQ186uulXd8ivd8Y6rnJh6Nk5mBeKyRp6Ol2Ky5ym8IA_FQBSr6gNQvRFC4437TJQNxQ-QcW6rS0DLCAaaJU2Zn7u7jZVVFSagrdJ57Zl-6ouoY6FQBPYNjRBMWa1MW1zl5wcHnx5e-S7dA2-Ynnc-jrMdCBDpnSgyjQWqTKC5zpU4CUYncLWTAlwDyU4BVrHeRlmmQmMjgznYVIGJr5HJhUIYptQoYUMFCuTIOGJ4qk0uWYlMuPrlGUy90jcy6hQjsscU2osCntAx2FP0w1zgZItnGQ94g-1lh2Xx3_w-yj-AYtM3PZFvZoXTrELJYzmPGUmFXnCVZkLqRLNJJMqzAQrPfIEJ0_RXWsd7Emxx6FzeObKPfLMIpCNo8Jwn7lYN03x_uPXK4A-H49ALxyorGE4lHBXLKBPyPI1Qu6MkGBT1Kh4G6d6PypN8Uf7oGY__S8vfjoU40cxhK8y9dpiWJAj455H7nfaMoxszLIcikGu2UiPRkM_LqnOvlky9NDGJOSpR6aDyl1Jug_-3ZGH5EYE_qxvQzd3yKRdrc0j8D9b-dgZld_MrYu9 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKdAEboLwaKGAQEiCRIYljO1kOj6ogURBQVFaRXxkqpsmoSYTgR_hdrh1P1EARw24UH8fyte_1yfj6GKEHJDJMiTIOmUxEmGZUh1kiyzBhQhGW22Dp1D732d5B-vqQHm6gJ6uzMKf37wmPn3qLTpd1ZaZOiyVl59Amo8C8J2jzYP_d7HO_cZyELImIPx33t6qj1ceJ9A-heLJc1M1ZPPPPdMnzXbUU37-JxeLUWrR7Cb1Z9aJPQfk67Vo5VT9-E3hct5uX0UVPSvGsn0VbaMNUV9CWd_sGP_La1I-vop8vjGO5cmHw0THEImxvdlhp72K7JmoMP-w_EACpT7DLWAxFCywd99dVNxhegUXX1k4uFhANtIobMz_2B6EqLCqNgZriuWvZPapLqOMg0IRtG5rANsG1MW1zDR3svvz4fC_0dzuEiuWkDXWc6UjGTOlIlZQIqozguY4VUAqjKXzHKQFcUgKD0JrkZZxlJjI6MZzHaRkZch1NKjDWNsJCCxkpVqZRylPFqTS5ZqWV0deUZTIPEFmNeaG88Lm9f2NRuN08Dh9AvZkLa_3CWz9A4VBr2Qt__AP_zE6nAWtlu90DGObCR4FCCaM5p8xQkadclbmQKtVMMqniTLAyQHftZCz6M7BD8ClmHDpnN2h5gO47hJXuqGxu0Fx0TVO8evtpDdCH9yPQQw8qazCHEv48BvTJSoKNkDsjJAQgNSretq6zskpTJDyjjJCMp1Bz5U5nF98biu1Lbb5fZerOYViUW3m-AN3ovW-wLGFZDsUwrtnIL0emH5dUR1-ccnrsEhhyGqDp4MJrje7N_61wC11IgA6HLvNzB03ak87cBvrayjs-av0CFuyeIQ priority: 102 providerName: Unpaywall |
| Title | Deformable image registration based on single or multi-atlas methods for automatic muscle segmentation and the generation of augmented imaging datasets |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36897869 https://www.proquest.com/docview/2785633874 https://www.proquest.com/docview/2786092393 https://pubmed.ncbi.nlm.nih.gov/PMC10004495 https://doi.org/10.1371/journal.pone.0273446 https://doaj.org/article/caed7756e5a947cf9abc4d6b6bc18a6f http://dx.doi.org/10.1371/journal.pone.0273446 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUuXTjh8Q6sbKQKJMg6LuKXJsp0zKktKkgv0l_LucnQ8RUURfosg-28qd73yOz79D6LnvKCJ46tok8bgdRKG0Iy9JbY9w4ROmjaVB-5yS01nwYR7Od1Cbs7VhYLlxa6fzSc1W2ejn9-s3oPCvTdYG6raNRssiVyOD1xKQXbQHaxXTyRw-Bt25Ami3Ob3UXotNPMdvLtP9q5feYmUw_TvLPVhmRbnJLf07uvLGOl_y6x88y_5Yuia30a3G58TjepLsox2V30H7jVaX-GUDPf3qLvr1VhknNskUvrwCU4N14oYWWhfrJU9ieNE_GICkWGETkGjzCpxwXGejLjF0gfm6KgwaLFCUMCou1eKqueeUY55LDJ4nXpiRTVGRQhtDAkPosWEIrONXS1WV99BscvLl-NRuUjfYgjC_sqUbSSdxiZCOSEOfh0JxyqQrwGNQMoRtmuDgKibgIEjps9SNIuUo6SlK3SB1lH8fDXIQxAHCXPLEESQNnIAGgoaJYpKkGiVfhiRKmIX8VkaxaHDNdXqNLDaHdRT2NzWbYy3ZuJGsheyu1bLG9fgP_ZEWf0erUblNQbFaxI2Sx4IrSWlIVMhZQEXKeCICSRKSCDfiJLXQEz154vqKa2db4jGFj9Pnr9RCzwyFRubIdejPgq_LMn7_6esWRJ_Pe0QvGqK0AHYI3ly3gG_SiF89ysMeJdgX0as-0FO95UoZezQKie9HNICW7fTfXP20q9ad6nC-XBVrQ0McptH3LPSg1paOsz6JGFSDXKOeHvVY36_JL78ZYHTXxCew0EKjTuW2ku7Dbdj-CN30wMO1TTDnIRpUq7V6DB5plQzRLp1TeEbHrn5O3g3R3tHJ9Ox8aP7xDI0RgrLZ9Gx88Rs4gJWz |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCQbZ52ckCoUKpdWooELdpbcGxnqbRNlk1WVX8J_4LfyIzzoBEV9NJbFH-OZc94PI7H3xDyzHc0kyJzbZZ6wg6iUNmRl2a2x4T0WYzG0rB9HrDRUfBhEk5WyK_2LgyGVbY20RhqVUj8R77l8ShksJ_iwZv5DxuzRuHpaptCo1aLPX12Clu28vV4B-T73PN23x--G9lNVgFbstivbOVGykldJpUjs9AXodSCx8qVsJhpFcIOQgrwYlJYu5Ty48yNIu1o5WnO3SBztA_fvUauBz7YEpg_fNJt8MB2MNZcz_O5u9Vow3Be5HpoeGTQzT63_JksAd1aMJjPivIiR_fveM3VZT4XZ6diNju3GO7eIjcbL5Zu12q3RlZ0fpusNXaipC8bMutXd8jPHW3c4nSm6fEJGC-KqSBasl6Ki6ii8IC_LABSLKgJcbRFBW49rfNblxQ-QcWyKgy_LCBKaJWWenrS3JzKqcgVBV-WTk3L5lWRQR0DgSawbWiCYkRsqavyLjm6ErHdI4McBLFOqFAidSTLAifggeRhqmPFMuTdVyGL0tgifiujRDZM6ZiwY5aY4z8OO6Z6mBOUbNJI1iJ2V2teM4X8B_8Wxd9hkefbvCgW06QxG4kUWnEeMh2KOOAyi0UqA8VSlko3EiyzyCYqT1Jfmu2sVbLNoXN4osst8tQgkOsjx2CiqViWZTL-9PUSoC-fe6AXDSgrYDikaC5wQJ-QQ6yH3OghwWLJXvE6qno7KmXyZ25DzVb9Ly5-0hXjRzFAMNfF0mCYEyOfn0Xu17OlG1mfRTEUg1yj3jzqDX2_JD_-bqjWXRPxEIcWGXZT7lLSffDvjmyS1dHhx_1kf3yw95Dc8MBztk2Q6AYZVIulfgSebpU-NuaFkm9Xbc9-A4Tlwt4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIgEXRPnrQqEGgYBDdvNrJweECsuqS1FBQNHegmM7S6VtsjS7qvokvAtPx4zjhEZU0EtvUfw5lj3j8Tgef0PIk8DVTIrcc1jmCyeMI-XEfpY7PhMyYAkaS8P2ucd29sN302i6Rn41d2EwrLKxicZQq1LiP_Khz-OIwX6Kh8PchkV8HI1fLX44mEEKT1qbdBq1iuzqk2PYvlUvJyOQ9VPfH7_98mbHsRkGHMmSYOkoL1Zu5jGpXJlHgYikFjxRnoSFTasIdhNSgEeTwTqmVJDkXhxrVytfc-6FuasD-O4lcpkHQYLhhHzabvbAjjBmr-oF3BtazRgsykIPDKcMutynlkKTMaBdF3qLeVmd5fT-Hbt5dVUsxMmxmM9PLYzjG-S69Wjpdq2C62RNFzfJurUZFX1uia1f3CI_R9q4yNlc04NDMGQU00I0xL0UF1RF4QF_XwCkPKIm3NERS3DxaZ3ruqLwCSpWy9JwzQKiglZppWeH9hZVQUWhKPi1dGZaNq_KHOoYCDSBbUMTFKNjK72sbpP9CxHbHdIrQBAbhAolMleyPHRDHkoeZTpRLEcOfhWxOEv6JGhklErLmo7JO-apOQrksHuqhzlFyaZWsn3itLUWNWvIf_CvUfwtFjm_zYvyaJZaE5JKoRXnEdORSEIu80RkMlQsY5n0YsHyPtlC5UnrC7St5Uq3OXQOT3d5nzw2COT9KHAGzcSqqtLJh6_nAH3-1AE9s6C8hOGQwl7mgD4hn1gHudlBgvWSneINVPVmVKr0zzyHmo36n138qC3Gj2KwYKHLlcEwN0Fuvz65W8-WdmQDFidQDHKNO_OoM_TdkuLgu6Fd90z0QxL1yaCdcueS7r1_d2SLXAFLlr6f7O3eJ9d8cKIdEy-6SXrLo5V-AE7vMntorAsl3y7anP0GrMrHIQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKdAEboLwaKGAQEiCRIYljO1kOj6ogURBQVFaRXxkqpsmoSYTgR_hdrh1P1EARw24UH8fyte_1yfj6GKEHJDJMiTIOmUxEmGZUh1kiyzBhQhGW22Dp1D732d5B-vqQHm6gJ6uzMKf37wmPn3qLTpd1ZaZOiyVl59Amo8C8J2jzYP_d7HO_cZyELImIPx33t6qj1ceJ9A-heLJc1M1ZPPPPdMnzXbUU37-JxeLUWrR7Cb1Z9aJPQfk67Vo5VT9-E3hct5uX0UVPSvGsn0VbaMNUV9CWd_sGP_La1I-vop8vjGO5cmHw0THEImxvdlhp72K7JmoMP-w_EACpT7DLWAxFCywd99dVNxhegUXX1k4uFhANtIobMz_2B6EqLCqNgZriuWvZPapLqOMg0IRtG5rANsG1MW1zDR3svvz4fC_0dzuEiuWkDXWc6UjGTOlIlZQIqozguY4VUAqjKXzHKQFcUgKD0JrkZZxlJjI6MZzHaRkZch1NKjDWNsJCCxkpVqZRylPFqTS5ZqWV0deUZTIPEFmNeaG88Lm9f2NRuN08Dh9AvZkLa_3CWz9A4VBr2Qt__AP_zE6nAWtlu90DGObCR4FCCaM5p8xQkadclbmQKtVMMqniTLAyQHftZCz6M7BD8ClmHDpnN2h5gO47hJXuqGxu0Fx0TVO8evtpDdCH9yPQQw8qazCHEv48BvTJSoKNkDsjJAQgNSretq6zskpTJDyjjJCMp1Bz5U5nF98biu1Lbb5fZerOYViUW3m-AN3ovW-wLGFZDsUwrtnIL0emH5dUR1-ccnrsEhhyGqDp4MJrje7N_61wC11IgA6HLvNzB03ak87cBvrayjs-av0CFuyeIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformable+image+registration+based+on+single+or+multi-atlas+methods+for+automatic+muscle+segmentation+and+the+generation+of+augmented+imaging+datasets&rft.jtitle=PloS+one&rft.au=Henson%2C+William+H&rft.au=Mazz%C3%A1%2C+Claudia&rft.au=Dall%27Ara%2C+Enrico&rft.date=2023-03-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=3&rft.spage=e0273446&rft_id=info:doi/10.1371%2Fjournal.pone.0273446&rft.externalDBID=IOV&rft.externalDocID=A740408997 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |