Deformable image registration based on single or multi-atlas methods for automatic muscle segmentation and the generation of augmented imaging datasets

Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the mu...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 3; p. e0273446
Main Authors Henson, William H., Mazzá, Claudia, Dall’Ara, Enrico
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.03.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0273446

Cover

Abstract Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data.
AbstractList Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data.
Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data.Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry, that can be used as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are typically employed to segment the muscles and quantify their properties, but they require significant manual labour and incur operator repeatability issues. In this study an automatic process is presented, aiming to segment all lower limb muscles from Magnetic Resonance (MR) imaging data simultaneously using three-dimensional (3D) deformable image registration (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative volume error (RVE) of 12.7% (average relative volume error of -2.2%) considering the optimal subject combinations. The multi-atlas approach showed slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imaging datasets of the lower limb are not widely available in the literature, limiting the potential of new, probabilistic methods such as deep learning to be used in the context of muscle segmentation. In this work, Non-linear deformable image registration is used to generate 69 manually checked, segmented, 3D, artificial datasets, allowing access for future studies to use these new methods, with a large amount of reliable reference data.
Audience Academic
Author Henson, William H.
Mazzá, Claudia
Dall’Ara, Enrico
AuthorAffiliation 3 Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
1 Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
2 INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
Medical University of Graz, AUSTRIA
AuthorAffiliation_xml – name: 2 INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
– name: Medical University of Graz, AUSTRIA
– name: 3 Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
– name: 1 Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
Author_xml – sequence: 1
  givenname: William H.
  orcidid: 0000-0002-5001-772X
  surname: Henson
  fullname: Henson, William H.
– sequence: 2
  givenname: Claudia
  surname: Mazzá
  fullname: Mazzá, Claudia
– sequence: 3
  givenname: Enrico
  surname: Dall’Ara
  fullname: Dall’Ara, Enrico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36897869$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5lS5bs3pSQngKBQE-3YiyNvQ6ytbXktnmSvm5nDwnZEGjwhcX4-_85yYfJ3uAHTJKnGZtnXGVvLvw0DuDmSwrPWa64EPJBcpBVPJ_JnPG9G-f95DCEC8YKXkr5KNnnsqxUKauD5O97bPzYQ-0w7XpoMR2x7UIcIXZ-SGsIaFM6hG5oCfFj2k8udjOIDkLaY1x4G1KySGGKvieVISIYYgO2PQ5xYwSDTeMC0xYH3Hr7hjRrhFKsclOK1EKklDE8Th424AI-2b6Pku8fP3w7-Tw7O_90enJ8NjOy4nFms9KyOpPGMtMUHAqDoCqbmTwXaIu8VAYEK-pc5NbyqsnKEhnaHJXKRMOQHyXPN75L54PezjToXJWF5LxUgojTDWE9XOjlSJWOl9pDp9cBP7YaRmrboTaAVqlCYgGVUKapoDbCylrWJitBNuRVbLymYQmXv8G5a8OM6dVar0rQq7Xq7VpJ925b5VT3aA3NbAS3U8zul6Fb6Nb_IlfGhKgKcni1dRj9zwlD1H0XDDoHA_pp3bBkVc4rTuiLW-jdY9lSLVDn3dB4SmxWpvpYCSZYWVWKqPkdFD0W-85Qi01H8R3B6x0BMRH_xBamEPTp1y_3Z89_7LIvb7ALBBcXwbtpdRPDLvjs5qivZ3z1yxDwdgOY0YcwYqNNt7nk1Frn_rdIcUt8r_3_A4rJQw8
CitedBy_id crossref_primary_10_3389_fbioe_2024_1355735
crossref_primary_10_1038_s41598_024_65802_x
crossref_primary_10_1371_journal_pone_0308664
crossref_primary_10_1371_journal_pone_0299099
Cites_doi 10.1371/journal.pone.0112625
10.1016/j.crad.2006.08.012
10.2165/00007256-199214060-00005
10.1016/j.media.2007.06.011
10.1016/j.compbiomed.2020.103767
10.7861/clinmedicine.14-2-183
10.1080/03091900412331289889
10.1002/nbm.4609
10.1002/jmri.20804
10.1016/j.mri.2014.03.010
10.1007/s10278-019-00227-x
10.1152/jappl.1979.46.3.451
10.13005/bpj/2005
10.1016/j.jbiomech.2014.12.034
10.1016/j.humov.2007.01.008
10.1007/s10439-009-9852-5
10.3390/app10217823
10.1007/s10334-016-0535-6
10.1016/S1474-4422(15)00242-2
10.1109/TPAMI.1986.4767851
10.1146/annurev-bioeng-070909-105259
10.1016/j.jbiomech.2018.03.039
10.1186/s12880-017-0185-9
10.1016/j.mri.2017.12.014
10.1007/978-3-030-59716-0_31
10.1016/j.neuroimage.2012.01.128
10.1186/s40537-019-0197-0
10.1016/j.jbiomech.2014.07.019
10.1016/j.jbiomech.2013.12.002
10.1118/1.2842076
10.2307/1932409
10.1186/s13244-020-00946-8
10.1371/journal.pone.0132717
10.1371/journal.pone.0242973
10.1007/s11548-018-1758-y
ContentType Journal Article
Copyright Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Henson et al 2023 Henson et al
2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Henson et al 2023 Henson et al
– notice: 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0273446
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints In Context (Gale)
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
ProQuest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Agricultural Science Database





MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Registration based automatic muscle segmentation and lower limb MRI augmentation
EISSN 1932-6203
ExternalDocumentID 2785633874
oai_doaj_org_article_caed7756e5a947cf9abc4d6b6bc18a6f
10.1371/journal.pone.0273446
PMC10004495
A740408997
36897869
10_1371_journal_pone_0273446
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: ;
  grantid: EP/K03877X/1
– fundername: ;
  grantid: EP/S032940/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c693t-d18d0b16cd0cf53a5cea79d1c224ed5287ca405b242dd39f188e0ed2e7714f0e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun May 07 16:28:31 EDT 2023
Tue Oct 14 19:07:49 EDT 2025
Sun Oct 26 03:45:47 EDT 2025
Tue Sep 30 17:15:38 EDT 2025
Mon Sep 08 17:17:17 EDT 2025
Tue Oct 07 08:06:47 EDT 2025
Mon Oct 20 22:13:53 EDT 2025
Mon Oct 20 16:49:37 EDT 2025
Thu Oct 16 16:20:09 EDT 2025
Thu Oct 16 16:23:43 EDT 2025
Thu May 22 21:19:39 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Wed Oct 01 02:24:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2023 Henson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-d18d0b16cd0cf53a5cea79d1c224ed5287ca405b242dd39f188e0ed2e7714f0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-5001-772X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0273446
PMID 36897869
PQID 2785633874
PQPubID 1436336
PageCount e0273446
ParticipantIDs plos_journals_2785633874
doaj_primary_oai_doaj_org_article_caed7756e5a947cf9abc4d6b6bc18a6f
unpaywall_primary_10_1371_journal_pone_0273446
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10004495
proquest_miscellaneous_2786092393
proquest_journals_2785633874
gale_infotracmisc_A740408997
gale_infotracacademiconefile_A740408997
gale_incontextgauss_ISR_A740408997
gale_incontextgauss_IOV_A740408997
gale_healthsolutions_A740408997
pubmed_primary_36897869
crossref_citationtrail_10_1371_journal_pone_0273446
crossref_primary_10_1371_journal_pone_0273446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-10
PublicationDateYYYYMMDD 2023-03-10
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Fontana (pone.0273446.ref025) 2020; 10
A Gholipour (pone.0273446.ref040) 2012; Volume 60
R. A. Fielding (pone.0273446.ref043) 2011; vol 12
J Ding (pone.0273446.ref019) 2020; 11
C Shorten (pone.0273446.ref035) 2019; 6
EM Arnold (pone.0273446.ref021) 2010; 38
A Karlsson (pone.0273446.ref029) 2014; Vol. 41
S. Klein (pone.0273446.ref031) 2008; 35
V Carbone (pone.0273446.ref016) 2015; 48
AJ Asman (pone.0273446.ref032) 2012; 15
pone.0273446.ref034
GV Suganthi (pone.0273446.ref017) 2020; 13
A Ogier (pone.0273446.ref023) 2017; 2017
GG Handsfield (pone.0273446.ref018) 2014; 47
L Larsson (pone.0273446.ref004) 1979; 46
L Modenese (pone.0273446.ref002) 2018; 73
MG Pandy (pone.0273446.ref001) 2010; 12
Y Aoyagi (pone.0273446.ref007) 1992; 14
MH Hesamian (pone.0273446.ref033) 2019; 32
F Yokota (pone.0273446.ref030) 2018; 13
J Nalepa (pone.0273446.ref036) 2019
DC Barber (pone.0273446.ref026) 2005; 29
DC Barber (pone.0273446.ref028) 2007; Volume 11
S Noguchi (pone.0273446.ref037) 2020; Volume 121
A Yoshiko (pone.0273446.ref008) 2017; 17
AJ Cruz-jentoft (pone.0273446.ref009) 2014; 14
MW Hamrick (pone.0273446.ref003) 2016
G Valente (pone.0273446.ref006) 2014; 9
pone.0273446.ref042
E Mercuri (pone.0273446.ref010) 2007; 25
LR Dice (pone.0273446.ref041) 1945; 26
JM Morrow (pone.0273446.ref011) 2016; 15
M Gadermayr (pone.0273446.ref013) 2018; 48
E Montefiori (pone.0273446.ref015) 2020; 15
J. Canny (pone.0273446.ref039) 1986; 8
J Zhu (pone.0273446.ref020) 2021; 34
E Lareau-Trudel (pone.0273446.ref014) 2015; 10
A Le Troter (pone.0273446.ref024) 2016; 29
C Li (pone.0273446.ref038) 2014; Volume 32
S Sookhoo (pone.0273446.ref012) 2007; 62
E Dall’Ara (pone.0273446.ref027) 2014; Volume 47
C Redl (pone.0273446.ref005) 2007; Volume 26
R Ni (pone.0273446.ref022) 2019; 6
References_xml – volume: 9
  start-page: e112625
  issue: 11
  year: 2014
  ident: pone.0273446.ref006
  article-title: Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0112625
– volume: 62
  start-page: 160
  issue: 2
  year: 2007
  ident: pone.0273446.ref012
  article-title: MRI for the demonstration of subclinical muscle involvement in muscular dystrophy
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2006.08.012
– volume: 14
  start-page: 376
  issue: 6
  year: 1992
  ident: pone.0273446.ref007
  article-title: Aging and muscle function
  publication-title: Sports Med
  doi: 10.2165/00007256-199214060-00005
– volume: Volume 11
  start-page: 648
  issue: Issue 6
  year: 2007
  ident: pone.0273446.ref028
  article-title: Efficient computational fluid dynamics mesh generation by image registration
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.06.011
– volume: 15
  start-page: 426
  issue: Pt 3
  year: 2012
  ident: pone.0273446.ref032
  article-title: Non-local STAPLE: an intensity-driven multi-atlas rater model
  publication-title: Med Image Comput Comput Assist Interv
– volume: vol 12
  start-page: 249
  issue: issue 4
  year: 2011
  ident: pone.0273446.ref043
  article-title: Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia
  publication-title: JAMDA
– volume: Volume 121
  start-page: 103767
  year: 2020
  ident: pone.0273446.ref037
  article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103767
– volume: 14
  start-page: 183
  issue: 2
  year: 2014
  ident: pone.0273446.ref009
  article-title: Sarcopenia
  publication-title: Clin Med (Lond)
  doi: 10.7861/clinmedicine.14-2-183
– volume: 29
  start-page: 53
  issue: 2
  year: 2005
  ident: pone.0273446.ref026
  article-title: Automatic segmentation of medical images using image registration: diagnostic and simulation applications
  publication-title: J Med Eng Technol
  doi: 10.1080/03091900412331289889
– volume: 34
  start-page: e4609
  issue: 12
  year: 2021
  ident: pone.0273446.ref020
  article-title: Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4609
– volume: 25
  start-page: 433
  issue: 2
  year: 2007
  ident: pone.0273446.ref010
  article-title: Muscle MRI in inherited neuromuscular disorders: past, present, and future
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20804
– volume: Volume 32
  start-page: 913
  issue: issue 7
  year: 2014
  ident: pone.0273446.ref038
  article-title: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2014.03.010
– volume: 2017
  start-page: 317
  year: 2017
  ident: pone.0273446.ref023
  article-title: Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 32
  start-page: 582
  year: 2019
  ident: pone.0273446.ref033
  article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00227-x
– volume: 46
  start-page: 451
  issue: 3
  year: 1979
  ident: pone.0273446.ref004
  article-title: Muscle strength and speed of movement in relation to age and muscle morphology
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1979.46.3.451
– volume: 13
  issue: 3
  year: 2020
  ident: pone.0273446.ref017
  article-title: Pectoral muscle segmentation in mammograms
  publication-title: Biomed Pharmacol J
  doi: 10.13005/bpj/2005
– volume: 48
  start-page: 734
  issue: 5
  year: 2015
  ident: pone.0273446.ref016
  article-title: TLEM 2.0—a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.12.034
– volume: Vol. 41
  issue: issue 6
  year: 2014
  ident: pone.0273446.ref029
  article-title: Automatic and quantitative assessment or regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI
  publication-title: JMRI
– volume: Volume 26
  start-page: 306
  issue: Issue 2
  year: 2007
  ident: pone.0273446.ref005
  article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties
  publication-title: Human Movement Science
  doi: 10.1016/j.humov.2007.01.008
– volume: 38
  start-page: 269
  year: 2010
  ident: pone.0273446.ref021
  article-title: A Model of the Lower Limb for Analysis of Human Movement
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– volume: 10
  start-page: 7823
  issue: 21
  year: 2020
  ident: pone.0273446.ref025
  article-title: Multi-Steps Registration Protocol for Multimodal MR Images of Hip Skeletal Muscles in a Longitudinal Study
  publication-title: Appl. Sci
  doi: 10.3390/app10217823
– volume: 29
  start-page: 245
  issue: 2
  year: 2016
  ident: pone.0273446.ref024
  article-title: Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches
  publication-title: MAGMA
  doi: 10.1007/s10334-016-0535-6
– volume: 15
  start-page: 65
  issue: 1
  year: 2016
  ident: pone.0273446.ref011
  article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)00242-2
– ident: pone.0273446.ref042
– volume: 8
  start-page: 679
  issue: 6
  year: 1986
  ident: pone.0273446.ref039
  article-title: A Computational Approach To Edge Detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1986.4767851
– year: 2016
  ident: pone.0273446.ref003
  article-title: Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity
  publication-title: Front. Endocrinol.
– volume: 12
  start-page: 401
  year: 2010
  ident: pone.0273446.ref001
  article-title: Muscle and joint function in human locomotion
  publication-title: Annual Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-070909-105259
– volume: 73
  start-page: 108
  year: 2018
  ident: pone.0273446.ref002
  article-title: Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2018.03.039
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: pone.0273446.ref008
  article-title: Three-dimensional comparison of intramuscular fat content between young and old adults
  publication-title: BMC medical imaging
  doi: 10.1186/s12880-017-0185-9
– volume: 48
  start-page: 20
  year: 2018
  ident: pone.0273446.ref013
  article-title: A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2017.12.014
– ident: pone.0273446.ref034
  doi: 10.1007/978-3-030-59716-0_31
– volume: Volume 60
  start-page: 1819
  issue: Issue 3
  year: 2012
  ident: pone.0273446.ref040
  article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.128
– volume: 6
  start-page: 60
  year: 2019
  ident: pone.0273446.ref035
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: Volume 47
  start-page: 2956
  issue: Issue 12
  year: 2014
  ident: pone.0273446.ref027
  article-title: About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2014.07.019
– volume: 47
  start-page: 631
  issue: 3
  year: 2014
  ident: pone.0273446.ref018
  article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.12.002
– volume: 35
  start-page: 1407
  year: 2008
  ident: pone.0273446.ref031
  article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information
  publication-title: Med. Phys
  doi: 10.1118/1.2842076
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: pone.0273446.ref041
  article-title: Measures of the Amount of Ecologic Association Between Species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 11
  start-page: 128
  year: 2020
  ident: pone.0273446.ref019
  article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI
  publication-title: Insights Imaging
  doi: 10.1186/s13244-020-00946-8
– volume: 6
  start-page: 044009
  issue: 4
  year: 2019
  ident: pone.0273446.ref022
  article-title: Automatic segmentation of all lower limb muscles from high-resolution magnetic resonance imaging using a cascaded three-dimensional deep convolutional neural network
  publication-title: J Med Imaging (Bellingham)
– volume: 10
  start-page: e0132717
  issue: 7
  year: 2015
  ident: pone.0273446.ref014
  article-title: Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0132717
– volume: 15
  start-page: e0242973
  issue: 12
  year: 2020
  ident: pone.0273446.ref015
  article-title: MRI-based anatomical characterisation of lower-limb muscles in older women
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0242973
– volume: 13
  start-page: 977
  year: 2018
  ident: pone.0273446.ref030
  article-title: Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method
  publication-title: International journal of computer assisted radiology and surgery
  doi: 10.1007/s11548-018-1758-y
– year: 2019
  ident: pone.0273446.ref036
  article-title: Data augmentation for brain-tumor segmentation: a review
  publication-title: Front. Comput. Neurosci.
SSID ssj0053866
Score 2.4500394
Snippet Muscle segmentation is a process relied upon to gather medical image-based muscle characterisation, useful in directly assessing muscle volume and geometry,...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0273446
SubjectTerms Accuracy
Algorithms
Biology and Life Sciences
Computer and Information Sciences
CT imaging
Datasets
Deep learning
Deformation
Formability
Geometry
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image registration
Image segmentation
Limbs
Longitudinal studies
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine and Health Sciences
Methods
Muscles
Physical work
Physiological aspects
Probabilistic methods
Registration
Research and Analysis Methods
Segmentation
Skeletal muscle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GWjAICThkm6cfx_KoCgeQgKLeIr-yVNomqyYr1F_C32XG8UYbUak9cFvFn2N5Zjweb8bfEPIqTxwzqk5jpjMVF6K0sch0HWdMmZxJdJae7fMLOz4pPp-Wp1ulvjAnbKAHHgR3YJSznJfMlUoW3NRSaVNYppk2qVCsRu-bCLk5TA0-GFYxY-GiXM7Tg6CX-apt3NwzumDAu7UReb7-0SvPVsu2uyrk_Ddz8va6WanL32q53NqWju6RuyGepIfDPHbILdfcJzthxXb0TaCVfvuA_PngfICql46enYMboViUYUObS3E7sxR-4J8HAGkvqE82jFUPATYdKk13FF5B1bpvPdMrIDoYlXZucR7uMDVUNZZCVEkXfmT_qK2hj4fAEDg2DEExN7VzffeQnBx9_PH-OA5lGWLDZN7HNhU20SkzNjF1mavSOMWlTQ1EA86WcAQzCsJADZu_tbmsUyFc4mzmOE-LOnH5IzJrQBG7hCqrdGJYXSQFLwwvtZOW1ciAb0smtIxIvtFRZQJnOZbOWFb-QxyHs8sg5go1WwXNRiQee60Gzo5r8O9Q_SMWGbf9A7DDKthhdZ0dRuQ5Gk81XF8d_UZ1yGFy-G2VR-SlRyDrRoNpPQu17rrq09efNwB9_zYBvQ6gugVxGBWuUsCckM1rgtybIMF3mEnzLpr6RipdlXFRsjwXvICeG_O_uvnF2IwvxVS9xrVrj2GJRGa9iDweVsso2ZwJCc2gVzFZRxPRT1uas1-e9Dz1uQeyjMh8XHI30u6T_6Hdp-ROBtFt7BM598isv1i7fYhGe_3MO56_a06Ptg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQbZ52ckCohVaFw4IKRb1FfmWptE2WTVaIX8LfZcZxQiMq6C2KP8eyxzMex-NvCHkeB4YpUYY-k5HwkyzVfhbJ0o-YUDHL0Vhats8ZOzpJPpympxtk1t-FwbDK3iZaQ61rhf_IdyOepQz2Uzx5s_zuY9YoPF3tU2gIl1pBv7YUY9fIZoTMWBOyuX8w-3Tc22bQbsbcBbqYh7tOXtNlXZmpZXpBR_jCAmV5_AdrPVku6uYyV_TviMrr62opfv4Qi8WF5erwFrnp_Ey6102MLbJhqttky2lyQ186uulXd8ivd8Y6rnJh6Nk5mBeKyRp6Ol2Ky5ym8IA_FQBSr6gNQvRFC4437TJQNxQ-QcW6rS0DLCAaaJU2Zn7u7jZVVFSagrdJ57Zl-6ouoY6FQBPYNjRBMWa1MW1zl5wcHnx5e-S7dA2-Ynnc-jrMdCBDpnSgyjQWqTKC5zpU4CUYncLWTAlwDyU4BVrHeRlmmQmMjgznYVIGJr5HJhUIYptQoYUMFCuTIOGJ4qk0uWYlMuPrlGUy90jcy6hQjsscU2osCntAx2FP0w1zgZItnGQ94g-1lh2Xx3_w-yj-AYtM3PZFvZoXTrELJYzmPGUmFXnCVZkLqRLNJJMqzAQrPfIEJ0_RXWsd7Emxx6FzeObKPfLMIpCNo8Jwn7lYN03x_uPXK4A-H49ALxyorGE4lHBXLKBPyPI1Qu6MkGBT1Kh4G6d6PypN8Uf7oGY__S8vfjoU40cxhK8y9dpiWJAj455H7nfaMoxszLIcikGu2UiPRkM_LqnOvlky9NDGJOSpR6aDyl1Jug_-3ZGH5EYE_qxvQzd3yKRdrc0j8D9b-dgZld_MrYu9
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKdAEboLwaKGAQEiCRIYljO1kOj6ogURBQVFaRXxkqpsmoSYTgR_hdrh1P1EARw24UH8fyte_1yfj6GKEHJDJMiTIOmUxEmGZUh1kiyzBhQhGW22Dp1D732d5B-vqQHm6gJ6uzMKf37wmPn3qLTpd1ZaZOiyVl59Amo8C8J2jzYP_d7HO_cZyELImIPx33t6qj1ceJ9A-heLJc1M1ZPPPPdMnzXbUU37-JxeLUWrR7Cb1Z9aJPQfk67Vo5VT9-E3hct5uX0UVPSvGsn0VbaMNUV9CWd_sGP_La1I-vop8vjGO5cmHw0THEImxvdlhp72K7JmoMP-w_EACpT7DLWAxFCywd99dVNxhegUXX1k4uFhANtIobMz_2B6EqLCqNgZriuWvZPapLqOMg0IRtG5rANsG1MW1zDR3svvz4fC_0dzuEiuWkDXWc6UjGTOlIlZQIqozguY4VUAqjKXzHKQFcUgKD0JrkZZxlJjI6MZzHaRkZch1NKjDWNsJCCxkpVqZRylPFqTS5ZqWV0deUZTIPEFmNeaG88Lm9f2NRuN08Dh9AvZkLa_3CWz9A4VBr2Qt__AP_zE6nAWtlu90DGObCR4FCCaM5p8xQkadclbmQKtVMMqniTLAyQHftZCz6M7BD8ClmHDpnN2h5gO47hJXuqGxu0Fx0TVO8evtpDdCH9yPQQw8qazCHEv48BvTJSoKNkDsjJAQgNSretq6zskpTJDyjjJCMp1Bz5U5nF98biu1Lbb5fZerOYViUW3m-AN3ovW-wLGFZDsUwrtnIL0emH5dUR1-ccnrsEhhyGqDp4MJrje7N_61wC11IgA6HLvNzB03ak87cBvrayjs-av0CFuyeIQ
  priority: 102
  providerName: Unpaywall
Title Deformable image registration based on single or multi-atlas methods for automatic muscle segmentation and the generation of augmented imaging datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/36897869
https://www.proquest.com/docview/2785633874
https://www.proquest.com/docview/2786092393
https://pubmed.ncbi.nlm.nih.gov/PMC10004495
https://doi.org/10.1371/journal.pone.0273446
https://doaj.org/article/caed7756e5a947cf9abc4d6b6bc18a6f
http://dx.doi.org/10.1371/journal.pone.0273446
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUuXTjh8Q6sbKQKJMg6LuKXJsp0zKktKkgv0l_LucnQ8RUURfosg-28qd73yOz79D6LnvKCJ46tok8bgdRKG0Iy9JbY9w4ROmjaVB-5yS01nwYR7Od1Cbs7VhYLlxa6fzSc1W2ejn9-s3oPCvTdYG6raNRssiVyOD1xKQXbQHaxXTyRw-Bt25Ami3Ob3UXotNPMdvLtP9q5feYmUw_TvLPVhmRbnJLf07uvLGOl_y6x88y_5Yuia30a3G58TjepLsox2V30H7jVaX-GUDPf3qLvr1VhknNskUvrwCU4N14oYWWhfrJU9ieNE_GICkWGETkGjzCpxwXGejLjF0gfm6KgwaLFCUMCou1eKqueeUY55LDJ4nXpiRTVGRQhtDAkPosWEIrONXS1WV99BscvLl-NRuUjfYgjC_sqUbSSdxiZCOSEOfh0JxyqQrwGNQMoRtmuDgKibgIEjps9SNIuUo6SlK3SB1lH8fDXIQxAHCXPLEESQNnIAGgoaJYpKkGiVfhiRKmIX8VkaxaHDNdXqNLDaHdRT2NzWbYy3ZuJGsheyu1bLG9fgP_ZEWf0erUblNQbFaxI2Sx4IrSWlIVMhZQEXKeCICSRKSCDfiJLXQEz154vqKa2db4jGFj9Pnr9RCzwyFRubIdejPgq_LMn7_6esWRJ_Pe0QvGqK0AHYI3ly3gG_SiF89ysMeJdgX0as-0FO95UoZezQKie9HNICW7fTfXP20q9ad6nC-XBVrQ0McptH3LPSg1paOsz6JGFSDXKOeHvVY36_JL78ZYHTXxCew0EKjTuW2ku7Dbdj-CN30wMO1TTDnIRpUq7V6DB5plQzRLp1TeEbHrn5O3g3R3tHJ9Ox8aP7xDI0RgrLZ9Gx88Rs4gJWz
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCQbZ52ckCoUKpdWooELdpbcGxnqbRNlk1WVX8J_4LfyIzzoBEV9NJbFH-OZc94PI7H3xDyzHc0kyJzbZZ6wg6iUNmRl2a2x4T0WYzG0rB9HrDRUfBhEk5WyK_2LgyGVbY20RhqVUj8R77l8ShksJ_iwZv5DxuzRuHpaptCo1aLPX12Clu28vV4B-T73PN23x--G9lNVgFbstivbOVGykldJpUjs9AXodSCx8qVsJhpFcIOQgrwYlJYu5Ty48yNIu1o5WnO3SBztA_fvUauBz7YEpg_fNJt8MB2MNZcz_O5u9Vow3Be5HpoeGTQzT63_JksAd1aMJjPivIiR_fveM3VZT4XZ6diNju3GO7eIjcbL5Zu12q3RlZ0fpusNXaipC8bMutXd8jPHW3c4nSm6fEJGC-KqSBasl6Ki6ii8IC_LABSLKgJcbRFBW49rfNblxQ-QcWyKgy_LCBKaJWWenrS3JzKqcgVBV-WTk3L5lWRQR0DgSawbWiCYkRsqavyLjm6ErHdI4McBLFOqFAidSTLAifggeRhqmPFMuTdVyGL0tgifiujRDZM6ZiwY5aY4z8OO6Z6mBOUbNJI1iJ2V2teM4X8B_8Wxd9hkefbvCgW06QxG4kUWnEeMh2KOOAyi0UqA8VSlko3EiyzyCYqT1Jfmu2sVbLNoXN4osst8tQgkOsjx2CiqViWZTL-9PUSoC-fe6AXDSgrYDikaC5wQJ-QQ6yH3OghwWLJXvE6qno7KmXyZ25DzVb9Ly5-0hXjRzFAMNfF0mCYEyOfn0Xu17OlG1mfRTEUg1yj3jzqDX2_JD_-bqjWXRPxEIcWGXZT7lLSffDvjmyS1dHhx_1kf3yw95Dc8MBztk2Q6AYZVIulfgSebpU-NuaFkm9Xbc9-A4Tlwt4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIgEXRPnrQqEGgYBDdvNrJweECsuqS1FBQNHegmM7S6VtsjS7qvokvAtPx4zjhEZU0EtvUfw5lj3j8Tgef0PIk8DVTIrcc1jmCyeMI-XEfpY7PhMyYAkaS8P2ucd29sN302i6Rn41d2EwrLKxicZQq1LiP_Khz-OIwX6Kh8PchkV8HI1fLX44mEEKT1qbdBq1iuzqk2PYvlUvJyOQ9VPfH7_98mbHsRkGHMmSYOkoL1Zu5jGpXJlHgYikFjxRnoSFTasIdhNSgEeTwTqmVJDkXhxrVytfc-6FuasD-O4lcpkHQYLhhHzabvbAjjBmr-oF3BtazRgsykIPDKcMutynlkKTMaBdF3qLeVmd5fT-Hbt5dVUsxMmxmM9PLYzjG-S69Wjpdq2C62RNFzfJurUZFX1uia1f3CI_R9q4yNlc04NDMGQU00I0xL0UF1RF4QF_XwCkPKIm3NERS3DxaZ3ruqLwCSpWy9JwzQKiglZppWeH9hZVQUWhKPi1dGZaNq_KHOoYCDSBbUMTFKNjK72sbpP9CxHbHdIrQBAbhAolMleyPHRDHkoeZTpRLEcOfhWxOEv6JGhklErLmo7JO-apOQrksHuqhzlFyaZWsn3itLUWNWvIf_CvUfwtFjm_zYvyaJZaE5JKoRXnEdORSEIu80RkMlQsY5n0YsHyPtlC5UnrC7St5Uq3OXQOT3d5nzw2COT9KHAGzcSqqtLJh6_nAH3-1AE9s6C8hOGQwl7mgD4hn1gHudlBgvWSneINVPVmVKr0zzyHmo36n138qC3Gj2KwYKHLlcEwN0Fuvz65W8-WdmQDFidQDHKNO_OoM_TdkuLgu6Fd90z0QxL1yaCdcueS7r1_d2SLXAFLlr6f7O3eJ9d8cKIdEy-6SXrLo5V-AE7vMntorAsl3y7anP0GrMrHIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKdAEboLwaKGAQEiCRIYljO1kOj6ogURBQVFaRXxkqpsmoSYTgR_hdrh1P1EARw24UH8fyte_1yfj6GKEHJDJMiTIOmUxEmGZUh1kiyzBhQhGW22Dp1D732d5B-vqQHm6gJ6uzMKf37wmPn3qLTpd1ZaZOiyVl59Amo8C8J2jzYP_d7HO_cZyELImIPx33t6qj1ceJ9A-heLJc1M1ZPPPPdMnzXbUU37-JxeLUWrR7Cb1Z9aJPQfk67Vo5VT9-E3hct5uX0UVPSvGsn0VbaMNUV9CWd_sGP_La1I-vop8vjGO5cmHw0THEImxvdlhp72K7JmoMP-w_EACpT7DLWAxFCywd99dVNxhegUXX1k4uFhANtIobMz_2B6EqLCqNgZriuWvZPapLqOMg0IRtG5rANsG1MW1zDR3svvz4fC_0dzuEiuWkDXWc6UjGTOlIlZQIqozguY4VUAqjKXzHKQFcUgKD0JrkZZxlJjI6MZzHaRkZch1NKjDWNsJCCxkpVqZRylPFqTS5ZqWV0deUZTIPEFmNeaG88Lm9f2NRuN08Dh9AvZkLa_3CWz9A4VBr2Qt__AP_zE6nAWtlu90DGObCR4FCCaM5p8xQkadclbmQKtVMMqniTLAyQHftZCz6M7BD8ClmHDpnN2h5gO47hJXuqGxu0Fx0TVO8evtpDdCH9yPQQw8qazCHEv48BvTJSoKNkDsjJAQgNSretq6zskpTJDyjjJCMp1Bz5U5nF98biu1Lbb5fZerOYViUW3m-AN3ovW-wLGFZDsUwrtnIL0emH5dUR1-ccnrsEhhyGqDp4MJrje7N_61wC11IgA6HLvNzB03ak87cBvrayjs-av0CFuyeIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformable+image+registration+based+on+single+or+multi-atlas+methods+for+automatic+muscle+segmentation+and+the+generation+of+augmented+imaging+datasets&rft.jtitle=PloS+one&rft.au=Henson%2C+William+H&rft.au=Mazz%C3%A1%2C+Claudia&rft.au=Dall%27Ara%2C+Enrico&rft.date=2023-03-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=3&rft.spage=e0273446&rft_id=info:doi/10.1371%2Fjournal.pone.0273446&rft.externalDBID=IOV&rft.externalDocID=A740408997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon