A deep learning framework for the early detection of multi-retinal diseases
Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facili...
Saved in:
| Published in | PloS one Vol. 19; no. 7; p. e0307317 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
25.07.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0307317 |
Cover
| Abstract | Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models’ ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model’s performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model’s performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study’s contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images. |
|---|---|
| AbstractList | Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images. Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images. |
| Audience | Academic |
| Author | Baig, Raheel Alnahari, Mona Mohammed Alotaibi, Reemiah Muneer Ejaz, Sara Alnfiai, Mrim M. Ashraf, Zeeshan |
| AuthorAffiliation | Soochow University, CHINA 2 Department of Computer Science, The University of Chenab, Gujrat, Punjab, Pakistan 1 Department of Information and Technology, University of Gujrat, Gujrat, Punjab, Pakistan 4 Information Technology Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia 3 Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia |
| AuthorAffiliation_xml | – name: 2 Department of Computer Science, The University of Chenab, Gujrat, Punjab, Pakistan – name: 3 Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia – name: 4 Information Technology Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia – name: Soochow University, CHINA – name: 1 Department of Information and Technology, University of Gujrat, Gujrat, Punjab, Pakistan |
| Author_xml | – sequence: 1 givenname: Sara surname: Ejaz fullname: Ejaz, Sara – sequence: 2 givenname: Raheel surname: Baig fullname: Baig, Raheel – sequence: 3 givenname: Zeeshan orcidid: 0000-0002-2700-5982 surname: Ashraf fullname: Ashraf, Zeeshan – sequence: 4 givenname: Mrim M. surname: Alnfiai fullname: Alnfiai, Mrim M. – sequence: 5 givenname: Mona Mohammed surname: Alnahari fullname: Alnahari, Mona Mohammed – sequence: 6 givenname: Reemiah Muneer surname: Alotaibi fullname: Alotaibi, Reemiah Muneer |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39052616$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkmuL1DAUhousuBf9B6IFQfTDjEnTpq1fZFi8DC4sePsaTtPTmYxpMyap6_x7U6e7TJdFlkJbTp73PbecRked6TCKnlIypyynbzamtx3o-TaE54SRnNH8QXRCS5bMeELY0cH_cXTq3IaQjBWcP4qOWUmyhFN-En1exDXiNtYItlPdKm4stHhl7M-4MTb2a4zDid4FyqP0ynSxaeK2117NLHoVKohr5RAcusfRwwa0wyfj9yz6_uH9t_NPs4vLj8vzxcVM8pL58EZSZBlSWsqEZKSuKIcyzSQpEmBpKLEiHGSV0qxOiWyqKmMEKUPJeNUUKTuLnu99t9o4Mc7BCUaKNKcJSctALPdEbWAjtla1YHfCgBL_AsauBFivpMZBhWnOCgZJlaKsQPKqBpaXjcw5pSR4ZXuvvtvC7gq0vjGkRAyruC5BDKsQ4yqC7t1YZV-1WEvsvAU9KWZ60qm1WJnfgtIkpyXhweHV6GDNrx6dF61yErWGDk0_NpxTmg3JXtxC7x7LSK0gdK66xoTEcjAVi4IkWcmLkgVqfgcVnhpbJUOLjQrxieD1RBAYj3_8CnrnxPLrl_uzlz-m7MsDdo2g_doZ3Q-30E3BZ4ejvpnx9TUPQLoHpDXOWWzuu8K3t2RSeRjSh4ko_X_xX2KJI7c |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_104574 |
| Cites_doi | 10.3390/data6020014 10.3390/diagnostics14010105 10.3390/s23218741 10.1016/j.bspc.2022.104357 10.1167/tvst.11.10.39 10.1007/978-3-030-95498-7_2 10.1109/ISBI.2015.7163871 10.3390/healthcare11020212 10.1007/s00521-023-08402-6 10.3390/data8020029 10.3390/app12136317 10.1136/bmjophth-2021-000924 10.1016/j.health.2023.100140 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Ejaz et al 2024 Ejaz et al 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Ejaz et al 2024 Ejaz et al – notice: 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0307317 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | A deep learning framework |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3084712049 oai_doaj_org_article_308e47383a2b4ecbac6bda379fc76110 10.1371/journal.pone.0307317 PMC11271906 A802596893 39052616 10_1371_journal_pone_0307317 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: TU-DSPP-2024-41 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c693t-c6e0855e119c2050db16a945c082a34386b06acb415d40cfbb530e13ec36bf843 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:08 EDT 2025 Fri Oct 03 12:26:52 EDT 2025 Sun Oct 26 04:07:05 EDT 2025 Tue Sep 30 17:08:14 EDT 2025 Wed Oct 01 14:51:16 EDT 2025 Tue Oct 07 07:41:39 EDT 2025 Mon Oct 20 22:51:41 EDT 2025 Mon Oct 20 16:57:16 EDT 2025 Thu Oct 16 16:13:44 EDT 2025 Thu Oct 16 15:53:41 EDT 2025 Thu May 22 21:24:30 EDT 2025 Wed Feb 19 02:07:35 EST 2025 Wed Oct 01 01:14:38 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-c6e0855e119c2050db16a945c082a34386b06acb415d40cfbb530e13ec36bf843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-2700-5982 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0307317 |
| PMID | 39052616 |
| PQID | 3084712049 |
| PQPubID | 1436336 |
| PageCount | e0307317 |
| ParticipantIDs | plos_journals_3084712049 doaj_primary_oai_doaj_org_article_308e47383a2b4ecbac6bda379fc76110 unpaywall_primary_10_1371_journal_pone_0307317 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271906 proquest_miscellaneous_3084771157 proquest_journals_3084712049 gale_infotracmisc_A802596893 gale_infotracacademiconefile_A802596893 gale_incontextgauss_ISR_A802596893 gale_incontextgauss_IOV_A802596893 gale_healthsolutions_A802596893 pubmed_primary_39052616 crossref_primary_10_1371_journal_pone_0307317 crossref_citationtrail_10_1371_journal_pone_0307317 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-25 |
| PublicationDateYYYYMMDD | 2024-07-25 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Choudhary (pone.0307317.ref011) 2023; 11 R Thanki (pone.0307317.ref017) 2023; 3 ES Kumar (pone.0307317.ref028) 2021; 40 S Pachade (pone.0307317.ref007) 2021; 6 N Sengar (pone.0307317.ref012) 2023 F Majeed (pone.0307317.ref036) 2023; 23 pone.0307317.ref001 pone.0307317.ref023 pone.0307317.ref022 pone.0307317.ref003 pone.0307317.ref025 pone.0307317.ref002 pone.0307317.ref024 pone.0307317.ref021 pone.0307317.ref020 pone.0307317.ref008 pone.0307317.ref005 pone.0307317.ref004 pone.0307317.ref026 pone.0307317.ref006 PU Pandey (pone.0307317.ref027) 2023 Y Pan (pone.0307317.ref013) 2023; 14 E Abitbol (pone.0307317.ref031) 2022; 7 S Panchal (pone.0307317.ref035) 2023; 8 pone.0307317.ref034 pone.0307317.ref014 KM Almustafa (pone.0307317.ref009) 2023; 80 pone.0307317.ref030 KS Kumar (pone.0307317.ref016) 2023; 35 pone.0307317.ref010 pone.0307317.ref032 pone.0307317.ref019 W Xu (pone.0307317.ref033) 2022; 2022 pone.0307317.ref038 pone.0307317.ref015 pone.0307317.ref037 pone.0307317.ref018 E Ho (pone.0307317.ref029) 2022; 11 pone.0307317.ref039 |
| References_xml | – ident: pone.0307317.ref014 – volume: 14 start-page: 160 year: 2023 ident: pone.0307317.ref013 article-title: Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases publication-title: Frontiers in Physiology – ident: pone.0307317.ref039 – volume: 6 start-page: 14 issue: 2 year: 2021 ident: pone.0307317.ref007 article-title: Retinal fundus multi-disease image dataset (RFMiD): A dataset for multi-disease detection research publication-title: Data doi: 10.3390/data6020014 – ident: pone.0307317.ref034 doi: 10.3390/diagnostics14010105 – ident: pone.0307317.ref006 – ident: pone.0307317.ref008 – volume: 23 start-page: 8741 issue: 21 year: 2023 ident: pone.0307317.ref036 article-title: Detection of drowsiness among drivers using novel deep convolutional neural network model publication-title: Sensors doi: 10.3390/s23218741 – ident: pone.0307317.ref004 – volume: 80 start-page: 104357 year: 2023 ident: pone.0307317.ref009 article-title: STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.104357 – ident: pone.0307317.ref022 – ident: pone.0307317.ref002 – ident: pone.0307317.ref020 – volume: 11 start-page: 39 issue: 10 year: 2022 ident: pone.0307317.ref029 article-title: Deep Ensemble Learning for Retinal Image Classification publication-title: Translational Vision Science & Technology doi: 10.1167/tvst.11.10.39 – ident: pone.0307317.ref001 – ident: pone.0307317.ref025 – ident: pone.0307317.ref032 – ident: pone.0307317.ref019 – ident: pone.0307317.ref038 doi: 10.1007/978-3-030-95498-7_2 – ident: pone.0307317.ref015 – volume: 2022 year: 2022 ident: pone.0307317.ref033 article-title: Development and application of an intelligent diagnosis system for retinal vein occlusion based on deep learning publication-title: Disease Markers – ident: pone.0307317.ref030 – ident: pone.0307317.ref005 doi: 10.1109/ISBI.2015.7163871 – volume: 11 start-page: 212 issue: 2 year: 2023 ident: pone.0307317.ref011 article-title: A deep learning-based framework for retinal disease classification publication-title: Healthcare doi: 10.3390/healthcare11020212 – start-page: 1 year: 2023 ident: pone.0307317.ref012 article-title: EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network publication-title: Neural Computing and Applications – volume: 40 start-page: 35 issue: 09 year: 2021 ident: pone.0307317.ref028 article-title: MDCF: Multi-Disease Classification Framework On Fundus Image Using Ensemble Cnn Models publication-title: Journal of Jilin University – volume: 35 start-page: 12495 issue: 17 year: 2023 ident: pone.0307317.ref016 article-title: Retinal disease prediction through blood vessel segmentation and classification using ensemble-based deep learning approaches publication-title: Neural Computing and Applications doi: 10.1007/s00521-023-08402-6 – ident: pone.0307317.ref023 – ident: pone.0307317.ref021 – volume: 8 start-page: 29 issue: 2 year: 2023 ident: pone.0307317.ref035 article-title: Retinal Fundus Multi-Disease Image Dataset (RFMiD) 2.0: A Dataset of Frequently and Rarely Identified Diseases publication-title: Data doi: 10.3390/data8020029 – ident: pone.0307317.ref003 – ident: pone.0307317.ref037 doi: 10.3390/app12136317 – ident: pone.0307317.ref024 – ident: pone.0307317.ref026 – year: 2023 ident: pone.0307317.ref027 article-title: An ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs publication-title: British Journal of Ophthalmology – volume: 7 start-page: e000924 issue: 1 year: 2022 ident: pone.0307317.ref031 article-title: Deep learning-based classification of retinal vascular diseases using ultra-widefield colour fundus photographs publication-title: BMJ Open Ophthalmology doi: 10.1136/bmjophth-2021-000924 – volume: 3 start-page: 100140 year: 2023 ident: pone.0307317.ref017 article-title: A deep neural network and machine learning approach for retinal fundus image classification publication-title: Healthcare Analytics doi: 10.1016/j.health.2023.100140 – ident: pone.0307317.ref018 – ident: pone.0307317.ref010 |
| SSID | ssj0053866 |
| Score | 2.4933567 |
| Snippet | Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0307317 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Automation Biology and Life Sciences Cameras Care and treatment Cataracts Color Color vision Computer and Information Sciences Data augmentation Data mining Datasets Deep Learning Diabetes Diabetes mellitus Diabetic retinopathy Diabetic Retinopathy - diagnosis Diabetic Retinopathy - diagnostic imaging Diagnosis Diagnostic systems Disease Early Diagnosis Eye Eye diseases Feature extraction Fundus Oculi Glaucoma Health services Humans Image processing Image Processing, Computer-Assisted - methods Machine learning Macular degeneration Medical imaging Medical imaging equipment Medical research Medical treatment Medicine and Health Sciences Neural networks Neural Networks, Computer Ophthalmology Optic nerve Performance prediction Photography Research and Analysis Methods Retina Retina - diagnostic imaging Retina - pathology Retinal Diseases - diagnosis Retinal Diseases - diagnostic imaging Retinal images Retinopathy Simultaneous discrimination learning Social Sciences Statistical models Visual impairment |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NKWAQEnDINokdOz4uiKqAAAko6i2yHacgrZKI7Krqv2fGcUIjKrUHLjmsx7vyzNh-s5l5Q8gLlkkJV4OKJXcqRgauuODWxE45rV1aF6nG2uFPn8XRMf9wkp9caPWFOWEDPfCguAOWFI5LiKN0ZrizRlthKs2kqi1E4ENxVVKoMZgazmDYxUKEQjkm04Ngl2XXNm7p3do3KPt7EXm-_ulUXnTrtr8Mcv6bOXlz23T6_Eyv1xeupcM75HbAk3Q1rGOH3HDNXbITdmxPXwVa6df3yMcVrZzraOgTcUrrMS-LAnClAASpQ7ZjkNr4_KyGtjX1CYcxljriz4TXOf19cnz47vvbozi0UoitUGwDT4cJaS5Nlc2SPKlMKrTiuQUEoBkHdZlEaGvgOq94Ymtjcpa4lDnLhKkLzh6QRQPK2yU017bSsoa4M_cPsIpAVJdYnlZKVRFho15LG3jGsd3FuvQvzyTEG4NqSrRGGawRkXia1Q08G1fIv0GTTbLIku0_AN8pg--UV_lORJ6iwcuh5HTa6-WqgHUpAVAuIs-9BDJlNJiKc6q3fV--__LjGkLfvs6EXgahugV1WB3KH2BNyMA1k9yfScJ-t7PhXXTPUSs9rhIQRgahHswcXfby4WfTMH4pptc1rt0GGYm8SxF5OHj4pFmmkBIoFREpZr4_U_18pPn10xOVA5aXADhh6nLaJtey7t7_sO4jcisDBIp_xGf5Pllsfm_dY0CQG_PEHxZ_AGnkbmY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZG9wAvE-PXMgYYhAQ8pEvixK4fEOrQpgGioMHQ3iLbcQpSlWRLK8R_z53rZERMsJc81Oe2Pp_Pn-O77wh5zhIhYGuQoUitDJGBK5ykRodWWqVsXE5ihbnDH2f8-DR9f5adbZBZlwuDYZWdT3SOuqgNviPfZxH60QQA7ZvmPMSqUXi72pXQUL60QvHaUYzdIJsJMmONyObB4ezzSeebYXVz7hPomIj3_XyNm7qyY2furnDZ5QblePx7bz1qFnV7FRT9O6Ly5qpq1K-farH4Y7s6uk22PM6k07VhbJMNW90h234lt_Slp5t-dZd8mNLC2ob6-hFzWnbxWhQALQWASC2yIIPU0sVtVbQuqQtEDDEFEn_GX_O098jp0eHXt8ehL7EQGi7ZEp4WA9VsHEuTRFlU6JgrmWYGkIFiKahLR1wZDdt8kUam1DpjkY2ZNYzrcpKy-2RUgfJ2CM2UKZQo4TyauYdOLUe0F5k0LqQsAsI6vebG849jGYxF7i7VBJxD1qrJcTZyPxsBCftezZp_4z_yBzhlvSyyZ7sP6ot57hdjDrZkUwFnc5XAvzRaGa4LxYQsjeCAhwLyBCc8X6ei9j4gn05gXJIDxAvIMyeBDBoVhujM1apt83efvl1D6MvJQOiFFyprUIdRPi0CxoTMXAPJvYEk-AEzaN5B8-y00uaXKwZ6diZ7dfPTvhm_FMPuKluvvIxAPqaAPFhbeK9ZJpEqKOYBmQxsf6D6YUv147sjMAeMLwCIQtdxv0yuNbu7_x7IQ3IrAcyJr96TbI-Mlhcr-wgw41I_9o7gN_i0a_s priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJhCRO7PixIKYB2kBA0XiKbMcZiCqtSCIEfz13iRMtMER5yUN9bnNnn_1dffeZkAcsFgK2BumLxEofGbj8LDHat9IqZaMyixTWDh8e8YNF8uo4Pd4iT4ZamNPn90xET51Fg_WqskE3ISNxjmzzFJD3jGwvjt7OP_UHx7HP45C56ri_dZ3sPh1J_7gUz9bLVX0WzvwzXfJ8W63Vj-9quTy1F-1fIoeDFn0KytegbXRgfv5G8LipmpfJRQdK6byfRTtky1ZXyI5z-5o-ctzUj6-S13NaWLum7rKJE1oOyV0U0C8FNEktUiaDVNMleVV0VdIua9HHekn8GXcmVF8ji_0XH54f-O4-Bt9wyRp4Wsxqs1EkTRymYaEjrmSSGoARiiUs4zrkymjABEUSmlLrlIU2YtYwrsssYdfJrAIFdwlNlSmUKCF4TbuHTixHaBiaJCqkLDzChnHKjSMrxzszlnl3AicgaOlNk6PFcmcxj_hjr3VP1vEP-Wc4BUZZpNruPoChyZ3n5izMbCIgkFcxvKXRynBdKCZkaQQH8OSRuziB8r5udVww8nkGekkOeNAj9zsJpNuoMJ_nRLV1nb9883EDoffvJkIPnVC5AnMY5WooQCek8ZpI7k0kYdEwk-ZdnO6DVWrUEmBKDPEi9Bxc4Ozme2Mzfinm6FV21ToZgeRNHrnRe8xoWSaRVyjiHskmvjQx_bSl-vK5YzuHgEAAaoWuweh2G43uzf_tcItciAGy4j_3cbpHZs231t4GyNnoO26l-QWuHX5u priority: 102 providerName: Unpaywall |
| Title | A deep learning framework for the early detection of multi-retinal diseases |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39052616 https://www.proquest.com/docview/3084712049 https://www.proquest.com/docview/3084771157 https://pubmed.ncbi.nlm.nih.gov/PMC11271906 https://doi.org/10.1371/journal.pone.0307317 https://doaj.org/article/308e47383a2b4ecbac6bda379fc76110 http://dx.doi.org/10.1371/journal.pone.0307317 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqMEhAQ8pIrjJI4fEOqmlQFamQZF5SlyHKcgVUlpWsH-e-5cJyKiiL74IT6n9flsfxefvyPkOQs4h61BeDzUwkMGLi8JVeZpoaXUtEioxLvDF-P4fBK-n0bTPdLkbLUKrLe6dphParKcD379uH4DE_61ydrAadNosKhKPTBGS_k-OYC9SmAyh4uwPVeA2W1OLxG1eHHgM3uZ7l9v6WxWhtO_Xbl7i3lVb4Olf0dX3liXC3n9U87nf2xdo9vklsWc7nBjJIdkT5d3yKGd1bX70lJPv7pLPgzdXOuFa3NJzNyiid1yAdy6ABZdjYzIILUyMVylWxWuCUr08Dok_ow98qnvkcno7PPpuWfTLXgqFmwFpcagNU2pUIEf-XlGYynCSAFKkCwE1WV-LFUGW34e-qrIsoj5mjKtWJwVScjuk14JyjsibiRVLnkBvmlkiizUMSI_X4U0FyJ3CGv0mirLRY4pMeapOWDj4JNsVJPiaKR2NBzita0WGy6O_8if4JC1ssikbR5Uy1lqJ2bK_ESHHPx0GcC_VJlUcZZLxkWheAzYyCFPcMDTzbXUdj1Ihwn0S8QA9xzyzEggm0aJ4Tozua7r9N3HLzsIfbrqCL2wQkUF6lDSXpGAPiFLV0fyuCMJa4LqVB-heTZaqbGXgEICcAehZWOy26ufttX4UgzBK3W1tjIcuZkc8mBj4a1mmUDaIBo7JOnYfkf13Zry-zdDZg54nwMohaaDdprsNLoPd1bWI3IzACiKX-SD6Jj0Vsu1fgxQcpX1yT6fciiTU4rl6G2fHJycjS-v-ubjTN-sHvBsMr4cfv0NSTx4JA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrLoVwQ5dVAoQaBgEO2SZzYyQGh5VF12bZI0KK9BcdxFqRVEppdVf0pvpEZr5MSUUEvveQQj5N4ZjyPeB6EPGOBEKAaEleEOnGxApcbhypzdaKl1H4R-xJzhw8O-d5x-HEaTdfIrzYXBsMqW5loBHVeKfxHvsM8lKMBGLRv6p8udo3C09W2hcaKLSb67BRctub1-D3Q93kQ7H44erfn2q4CruIJW8BVY2yW9v1EBV7k5ZnPZRJGCpShZCGLeeZxqTLQbHnoqSLLIuZpn2nFeFbEIYPnXiPXQwayBPaPmHYOHsgOzm16HhP-juWGYV2Vemg2k2mLdq7-TJeAThcM6nnVXGTo_h2vub4sa3l2KufzP5Th7i1y01qxdLRiuw2ypsvbZMPKiYa-tMWsX90hkxHNta6p7U4xo0UbDUbBXKZgflKNNZYBamGiwkpaFdSEObqYYImvsYdIzV1yfCWovkcGJSBvk9BIqlyKArzdyFyyUHO0JT0V-nmS5A5hLV5TZaubY5ONeWqO7AR4OSvUpEiN1FLDIW43q15V9_gP_FskWQeLtbnNjepkltqtngKn6lCA5y8D-EqVScWzXDKRFEpwsLYcso0ET1eJrp2ESUcxrCvhYEA65KmBwPocJQYAzeSyadLxp6-XAPryuQf0wgIVFaBDSZt0AWvCul89yK0eJEgZ1RveRPZssdKk5_sRZrYse_Hwk24YH4pBfaWulhZGYLUnh9xfcXiHWZZgISKfOyTu8X4P9f2R8sd3Ux4dPAgBZi5MHXbb5FLUffDvhWyT9b2jg_10f3w4eUhuBGDd4k_-INoig8XJUj8C63SRPTYigZJvVy2DfgMqdaF4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2iRO7OQBocKoVgoDMYb6FhzHKUhVEpZW0_41_jruEicjYoK97CUP9SWN7853P8f3QcgT5gkBriGyha8jGytw2aGvEltHWkrtZqErMXf4wz7fO_TfzYP5BvnV5sJgWGVrE2tDnRYKv5GPmIN21ANAO8pMWMSn3cmr8qeNHaTwpLVtp9GoyEyfHMP2rXo53QVZP_W8ydsvb_Zs02HAVjxiK7hqjNPSrhspzwmcNHG5jPxAgWOUzGchTxwuVQJeLvUdlSVJwBztMq0YT7LQZ_DcS-SyYCzCcEIx7zZ7YEc4N6l6TLgjoxnDssj1sF5YdYu0U1dYdwzo_MKgXBbVWaD379jNq-u8lCfHcrn8wzFObpDrBtHScaOCm2RD5zfJprEZFX1uClu_uEVmY5pqXVLTqWJBszYyjAJ0pgBFqcZ6y0C1qiPEclpktA55tDHZEv_GHChVt8nhhbD6DhnkwLwtQgOpUiky2PkG9SXxNUdc6SjfTaMotQhr-RorU-kcG24s4_r4TsCOp2FNjNKIjTQsYnd3lU2lj__Qv0aRdbRYp7v-oThaxGbZx6C12hcsZNKDt1SJVDxJJRNRpgQH5GWRHRR43CS9dtYmHocwr4gDmLTI45oCa3XkqPULua6qePrx6zmIDj73iJ4ZoqwAdihpEjBgTlgDrEe53aMEi6N6w1uoni1Xqvh0bcKdrcqePfyoG8aHYoBfrou1oRFY-ckidxsN7zjLIixK5HKLhD3d77G-P5L_-F6XSofdhADIC7cOu2VyLune-_dEdsgVsD7x--n-7D655gHQxe_9XrBNBqujtX4AQHWVPKwtAiXfLtoE_QYTkqW7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJhCRO7PixIKYB2kBA0XiKbMcZiCqtSCIEfz13iRMtMER5yUN9bnNnn_1dffeZkAcsFgK2BumLxEofGbj8LDHat9IqZaMyixTWDh8e8YNF8uo4Pd4iT4ZamNPn90xET51Fg_WqskE3ISNxjmzzFJD3jGwvjt7OP_UHx7HP45C56ri_dZ3sPh1J_7gUz9bLVX0WzvwzXfJ8W63Vj-9quTy1F-1fIoeDFn0KytegbXRgfv5G8LipmpfJRQdK6byfRTtky1ZXyI5z-5o-ctzUj6-S13NaWLum7rKJE1oOyV0U0C8FNEktUiaDVNMleVV0VdIua9HHekn8GXcmVF8ji_0XH54f-O4-Bt9wyRp4Wsxqs1EkTRymYaEjrmSSGoARiiUs4zrkymjABEUSmlLrlIU2YtYwrsssYdfJrAIFdwlNlSmUKCF4TbuHTixHaBiaJCqkLDzChnHKjSMrxzszlnl3AicgaOlNk6PFcmcxj_hjr3VP1vEP-Wc4BUZZpNruPoChyZ3n5izMbCIgkFcxvKXRynBdKCZkaQQH8OSRuziB8r5udVww8nkGekkOeNAj9zsJpNuoMJ_nRLV1nb9883EDoffvJkIPnVC5AnMY5WooQCek8ZpI7k0kYdEwk-ZdnO6DVWrUEmBKDPEi9Bxc4Ozme2Mzfinm6FV21ToZgeRNHrnRe8xoWSaRVyjiHskmvjQx_bSl-vK5YzuHgEAAaoWuweh2G43uzf_tcItciAGy4j_3cbpHZs231t4GyNnoO26l-QWuHX5u |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+framework+for+the+early+detection+of+multi-retinal+diseases&rft.jtitle=PloS+one&rft.au=Ejaz%2C+Sara&rft.au=Baig%2C+Raheel&rft.au=Ashraf%2C+Zeeshan&rft.au=Alnfiai%2C+Mrim+M&rft.date=2024-07-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=7&rft.spage=e0307317&rft_id=info:doi/10.1371%2Fjournal.pone.0307317&rft.externalDocID=A802596893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |