A deep learning framework for the early detection of multi-retinal diseases

Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facili...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 7; p. e0307317
Main Authors Ejaz, Sara, Baig, Raheel, Ashraf, Zeeshan, Alnfiai, Mrim M., Alnahari, Mona Mohammed, Alotaibi, Reemiah Muneer
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.07.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0307317

Cover

Abstract Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models’ ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model’s performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model’s performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study’s contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.
AbstractList Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.
Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early detection and timely treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and treatment planning can be facilitated by deep learning models' ability to process images rapidly and deliver outcomes instantly. Our research aims to provide a non-invasive method for early detection and timely eye disease treatment using a Convolutional Neural Network (CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which contains various categories of fundus images representing different eye diseases, including Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy images (WNL). Several pre-processing techniques were applied to improve the model's performance, such as data augmentation, cropping, resizing, dataset splitting, converting images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features from the input color fundus images. These extracted features are employed to make predictive diagnostic decisions. In this article three CNN models were used to perform experiments. The model's performance is assessed utilizing statistical metrics such as accuracy, F1 score, recall, and precision. Based on the results, the developed framework demonstrates promising performance with accuracy rates of up to 89.81% for validation and 88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting. These accuracy rates suggested that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. This study's contribution lies in providing a reliable and efficient diagnostic system for the simultaneous detection of multiple eye diseases through the analysis of color fundus images.
Audience Academic
Author Baig, Raheel
Alnahari, Mona Mohammed
Alotaibi, Reemiah Muneer
Ejaz, Sara
Alnfiai, Mrim M.
Ashraf, Zeeshan
AuthorAffiliation Soochow University, CHINA
2 Department of Computer Science, The University of Chenab, Gujrat, Punjab, Pakistan
1 Department of Information and Technology, University of Gujrat, Gujrat, Punjab, Pakistan
4 Information Technology Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
3 Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
AuthorAffiliation_xml – name: 2 Department of Computer Science, The University of Chenab, Gujrat, Punjab, Pakistan
– name: 3 Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
– name: 4 Information Technology Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
– name: Soochow University, CHINA
– name: 1 Department of Information and Technology, University of Gujrat, Gujrat, Punjab, Pakistan
Author_xml – sequence: 1
  givenname: Sara
  surname: Ejaz
  fullname: Ejaz, Sara
– sequence: 2
  givenname: Raheel
  surname: Baig
  fullname: Baig, Raheel
– sequence: 3
  givenname: Zeeshan
  orcidid: 0000-0002-2700-5982
  surname: Ashraf
  fullname: Ashraf, Zeeshan
– sequence: 4
  givenname: Mrim M.
  surname: Alnfiai
  fullname: Alnfiai, Mrim M.
– sequence: 5
  givenname: Mona Mohammed
  surname: Alnahari
  fullname: Alnahari, Mona Mohammed
– sequence: 6
  givenname: Reemiah Muneer
  surname: Alotaibi
  fullname: Alotaibi, Reemiah Muneer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39052616$$D View this record in MEDLINE/PubMed
BookMark eNqNkmuL1DAUhousuBf9B6IFQfTDjEnTpq1fZFi8DC4sePsaTtPTmYxpMyap6_x7U6e7TJdFlkJbTp73PbecRked6TCKnlIypyynbzamtx3o-TaE54SRnNH8QXRCS5bMeELY0cH_cXTq3IaQjBWcP4qOWUmyhFN-En1exDXiNtYItlPdKm4stHhl7M-4MTb2a4zDid4FyqP0ynSxaeK2117NLHoVKohr5RAcusfRwwa0wyfj9yz6_uH9t_NPs4vLj8vzxcVM8pL58EZSZBlSWsqEZKSuKIcyzSQpEmBpKLEiHGSV0qxOiWyqKmMEKUPJeNUUKTuLnu99t9o4Mc7BCUaKNKcJSctALPdEbWAjtla1YHfCgBL_AsauBFivpMZBhWnOCgZJlaKsQPKqBpaXjcw5pSR4ZXuvvtvC7gq0vjGkRAyruC5BDKsQ4yqC7t1YZV-1WEvsvAU9KWZ60qm1WJnfgtIkpyXhweHV6GDNrx6dF61yErWGDk0_NpxTmg3JXtxC7x7LSK0gdK66xoTEcjAVi4IkWcmLkgVqfgcVnhpbJUOLjQrxieD1RBAYj3_8CnrnxPLrl_uzlz-m7MsDdo2g_doZ3Q-30E3BZ4ejvpnx9TUPQLoHpDXOWWzuu8K3t2RSeRjSh4ko_X_xX2KJI7c
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104574
Cites_doi 10.3390/data6020014
10.3390/diagnostics14010105
10.3390/s23218741
10.1016/j.bspc.2022.104357
10.1167/tvst.11.10.39
10.1007/978-3-030-95498-7_2
10.1109/ISBI.2015.7163871
10.3390/healthcare11020212
10.1007/s00521-023-08402-6
10.3390/data8020029
10.3390/app12136317
10.1136/bmjophth-2021-000924
10.1016/j.health.2023.100140
ContentType Journal Article
Copyright Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Ejaz et al 2024 Ejaz et al
2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Ejaz et al 2024 Ejaz et al
– notice: 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0307317
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef


Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A deep learning framework
EISSN 1932-6203
ExternalDocumentID 3084712049
oai_doaj_org_article_308e47383a2b4ecbac6bda379fc76110
10.1371/journal.pone.0307317
PMC11271906
A802596893
39052616
10_1371_journal_pone_0307317
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: TU-DSPP-2024-41
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-c6e0855e119c2050db16a945c082a34386b06acb415d40cfbb530e13ec36bf843
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:08 EDT 2025
Fri Oct 03 12:26:52 EDT 2025
Sun Oct 26 04:07:05 EDT 2025
Tue Sep 30 17:08:14 EDT 2025
Wed Oct 01 14:51:16 EDT 2025
Tue Oct 07 07:41:39 EDT 2025
Mon Oct 20 22:51:41 EDT 2025
Mon Oct 20 16:57:16 EDT 2025
Thu Oct 16 16:13:44 EDT 2025
Thu Oct 16 15:53:41 EDT 2025
Thu May 22 21:24:30 EDT 2025
Wed Feb 19 02:07:35 EST 2025
Wed Oct 01 01:14:38 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2024 Ejaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-c6e0855e119c2050db16a945c082a34386b06acb415d40cfbb530e13ec36bf843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2700-5982
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0307317
PMID 39052616
PQID 3084712049
PQPubID 1436336
PageCount e0307317
ParticipantIDs plos_journals_3084712049
doaj_primary_oai_doaj_org_article_308e47383a2b4ecbac6bda379fc76110
unpaywall_primary_10_1371_journal_pone_0307317
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271906
proquest_miscellaneous_3084771157
proquest_journals_3084712049
gale_infotracmisc_A802596893
gale_infotracacademiconefile_A802596893
gale_incontextgauss_ISR_A802596893
gale_incontextgauss_IOV_A802596893
gale_healthsolutions_A802596893
pubmed_primary_39052616
crossref_primary_10_1371_journal_pone_0307317
crossref_citationtrail_10_1371_journal_pone_0307317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-25
PublicationDateYYYYMMDD 2024-07-25
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Choudhary (pone.0307317.ref011) 2023; 11
R Thanki (pone.0307317.ref017) 2023; 3
ES Kumar (pone.0307317.ref028) 2021; 40
S Pachade (pone.0307317.ref007) 2021; 6
N Sengar (pone.0307317.ref012) 2023
F Majeed (pone.0307317.ref036) 2023; 23
pone.0307317.ref001
pone.0307317.ref023
pone.0307317.ref022
pone.0307317.ref003
pone.0307317.ref025
pone.0307317.ref002
pone.0307317.ref024
pone.0307317.ref021
pone.0307317.ref020
pone.0307317.ref008
pone.0307317.ref005
pone.0307317.ref004
pone.0307317.ref026
pone.0307317.ref006
PU Pandey (pone.0307317.ref027) 2023
Y Pan (pone.0307317.ref013) 2023; 14
E Abitbol (pone.0307317.ref031) 2022; 7
S Panchal (pone.0307317.ref035) 2023; 8
pone.0307317.ref034
pone.0307317.ref014
KM Almustafa (pone.0307317.ref009) 2023; 80
pone.0307317.ref030
KS Kumar (pone.0307317.ref016) 2023; 35
pone.0307317.ref010
pone.0307317.ref032
pone.0307317.ref019
W Xu (pone.0307317.ref033) 2022; 2022
pone.0307317.ref038
pone.0307317.ref015
pone.0307317.ref037
pone.0307317.ref018
E Ho (pone.0307317.ref029) 2022; 11
pone.0307317.ref039
References_xml – ident: pone.0307317.ref014
– volume: 14
  start-page: 160
  year: 2023
  ident: pone.0307317.ref013
  article-title: Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases
  publication-title: Frontiers in Physiology
– ident: pone.0307317.ref039
– volume: 6
  start-page: 14
  issue: 2
  year: 2021
  ident: pone.0307317.ref007
  article-title: Retinal fundus multi-disease image dataset (RFMiD): A dataset for multi-disease detection research
  publication-title: Data
  doi: 10.3390/data6020014
– ident: pone.0307317.ref034
  doi: 10.3390/diagnostics14010105
– ident: pone.0307317.ref006
– ident: pone.0307317.ref008
– volume: 23
  start-page: 8741
  issue: 21
  year: 2023
  ident: pone.0307317.ref036
  article-title: Detection of drowsiness among drivers using novel deep convolutional neural network model
  publication-title: Sensors
  doi: 10.3390/s23218741
– ident: pone.0307317.ref004
– volume: 80
  start-page: 104357
  year: 2023
  ident: pone.0307317.ref009
  article-title: STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104357
– ident: pone.0307317.ref022
– ident: pone.0307317.ref002
– ident: pone.0307317.ref020
– volume: 11
  start-page: 39
  issue: 10
  year: 2022
  ident: pone.0307317.ref029
  article-title: Deep Ensemble Learning for Retinal Image Classification
  publication-title: Translational Vision Science & Technology
  doi: 10.1167/tvst.11.10.39
– ident: pone.0307317.ref001
– ident: pone.0307317.ref025
– ident: pone.0307317.ref032
– ident: pone.0307317.ref019
– ident: pone.0307317.ref038
  doi: 10.1007/978-3-030-95498-7_2
– ident: pone.0307317.ref015
– volume: 2022
  year: 2022
  ident: pone.0307317.ref033
  article-title: Development and application of an intelligent diagnosis system for retinal vein occlusion based on deep learning
  publication-title: Disease Markers
– ident: pone.0307317.ref030
– ident: pone.0307317.ref005
  doi: 10.1109/ISBI.2015.7163871
– volume: 11
  start-page: 212
  issue: 2
  year: 2023
  ident: pone.0307317.ref011
  article-title: A deep learning-based framework for retinal disease classification
  publication-title: Healthcare
  doi: 10.3390/healthcare11020212
– start-page: 1
  year: 2023
  ident: pone.0307317.ref012
  article-title: EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network
  publication-title: Neural Computing and Applications
– volume: 40
  start-page: 35
  issue: 09
  year: 2021
  ident: pone.0307317.ref028
  article-title: MDCF: Multi-Disease Classification Framework On Fundus Image Using Ensemble Cnn Models
  publication-title: Journal of Jilin University
– volume: 35
  start-page: 12495
  issue: 17
  year: 2023
  ident: pone.0307317.ref016
  article-title: Retinal disease prediction through blood vessel segmentation and classification using ensemble-based deep learning approaches
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08402-6
– ident: pone.0307317.ref023
– ident: pone.0307317.ref021
– volume: 8
  start-page: 29
  issue: 2
  year: 2023
  ident: pone.0307317.ref035
  article-title: Retinal Fundus Multi-Disease Image Dataset (RFMiD) 2.0: A Dataset of Frequently and Rarely Identified Diseases
  publication-title: Data
  doi: 10.3390/data8020029
– ident: pone.0307317.ref003
– ident: pone.0307317.ref037
  doi: 10.3390/app12136317
– ident: pone.0307317.ref024
– ident: pone.0307317.ref026
– year: 2023
  ident: pone.0307317.ref027
  article-title: An ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs
  publication-title: British Journal of Ophthalmology
– volume: 7
  start-page: e000924
  issue: 1
  year: 2022
  ident: pone.0307317.ref031
  article-title: Deep learning-based classification of retinal vascular diseases using ultra-widefield colour fundus photographs
  publication-title: BMJ Open Ophthalmology
  doi: 10.1136/bmjophth-2021-000924
– volume: 3
  start-page: 100140
  year: 2023
  ident: pone.0307317.ref017
  article-title: A deep neural network and machine learning approach for retinal fundus image classification
  publication-title: Healthcare Analytics
  doi: 10.1016/j.health.2023.100140
– ident: pone.0307317.ref018
– ident: pone.0307317.ref010
SSID ssj0053866
Score 2.4933567
Snippet Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by ophthalmologists. Extensive research was conducted to enable early...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0307317
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Automation
Biology and Life Sciences
Cameras
Care and treatment
Cataracts
Color
Color vision
Computer and Information Sciences
Data augmentation
Data mining
Datasets
Deep Learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diabetic Retinopathy - diagnosis
Diabetic Retinopathy - diagnostic imaging
Diagnosis
Diagnostic systems
Disease
Early Diagnosis
Eye
Eye diseases
Feature extraction
Fundus Oculi
Glaucoma
Health services
Humans
Image processing
Image Processing, Computer-Assisted - methods
Machine learning
Macular degeneration
Medical imaging
Medical imaging equipment
Medical research
Medical treatment
Medicine and Health Sciences
Neural networks
Neural Networks, Computer
Ophthalmology
Optic nerve
Performance prediction
Photography
Research and Analysis Methods
Retina
Retina - diagnostic imaging
Retina - pathology
Retinal Diseases - diagnosis
Retinal Diseases - diagnostic imaging
Retinal images
Retinopathy
Simultaneous discrimination learning
Social Sciences
Statistical models
Visual impairment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NKWAQEnDINokdOz4uiKqAAAko6i2yHacgrZKI7Krqv2fGcUIjKrUHLjmsx7vyzNh-s5l5Q8gLlkkJV4OKJXcqRgauuODWxE45rV1aF6nG2uFPn8XRMf9wkp9caPWFOWEDPfCguAOWFI5LiKN0ZrizRlthKs2kqi1E4ENxVVKoMZgazmDYxUKEQjkm04Ngl2XXNm7p3do3KPt7EXm-_ulUXnTrtr8Mcv6bOXlz23T6_Eyv1xeupcM75HbAk3Q1rGOH3HDNXbITdmxPXwVa6df3yMcVrZzraOgTcUrrMS-LAnClAASpQ7ZjkNr4_KyGtjX1CYcxljriz4TXOf19cnz47vvbozi0UoitUGwDT4cJaS5Nlc2SPKlMKrTiuQUEoBkHdZlEaGvgOq94Ymtjcpa4lDnLhKkLzh6QRQPK2yU017bSsoa4M_cPsIpAVJdYnlZKVRFho15LG3jGsd3FuvQvzyTEG4NqSrRGGawRkXia1Q08G1fIv0GTTbLIku0_AN8pg--UV_lORJ6iwcuh5HTa6-WqgHUpAVAuIs-9BDJlNJiKc6q3fV--__LjGkLfvs6EXgahugV1WB3KH2BNyMA1k9yfScJ-t7PhXXTPUSs9rhIQRgahHswcXfby4WfTMH4pptc1rt0GGYm8SxF5OHj4pFmmkBIoFREpZr4_U_18pPn10xOVA5aXADhh6nLaJtey7t7_sO4jcisDBIp_xGf5Pllsfm_dY0CQG_PEHxZ_AGnkbmY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZG9wAvE-PXMgYYhAQ8pEvixK4fEOrQpgGioMHQ3iLbcQpSlWRLK8R_z53rZERMsJc81Oe2Pp_Pn-O77wh5zhIhYGuQoUitDJGBK5ykRodWWqVsXE5ihbnDH2f8-DR9f5adbZBZlwuDYZWdT3SOuqgNviPfZxH60QQA7ZvmPMSqUXi72pXQUL60QvHaUYzdIJsJMmONyObB4ezzSeebYXVz7hPomIj3_XyNm7qyY2furnDZ5QblePx7bz1qFnV7FRT9O6Ly5qpq1K-farH4Y7s6uk22PM6k07VhbJMNW90h234lt_Slp5t-dZd8mNLC2ob6-hFzWnbxWhQALQWASC2yIIPU0sVtVbQuqQtEDDEFEn_GX_O098jp0eHXt8ehL7EQGi7ZEp4WA9VsHEuTRFlU6JgrmWYGkIFiKahLR1wZDdt8kUam1DpjkY2ZNYzrcpKy-2RUgfJ2CM2UKZQo4TyauYdOLUe0F5k0LqQsAsI6vebG849jGYxF7i7VBJxD1qrJcTZyPxsBCftezZp_4z_yBzhlvSyyZ7sP6ot57hdjDrZkUwFnc5XAvzRaGa4LxYQsjeCAhwLyBCc8X6ei9j4gn05gXJIDxAvIMyeBDBoVhujM1apt83efvl1D6MvJQOiFFyprUIdRPi0CxoTMXAPJvYEk-AEzaN5B8-y00uaXKwZ6diZ7dfPTvhm_FMPuKluvvIxAPqaAPFhbeK9ZJpEqKOYBmQxsf6D6YUv147sjMAeMLwCIQtdxv0yuNbu7_x7IQ3IrAcyJr96TbI-Mlhcr-wgw41I_9o7gN_i0a_s
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJhCRO7PixIKYB2kBA0XiKbMcZiCqtSCIEfz13iRMtMER5yUN9bnNnn_1dffeZkAcsFgK2BumLxEofGbj8LDHat9IqZaMyixTWDh8e8YNF8uo4Pd4iT4ZamNPn90xET51Fg_WqskE3ISNxjmzzFJD3jGwvjt7OP_UHx7HP45C56ri_dZ3sPh1J_7gUz9bLVX0WzvwzXfJ8W63Vj-9quTy1F-1fIoeDFn0KytegbXRgfv5G8LipmpfJRQdK6byfRTtky1ZXyI5z-5o-ctzUj6-S13NaWLum7rKJE1oOyV0U0C8FNEktUiaDVNMleVV0VdIua9HHekn8GXcmVF8ji_0XH54f-O4-Bt9wyRp4Wsxqs1EkTRymYaEjrmSSGoARiiUs4zrkymjABEUSmlLrlIU2YtYwrsssYdfJrAIFdwlNlSmUKCF4TbuHTixHaBiaJCqkLDzChnHKjSMrxzszlnl3AicgaOlNk6PFcmcxj_hjr3VP1vEP-Wc4BUZZpNruPoChyZ3n5izMbCIgkFcxvKXRynBdKCZkaQQH8OSRuziB8r5udVww8nkGekkOeNAj9zsJpNuoMJ_nRLV1nb9883EDoffvJkIPnVC5AnMY5WooQCek8ZpI7k0kYdEwk-ZdnO6DVWrUEmBKDPEi9Bxc4Ozme2Mzfinm6FV21ToZgeRNHrnRe8xoWSaRVyjiHskmvjQx_bSl-vK5YzuHgEAAaoWuweh2G43uzf_tcItciAGy4j_3cbpHZs231t4GyNnoO26l-QWuHX5u
  priority: 102
  providerName: Unpaywall
Title A deep learning framework for the early detection of multi-retinal diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/39052616
https://www.proquest.com/docview/3084712049
https://www.proquest.com/docview/3084771157
https://pubmed.ncbi.nlm.nih.gov/PMC11271906
https://doi.org/10.1371/journal.pone.0307317
https://doaj.org/article/308e47383a2b4ecbac6bda379fc76110
http://dx.doi.org/10.1371/journal.pone.0307317
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqMEhAQ8pIrjJI4fEOqmlQFamQZF5SlyHKcgVUlpWsH-e-5cJyKiiL74IT6n9flsfxefvyPkOQs4h61BeDzUwkMGLi8JVeZpoaXUtEioxLvDF-P4fBK-n0bTPdLkbLUKrLe6dphParKcD379uH4DE_61ydrAadNosKhKPTBGS_k-OYC9SmAyh4uwPVeA2W1OLxG1eHHgM3uZ7l9v6WxWhtO_Xbl7i3lVb4Olf0dX3liXC3n9U87nf2xdo9vklsWc7nBjJIdkT5d3yKGd1bX70lJPv7pLPgzdXOuFa3NJzNyiid1yAdy6ABZdjYzIILUyMVylWxWuCUr08Dok_ow98qnvkcno7PPpuWfTLXgqFmwFpcagNU2pUIEf-XlGYynCSAFKkCwE1WV-LFUGW34e-qrIsoj5mjKtWJwVScjuk14JyjsibiRVLnkBvmlkiizUMSI_X4U0FyJ3CGv0mirLRY4pMeapOWDj4JNsVJPiaKR2NBzita0WGy6O_8if4JC1ssikbR5Uy1lqJ2bK_ESHHPx0GcC_VJlUcZZLxkWheAzYyCFPcMDTzbXUdj1Ihwn0S8QA9xzyzEggm0aJ4Tozua7r9N3HLzsIfbrqCL2wQkUF6lDSXpGAPiFLV0fyuCMJa4LqVB-heTZaqbGXgEICcAehZWOy26ufttX4UgzBK3W1tjIcuZkc8mBj4a1mmUDaIBo7JOnYfkf13Zry-zdDZg54nwMohaaDdprsNLoPd1bWI3IzACiKX-SD6Jj0Vsu1fgxQcpX1yT6fciiTU4rl6G2fHJycjS-v-ubjTN-sHvBsMr4cfv0NSTx4JA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrLoVwQ5dVAoQaBgEO2SZzYyQGh5VF12bZI0KK9BcdxFqRVEppdVf0pvpEZr5MSUUEvveQQj5N4ZjyPeB6EPGOBEKAaEleEOnGxApcbhypzdaKl1H4R-xJzhw8O-d5x-HEaTdfIrzYXBsMqW5loBHVeKfxHvsM8lKMBGLRv6p8udo3C09W2hcaKLSb67BRctub1-D3Q93kQ7H44erfn2q4CruIJW8BVY2yW9v1EBV7k5ZnPZRJGCpShZCGLeeZxqTLQbHnoqSLLIuZpn2nFeFbEIYPnXiPXQwayBPaPmHYOHsgOzm16HhP-juWGYV2Vemg2k2mLdq7-TJeAThcM6nnVXGTo_h2vub4sa3l2KufzP5Th7i1y01qxdLRiuw2ypsvbZMPKiYa-tMWsX90hkxHNta6p7U4xo0UbDUbBXKZgflKNNZYBamGiwkpaFdSEObqYYImvsYdIzV1yfCWovkcGJSBvk9BIqlyKArzdyFyyUHO0JT0V-nmS5A5hLV5TZaubY5ONeWqO7AR4OSvUpEiN1FLDIW43q15V9_gP_FskWQeLtbnNjepkltqtngKn6lCA5y8D-EqVScWzXDKRFEpwsLYcso0ET1eJrp2ESUcxrCvhYEA65KmBwPocJQYAzeSyadLxp6-XAPryuQf0wgIVFaBDSZt0AWvCul89yK0eJEgZ1RveRPZssdKk5_sRZrYse_Hwk24YH4pBfaWulhZGYLUnh9xfcXiHWZZgISKfOyTu8X4P9f2R8sd3Ux4dPAgBZi5MHXbb5FLUffDvhWyT9b2jg_10f3w4eUhuBGDd4k_-INoig8XJUj8C63SRPTYigZJvVy2DfgMqdaF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2iRO7OQBocKoVgoDMYb6FhzHKUhVEpZW0_41_jruEicjYoK97CUP9SWN7853P8f3QcgT5gkBriGyha8jGytw2aGvEltHWkrtZqErMXf4wz7fO_TfzYP5BvnV5sJgWGVrE2tDnRYKv5GPmIN21ANAO8pMWMSn3cmr8qeNHaTwpLVtp9GoyEyfHMP2rXo53QVZP_W8ydsvb_Zs02HAVjxiK7hqjNPSrhspzwmcNHG5jPxAgWOUzGchTxwuVQJeLvUdlSVJwBztMq0YT7LQZ_DcS-SyYCzCcEIx7zZ7YEc4N6l6TLgjoxnDssj1sF5YdYu0U1dYdwzo_MKgXBbVWaD379jNq-u8lCfHcrn8wzFObpDrBtHScaOCm2RD5zfJprEZFX1uClu_uEVmY5pqXVLTqWJBszYyjAJ0pgBFqcZ6y0C1qiPEclpktA55tDHZEv_GHChVt8nhhbD6DhnkwLwtQgOpUiky2PkG9SXxNUdc6SjfTaMotQhr-RorU-kcG24s4_r4TsCOp2FNjNKIjTQsYnd3lU2lj__Qv0aRdbRYp7v-oThaxGbZx6C12hcsZNKDt1SJVDxJJRNRpgQH5GWRHRR43CS9dtYmHocwr4gDmLTI45oCa3XkqPULua6qePrx6zmIDj73iJ4ZoqwAdihpEjBgTlgDrEe53aMEi6N6w1uoni1Xqvh0bcKdrcqePfyoG8aHYoBfrou1oRFY-ckidxsN7zjLIixK5HKLhD3d77G-P5L_-F6XSofdhADIC7cOu2VyLune-_dEdsgVsD7x--n-7D655gHQxe_9XrBNBqujtX4AQHWVPKwtAiXfLtoE_QYTkqW7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJhCRO7PixIKYB2kBA0XiKbMcZiCqtSCIEfz13iRMtMER5yUN9bnNnn_1dffeZkAcsFgK2BumLxEofGbj8LDHat9IqZaMyixTWDh8e8YNF8uo4Pd4iT4ZamNPn90xET51Fg_WqskE3ISNxjmzzFJD3jGwvjt7OP_UHx7HP45C56ri_dZ3sPh1J_7gUz9bLVX0WzvwzXfJ8W63Vj-9quTy1F-1fIoeDFn0KytegbXRgfv5G8LipmpfJRQdK6byfRTtky1ZXyI5z-5o-ctzUj6-S13NaWLum7rKJE1oOyV0U0C8FNEktUiaDVNMleVV0VdIua9HHekn8GXcmVF8ji_0XH54f-O4-Bt9wyRp4Wsxqs1EkTRymYaEjrmSSGoARiiUs4zrkymjABEUSmlLrlIU2YtYwrsssYdfJrAIFdwlNlSmUKCF4TbuHTixHaBiaJCqkLDzChnHKjSMrxzszlnl3AicgaOlNk6PFcmcxj_hjr3VP1vEP-Wc4BUZZpNruPoChyZ3n5izMbCIgkFcxvKXRynBdKCZkaQQH8OSRuziB8r5udVww8nkGekkOeNAj9zsJpNuoMJ_nRLV1nb9883EDoffvJkIPnVC5AnMY5WooQCek8ZpI7k0kYdEwk-ZdnO6DVWrUEmBKDPEi9Bxc4Ozme2Mzfinm6FV21ToZgeRNHrnRe8xoWSaRVyjiHskmvjQx_bSl-vK5YzuHgEAAaoWuweh2G43uzf_tcItciAGy4j_3cbpHZs231t4GyNnoO26l-QWuHX5u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+framework+for+the+early+detection+of+multi-retinal+diseases&rft.jtitle=PloS+one&rft.au=Ejaz%2C+Sara&rft.au=Baig%2C+Raheel&rft.au=Ashraf%2C+Zeeshan&rft.au=Alnfiai%2C+Mrim+M&rft.date=2024-07-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=7&rft.spage=e0307317&rft_id=info:doi/10.1371%2Fjournal.pone.0307317&rft.externalDocID=A802596893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon