Analysis of symbiotic backscatter empowered wireless sensors network with short-packet communications

Recent progress studies in light of wireless communication systems mainly centred around two focuses: zero-energy consumption and ultra-reliable and low-latency communication (URLLC). Among various cutting-edge areas, exploiting ambient backscatter communication (Backcom) has recently been devised a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 8; p. e0307366
Main Authors Do, Quang Vinh, Minh, Bui Vu, Nguyen, Quang-Sang, Kim, Byung-seo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.08.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0307366

Cover

More Information
Summary:Recent progress studies in light of wireless communication systems mainly centred around two focuses: zero-energy consumption and ultra-reliable and low-latency communication (URLLC). Among various cutting-edge areas, exploiting ambient backscatter communication (Backcom) has recently been devised as one of the foremost solutions for achieving zero energy consumption through the viability of ambient radio frequency. Meanwhile, using short-packet communication (SPC) is the cheapest way to reach the goal of URLLCs. Upon these benefits, we investigate the feasibility of Backcom and SPC for symbiotic wireless sensor networks by analyzing the system performance. Specifically, we provide a highly approximated mathematical framework for evaluating the block-error rate (BLER) performance, followed by some useful asymptotic results. These results provide insights into the level of diversity and coding gain, as well as how packet design impacts BLER performance. Numerical results confirm the efficacy of the developed framework and the correctness of key insights gleaned from the asymptotic analyses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0307366