On escape criterion of an orbit with s−convexity and illustrations of the behavior shifts in Mandelbrot and Julia set fractals

Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for u , α , β ∈ C and m ≥ 2. We also demonstrate t...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0312197
Main Authors Alam, Khairul Habib, Rohen, Yumnam, Saleem, Naeem, Aphane, Maggie, Razzaque, Asima
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0312197

Cover

Abstract Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for u , α , β ∈ C and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
AbstractList Our study presents a novel orbit with s−convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type Tα,β(u) = cos(um)+αu + β, for and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T.sub.[alpha],[beta] (u) = cos(u.sup.m )+[alpha]u + [beta], for u, [alpha], [beta] [element of] C and m [greater than or equal to] 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type Tα,β(u) = cos(um)+αu + β, for [Formula: see text] and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for u , α , β ∈ C and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type Tα,β(u) = cos(um)+αu + β, for [Formula: see text] and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type Tα,β(u) = cos(um)+αu + β, for [Formula: see text] and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
Audience Academic
Author Aphane, Maggie
Saleem, Naeem
Razzaque, Asima
Alam, Khairul Habib
Rohen, Yumnam
AuthorAffiliation 6 Department of Mathematics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
5 Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia
University of Education, PAKISTAN
4 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria, South Africa
1 Department of Mathematics, National Institute of Technology Manipur, Imphal, Manipur, India
2 Department of Mathematics, Manipur University, Imphal, Manipur, India
3 Department of Mathematics, University of Management and Technology, Lahore, Pakistan
AuthorAffiliation_xml – name: University of Education, PAKISTAN
– name: 1 Department of Mathematics, National Institute of Technology Manipur, Imphal, Manipur, India
– name: 5 Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia
– name: 4 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria, South Africa
– name: 2 Department of Mathematics, Manipur University, Imphal, Manipur, India
– name: 6 Department of Mathematics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
– name: 3 Department of Mathematics, University of Management and Technology, Lahore, Pakistan
Author_xml – sequence: 1
  givenname: Khairul Habib
  orcidid: 0000-0001-9565-4223
  surname: Alam
  fullname: Alam, Khairul Habib
– sequence: 2
  givenname: Yumnam
  surname: Rohen
  fullname: Rohen, Yumnam
– sequence: 3
  givenname: Naeem
  orcidid: 0000-0002-1485-6163
  surname: Saleem
  fullname: Saleem, Naeem
– sequence: 4
  givenname: Maggie
  surname: Aphane
  fullname: Aphane, Maggie
– sequence: 5
  givenname: Asima
  surname: Razzaque
  fullname: Razzaque, Asima
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39775582$$D View this record in MEDLINE/PubMed
BookMark eNqNk8uO0zAUhiM0iLnAGyCwhIRg0WLHiZOwQaMRl6JBlbhtLcc5bly5ccd2ysyOJWsekSfBaTujdjRCKFIc2d__2_5zznFy0NkOkuQxwWNCC_JqbnvXCTNexukxpiQlVXEvOSIVTUcsxfRg5_swOfZ-jnFOS8YeJIe0Koo8L9Oj5Oe0Q-ClWAKSTgdw2nbIKiTi29U6oB86tMj_-fVb2m4FlzpcxbUGaWN6H5wIkfeDILSAamjFSluHfKtV8Eh36FOEwdTOhrXsY2-0QB4CUk7IIIx_mNxXcYBH2_Ek-fbu7dezD6Pz6fvJ2en5SLKKhlGlFJalaJhgOWVEsqIBShQpCVCVNYwyzCgBxUqBaVMAwSKrapHXlcBCpoyeJE83vktjPd-G5zkleZrjnJGBmGyIxoo5Xzq9EO6KW6H5esK6GRcuaGmA1ymrsobm0DCVsXjCklRlTYpCFgSAqOj1ZrtbXy-gkdDFrMye6f5Kp1s-sytOSIFZVlTR4cXWwdmLHnzgC-0lGCM6sP364LSMf3GNPruF3n29LTUT8Qa6UzZuLAdTflqmKUurNBu8xndQ8WlgoWMJgNJxfk_wck8QmQCXYSZ67_nky-f_Z6ff99nnO2wLwoTWW9OvC24ffLIb9U3G1zUegWwDSGe9d6BuEIL50ErXcfGhlfi2laLs9S2Z1GFd7zERbf4t_gvLGCZi
CitedBy_id crossref_primary_10_3390_fractalfract9010040
crossref_primary_10_1371_journal_pone_0320234
Cites_doi 10.1186/s13660-015-0820-3
10.1109/ACCESS.2019.2920026
10.1515/dema-2024-0046
10.1145/3456298
10.3390/fractalfract5040272
10.1016/j.chaos.2022.112540
10.1002/mma.9933
10.1016/j.chaos.2009.04.052
10.1016/j.matcom.2024.01.010
10.1142/S0218348X94000442
10.1006/jmaa.2000.7042
10.1016/0097-8493(93)90056-F
10.1109/ACCESS.2019.2904677
10.3390/fractalfract7100768
10.1016/0960-0779(92)90044-N
10.3390/math10111806
10.1016/j.chaos.2024.114541
10.21817/ijet/2017/v9i3/1709030282
10.1080/1573062X.2021.1948076
10.1109/EIF.1997.605374
10.1090/S0002-9939-1953-0054846-3
10.3934/math.2022611
10.3390/sym12010086
10.1007/s40314-024-02964-4
10.1146/annurev.fl.23.010191.002543
10.1016/0301-0082(91)90003-J
10.3390/sym15010243
10.1088/0951-7715/2/4/003
10.4064/fm-3-1-133-181
10.28924/2291-8639-22-2024-139
10.3934/math.2024736
10.1186/s40064-016-3530-5
10.1090/S0002-9939-1974-0336469-5
10.1155/2018/2016976
10.3390/math11244882
10.30538/oms2018.0017
10.1016/j.matcom.2023.12.040
ContentType Journal Article
Copyright Copyright: © 2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Alam et al 2025 Alam et al
2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Alam et al 2025 Alam et al
– notice: 2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0312197
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Proquest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


MEDLINE
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
DocumentTitleAlternate Escape criterion of an orbit with s−convexity and fractals
EISSN 1932-6203
ExternalDocumentID 3152505616
oai_doaj_org_article_b2694d35ed6f46c698198b177c71ee1f
PMC11706479
A822629249
39775582
10_1371_journal_pone_0312197
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: ;
  grantid: TU-DSPP-2024-87
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c693t-9ff0c8ad6a65361c67de31f181e3f4d6360631ef68a03d7e10a49ba5b9a0ac263
IEDL.DBID BENPR
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:40 EDT 2025
Wed Aug 27 01:32:40 EDT 2025
Thu Aug 21 18:34:51 EDT 2025
Sun Sep 28 07:48:27 EDT 2025
Fri Jul 25 11:21:31 EDT 2025
Tue Jun 17 21:58:19 EDT 2025
Tue Jun 10 20:53:54 EDT 2025
Fri Jun 27 05:15:05 EDT 2025
Fri Jun 27 05:14:52 EDT 2025
Thu May 22 21:23:31 EDT 2025
Mon Jul 21 05:18:16 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Tue Jul 01 03:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Alam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-9ff0c8ad6a65361c67de31f181e3f4d6360631ef68a03d7e10a49ba5b9a0ac263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-9565-4223
0000-0002-1485-6163
OpenAccessLink https://www.proquest.com/docview/3152505616?pq-origsite=%requestingapplication%&accountid=15518
PMID 39775582
PQID 3152505616
PQPubID 1436336
PageCount e0312197
ParticipantIDs plos_journals_3152505616
doaj_primary_oai_doaj_org_article_b2694d35ed6f46c698198b177c71ee1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706479
proquest_miscellaneous_3153877579
proquest_journals_3152505616
gale_infotracmisc_A822629249
gale_infotracacademiconefile_A822629249
gale_incontextgauss_ISR_A822629249
gale_incontextgauss_IOV_A822629249
gale_healthsolutions_A822629249
pubmed_primary_39775582
crossref_primary_10_1371_journal_pone_0312197
crossref_citationtrail_10_1371_journal_pone_0312197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References WR Mann (pone.0312197.ref011) 1953; 4
KH Alam (pone.0312197.ref016) 2025; 44
Y Fisher (pone.0312197.ref036) 1994; 2
V Berinde (pone.0312197.ref010) 2004; 2
C Griffin (pone.0312197.ref046) 1992; 2
M Rani (pone.0312197.ref049) 2004; 8
MP Singh (pone.0312197.ref006) 2023; 11
NC Kenkel (pone.0312197.ref030) 1996; 11
W Nazeer (pone.0312197.ref019) 2015; 2015
S Singh (pone.0312197.ref047) 2009; 42
KH Alam (pone.0312197.ref008) 2024; 25
KH Alam (pone.0312197.ref002) 2023; 15
N Cohen (pone.0312197.ref035) 1997
SV Dhurandhar (pone.0312197.ref042) 1993; 17
A Bhoria (pone.0312197.ref040) 2023; 7
S Rawat (pone.0312197.ref041) 2024; 220
YC Kwun (pone.0312197.ref052) 2019; 7
MA Noor (pone.0312197.ref013) 2000; 251
KH Alam (pone.0312197.ref015) 2024; 81
M Abbas (pone.0312197.ref024) 2020; 12
WD Crowe (pone.0312197.ref044) 1989; 2
SA Liu (pone.0312197.ref037) 2018; 2018
AE Ofem (pone.0312197.ref017) 2020; 4
S Antal (pone.0312197.ref045) 2021; 5
K Diao (pone.0312197.ref038) 2021; 18
X Lu (pone.0312197.ref027) 2024; 180
KH Alam (pone.0312197.ref009)
M Mishra (pone.0312197.ref020) 2011; 2
pone.0312197.ref033
YS Chauhan (pone.0312197.ref050) 2010; 7
KH Alam (pone.0312197.ref014) 2024
pone.0312197.ref032
pone.0312197.ref031
N Adhikari (pone.0312197.ref043) 2024; 220
S Antal (pone.0312197.ref053) 2022; 7
S. Ishikawa (pone.0312197.ref012) 1974; 44
S Kumari (pone.0312197.ref048) 2022; 163
S Cho (pone.0312197.ref021) 2016; 5
KH Alam (pone.0312197.ref004) 2024; 57
D Li (pone.0312197.ref051) 2019; 7
MP Singh (pone.0312197.ref007) 2024; 9
K Gdawiec (pone.0312197.ref023) 2018; 2
S Banach (pone.0312197.ref001) 1922; 3
KH Alam (pone.0312197.ref003) 2024; 22
KH Alam (pone.0312197.ref005) 2024; 47
G Julia (pone.0312197.ref034) 1918; 8
KR Sreenivasan (pone.0312197.ref029) 1991; 23
CC King (pone.0312197.ref039) 1991; 36
F Martinez (pone.0312197.ref026) 2022; 10
M Pinheiro (pone.0312197.ref054) 2008; 10
S Kumari (pone.0312197.ref022) 2017; 9
PC Ouyang (pone.0312197.ref025) 2021; 40
F Orsucci (pone.0312197.ref028) 2012
S Kang (pone.0312197.ref018) 2015; 2015
40063558 - PLoS One. 2025 Mar 10;20(3):e0320234. doi: 10.1371/journal.pone.0320234.
References_xml – volume: 2015
  start-page: 298
  year: 2015
  ident: pone.0312197.ref019
  article-title: Fixed point results in the generation of Julia and Mandelbrot sets
  publication-title: J. Inequalities Appl
  doi: 10.1186/s13660-015-0820-3
– volume: 7
  start-page: 76859
  year: 2019
  ident: pone.0312197.ref051
  article-title: Boundaries of filled Julia sets in generalized Jungck-Mann orbit
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920026
– volume: 57
  start-page: 20240046
  issue: 1
  year: 2024
  ident: pone.0312197.ref004
  article-title: (α, F)-Geraghty type generalized F-contractions on non-Archimedean fuzzy metric-unlike spaces
  publication-title: Demonstratio Mathematica
  doi: 10.1515/dema-2024-0046
– volume: 7
  start-page: 34
  year: 2010
  ident: pone.0312197.ref050
  article-title: New Julia sets of Ishikawa iterates
  publication-title: Int. J. Comput. Appl
– volume: 40
  start-page: 1
  year: 2021
  ident: pone.0312197.ref025
  article-title: Self-similar fractal drawings inspired by M. C. Escher’s print square limit
  publication-title: ACM Trans. Graphic
  doi: 10.1145/3456298
– volume: 5
  issue: 4
  year: 2021
  ident: pone.0312197.ref045
  article-title: Fractals as Julia sets of complex sine function via fixed point iterations
  publication-title: Fractal and Fractional
  doi: 10.3390/fractalfract5040272
– volume: 163
  start-page: 112540
  year: 2022
  ident: pone.0312197.ref048
  article-title: A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2022.112540
– volume: 47
  start-page: 6489
  issue: 7
  year: 2024
  ident: pone.0312197.ref005
  article-title: On fixed point and its application to the spread of infectious diseases model in M v b-metric space
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.9933
– volume: 42
  start-page: 3110
  issue: 5
  year: 2009
  ident: pone.0312197.ref047
  article-title: A new approach to superfractals
  publication-title: Chaos Solitons & Fractals
  doi: 10.1016/j.chaos.2009.04.052
– volume: 8
  start-page: 261
  year: 2004
  ident: pone.0312197.ref049
  article-title: Superior Julia set
  publication-title: J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ
– ident: pone.0312197.ref033
– volume: 220
  start-page: 357
  year: 2024
  ident: pone.0312197.ref043
  article-title: Exploring the Julia and Mandelbrot sets of zp + logct using a four-step iteration scheme extended with s-convexity
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2024.01.010
– volume: 2
  start-page: 175
  issue: 2
  year: 2011
  ident: pone.0312197.ref020
  article-title: Some common fixed point results in relative superior Julia sets with Ishikawa iteration and s-convexity
  publication-title: Int. J. Adv. Eng. Sci. Technol
– volume: 2
  start-page: 347
  year: 1994
  ident: pone.0312197.ref036
  article-title: Fractal image compression
  publication-title: Fractals
  doi: 10.1142/S0218348X94000442
– volume: 251
  start-page: 217
  issue: 1
  year: 2000
  ident: pone.0312197.ref013
  article-title: New approximation schemes for general variational inequalities
  publication-title: J. Math. Anal. Appl
  doi: 10.1006/jmaa.2000.7042
– volume: 17
  start-page: 89
  year: 1993
  ident: pone.0312197.ref042
  article-title: Analysis of z−plane fractal images from z → zα+ c for α < 0
  publication-title: Comput. Graph
  doi: 10.1016/0097-8493(93)90056-F
– volume: 81
  start-page: 2024
  year: 2024
  ident: pone.0312197.ref015
  article-title: Convergence of Fibonacci-Ishikawa iteration procedure for monotone asymptotically non-expansive mappings
  publication-title: Journal of Inequalities and Applications
– volume: 7
  start-page: 35060
  year: 2019
  ident: pone.0312197.ref052
  article-title: Fractal generation in modified Jungck–S orbit
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904677
– volume: 7
  start-page: 768
  year: 2023
  ident: pone.0312197.ref040
  article-title: Mandelbrot and Julia sets of transcendental functions using Picard-Thakur iteration
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract7100768
– volume: 2
  start-page: 11
  year: 1992
  ident: pone.0312197.ref046
  article-title: Octonionic Julia sets
  publication-title: Chaos Solitons & Fractals
  doi: 10.1016/0960-0779(92)90044-N
– volume: 25
  issue: 9
  year: 2024
  ident: pone.0312197.ref008
  article-title: On fixed points in M v b-metric space and solutions to nonlinear matrix equations and differential equations related to beam theory
  publication-title: Journal of Nonlinear and Convex Analysis
– volume: 10
  start-page: 257
  year: 2008
  ident: pone.0312197.ref054
  article-title: s-convexity: foundations for analysis
  publication-title: Differ. Geom. Dyn. Syst
– volume: 10
  start-page: 1806
  year: 2022
  ident: pone.0312197.ref026
  article-title: Organization patterns of complex river networks in Chile: a fractal morphology
  publication-title: Mathematics
  doi: 10.3390/math10111806
– volume: 180
  start-page: 114541
  year: 2024
  ident: pone.0312197.ref027
  article-title: Control and synchronization of Julia sets of discrete fractional Ising models
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2024.114541
– year: 2024
  ident: pone.0312197.ref014
  article-title: An efficient iterative procedure in hyperbolic space and application to non-linear delay integral equation
  publication-title: Journal of Applied Mathematics and Computing
– volume: 9
  start-page: 2491
  issue: 3
  year: 2017
  ident: pone.0312197.ref022
  article-title: Generation of new fractals via SP orbit with s-convexity
  publication-title: Int. J. Eng. Technol
  doi: 10.21817/ijet/2017/v9i3/1709030282
– volume: 18
  start-page: 885
  year: 2021
  ident: pone.0312197.ref038
  article-title: Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation
  publication-title: Urban Water J
  doi: 10.1080/1573062X.2021.1948076
– start-page: 43
  year: 1997
  ident: pone.0312197.ref035
  article-title: Fractal antenna applications in wireless telecommunications
  publication-title: Prof. Program Proc. Electron. Ind. Forum New Engl
  doi: 10.1109/EIF.1997.605374
– volume: 4
  start-page: 506
  issue: 3
  year: 1953
  ident: pone.0312197.ref011
  article-title: Mean value methods in iteration
  publication-title: Proc. Amer. Math. Soc
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 7
  start-page: 10939
  issue: 6
  year: 2022
  ident: pone.0312197.ref053
  article-title: Variants of Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed point iteration system with s-convexity
  publication-title: AIMS Math
  doi: 10.3934/math.2022611
– volume: 12
  start-page: 86
  issue: 1
  year: 2020
  ident: pone.0312197.ref024
  article-title: Generation of Julia and Mandelbrot sets via fixed points
  publication-title: Symmetry
  doi: 10.3390/sym12010086
– volume: 44
  start-page: 2
  issue: 1
  year: 2025
  ident: pone.0312197.ref016
  article-title: Convergence of a refined iterative method and its application to fractional Volterra-Fredholm integro-differential equations
  publication-title: Computational and Applied Mathematics
  doi: 10.1007/s40314-024-02964-4
– volume: 23
  start-page: 539
  year: 1991
  ident: pone.0312197.ref029
  article-title: Fractals and multifractals in fluid turbulence
  publication-title: Annu. Rev. Fluid Mech
  doi: 10.1146/annurev.fl.23.010191.002543
– volume: 2015
  start-page: 963016
  year: 2015
  ident: pone.0312197.ref018
  article-title: New fixed point results for fractal generation in Jungck Noor orbit with s-convexity
  publication-title: J. Funct. Spaces
– volume: 36
  start-page: 279
  year: 1991
  ident: pone.0312197.ref039
  article-title: Fractal and chaotic dynamics in nervous systems
  publication-title: Prog. Neurobiol
  doi: 10.1016/0301-0082(91)90003-J
– volume: 2
  start-page: 97
  year: 2004
  ident: pone.0312197.ref010
  article-title: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators
  publication-title: Fixed Point Theory Appl
– volume: 11
  start-page: 77
  year: 1996
  ident: pone.0312197.ref030
  article-title: Fractals in the biological sciences
  publication-title: Coenoses
– volume: 15
  start-page: 243
  issue: 1
  year: 2023
  ident: pone.0312197.ref002
  article-title: Fixed points of (α, β, F*) and (α, β, F**)-weak Geraghty contractions with an application
  publication-title: Symmetry
  doi: 10.3390/sym15010243
– volume-title: Complexity science, living systems, and reflexing interfaces: New models and perspectives
  year: 2012
  ident: pone.0312197.ref028
– ident: pone.0312197.ref031
– volume: 2
  start-page: 541
  year: 1989
  ident: pone.0312197.ref044
  article-title: On the structure of the mandelbar set
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/2/4/003
– volume: 3
  start-page: 133
  year: 1922
  ident: pone.0312197.ref001
  article-title: Sur les operations dans les ensembles abstracts et leur application aux equations integrales
  publication-title: Fund. Math
  doi: 10.4064/fm-3-1-133-181
– ident: pone.0312197.ref009
  article-title: On geometry of fixed figures via φ-interpolative contractions and application of activation functions in neural networks and machine learning models
  publication-title: Ain Shams Engineering Journal
– volume: 22
  start-page: 139
  year: 2024
  ident: pone.0312197.ref003
  article-title: Solution of an algebraic linear system of equations using fixed point results in C*-algebra valued extended Branciari Sb-metric spaces
  publication-title: International Journal of Analysis and Applications
  doi: 10.28924/2291-8639-22-2024-139
– volume: 9
  start-page: 15172
  issue: 6
  year: 2024
  ident: pone.0312197.ref007
  article-title: On fixed point and an application of C*-algebra valued (α, β)-Bianchini-Grandolfi gauge contractions
  publication-title: AIMS Mathematics
  doi: 10.3934/math.2024736
– volume: 5
  start-page: 1843
  year: 2016
  ident: pone.0312197.ref021
  article-title: Fixed point results for fractal generation in Noor orbit and s-convexity
  publication-title: Springer Plus
  doi: 10.1186/s40064-016-3530-5
– volume: 44
  start-page: 147
  issue: 1
  year: 1974
  ident: pone.0312197.ref012
  article-title: Fixed points by a new iteration method
  publication-title: Proc. Amer. Math. Soc
  doi: 10.1090/S0002-9939-1974-0336469-5
– volume: 2018
  start-page: 2016976
  year: 2018
  ident: pone.0312197.ref037
  article-title: Parallel fractal compression method for big video data
  publication-title: Complexity
  doi: 10.1155/2018/2016976
– volume: 8
  start-page: 47
  year: 1918
  ident: pone.0312197.ref034
  article-title: Mémoire sur l’itération des fonctions rationnelles
  publication-title: J. Math. Pures Appl
– volume: 11
  start-page: 4882
  issue: 24
  year: 2023
  ident: pone.0312197.ref006
  article-title: On fixed point equations involving Geraghty type contractions with solution to integral equation
  publication-title: Mathematics
  doi: 10.3390/math11244882
– ident: pone.0312197.ref032
– volume: 4
  start-page: 79
  issue: 2
  year: 2020
  ident: pone.0312197.ref017
  article-title: An efficient Iterative method and its applications to a nonlinear integral equation and delay differential equation in Banach space
  publication-title: Turkis J. Ineq
– volume: 2
  start-page: 56
  issue: 1
  year: 2018
  ident: pone.0312197.ref023
  article-title: Fixed point results for the complex fractal generation in the S-iteration orbit with s-convexity
  publication-title: Open J. Math. Sci
  doi: 10.30538/oms2018.0017
– volume: 220
  start-page: 148
  year: 2024
  ident: pone.0312197.ref041
  article-title: Generation of Mandelbrot and Julia sets for generalized rational maps using SP-iteration process equipped with s-convexity
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2023.12.040
– reference: 40063558 - PLoS One. 2025 Mar 10;20(3):e0320234. doi: 10.1371/journal.pone.0320234.
SSID ssj0053866
Score 2.4913945
Snippet Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape...
Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape...
Our study presents a novel orbit with s−convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape...
Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0312197
SubjectTerms 20th century
Algorithms
Analysis
Computer and Information Sciences
Convex domains
Convexity
Criteria
Data compression
Engineering and Technology
Escape behavior
Fractal geometry
Fractals
Geometry
Illustrations
Mathematicians
Mathematics
Models, Theoretical
Number systems
Physical Sciences
Software
Video compression
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QO3FBjK8VBgSEBBy6tUmbtMeBmAbSmAQM7ValabJVqtqnlz6J0_722W1arWjSOHDp4cWJWttx7Dz7Z0LesVwJU4korIwyYcKiKswzLUPLEsm0ZEYMPSNPvovjs-TbeXp-o9UX5oSN8MAj4w5KLLWseAoL2kRokcMRliFmkpaxMbFF6xvl0RRMjTYYdrEQvlCOy_jAy2V_3bVmH9QYtqlcHEQDXv9slVfrpnO3uZx_Z07eOIqOHpIH3oekh-O775B7pn1EdvwudfSDh5L--JhcnbbUOMxxomAdEJa5a2lnqYLnpqx7itew1IVD7vkfcMhhpKJ102wnOF2H5OAk0qmen7rL2vaO1i09wQvoptx0_TANS60VdaanFkuvQK-fkLOjL78-H4e-40IIjOV9mFsb6UxVQomUi1gLWRkeW_ACDLdJhdhigsfGikxFvJImjlSSlyotcxUpzQR_SlYt8HiXUK0zayG6VDZPktLIXEnONN6wYATDsoDwif2F9nDk2BWjKYb_2CSEJSM3CxRa4YUWkHCetR7hOO6g_4SSnWkRTHv4AVSs8CpW3KViAXmNelGMlamzSSgOwbkSDAPYgLwdKBBQo8WMnQu1da74evr7H4h-_lgQvfdEtgN2aOWrJOCbEKhrQbm3oASzoBfDu6jFE1dcwbHTFcaLAmZOmn378Jt5GBfFLLzWdNuBhmdSphJWfzZuhJmzGEikacYCki22yIL1y5G2vhzwzLH5kUhk_vx_COsFuc-wRTPeksk9suo3W_MS_Ma-fDWYiGsU0Wyc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKcoEDouXRQAGDkIBDVkmc2MkBoYKoCtJSCVjUW-Q4drtSlCzrrFRuHDnzE_klzHiTiKDlcclhPZNkxzPOjD3zDSGPo0xyXfLAL7XUfhwFpZ-lSvgmikWkRKS56xk5e8eP5_Hb0-R0h_Q9WzsB2q2hHfaTmq-q6cXnLy_A4J-7rg0i7Jmmy6bWU1BSMEJxiVx2J0aYzBcP5wpg3Zx3BXR_4hx9oByO_7BaT5ZVY7e5or9nVP7yiTq6Tq51viU93CjDLtnR9R65OhuAWe0e2e1s2dKnHeD0sxvk60lNtcVMKAprCII3NzVtDJVwXRWLluJmLbU_vn13OeoX4LjDWEkXVbXuYXctMsCDaF_3T-35wrSWLmo6w43qqlg1rWPDkmxJrW6pwRItmIebZH70-uOrY7_rzOArnrHWz4wJVCpLLnnCeKi4KDULDXgLmpm4RAwyzkJteCoDVgodBjLOCpkUmQykiji7RSY1yHyfUKVSYyAKlSaL40KLTAoWKdyJwUgnSj3C-unIVQdbjt0zqtydxQkIXzbSzXES824SPeIPXMsNbMc_6F_iTA-0CLrtfmhWZ3lnw3mBVb8lS0C3TcxBEuBNpQjfpUSodWg88gD1JN9UsA5LR34IThiPMND1yCNHgcAbNWb2nMm1tfmbk0__QfTh_YjoSUdkGhCHkl01BfwnBPQaUR6MKGH5UKPhfdTqXio2Z9gRC-NKDpy9pm8ffjgM400xW6_WzdrRsFSIRMDdb28MY5AsBhxJkkYeSUcmMxL9eKRenDvcc2ySxGOR3fn7e90lVyJs0oz7ZOKATNrVWt8Dz7Et7rvF4Cfft3BW
  priority: 102
  providerName: Scholars Portal
Title On escape criterion of an orbit with s−convexity and illustrations of the behavior shifts in Mandelbrot and Julia set fractals
URI https://www.ncbi.nlm.nih.gov/pubmed/39775582
https://www.proquest.com/docview/3152505616
https://www.proquest.com/docview/3153877579
https://pubmed.ncbi.nlm.nih.gov/PMC11706479
https://doaj.org/article/b2694d35ed6f46c698198b177c71ee1f
http://dx.doi.org/10.1371/journal.pone.0312197
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELba7QUOiJafLpRiEBJwSJvEiZ0cEGqrLgVpt6hQ1FvkOHa70ipZ1lmJI0fOPCJPwkzWCQRVwMWHeJzsjmcm48nMN4Q8C1PJdcF9r9BSe1HoF16aKOGZMBKhEqHmTc_I8YSfnEfvLuKLNTJpa2EwrbK1iY2hLiqFMfJ9ho160N3lr-efPewahV9X2xYa0rVWKF41EGPrZANMcuwPyMbh8eT9WWubQbs5dwV0TAT7br_25lWp90C8QX1F7wXV4Ph31nown1X2Olf0z4zK315Ro9vklvMt6cFKGDbJmi63yM1xB8xqt8im02VLXzjA6Zd3yNfTkmqLmVAUbAiCN1clrQyVMC7yaU0xWEvtj2_fmxz1L-C4w1xBp7PZsoXdtbgAHkTbun9qr6amtnRa0jEGqmf5oqqbZViSLanVNTVYogXyf5ecj44_Hp14rjODp3jKai81xleJLLjkMeOB4qLQLDDgLWhmogIxyDgLtOGJ9FkhdODLKM1lnKfSlyrk7B4ZlMDzbUKVSoyBU6g0aRTlWqRSsFBhJAZPOmEyJKzdjkw52HLsnjHLmm9xAo4vK-5muImZ28Qh8bpV8xVsxz_oD3GnO1oE3W4uVIvLzOlwlmPVb8FikG0TceAEeFMJwncpEWgdmCF5jHKSrSpYO9ORHYATxkM86A7J04YCgTdKzOy5lEtrs7enn_6D6MNZj-i5IzIVsENJV00B_wkBvXqUOz1KMB-qN72NUt1yxWa_FA1WtpJ-_fSTbhpvitl6pa6WDQ1LhIgF3P3-SjE6zuKBI46TcEiSnsr0WN-fKadXDe45NknikUgf_P13PSQ3QmzSjHEysUMG9WKpH4HnWOe7ZF1cCBiTowDH0ZtdZyB2m1gMjOMo-QnebnV3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAcEC0_XSjUIBBwSLuxEzs5VKiFVlvabVF_UG_Bcex2pVWyrLMCbhw580A8DE-CJ-sEgirg0sse1mNvdsYez0xmvkHoCYkFUxnreZkSygtIL_PiSHJPk4ATyYliVc_IwT7rnwRvTsPTOfS9roWBtMpaJ1aKOiskxMjXKDTqAXOXvRx_8KBrFLxdrVtoCNdaIVuvIMZcYceu-vzRunBmfee1lfdTQra3jl_1PddlwJMspqUXa92TkciYYCFlvmQ8U9TX9uZTVAcZ4Gkx6ivNItGjGVd-TwRxKsI0Fj0hCaN23StoPoAASgfNb27tvz2s7wKrTRhzBXuU-2tuf6yOi1yt2uNk1QVvXYhV34DmduiMR4W5yPT9M4Pztytx-ya64WxZvDHbfAtoTuWL6PqgAYI1i2jB6Q6DnzuA6xe30JeDHCsDmVfY6iwAiy5yXGgs7OckHZYYgsPY_Pj6rcqJ_2QdBTuW4eFoNK1hfg1MsD-Ea5wBbM6HujR4mOMBBMZH6aQoq2lQAi6wUSXWUBJmz9ttdHIpMrqDOrnl-RLCUkZaW69X6DgIUsVjwSmREPkBz4pEXURrcSTSwaRDt45RUr3749ZdmnE3ASEmTohd5DWzxjOYkH_Qb4KkG1oA-a6-KCZnidMZSQpVxhkN7VnSAbOcsNZbBHBhkvtK-bqLVmCfJLOK2UZVJRvW6GMEHOsuelxRANBHDplEZ2JqTLJz8O4_iI4OW0TPHJEuLDukcNUb9j8BgFiLcrlFadWVbA0vwa6uuWKSXwfbzqx3-sXDj5phWBSyA3NVTCsaGnEecrv63dnBaDgLDk4YRqSLotaRabG-PZIPzyucdWjKxAIe3_v7c62gq_3jwV6yt7O_ex9dI9AgGmJ0fBl1yslUPbBWa5k-dKoBo_eXrY1-Ajo-rhE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIiE4IFp-ulCoQSDgkHZjJ3ZyQKhQVi2lLaIU9RYcx25XWiXLOivgxpEzj8Pj8CTMZJNAUAVcetnDeuzNznjGM87MN4TcZ7ESJhMDLzPKeAEbZF4caelZFkimJTOi6hm5uye2DoOXR-HRAvne1MJgWmVjEytDnRUa78jXOTbqQXdXrNs6LeL15vDp5IOHHaTwTWvTTmO-RXbM548Qvrkn25sg6weMDV-8fb7l1R0GPC1iXnqxtQMdqUwoEXLhayEzw30Lp57hNsgQS0tw31gRqQHPpPEHKohTFaaxGijNBId1z5HzkgcBto2QR22wB3ZEiLpUj0t_vd4Za5MiN2ugSGAoZOcorDoGtOdCbzIu3GlO75-5m78dhsMr5HLtxdKN-bZbJAsmXyKXdlsIWLdEFmur4eijGtr68VXyZT-nxmHOFQVrhTDRRU4LSxV8TtNRSfFamLofX79V2fCfIESAsYyOxuNZA_DrcAL8EG0QBqg7GdnS0VFOd_FKfJxOi7KahsXfijpTUovFYKBp18jhmUjoOunlwPNlQrWOrIV4V9k4CFIjYyU503jngzEVi_qEN-JIdA2Qjn06xkn11k9CoDTnboJCTGoh9onXzprMAUL-Qf8MJd3SIrx39UUxPU5qa5GkWF-c8RC0yAYCOAF-W4RAYVr6xvi2T1ZxnyTzWtnWSCUb4O4JhiF1n9yrKBDiI0dlOVYz55Lt_Xf_QXTwpkP0sCayBbBDq7puA_4TQod1KFc6lGCodGd4GXd1wxWX_FJpmNns9NOH77bDuCjmBeammFU0PJIylLD6jblitJzF0CYMI9YnUUdlOqzvjuSjkwphHdsxiUDGN__-XKvkAtig5NX23s4tcpFhZ2i8nJMrpFdOZ-Y2uKtleqeyC5S8P2tD9BOMXaut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+escape+criterion+of+an+orbit+with+s%E2%88%92convexity+and+illustrations+of+the+behavior+shifts+in+Mandelbrot+and+Julia+set+fractals&rft.jtitle=PloS+one&rft.au=Khairul+Habib+Alam&rft.au=Rohen%2C+Yumnam&rft.au=Saleem%2C+Naeem&rft.au=Aphane%2C+Maggie&rft.date=2025-01-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft.spage=e0312197&rft_id=info:doi/10.1371%2Fjournal.pone.0312197&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon