Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images

Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 6; p. e0304943
Main Authors Azizi, Mohammad Mahdi, Abhari, Setareh, Sajedi, Hedieh
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.06.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0304943

Cover

Abstract Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.
AbstractList Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.
Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.
Audience Academic
Author Sajedi, Hedieh
Abhari, Setareh
Azizi, Mohammad Mahdi
AuthorAffiliation Department of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Mayo Clinic Minnesota, UNITED STATES
AuthorAffiliation_xml – name: Mayo Clinic Minnesota, UNITED STATES
– name: Department of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Author_xml – sequence: 1
  givenname: Mohammad Mahdi
  surname: Azizi
  fullname: Azizi, Mohammad Mahdi
– sequence: 2
  givenname: Setareh
  surname: Abhari
  fullname: Abhari, Setareh
– sequence: 3
  givenname: Hedieh
  orcidid: 0000-0003-4782-9222
  surname: Sajedi
  fullname: Sajedi, Hedieh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38837967$$D View this record in MEDLINE/PubMed
BookMark eNqNk1trFDEUxwep2It-A9EBQfRh11xmkhlfpBQvC4WCVV9DJnNmNiWTbJNMteCHN7O7Ld1SsMzDCSe_88-5zWG2Z52FLHuJ0RxTjj9cuNFbaear5J4jioq6oE-yA1xTMmME0b075_3sMIQLhEpaMfYs26dVRXnN-EH29zzqqJbQ5lc6aGfz6KUNnfMD-DyZXPYw82BkTMgg1Wikz1vowYKXcQpoIYJan8agbZ97iDrllbtV1CpZ5ZbgwSrIoxtc7-VqeZ3rIemG59nTTpoAL7b2KPv55fOPk2-z07Ovi5Pj05liNY2zGhrMOyxZUStVokIi3tSlok3FGakIsLZpuw7xqlEEABFcMNpQ4LjhdUM6Ro-y1xvdlXFBbBsXBEWsJhwRhBKx2BCtkxdi5VN-_lo4qcXa4XwvpE_1GBCo4QCEqIoDKdIbFVOVLKVsO6ZaUkLSKjdao13J69_SmFtBjMQ0u5sUxDQ7sZ1divu0zXJsBmgV2DQLs5PM7o3VS9G7K4ExLgmpy6Twbqvg3eUIIYpBBwXGSAtuXBdcEl6ickLf3EMfbsuW6mWqXNvOpYfVJCqO0_4UvKzx1N75A1T6Whi0SiV2Ovl3At7vBCQmwp_YyzEEsTj__nj27Ncu-_YOuwRp4jI4M07bGXbBV3dbfdvjm_8iAR83gPIuBA-dUDqu9z2Vps3_BlncC37U_P8BzOg4ng
CitedBy_id crossref_primary_10_1007_s10462_024_10883_3
crossref_primary_10_3390_info16030195
crossref_primary_10_1109_ACCESS_2025_3526948
Cites_doi 10.3934/era.2023248
10.3389/fnins.2023.1097291
10.1016/j.bspc.2021.102538
10.1109/ICBME61513.2023.10488597
10.1109/LSP.2020.3000933
10.1016/j.bspc.2023.104810
10.1117/12.2665918
10.1038/s41598-023-30853-z
10.3390/s23156706
10.1016/j.compbiomed.2022.105368
10.1167/iovs.16-20541
10.1016/j.oret.2016.12.009
10.1145/3381831
10.1016/S2214-109X(13)70145-1
10.1016/j.jvcir.2019.01.022
10.1038/s41586-023-06555-x
10.1117/1.JBO.22.1.016012
10.1109/LSP.2019.2917779
10.1109/ICCP.2018.8516635
10.3390/diagnostics13040729
10.1109/CVPR52729.2023.01545
10.1007/s00417-018-04224-8
10.7150/thno.28447
10.1177/11206721221096294
10.1364/BOE.5.003568
10.1109/TMI.2017.2780115
10.3390/bioengineering10070823
10.1109/EBBT.2019.8741768
10.3389/fnins.2023.1143422
10.1007/s44196-023-00210-z
10.3390/healthcare11020212
10.1038/s41598-023-46200-1
10.3390/jimaging9070140
10.1016/j.ijmedinf.2023.105178
10.1109/ICCCBDA56900.2023.10154840
10.1109/JBHI.2020.2982914
10.1016/j.compbiomed.2023.106791
10.1109/TMI.2019.2898414
10.1109/CVPR.2016.90
10.1016/j.compbiomed.2022.106512
10.1109/ICCV.2017.324
10.2174/1874364101913010090
10.22399/ijcesen.1297655
10.1016/j.cell.2018.02.010
10.1016/j.cmpb.2022.107312
10.1109/JSTQE.2023.3240729
10.3390/diagnostics13020189
10.3390/jcm12031005
10.1109/iCoMET57998.2023.10099097
10.1016/j.bspc.2019.101605
ContentType Journal Article
Copyright Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Azizi et al 2024 Azizi et al
2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Azizi et al 2024 Azizi et al
– notice: 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0304943
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Agricultural Science Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
DocumentTitleAlternate Stitched vision transformer for age-related macular degeneration detection
EISSN 1932-6203
ExternalDocumentID 3069270200
oai_doaj_org_article_0b7ee22c87e2471b86c8a5aadf6cd25e
10.1371/journal.pone.0304943
PMC11152295
A796475916
38837967
10_1371_journal_pone_0304943
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: ;
  grantid: 4003870
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-9eb17f1a649cc504a07b95c3b876282e6dbdff078bc2ee021463b3e71b79b2f63
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Jan 16 03:18:36 EST 2025
Fri Oct 03 12:51:32 EDT 2025
Sun Oct 26 03:50:51 EDT 2025
Tue Sep 30 17:08:51 EDT 2025
Wed Oct 01 13:47:53 EDT 2025
Tue Oct 07 08:09:24 EDT 2025
Mon Oct 20 22:55:44 EDT 2025
Mon Oct 20 16:59:56 EDT 2025
Thu Oct 16 16:25:10 EDT 2025
Thu Oct 16 15:58:29 EDT 2025
Thu May 22 21:24:39 EDT 2025
Mon Jul 21 06:01:49 EDT 2025
Wed Oct 01 03:22:24 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-9eb17f1a649cc504a07b95c3b876282e6dbdff078bc2ee021463b3e71b79b2f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4782-9222
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0304943
PMID 38837967
PQID 3069270200
PQPubID 1436336
PageCount e0304943
ParticipantIDs plos_journals_3069270200
doaj_primary_oai_doaj_org_article_0b7ee22c87e2471b86c8a5aadf6cd25e
unpaywall_primary_10_1371_journal_pone_0304943
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11152295
proquest_miscellaneous_3065275055
proquest_journals_3069270200
gale_infotracmisc_A796475916
gale_infotracacademiconefile_A796475916
gale_incontextgauss_ISR_A796475916
gale_incontextgauss_IOV_A796475916
gale_healthsolutions_A796475916
pubmed_primary_38837967
crossref_citationtrail_10_1371_journal_pone_0304943
crossref_primary_10_1371_journal_pone_0304943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-05
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Liew (pone.0304943.ref008) 2023; 13
V Das (pone.0304943.ref051) 2020; 27
K Pin (pone.0304943.ref058) 2023; 31
pone.0304943.ref044
pone.0304943.ref045
pone.0304943.ref004
P Udayaraju (pone.0304943.ref020) 2023
L Fang (pone.0304943.ref050) 2019; 38
İ Kayadibi (pone.0304943.ref062) 2023; 16
AYKAT (pone.0304943.ref033) 2023; 9
T Hassan (pone.0304943.ref052) 2020; 25
L Huang (pone.0304943.ref049) 2019; 26
X Huang (pone.0304943.ref056) 2023; 17
N Salimiaghdam (pone.0304943.ref003) 2019; 13
M Stanojević (pone.0304943.ref021) 2023; 32
O Akinniyi (pone.0304943.ref042) 2023; 10
pone.0304943.ref036
N Kaothanthong (pone.0304943.ref053) 2023; 13
A Choudhary (pone.0304943.ref022) 2023
S Diao (pone.0304943.ref055) 2023; 84
DK Hwang (pone.0304943.ref017) 2019; 9
pone.0304943.ref030
P Dutta (pone.0304943.ref065) 2023; 9
Y Zhou (pone.0304943.ref048) 2023; 622
P Srinivasan (pone.0304943.ref005) 2014; 5
J Duker (pone.0304943.ref002) 2021
pone.0304943.ref028
pone.0304943.ref029
A Thomas (pone.0304943.ref040) 2021; 67
F Li (pone.0304943.ref015) 2019; 257
E Haihong (pone.0304943.ref034) 2023; 229
Y Sun (pone.0304943.ref006) 2017; 22
pone.0304943.ref023
pone.0304943.ref024
pone.0304943.ref026
S Sotoudeh-Paima (pone.0304943.ref041) 2022; 144
A Krizhevsky (pone.0304943.ref009) 2012; 25
Z Baharlouei (pone.0304943.ref043) 2023; 13
A Khan (pone.0304943.ref059) 2023; 23
J Priya (pone.0304943.ref060) 2023
Min Hu (pone.0304943.ref019) 2023; 10
C Wang (pone.0304943.ref032) 2023
W Wong (pone.0304943.ref001) 2014; 2
V Das (pone.0304943.ref038) 2019; 54
J Wang (pone.0304943.ref031) 2023
F Venhuizen (pone.0304943.ref007) 2017; 58
J Han (pone.0304943.ref018) 2023; 12
D Kermany (pone.0304943.ref014) 2018; 172
pone.0304943.ref010
pone.0304943.ref011
N Paluru (pone.0304943.ref035) 2023; 29
C Lee (pone.0304943.ref012) 2017; 1
pone.0304943.ref013
pone.0304943.ref057
R Rasti (pone.0304943.ref037) 2017; 37
R Schwartz (pone.0304943.ref027) 2020; 63
pone.0304943.ref016
O Manzari (pone.0304943.ref025) 2023; 157
A Celebi (pone.0304943.ref063) 2023; 33
M Moradi (pone.0304943.ref054) 2023; 154
R Maurya (pone.0304943.ref061) 2023
F Gan (pone.0304943.ref064) 2023; 17
Badr Ait Hammou (pone.0304943.ref046) 2023
J He (pone.0304943.ref047) 2023; 13
L Fang (pone.0304943.ref039) 2019; 59
References_xml – volume: 31
  start-page: 4843
  issue: 8
  year: 2023
  ident: pone.0304943.ref058
  article-title: Retinal diseases classification based on hybrid ensemble deep learning and optical coherence tomography images
  publication-title: Electronic Research Archive
  doi: 10.3934/era.2023248
– year: 2023
  ident: pone.0304943.ref032
  article-title: An Interpretable and Accurate Deep-learning Diagnosis Framework Modelled with Fully and Semi-supervised Reciprocal Learning
  publication-title: IEEE Transactions on Medical Imaging
– volume: 17
  start-page: 1097291
  year: 2023
  ident: pone.0304943.ref064
  article-title: Artificial intelligence method based on multi-feature fusion for automatic macular edema (ME) classification on spectral-domain optical coherence tomography (SD-OCT) images
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2023.1097291
– volume: 67
  start-page: 102538
  year: 2021
  ident: pone.0304943.ref040
  article-title: A novel multiscale convolutional neural network based age-related macular degeneration detection using OCT images
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102538
– ident: pone.0304943.ref044
  doi: 10.1109/ICBME61513.2023.10488597
– volume: 27
  start-page: 1025
  year: 2020
  ident: pone.0304943.ref051
  article-title: B-Scan attentive CNN for the classification of retinal optical coherence tomography volumes
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2020.3000933
– start-page: 1
  year: 2023
  ident: pone.0304943.ref031
  article-title: Domain Adaptation-Based Automated Detection of Retinal Diseases from Optical Coherence Tomography Images
  publication-title: Current Eye Research
– volume: 84
  start-page: 104810
  year: 2023
  ident: pone.0304943.ref055
  article-title: Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104810
– ident: pone.0304943.ref045
  doi: 10.1117/12.2665918
– volume: 13
  start-page: 3637
  issue: 1
  year: 2023
  ident: pone.0304943.ref047
  article-title: An interpretable transformer network for the retinal disease classification using optical coherence tomography
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-30853-z
– volume: 23
  start-page: 6706
  issue: 15
  year: 2023
  ident: pone.0304943.ref059
  article-title: Optical coherence tomography image classification using hybrid deep learning and ant colony optimization
  publication-title: Sensors
  doi: 10.3390/s23156706
– volume: 144
  start-page: 105368
  year: 2022
  ident: pone.0304943.ref041
  article-title: Multi-scale convolutional neural network for automated AMD classification using retinal OCT images
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2022.105368
– ident: pone.0304943.ref029
– start-page: 1
  year: 2023
  ident: pone.0304943.ref020
  article-title: A hybrid multilayered classification model with VGG-19 net for retinal diseases using optical coherence tomography images
  publication-title: Soft Computing
– volume: 58
  start-page: 2318
  issue: 4
  year: 2017
  ident: pone.0304943.ref007
  article-title: Automated staging of age-related macular degeneration using optical coherence tomography
  publication-title: Investigative ophthalmology & visual science
  doi: 10.1167/iovs.16-20541
– start-page: 1
  year: 2023
  ident: pone.0304943.ref060
  article-title: Predicting retinal pathologies with IoMT-enabled hybrid ensemble deep network model
  publication-title: Signal, Image and Video Processing
– volume: 1
  start-page: 322
  issue: 4
  year: 2017
  ident: pone.0304943.ref012
  article-title: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
  publication-title: Ophthalmology Retina
  doi: 10.1016/j.oret.2016.12.009
– volume: 63
  start-page: 54
  issue: 12
  year: 2020
  ident: pone.0304943.ref027
  article-title: Green ai
  publication-title: Communications of the ACM
  doi: 10.1145/3381831
– volume: 2
  start-page: e106
  issue: 2
  year: 2014
  ident: pone.0304943.ref001
  article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis
  publication-title: The Lancet Global Health
  doi: 10.1016/S2214-109X(13)70145-1
– volume: 59
  start-page: 327
  year: 2019
  ident: pone.0304943.ref039
  article-title: Iterative fusion convolutional neural networks for classification of optical coherence tomography images
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2019.01.022
– volume: 622
  start-page: 156
  issue: 7981
  year: 2023
  ident: pone.0304943.ref048
  article-title: A foundation model for generalizable disease detection from retinal images
  publication-title: Nature
  doi: 10.1038/s41586-023-06555-x
– volume: 32
  start-page: 032004
  issue: 3
  year: 2023
  ident: pone.0304943.ref021
  article-title: Retinal disease classification based on optical coherence tomography images using convolutional neural networks
  publication-title: Journal of Electronic Imaging
– volume: 22
  start-page: 016012
  issue: 1
  year: 2017
  ident: pone.0304943.ref006
  article-title: Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning
  publication-title: Journal of biomedical optics
  doi: 10.1117/1.JBO.22.1.016012
– volume: 26
  start-page: 1026
  issue: 7
  year: 2019
  ident: pone.0304943.ref049
  article-title: Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2019.2917779
– ident: pone.0304943.ref013
  doi: 10.1109/ICCP.2018.8516635
– year: 2023
  ident: pone.0304943.ref061
  article-title: MacD-Net: An automatic guided-ensemble approach for macular pathology detection using optical coherence tomography images
  publication-title: International Journal of Imaging Systems and Technology
– volume: 13
  start-page: 729
  issue: 4
  year: 2023
  ident: pone.0304943.ref008
  article-title: Distinctions between Choroidal Neovascularization and Age Macular Degeneration in Ocular Disease Predictions via Multi-Size Kernels ξcho-Weighted Median Patterns
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13040729
– ident: pone.0304943.ref026
  doi: 10.1109/CVPR52729.2023.01545
– volume: 257
  start-page: 495
  year: 2019
  ident: pone.0304943.ref015
  article-title: Fully automated detection of retinal disorders by image-based deep learning
  publication-title: Graefe’s Archive for Clinical and Experimental Ophthalmology
  doi: 10.1007/s00417-018-04224-8
– ident: pone.0304943.ref028
– volume: 9
  start-page: 232
  issue: 1
  year: 2019
  ident: pone.0304943.ref017
  article-title: Artificial intelligence-based decision-making for age-related macular degeneration
  publication-title: Theranostics
  doi: 10.7150/thno.28447
– volume: 33
  start-page: 65
  issue: 1
  year: 2023
  ident: pone.0304943.ref063
  article-title: Artificial intelligence based detection of age-related macular degeneration using optical coherence tomography with unique image preprocessing
  publication-title: European Journal of Ophthalmology
  doi: 10.1177/11206721221096294
– volume: 5
  start-page: 3568
  issue: 10
  year: 2014
  ident: pone.0304943.ref005
  article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
  publication-title: Biomedical optics express
  doi: 10.1364/BOE.5.003568
– volume: 37
  start-page: 1024
  issue: 4
  year: 2017
  ident: pone.0304943.ref037
  article-title: Macular OCT classification using a multi-scale convolutional neural network ensemble
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2017.2780115
– volume: 10
  start-page: 823
  issue: 7
  year: 2023
  ident: pone.0304943.ref042
  article-title: Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10070823
– ident: pone.0304943.ref016
  doi: 10.1109/EBBT.2019.8741768
– volume: 17
  start-page: 1143422
  year: 2023
  ident: pone.0304943.ref056
  article-title: GABNet: global attention block for retinal OCT disease classification
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2023.1143422
– volume: 16
  start-page: 28
  issue: 1
  year: 2023
  ident: pone.0304943.ref062
  article-title: An Explainable Fully Dense Fusion Neural Network with Deep Support Vector Machine for Retinal Disease Determination
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.1007/s44196-023-00210-z
– start-page: 212
  year: 2023
  ident: pone.0304943.ref022
  article-title: deep learning-based framework for retinal disease classification
  publication-title: In Healthcare
  doi: 10.3390/healthcare11020212
– ident: pone.0304943.ref024
– volume: 13
  start-page: 19013
  issue: 1
  year: 2023
  ident: pone.0304943.ref043
  article-title: Wavelet scattering transform application in classification of retinal abnormalities using OCT images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-46200-1
– volume: 9
  start-page: 140
  issue: 7
  year: 2023
  ident: pone.0304943.ref065
  article-title: Conv-ViT: a convolution and vision transformer-based hybrid feature extraction method for retinal disease detection
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging9070140
– start-page: 105178
  year: 2023
  ident: pone.0304943.ref046
  article-title: MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/j.ijmedinf.2023.105178
– ident: pone.0304943.ref004
– volume: 25
  year: 2012
  ident: pone.0304943.ref009
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– ident: pone.0304943.ref057
  doi: 10.1109/ICCCBDA56900.2023.10154840
– ident: pone.0304943.ref011
– volume: 25
  start-page: 108
  issue: 1
  year: 2020
  ident: pone.0304943.ref052
  article-title: RAG-FW: A hybrid convolutional framework for the automated extraction of retinal lesions and lesion-influenced grading of human retinal pathology
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2020.2982914
– volume: 10
  year: 2023
  ident: pone.0304943.ref019
  article-title: Two-step hierarchical neural network for classification of dry age-related macular degeneration using optical coherence tomography images
  publication-title: Frontiers in Medicine
– volume: 157
  start-page: 106791
  year: 2023
  ident: pone.0304943.ref025
  article-title: MedViT: a robust vision transformer for generalized medical image classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.106791
– volume: 38
  start-page: 1959
  issue: 8
  year: 2019
  ident: pone.0304943.ref050
  article-title: Attention to lesion: Lesion-aware convolutional neural network for retinal optical coherence tomography image classification
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2019.2898414
– ident: pone.0304943.ref010
  doi: 10.1109/CVPR.2016.90
– volume: 154
  start-page: 106512
  year: 2023
  ident: pone.0304943.ref054
  article-title: Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.106512
– ident: pone.0304943.ref030
  doi: 10.1109/ICCV.2017.324
– volume: 13
  issue: 1
  year: 2019
  ident: pone.0304943.ref003
  article-title: Age-related macular degeneration (AMD): A review on its epidemiology and risk factors
  publication-title: The Open Ophthalmology Journal
  doi: 10.2174/1874364101913010090
– volume: 9
  start-page: 62
  issue: 2
  year: 2023
  ident: pone.0304943.ref033
  article-title: Using Machine Learning to Detect Different Eye Diseases from OCT Images
  publication-title: International Journal of Computational and Experimental Science and Engineering
  doi: 10.22399/ijcesen.1297655
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: pone.0304943.ref014
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: cell
  doi: 10.1016/j.cell.2018.02.010
– ident: pone.0304943.ref023
– volume-title: Handbook of retinal OCT: Optical coherence tomography
  year: 2021
  ident: pone.0304943.ref002
– volume: 229
  start-page: 107312
  year: 2023
  ident: pone.0304943.ref034
  article-title: KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2022.107312
– volume: 29
  start-page: 1
  issue: 4: Biophotonics
  year: 2023
  ident: pone.0304943.ref035
  article-title: Self Distillation for Improving the Generalizability of Retinal Disease Diagnosis Using Optical Coherence Tomography Images
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
  doi: 10.1109/JSTQE.2023.3240729
– volume: 13
  start-page: 189
  issue: 2
  year: 2023
  ident: pone.0304943.ref053
  article-title: The Classification of Common Macular Diseases Using Deep Learning on Optical Coherence Tomography Images with and without Prior Automated Segmentation
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13020189
– volume: 12
  start-page: 1005
  issue: 3
  year: 2023
  ident: pone.0304943.ref018
  article-title: Detecting macular disease based on optical coherence tomography using a deep convolutional network
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm12031005
– ident: pone.0304943.ref036
  doi: 10.1109/iCoMET57998.2023.10099097
– volume: 54
  start-page: 101605
  year: 2019
  ident: pone.0304943.ref038
  article-title: Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images
  publication-title: Biomedical signal processing and Control
  doi: 10.1016/j.bspc.2019.101605
SSID ssj0053866
Score 2.4945378
Snippet Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0304943
SubjectTerms Accuracy
Age
Age related diseases
Aged
Algorithms
Architecture
Artificial intelligence
Artificial neural networks
Atrophy
Automation
Biology and Life Sciences
Care and treatment
Classification
Coherence (Optics)
Computational efficiency
Computer and Information Sciences
Datasets
Diagnosis
Electric transformers
Evaluation
Eye
Eye diseases
Health aspects
Humans
Image classification
Image processing
Macular degeneration
Macular Degeneration - diagnostic imaging
Medical imaging
Medical imaging equipment
Medicine and Health Sciences
Methods
Neural networks
Neural Networks, Computer
Older people
Optical Coherence Tomography
Physiological aspects
Research and Analysis Methods
Retina
Retina - diagnostic imaging
Retina - pathology
Search algorithms
Social Sciences
Stitching
Tomography
Tomography, Optical Coherence - methods
Training
Vascularization
Vision
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyzdpxHB8LoipIgEQp6i2yHWdbaTeJmqwQEj-eGccbNaJSe-AUJZ44yrw8TuabIeR1IplWC71A-FkSp8zmYHNCxZbb0ugKthQW8c5fvmZHJ-nnU3F6qdUX5oQN5YEHxu0nRjrHYA7pGDhSk2c210LrsspsyYRD75vkaruZGnwwWHGWBaAcl4v9IJd529Rujj8DVconC5Gv1z965Vm7arqrQs5_Mydvb-pW__6lV6tLy9LhPXI3xJP0YHiPHXLL1ffJTrDYjr4NZaXfPSB_jkExQEQlHfDktN_GrO6CwoGCZ4k9tAVI1trnp9LSLf0EKD446X3iVk0xW35JEQCJD29a_0Gc2uZsAA_SvlmHUtj0fA3zdg_JyeHHHx-O4tB7IbaZ4n2swIfLaqGzVFkrklQn0ihhuUHvmTOXlaasKogvjGXO-fbg3HAHApLKsCrjj8isBm7vEppLzaXTzArLUi1VznlmrIZQT3LjFiYifCuIwobC5NgfY1X4v20SNigDLwsUXxHEF5F4vKsdCnNcQ_8eZTzSYlltfwGUrQjKVlynbBF5gRpSDBjV0TkUBx7QKyDUjsgrT4GlNWrM3VnqTdcVn779vAHR8fcJ0ZtAVDXADqsDXgLeCUt2TSj3JpTgIOxkeBf1ecuVroBdokIYYpLAnVsdv3r45TiMk2I-Xu2ajacR2BlAiIg8Hkxi5CzPcw4PlxHJJ8YyYf10pD4_85XNYeEV2F8-IvPRrm4k3Sf_Q7pPyR0GIatPBBR7ZNZfbNwzCDl789x7l79ibIQ7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wBCQmx8LDDAICTgIV0ax3HygFCHNg0kCtoY2ltkO043qU1Kmwoh8cdz5zhhERPsKWp8cZr78iW-3x0hLwMRynQkRwg_C_wo1AnYHE99zXSuZAGvFBrxzp8m8dFp9PGMn22QSYuFwbTK1idaR51XGr-R70FomyJ2KgjeLb772DUKd1fbFhrStVbI39oSYzfIZoiVsQZkc_9g8uW49c1g3XHsAHRMjPacvIaLqjRD3CRMI9ZboGwd_85bDxazanVVKPp3RuXNdbmQP3_I2ezScnV4l9xxcSYdN4qxRTZMuU1ujy9tG2yTLWfYK_raVZ9-c4_8OgH9AUnmtIGd07oNbc2SwoGCA_ItAgZI5tKmsdLcTO0EKGX4Udv8rpJiUv2UIk4S_0u1sN_Nqa7OG4whrau5q5hNL-Yw7-o-OT08-Pr-yHctGnwdp6z2U3D1ohjJOEq15kEkA6FSrplCJ5uEJs5VXhQQhigdGmO7iDPFjBgpkaqwiNkDMiiB-TuEJkIyYWSouQ4jKdKEsVhpCRGhYMqMlEdYK5dMu_rl2EZjltlNOQHvMQ1rM5Rm5qTpEb-7atHU7_gP_T6KvKPF6tv2RLWcZs6Ys0AJY0LQa2FCWNxVEutEcinzItZ5yI1HnqHCZA2UtfMh2djifjlE5B55YSmwAkeJKT5TuV6tsg-fv12D6OS4R_TKERUVsENLB6uAZ8LKXj3K3R4l-BHdG95B9W65ssr-WBxc2ar81cPPu2GcFNP2SlOtLQ3HBgKce-RhYyEdZ1mSMLi58EjSs50e6_sj5cW5LYAO6zPHNvQeGXZmdi3pPvr3gzwmt0KIWW0mIN8lg3q5Nk8g5qzVU-dIfgMH-YXs
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvjPG1jAEGIQESKYkdx8ljQUwDaQMxisZTZDtON9Em1ZIKgfjjOTtOtMAQ5SlqfHbk8935XN_vDqEnASciDUVo4GeBHxGVgM6x1FdU5VIUcKRQBu98eBQfTKN3J-xkA73osDAX7-8pD186jo6XVanH5hovjegVtBkz8LxHaHN69GHypb04Jn5MAurQcX_rOth9bJL-3hSPlvOqvszP_DNc8uqqXIrv38R8fmEv2t9Ch90s2hCUr-NVI8fqx28JHted5g103TmleNJK0Tba0OVNtO3UvsbPXG7q57fQz2OQLljnHLegdNx0jq8-x_DAYJ58i48BkoWwQa441zM7gJEB-NHY6K8Sm5D7GTYoSvPxamn_VceqOm0RiLipFi6fNj5bwLj1bTTdf_Pp9YHvCjj4Kk5p46ewEfAiFHGUKsWCSARcpkxRaUxwQnScy7wowEmRimhta4xTSTUPJU8lKWJ6B41K4MgOwgkXlGtBFFMkEjxNKI2lEuAvcip1KD1Eu4XNlMtubopszDN7ZcfhlNPyMjMszhyLPeT3vZZtdo9_0L8yMtPTmtzc9gWsZeZUPQsk15qA1HNNYOuXSawSwYTIi1jlhGkPPTQSl7VA197CZBOLCmbgr3vosaUw-TlKEwA0E6u6zt6-_7wG0fHHAdFTR1RUwA4lHOgC5mTyfg0o9waUYGXUoHnH6EfHlTqDo2ZqsIxBAD07nbm8-VHfbAY1QX2lrlaWhpnyAox56G6rYj1naZJQ-Dj3UDJQvgHrhy3l2alNjw67NzNF6j007vV0rdXd_d8O99A1Aj6ujRxke2jUnK_0ffBRG_nAmaZfgJaTdQ
  priority: 102
  providerName: Unpaywall
Title Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images
URI https://www.ncbi.nlm.nih.gov/pubmed/38837967
https://www.proquest.com/docview/3069270200
https://www.proquest.com/docview/3065275055
https://pubmed.ncbi.nlm.nih.gov/PMC11152295
https://doi.org/10.1371/journal.pone.0304943
https://doaj.org/article/0b7ee22c87e2471b86c8a5aadf6cd25e
http://dx.doi.org/10.1371/journal.pone.0304943
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1NpFgr0gxm2BUQxCAh5SJXEcJw8IbdPGQNqYNoq2p8h2nG5Sl5SmFUzi4znHuUDEJvaSqvGx056743Mh5LUnApn40sf0M88NAx2DzPHE1UxnSuawpdCY73xwGO2Pws-n_HSJtD1bGwRW127tsJ_UaDYZ_vx-9QEE_r3t2iD8dtJwWhZmiEd9SciWySrYqgSbORyE3bkCSHcUNQl0N81cI3dYDNu2xLae_2OrbEn_TnGvTCdldZ1X-m9w5d1FMZVXP-Rk8pfl2rtP7jUuJ92qeWSdLJniAVlvhLqib5vK0-8ekl8nwDtAxYzWKed03rq1Zkbhg4LycW32C4BcShvCSjMztgsgheHL3MZ2FRQD6scUcyTx4eXUvjOnujyv8wvpvLxsqmXTi0tYt3pERnu7X3f23aY9g6ujhM3dBNS8yH0ZhYnW3AulJ1TCNVOoYOPARJnK8hxcEKUDY2wHcaaYEb4SiQryiD0mKwUgfoPQWEgmjAw010EoRRIzFiktwRsUTBlfOYS1hEh1U7scW2hMUnsgJ2APU-MyRUqmDSUd4nazpnXtjv_AbyONO1isvG1vlLNx2ghy6ilhTAA8LUwAhl3FkY4llzLLI50F3DjkBXJIWqexdvoj3bI5vxy8cYe8shBYfaPA8J6xXFRV-unLt1sAnRz3gN40QHkJ6NCySamA_4RVvXqQmz1I0CG6N7yB_NxipUphI5lgpqLnwcyWx68fftkN46IYsleYcmFhODYP4NwhT2qR6DDbCphD4p6w9FDfHykuzm3xc7DNHFvQO2TYydWtqPv0xl_xjKwF4KraAEC-SVbms4V5Dq7mXA3IsjgVcI13fLzufRyQ1e3dw6PjgX15M7DaBe6NDo-2zn4D0laHHw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gPmBMjOCFKspoNOpDoTvT6bQPxuCFgFxMBAxvdWY6XUiWdqW7IST-Jn-j50wv0kiUF542u3M63Z7LN2c650LIi0AylQzUANPPAj9kJgabE4lvuMm0ymFLYTDfeWc32jgIPx-Kwxnyq82FwbDKFhMdUGelwXfkq-DaJpg7FQTvxj987BqFp6ttC41aLbbs-Rls2aq3mx9Bvi8ZW_-0_2HDb7oK-CZK-MRPAJ1kPlBRmBgjglAFUifCcI24EDMbZTrLc1g5tWHWusbXXHMrB1ommuURh3lvkJshBywB-5GH3QYPsCOKmvQ8LgerjTasjMvCruARZBLy3vLnugR0a8HseFRWlzm6f8drzk2LsTo_U6PRhcVw_S6503ixdK1Wu3kyY4sFcnvtwqHEAplvYKOir5va1m_ukZ97oJ2gJxmtk9rppHWc7SmFDwrw5rv8GiA5US5IlmZ26CZAHYIvExc9VlAM2R9SzMLE_1KO3Vt5asqjOoORTsqTph43PT6Beav75OBaRPWAzBbA_EVCY6m4tIoZYVioZBJzHmmjwN-UXNuB9ghv5ZKapjo6NukYpe7IT8IuqWZtitJMG2l6xO-uGtfVQf5D_x5F3tFibW_3Q3k6TBuoSAMtrWVgNdIycB10HJlYCaWyPDIZE9Yjy6gwaZ0o2yFUuuayigX4-x557iiwvkeBAURDNa2qdPPLtysQ7X3tEb1qiPIS2GFUk7QBz4R1w3qUSz1KQCnTG15E9W65UqV_7BmubFX-8uFn3TBOikGBhS2njkZgewIhPPKwtpCOszyOOdxceiTu2U6P9f2R4vjIlVeH1V9gk3uPrHRmdiXpPvr3gyyTuY39ne10e3N36zG5xcA7djGHYonMTk6n9gl4txP91EEKJd-vG8N-A2zOvHM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkAAhITYuCwxmEAh4yJbadZw8IDQY08ZgoI2hvQXbcbpJbVKaVtMkfhm_jnOcC4uYYC97qlqfOM25fD6Oz4WQZ4FkKu6pHqafBX6fmQhsTsS-4SbVKoMthcF850-74dZB_8OhOJwjv5pcGAyrbDDRAXVaGHxHvgaubYy5U0GwltVhEV82Nt-Mf_jYQQpPWpt2GpWK7NjTE9i-la-3N0DWzxnbfP_13ZZfdxjwTRjzqR8DUsmsp8J-bIwI-iqQOhaGa8SIiNkw1WmWwSqqDbPWNcHmmlvZ0zLWLAs5zHuFXJWcxxhOKA_bzR7gSBjWqXpc9tZqzVgdF7ldxePIuM87S6HrGNCuC_PjYVGe5_T-Hbt5fZaP1emJGg7PLIybt8mt2qOl65UKLpA5my-Sm-tnDigWyUINISV9Wde5fnWH_NwHTQWdSWmV4E6njRNtJxQ-KECd73JtgGSkXMAsTe3ATYD6BF-mLpIspxi-P6CYkYn_pRi7N_TUFEdVNiOdFqO6Njc9HsG85V1ycCmiukfmc2D-EqGRVFxaxYwwrK9kHHEeaqPA95Rc2572CG_kkpi6Ujo27Bgm7vhPwo6pYm2C0kxqaXrEb68aV5VC_kP_FkXe0mKdb_dDMRkkNWwkgZbWMrAgaRm4EToKTaSEUmkWmpQJ65EVVJikSppt0SpZdxnGAnx_jzx1FFjrI0erGahZWSbbn79dgGh_r0P0oibKCmCHUXUCBzwT1hDrUC53KAGxTGd4CdW74UqZ_LFtuLJR-fOHn7TDOCkGCOa2mDkaga0KhPDI_cpCWs7yKOJwc-mRqGM7HdZ3R_LjI1dqHTwBgQ3vPbLamtmFpPvg3w-yQq4BeiUft3d3HpIbDBxlF34olsn8dDKzj8DRnerHDlEo-X7ZEPYbYnXAtg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvjPG1jAEGIQESKYkdx8ljQUwDaQMxisZTZDtON9Em1ZIKgfjjOTtOtMAQ5SlqfHbk8935XN_vDqEnASciDUVo4GeBHxGVgM6x1FdU5VIUcKRQBu98eBQfTKN3J-xkA73osDAX7-8pD186jo6XVanH5hovjegVtBkz8LxHaHN69GHypb04Jn5MAurQcX_rOth9bJL-3hSPlvOqvszP_DNc8uqqXIrv38R8fmEv2t9Ch90s2hCUr-NVI8fqx28JHted5g103TmleNJK0Tba0OVNtO3UvsbPXG7q57fQz2OQLljnHLegdNx0jq8-x_DAYJ58i48BkoWwQa441zM7gJEB-NHY6K8Sm5D7GTYoSvPxamn_VceqOm0RiLipFi6fNj5bwLj1bTTdf_Pp9YHvCjj4Kk5p46ewEfAiFHGUKsWCSARcpkxRaUxwQnScy7wowEmRimhta4xTSTUPJU8lKWJ6B41K4MgOwgkXlGtBFFMkEjxNKI2lEuAvcip1KD1Eu4XNlMtubopszDN7ZcfhlNPyMjMszhyLPeT3vZZtdo9_0L8yMtPTmtzc9gWsZeZUPQsk15qA1HNNYOuXSawSwYTIi1jlhGkPPTQSl7VA197CZBOLCmbgr3vosaUw-TlKEwA0E6u6zt6-_7wG0fHHAdFTR1RUwA4lHOgC5mTyfg0o9waUYGXUoHnH6EfHlTqDo2ZqsIxBAD07nbm8-VHfbAY1QX2lrlaWhpnyAox56G6rYj1naZJQ-Dj3UDJQvgHrhy3l2alNjw67NzNF6j007vV0rdXd_d8O99A1Aj6ujRxke2jUnK_0ffBRG_nAmaZfgJaTdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stitched+vision+transformer+for+age-related+macular+degeneration+detection+using+retinal+optical+coherence+tomography+images&rft.jtitle=PloS+one&rft.au=Azizi%2C+Mohammad+Mahdi&rft.au=Abhari%2C+Setareh&rft.au=Sajedi%2C+Hedieh&rft.date=2024-06-05&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0304943&rft_id=info:doi/10.1371%2Fjournal.pone.0304943&rft_id=info%3Apmid%2F38837967&rft.externalDocID=38837967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon