Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images
Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given...
Saved in:
| Published in | PloS one Vol. 19; no. 6; p. e0304943 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
05.06.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0304943 |
Cover
| Abstract | Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost. |
|---|---|
| AbstractList | Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost. Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost. |
| Audience | Academic |
| Author | Sajedi, Hedieh Abhari, Setareh Azizi, Mohammad Mahdi |
| AuthorAffiliation | Department of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran Mayo Clinic Minnesota, UNITED STATES |
| AuthorAffiliation_xml | – name: Mayo Clinic Minnesota, UNITED STATES – name: Department of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran |
| Author_xml | – sequence: 1 givenname: Mohammad Mahdi surname: Azizi fullname: Azizi, Mohammad Mahdi – sequence: 2 givenname: Setareh surname: Abhari fullname: Abhari, Setareh – sequence: 3 givenname: Hedieh orcidid: 0000-0003-4782-9222 surname: Sajedi fullname: Sajedi, Hedieh |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38837967$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1trFDEUxwep2It-A9EBQfRh11xmkhlfpBQvC4WCVV9DJnNmNiWTbJNMteCHN7O7Ld1SsMzDCSe_88-5zWG2Z52FLHuJ0RxTjj9cuNFbaear5J4jioq6oE-yA1xTMmME0b075_3sMIQLhEpaMfYs26dVRXnN-EH29zzqqJbQ5lc6aGfz6KUNnfMD-DyZXPYw82BkTMgg1Wikz1vowYKXcQpoIYJan8agbZ97iDrllbtV1CpZ5ZbgwSrIoxtc7-VqeZ3rIemG59nTTpoAL7b2KPv55fOPk2-z07Ovi5Pj05liNY2zGhrMOyxZUStVokIi3tSlok3FGakIsLZpuw7xqlEEABFcMNpQ4LjhdUM6Ro-y1xvdlXFBbBsXBEWsJhwRhBKx2BCtkxdi5VN-_lo4qcXa4XwvpE_1GBCo4QCEqIoDKdIbFVOVLKVsO6ZaUkLSKjdao13J69_SmFtBjMQ0u5sUxDQ7sZ1divu0zXJsBmgV2DQLs5PM7o3VS9G7K4ExLgmpy6Twbqvg3eUIIYpBBwXGSAtuXBdcEl6ickLf3EMfbsuW6mWqXNvOpYfVJCqO0_4UvKzx1N75A1T6Whi0SiV2Ovl3At7vBCQmwp_YyzEEsTj__nj27Ncu-_YOuwRp4jI4M07bGXbBV3dbfdvjm_8iAR83gPIuBA-dUDqu9z2Vps3_BlncC37U_P8BzOg4ng |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10883_3 crossref_primary_10_3390_info16030195 crossref_primary_10_1109_ACCESS_2025_3526948 |
| Cites_doi | 10.3934/era.2023248 10.3389/fnins.2023.1097291 10.1016/j.bspc.2021.102538 10.1109/ICBME61513.2023.10488597 10.1109/LSP.2020.3000933 10.1016/j.bspc.2023.104810 10.1117/12.2665918 10.1038/s41598-023-30853-z 10.3390/s23156706 10.1016/j.compbiomed.2022.105368 10.1167/iovs.16-20541 10.1016/j.oret.2016.12.009 10.1145/3381831 10.1016/S2214-109X(13)70145-1 10.1016/j.jvcir.2019.01.022 10.1038/s41586-023-06555-x 10.1117/1.JBO.22.1.016012 10.1109/LSP.2019.2917779 10.1109/ICCP.2018.8516635 10.3390/diagnostics13040729 10.1109/CVPR52729.2023.01545 10.1007/s00417-018-04224-8 10.7150/thno.28447 10.1177/11206721221096294 10.1364/BOE.5.003568 10.1109/TMI.2017.2780115 10.3390/bioengineering10070823 10.1109/EBBT.2019.8741768 10.3389/fnins.2023.1143422 10.1007/s44196-023-00210-z 10.3390/healthcare11020212 10.1038/s41598-023-46200-1 10.3390/jimaging9070140 10.1016/j.ijmedinf.2023.105178 10.1109/ICCCBDA56900.2023.10154840 10.1109/JBHI.2020.2982914 10.1016/j.compbiomed.2023.106791 10.1109/TMI.2019.2898414 10.1109/CVPR.2016.90 10.1016/j.compbiomed.2022.106512 10.1109/ICCV.2017.324 10.2174/1874364101913010090 10.22399/ijcesen.1297655 10.1016/j.cell.2018.02.010 10.1016/j.cmpb.2022.107312 10.1109/JSTQE.2023.3240729 10.3390/diagnostics13020189 10.3390/jcm12031005 10.1109/iCoMET57998.2023.10099097 10.1016/j.bspc.2019.101605 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Azizi et al 2024 Azizi et al 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Azizi et al 2024 Azizi et al – notice: 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0304943 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Architecture |
| DocumentTitleAlternate | Stitched vision transformer for age-related macular degeneration detection |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069270200 oai_doaj_org_article_0b7ee22c87e2471b86c8a5aadf6cd25e 10.1371/journal.pone.0304943 PMC11152295 A796475916 38837967 10_1371_journal_pone_0304943 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GrantInformation_xml | – fundername: ; grantid: 4003870 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c693t-9eb17f1a649cc504a07b95c3b876282e6dbdff078bc2ee021463b3e71b79b2f63 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Jan 16 03:18:36 EST 2025 Fri Oct 03 12:51:32 EDT 2025 Sun Oct 26 03:50:51 EDT 2025 Tue Sep 30 17:08:51 EDT 2025 Wed Oct 01 13:47:53 EDT 2025 Tue Oct 07 08:09:24 EDT 2025 Mon Oct 20 22:55:44 EDT 2025 Mon Oct 20 16:59:56 EDT 2025 Thu Oct 16 16:25:10 EDT 2025 Thu Oct 16 15:58:29 EDT 2025 Thu May 22 21:24:39 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Wed Oct 01 03:22:24 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2024 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-9eb17f1a649cc504a07b95c3b876282e6dbdff078bc2ee021463b3e71b79b2f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-4782-9222 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0304943 |
| PMID | 38837967 |
| PQID | 3069270200 |
| PQPubID | 1436336 |
| PageCount | e0304943 |
| ParticipantIDs | plos_journals_3069270200 doaj_primary_oai_doaj_org_article_0b7ee22c87e2471b86c8a5aadf6cd25e unpaywall_primary_10_1371_journal_pone_0304943 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11152295 proquest_miscellaneous_3065275055 proquest_journals_3069270200 gale_infotracmisc_A796475916 gale_infotracacademiconefile_A796475916 gale_incontextgauss_ISR_A796475916 gale_incontextgauss_IOV_A796475916 gale_healthsolutions_A796475916 pubmed_primary_38837967 crossref_citationtrail_10_1371_journal_pone_0304943 crossref_primary_10_1371_journal_pone_0304943 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-05 |
| PublicationDateYYYYMMDD | 2024-06-05 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Liew (pone.0304943.ref008) 2023; 13 V Das (pone.0304943.ref051) 2020; 27 K Pin (pone.0304943.ref058) 2023; 31 pone.0304943.ref044 pone.0304943.ref045 pone.0304943.ref004 P Udayaraju (pone.0304943.ref020) 2023 L Fang (pone.0304943.ref050) 2019; 38 İ Kayadibi (pone.0304943.ref062) 2023; 16 AYKAT (pone.0304943.ref033) 2023; 9 T Hassan (pone.0304943.ref052) 2020; 25 L Huang (pone.0304943.ref049) 2019; 26 X Huang (pone.0304943.ref056) 2023; 17 N Salimiaghdam (pone.0304943.ref003) 2019; 13 M Stanojević (pone.0304943.ref021) 2023; 32 O Akinniyi (pone.0304943.ref042) 2023; 10 pone.0304943.ref036 N Kaothanthong (pone.0304943.ref053) 2023; 13 A Choudhary (pone.0304943.ref022) 2023 S Diao (pone.0304943.ref055) 2023; 84 DK Hwang (pone.0304943.ref017) 2019; 9 pone.0304943.ref030 P Dutta (pone.0304943.ref065) 2023; 9 Y Zhou (pone.0304943.ref048) 2023; 622 P Srinivasan (pone.0304943.ref005) 2014; 5 J Duker (pone.0304943.ref002) 2021 pone.0304943.ref028 pone.0304943.ref029 A Thomas (pone.0304943.ref040) 2021; 67 F Li (pone.0304943.ref015) 2019; 257 E Haihong (pone.0304943.ref034) 2023; 229 Y Sun (pone.0304943.ref006) 2017; 22 pone.0304943.ref023 pone.0304943.ref024 pone.0304943.ref026 S Sotoudeh-Paima (pone.0304943.ref041) 2022; 144 A Krizhevsky (pone.0304943.ref009) 2012; 25 Z Baharlouei (pone.0304943.ref043) 2023; 13 A Khan (pone.0304943.ref059) 2023; 23 J Priya (pone.0304943.ref060) 2023 Min Hu (pone.0304943.ref019) 2023; 10 C Wang (pone.0304943.ref032) 2023 W Wong (pone.0304943.ref001) 2014; 2 V Das (pone.0304943.ref038) 2019; 54 J Wang (pone.0304943.ref031) 2023 F Venhuizen (pone.0304943.ref007) 2017; 58 J Han (pone.0304943.ref018) 2023; 12 D Kermany (pone.0304943.ref014) 2018; 172 pone.0304943.ref010 pone.0304943.ref011 N Paluru (pone.0304943.ref035) 2023; 29 C Lee (pone.0304943.ref012) 2017; 1 pone.0304943.ref013 pone.0304943.ref057 R Rasti (pone.0304943.ref037) 2017; 37 R Schwartz (pone.0304943.ref027) 2020; 63 pone.0304943.ref016 O Manzari (pone.0304943.ref025) 2023; 157 A Celebi (pone.0304943.ref063) 2023; 33 M Moradi (pone.0304943.ref054) 2023; 154 R Maurya (pone.0304943.ref061) 2023 F Gan (pone.0304943.ref064) 2023; 17 Badr Ait Hammou (pone.0304943.ref046) 2023 J He (pone.0304943.ref047) 2023; 13 L Fang (pone.0304943.ref039) 2019; 59 |
| References_xml | – volume: 31 start-page: 4843 issue: 8 year: 2023 ident: pone.0304943.ref058 article-title: Retinal diseases classification based on hybrid ensemble deep learning and optical coherence tomography images publication-title: Electronic Research Archive doi: 10.3934/era.2023248 – year: 2023 ident: pone.0304943.ref032 article-title: An Interpretable and Accurate Deep-learning Diagnosis Framework Modelled with Fully and Semi-supervised Reciprocal Learning publication-title: IEEE Transactions on Medical Imaging – volume: 17 start-page: 1097291 year: 2023 ident: pone.0304943.ref064 article-title: Artificial intelligence method based on multi-feature fusion for automatic macular edema (ME) classification on spectral-domain optical coherence tomography (SD-OCT) images publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2023.1097291 – volume: 67 start-page: 102538 year: 2021 ident: pone.0304943.ref040 article-title: A novel multiscale convolutional neural network based age-related macular degeneration detection using OCT images publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102538 – ident: pone.0304943.ref044 doi: 10.1109/ICBME61513.2023.10488597 – volume: 27 start-page: 1025 year: 2020 ident: pone.0304943.ref051 article-title: B-Scan attentive CNN for the classification of retinal optical coherence tomography volumes publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2020.3000933 – start-page: 1 year: 2023 ident: pone.0304943.ref031 article-title: Domain Adaptation-Based Automated Detection of Retinal Diseases from Optical Coherence Tomography Images publication-title: Current Eye Research – volume: 84 start-page: 104810 year: 2023 ident: pone.0304943.ref055 article-title: Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.104810 – ident: pone.0304943.ref045 doi: 10.1117/12.2665918 – volume: 13 start-page: 3637 issue: 1 year: 2023 ident: pone.0304943.ref047 article-title: An interpretable transformer network for the retinal disease classification using optical coherence tomography publication-title: Scientific Reports doi: 10.1038/s41598-023-30853-z – volume: 23 start-page: 6706 issue: 15 year: 2023 ident: pone.0304943.ref059 article-title: Optical coherence tomography image classification using hybrid deep learning and ant colony optimization publication-title: Sensors doi: 10.3390/s23156706 – volume: 144 start-page: 105368 year: 2022 ident: pone.0304943.ref041 article-title: Multi-scale convolutional neural network for automated AMD classification using retinal OCT images publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2022.105368 – ident: pone.0304943.ref029 – start-page: 1 year: 2023 ident: pone.0304943.ref020 article-title: A hybrid multilayered classification model with VGG-19 net for retinal diseases using optical coherence tomography images publication-title: Soft Computing – volume: 58 start-page: 2318 issue: 4 year: 2017 ident: pone.0304943.ref007 article-title: Automated staging of age-related macular degeneration using optical coherence tomography publication-title: Investigative ophthalmology & visual science doi: 10.1167/iovs.16-20541 – start-page: 1 year: 2023 ident: pone.0304943.ref060 article-title: Predicting retinal pathologies with IoMT-enabled hybrid ensemble deep network model publication-title: Signal, Image and Video Processing – volume: 1 start-page: 322 issue: 4 year: 2017 ident: pone.0304943.ref012 article-title: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images publication-title: Ophthalmology Retina doi: 10.1016/j.oret.2016.12.009 – volume: 63 start-page: 54 issue: 12 year: 2020 ident: pone.0304943.ref027 article-title: Green ai publication-title: Communications of the ACM doi: 10.1145/3381831 – volume: 2 start-page: e106 issue: 2 year: 2014 ident: pone.0304943.ref001 article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis publication-title: The Lancet Global Health doi: 10.1016/S2214-109X(13)70145-1 – volume: 59 start-page: 327 year: 2019 ident: pone.0304943.ref039 article-title: Iterative fusion convolutional neural networks for classification of optical coherence tomography images publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2019.01.022 – volume: 622 start-page: 156 issue: 7981 year: 2023 ident: pone.0304943.ref048 article-title: A foundation model for generalizable disease detection from retinal images publication-title: Nature doi: 10.1038/s41586-023-06555-x – volume: 32 start-page: 032004 issue: 3 year: 2023 ident: pone.0304943.ref021 article-title: Retinal disease classification based on optical coherence tomography images using convolutional neural networks publication-title: Journal of Electronic Imaging – volume: 22 start-page: 016012 issue: 1 year: 2017 ident: pone.0304943.ref006 article-title: Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning publication-title: Journal of biomedical optics doi: 10.1117/1.JBO.22.1.016012 – volume: 26 start-page: 1026 issue: 7 year: 2019 ident: pone.0304943.ref049 article-title: Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2019.2917779 – ident: pone.0304943.ref013 doi: 10.1109/ICCP.2018.8516635 – year: 2023 ident: pone.0304943.ref061 article-title: MacD-Net: An automatic guided-ensemble approach for macular pathology detection using optical coherence tomography images publication-title: International Journal of Imaging Systems and Technology – volume: 13 start-page: 729 issue: 4 year: 2023 ident: pone.0304943.ref008 article-title: Distinctions between Choroidal Neovascularization and Age Macular Degeneration in Ocular Disease Predictions via Multi-Size Kernels ξcho-Weighted Median Patterns publication-title: Diagnostics doi: 10.3390/diagnostics13040729 – ident: pone.0304943.ref026 doi: 10.1109/CVPR52729.2023.01545 – volume: 257 start-page: 495 year: 2019 ident: pone.0304943.ref015 article-title: Fully automated detection of retinal disorders by image-based deep learning publication-title: Graefe’s Archive for Clinical and Experimental Ophthalmology doi: 10.1007/s00417-018-04224-8 – ident: pone.0304943.ref028 – volume: 9 start-page: 232 issue: 1 year: 2019 ident: pone.0304943.ref017 article-title: Artificial intelligence-based decision-making for age-related macular degeneration publication-title: Theranostics doi: 10.7150/thno.28447 – volume: 33 start-page: 65 issue: 1 year: 2023 ident: pone.0304943.ref063 article-title: Artificial intelligence based detection of age-related macular degeneration using optical coherence tomography with unique image preprocessing publication-title: European Journal of Ophthalmology doi: 10.1177/11206721221096294 – volume: 5 start-page: 3568 issue: 10 year: 2014 ident: pone.0304943.ref005 article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images publication-title: Biomedical optics express doi: 10.1364/BOE.5.003568 – volume: 37 start-page: 1024 issue: 4 year: 2017 ident: pone.0304943.ref037 article-title: Macular OCT classification using a multi-scale convolutional neural network ensemble publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2017.2780115 – volume: 10 start-page: 823 issue: 7 year: 2023 ident: pone.0304943.ref042 article-title: Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture publication-title: Bioengineering doi: 10.3390/bioengineering10070823 – ident: pone.0304943.ref016 doi: 10.1109/EBBT.2019.8741768 – volume: 17 start-page: 1143422 year: 2023 ident: pone.0304943.ref056 article-title: GABNet: global attention block for retinal OCT disease classification publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2023.1143422 – volume: 16 start-page: 28 issue: 1 year: 2023 ident: pone.0304943.ref062 article-title: An Explainable Fully Dense Fusion Neural Network with Deep Support Vector Machine for Retinal Disease Determination publication-title: International Journal of Computational Intelligence Systems doi: 10.1007/s44196-023-00210-z – start-page: 212 year: 2023 ident: pone.0304943.ref022 article-title: deep learning-based framework for retinal disease classification publication-title: In Healthcare doi: 10.3390/healthcare11020212 – ident: pone.0304943.ref024 – volume: 13 start-page: 19013 issue: 1 year: 2023 ident: pone.0304943.ref043 article-title: Wavelet scattering transform application in classification of retinal abnormalities using OCT images publication-title: Scientific Reports doi: 10.1038/s41598-023-46200-1 – volume: 9 start-page: 140 issue: 7 year: 2023 ident: pone.0304943.ref065 article-title: Conv-ViT: a convolution and vision transformer-based hybrid feature extraction method for retinal disease detection publication-title: Journal of Imaging doi: 10.3390/jimaging9070140 – start-page: 105178 year: 2023 ident: pone.0304943.ref046 article-title: MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification publication-title: International Journal of Medical Informatics doi: 10.1016/j.ijmedinf.2023.105178 – ident: pone.0304943.ref004 – volume: 25 year: 2012 ident: pone.0304943.ref009 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – ident: pone.0304943.ref057 doi: 10.1109/ICCCBDA56900.2023.10154840 – ident: pone.0304943.ref011 – volume: 25 start-page: 108 issue: 1 year: 2020 ident: pone.0304943.ref052 article-title: RAG-FW: A hybrid convolutional framework for the automated extraction of retinal lesions and lesion-influenced grading of human retinal pathology publication-title: IEEE journal of biomedical and health informatics doi: 10.1109/JBHI.2020.2982914 – volume: 10 year: 2023 ident: pone.0304943.ref019 article-title: Two-step hierarchical neural network for classification of dry age-related macular degeneration using optical coherence tomography images publication-title: Frontiers in Medicine – volume: 157 start-page: 106791 year: 2023 ident: pone.0304943.ref025 article-title: MedViT: a robust vision transformer for generalized medical image classification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2023.106791 – volume: 38 start-page: 1959 issue: 8 year: 2019 ident: pone.0304943.ref050 article-title: Attention to lesion: Lesion-aware convolutional neural network for retinal optical coherence tomography image classification publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2019.2898414 – ident: pone.0304943.ref010 doi: 10.1109/CVPR.2016.90 – volume: 154 start-page: 106512 year: 2023 ident: pone.0304943.ref054 article-title: Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.106512 – ident: pone.0304943.ref030 doi: 10.1109/ICCV.2017.324 – volume: 13 issue: 1 year: 2019 ident: pone.0304943.ref003 article-title: Age-related macular degeneration (AMD): A review on its epidemiology and risk factors publication-title: The Open Ophthalmology Journal doi: 10.2174/1874364101913010090 – volume: 9 start-page: 62 issue: 2 year: 2023 ident: pone.0304943.ref033 article-title: Using Machine Learning to Detect Different Eye Diseases from OCT Images publication-title: International Journal of Computational and Experimental Science and Engineering doi: 10.22399/ijcesen.1297655 – volume: 172 start-page: 1122 issue: 5 year: 2018 ident: pone.0304943.ref014 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: cell doi: 10.1016/j.cell.2018.02.010 – ident: pone.0304943.ref023 – volume-title: Handbook of retinal OCT: Optical coherence tomography year: 2021 ident: pone.0304943.ref002 – volume: 229 start-page: 107312 year: 2023 ident: pone.0304943.ref034 article-title: KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2022.107312 – volume: 29 start-page: 1 issue: 4: Biophotonics year: 2023 ident: pone.0304943.ref035 article-title: Self Distillation for Improving the Generalizability of Retinal Disease Diagnosis Using Optical Coherence Tomography Images publication-title: IEEE Journal of Selected Topics in Quantum Electronics doi: 10.1109/JSTQE.2023.3240729 – volume: 13 start-page: 189 issue: 2 year: 2023 ident: pone.0304943.ref053 article-title: The Classification of Common Macular Diseases Using Deep Learning on Optical Coherence Tomography Images with and without Prior Automated Segmentation publication-title: Diagnostics doi: 10.3390/diagnostics13020189 – volume: 12 start-page: 1005 issue: 3 year: 2023 ident: pone.0304943.ref018 article-title: Detecting macular disease based on optical coherence tomography using a deep convolutional network publication-title: Journal of Clinical Medicine doi: 10.3390/jcm12031005 – ident: pone.0304943.ref036 doi: 10.1109/iCoMET57998.2023.10099097 – volume: 54 start-page: 101605 year: 2019 ident: pone.0304943.ref038 article-title: Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images publication-title: Biomedical signal processing and Control doi: 10.1016/j.bspc.2019.101605 |
| SSID | ssj0053866 |
| Score | 2.4945378 |
| Snippet | Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0304943 |
| SubjectTerms | Accuracy Age Age related diseases Aged Algorithms Architecture Artificial intelligence Artificial neural networks Atrophy Automation Biology and Life Sciences Care and treatment Classification Coherence (Optics) Computational efficiency Computer and Information Sciences Datasets Diagnosis Electric transformers Evaluation Eye Eye diseases Health aspects Humans Image classification Image processing Macular degeneration Macular Degeneration - diagnostic imaging Medical imaging Medical imaging equipment Medicine and Health Sciences Methods Neural networks Neural Networks, Computer Older people Optical Coherence Tomography Physiological aspects Research and Analysis Methods Retina Retina - diagnostic imaging Retina - pathology Search algorithms Social Sciences Stitching Tomography Tomography, Optical Coherence - methods Training Vascularization Vision |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyzdpxHB8LoipIgEQp6i2yHWdbaTeJmqwQEj-eGccbNaJSe-AUJZ44yrw8TuabIeR1IplWC71A-FkSp8zmYHNCxZbb0ugKthQW8c5fvmZHJ-nnU3F6qdUX5oQN5YEHxu0nRjrHYA7pGDhSk2c210LrsspsyYRD75vkaruZGnwwWHGWBaAcl4v9IJd529Rujj8DVconC5Gv1z965Vm7arqrQs5_Mydvb-pW__6lV6tLy9LhPXI3xJP0YHiPHXLL1ffJTrDYjr4NZaXfPSB_jkExQEQlHfDktN_GrO6CwoGCZ4k9tAVI1trnp9LSLf0EKD446X3iVk0xW35JEQCJD29a_0Gc2uZsAA_SvlmHUtj0fA3zdg_JyeHHHx-O4tB7IbaZ4n2swIfLaqGzVFkrklQn0ihhuUHvmTOXlaasKogvjGXO-fbg3HAHApLKsCrjj8isBm7vEppLzaXTzArLUi1VznlmrIZQT3LjFiYifCuIwobC5NgfY1X4v20SNigDLwsUXxHEF5F4vKsdCnNcQ_8eZTzSYlltfwGUrQjKVlynbBF5gRpSDBjV0TkUBx7QKyDUjsgrT4GlNWrM3VnqTdcVn779vAHR8fcJ0ZtAVDXADqsDXgLeCUt2TSj3JpTgIOxkeBf1ecuVroBdokIYYpLAnVsdv3r45TiMk2I-Xu2ajacR2BlAiIg8Hkxi5CzPcw4PlxHJJ8YyYf10pD4_85XNYeEV2F8-IvPRrm4k3Sf_Q7pPyR0GIatPBBR7ZNZfbNwzCDl789x7l79ibIQ7 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wBCQmx8LDDAICTgIV0ax3HygFCHNg0kCtoY2ltkO043qU1Kmwoh8cdz5zhhERPsKWp8cZr78iW-3x0hLwMRynQkRwg_C_wo1AnYHE99zXSuZAGvFBrxzp8m8dFp9PGMn22QSYuFwbTK1idaR51XGr-R70FomyJ2KgjeLb772DUKd1fbFhrStVbI39oSYzfIZoiVsQZkc_9g8uW49c1g3XHsAHRMjPacvIaLqjRD3CRMI9ZboGwd_85bDxazanVVKPp3RuXNdbmQP3_I2ezScnV4l9xxcSYdN4qxRTZMuU1ujy9tG2yTLWfYK_raVZ9-c4_8OgH9AUnmtIGd07oNbc2SwoGCA_ItAgZI5tKmsdLcTO0EKGX4Udv8rpJiUv2UIk4S_0u1sN_Nqa7OG4whrau5q5hNL-Yw7-o-OT08-Pr-yHctGnwdp6z2U3D1ohjJOEq15kEkA6FSrplCJ5uEJs5VXhQQhigdGmO7iDPFjBgpkaqwiNkDMiiB-TuEJkIyYWSouQ4jKdKEsVhpCRGhYMqMlEdYK5dMu_rl2EZjltlNOQHvMQ1rM5Rm5qTpEb-7atHU7_gP_T6KvKPF6tv2RLWcZs6Ys0AJY0LQa2FCWNxVEutEcinzItZ5yI1HnqHCZA2UtfMh2djifjlE5B55YSmwAkeJKT5TuV6tsg-fv12D6OS4R_TKERUVsENLB6uAZ8LKXj3K3R4l-BHdG95B9W65ssr-WBxc2ar81cPPu2GcFNP2SlOtLQ3HBgKce-RhYyEdZ1mSMLi58EjSs50e6_sj5cW5LYAO6zPHNvQeGXZmdi3pPvr3gzwmt0KIWW0mIN8lg3q5Nk8g5qzVU-dIfgMH-YXs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvjPG1jAEGIQESKYkdx8ljQUwDaQMxisZTZDtON9Em1ZIKgfjjOTtOtMAQ5SlqfHbk8935XN_vDqEnASciDUVo4GeBHxGVgM6x1FdU5VIUcKRQBu98eBQfTKN3J-xkA73osDAX7-8pD186jo6XVanH5hovjegVtBkz8LxHaHN69GHypb04Jn5MAurQcX_rOth9bJL-3hSPlvOqvszP_DNc8uqqXIrv38R8fmEv2t9Ch90s2hCUr-NVI8fqx28JHted5g103TmleNJK0Tba0OVNtO3UvsbPXG7q57fQz2OQLljnHLegdNx0jq8-x_DAYJ58i48BkoWwQa441zM7gJEB-NHY6K8Sm5D7GTYoSvPxamn_VceqOm0RiLipFi6fNj5bwLj1bTTdf_Pp9YHvCjj4Kk5p46ewEfAiFHGUKsWCSARcpkxRaUxwQnScy7wowEmRimhta4xTSTUPJU8lKWJ6B41K4MgOwgkXlGtBFFMkEjxNKI2lEuAvcip1KD1Eu4XNlMtubopszDN7ZcfhlNPyMjMszhyLPeT3vZZtdo9_0L8yMtPTmtzc9gWsZeZUPQsk15qA1HNNYOuXSawSwYTIi1jlhGkPPTQSl7VA197CZBOLCmbgr3vosaUw-TlKEwA0E6u6zt6-_7wG0fHHAdFTR1RUwA4lHOgC5mTyfg0o9waUYGXUoHnH6EfHlTqDo2ZqsIxBAD07nbm8-VHfbAY1QX2lrlaWhpnyAox56G6rYj1naZJQ-Dj3UDJQvgHrhy3l2alNjw67NzNF6j007vV0rdXd_d8O99A1Aj6ujRxke2jUnK_0ffBRG_nAmaZfgJaTdQ priority: 102 providerName: Unpaywall |
| Title | Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38837967 https://www.proquest.com/docview/3069270200 https://www.proquest.com/docview/3065275055 https://pubmed.ncbi.nlm.nih.gov/PMC11152295 https://doi.org/10.1371/journal.pone.0304943 https://doaj.org/article/0b7ee22c87e2471b86c8a5aadf6cd25e http://dx.doi.org/10.1371/journal.pone.0304943 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1NpFgr0gxm2BUQxCAh5SJXEcJw8IbdPGQNqYNoq2p8h2nG5Sl5SmFUzi4znHuUDEJvaSqvGx056743Mh5LUnApn40sf0M88NAx2DzPHE1UxnSuawpdCY73xwGO2Pws-n_HSJtD1bGwRW127tsJ_UaDYZ_vx-9QEE_r3t2iD8dtJwWhZmiEd9SciWySrYqgSbORyE3bkCSHcUNQl0N81cI3dYDNu2xLae_2OrbEn_TnGvTCdldZ1X-m9w5d1FMZVXP-Rk8pfl2rtP7jUuJ92qeWSdLJniAVlvhLqib5vK0-8ekl8nwDtAxYzWKed03rq1Zkbhg4LycW32C4BcShvCSjMztgsgheHL3MZ2FRQD6scUcyTx4eXUvjOnujyv8wvpvLxsqmXTi0tYt3pERnu7X3f23aY9g6ujhM3dBNS8yH0ZhYnW3AulJ1TCNVOoYOPARJnK8hxcEKUDY2wHcaaYEb4SiQryiD0mKwUgfoPQWEgmjAw010EoRRIzFiktwRsUTBlfOYS1hEh1U7scW2hMUnsgJ2APU-MyRUqmDSUd4nazpnXtjv_AbyONO1isvG1vlLNx2ghy6ilhTAA8LUwAhl3FkY4llzLLI50F3DjkBXJIWqexdvoj3bI5vxy8cYe8shBYfaPA8J6xXFRV-unLt1sAnRz3gN40QHkJ6NCySamA_4RVvXqQmz1I0CG6N7yB_NxipUphI5lgpqLnwcyWx68fftkN46IYsleYcmFhODYP4NwhT2qR6DDbCphD4p6w9FDfHykuzm3xc7DNHFvQO2TYydWtqPv0xl_xjKwF4KraAEC-SVbms4V5Dq7mXA3IsjgVcI13fLzufRyQ1e3dw6PjgX15M7DaBe6NDo-2zn4D0laHHw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gPmBMjOCFKspoNOpDoTvT6bQPxuCFgFxMBAxvdWY6XUiWdqW7IST-Jn-j50wv0kiUF542u3M63Z7LN2c650LIi0AylQzUANPPAj9kJgabE4lvuMm0ymFLYTDfeWc32jgIPx-Kwxnyq82FwbDKFhMdUGelwXfkq-DaJpg7FQTvxj987BqFp6ttC41aLbbs-Rls2aq3mx9Bvi8ZW_-0_2HDb7oK-CZK-MRPAJ1kPlBRmBgjglAFUifCcI24EDMbZTrLc1g5tWHWusbXXHMrB1ommuURh3lvkJshBywB-5GH3QYPsCOKmvQ8LgerjTasjMvCruARZBLy3vLnugR0a8HseFRWlzm6f8drzk2LsTo_U6PRhcVw_S6503ixdK1Wu3kyY4sFcnvtwqHEAplvYKOir5va1m_ukZ97oJ2gJxmtk9rppHWc7SmFDwrw5rv8GiA5US5IlmZ26CZAHYIvExc9VlAM2R9SzMLE_1KO3Vt5asqjOoORTsqTph43PT6Beav75OBaRPWAzBbA_EVCY6m4tIoZYVioZBJzHmmjwN-UXNuB9ghv5ZKapjo6NukYpe7IT8IuqWZtitJMG2l6xO-uGtfVQf5D_x5F3tFibW_3Q3k6TBuoSAMtrWVgNdIycB10HJlYCaWyPDIZE9Yjy6gwaZ0o2yFUuuayigX4-x557iiwvkeBAURDNa2qdPPLtysQ7X3tEb1qiPIS2GFUk7QBz4R1w3qUSz1KQCnTG15E9W65UqV_7BmubFX-8uFn3TBOikGBhS2njkZgewIhPPKwtpCOszyOOdxceiTu2U6P9f2R4vjIlVeH1V9gk3uPrHRmdiXpPvr3gyyTuY39ne10e3N36zG5xcA7djGHYonMTk6n9gl4txP91EEKJd-vG8N-A2zOvHM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkAAhITYuCwxmEAh4yJbadZw8IDQY08ZgoI2hvQXbcbpJbVKaVtMkfhm_jnOcC4uYYC97qlqfOM25fD6Oz4WQZ4FkKu6pHqafBX6fmQhsTsS-4SbVKoMthcF850-74dZB_8OhOJwjv5pcGAyrbDDRAXVaGHxHvgaubYy5U0GwltVhEV82Nt-Mf_jYQQpPWpt2GpWK7NjTE9i-la-3N0DWzxnbfP_13ZZfdxjwTRjzqR8DUsmsp8J-bIwI-iqQOhaGa8SIiNkw1WmWwSqqDbPWNcHmmlvZ0zLWLAs5zHuFXJWcxxhOKA_bzR7gSBjWqXpc9tZqzVgdF7ldxePIuM87S6HrGNCuC_PjYVGe5_T-Hbt5fZaP1emJGg7PLIybt8mt2qOl65UKLpA5my-Sm-tnDigWyUINISV9Wde5fnWH_NwHTQWdSWmV4E6njRNtJxQ-KECd73JtgGSkXMAsTe3ATYD6BF-mLpIspxi-P6CYkYn_pRi7N_TUFEdVNiOdFqO6Njc9HsG85V1ycCmiukfmc2D-EqGRVFxaxYwwrK9kHHEeaqPA95Rc2572CG_kkpi6Ujo27Bgm7vhPwo6pYm2C0kxqaXrEb68aV5VC_kP_FkXe0mKdb_dDMRkkNWwkgZbWMrAgaRm4EToKTaSEUmkWmpQJ65EVVJikSppt0SpZdxnGAnx_jzx1FFjrI0erGahZWSbbn79dgGh_r0P0oibKCmCHUXUCBzwT1hDrUC53KAGxTGd4CdW74UqZ_LFtuLJR-fOHn7TDOCkGCOa2mDkaga0KhPDI_cpCWs7yKOJwc-mRqGM7HdZ3R_LjI1dqHTwBgQ3vPbLamtmFpPvg3w-yQq4BeiUft3d3HpIbDBxlF34olsn8dDKzj8DRnerHDlEo-X7ZEPYbYnXAtg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvjPG1jAEGIQESKYkdx8ljQUwDaQMxisZTZDtON9Em1ZIKgfjjOTtOtMAQ5SlqfHbk8935XN_vDqEnASciDUVo4GeBHxGVgM6x1FdU5VIUcKRQBu98eBQfTKN3J-xkA73osDAX7-8pD186jo6XVanH5hovjegVtBkz8LxHaHN69GHypb04Jn5MAurQcX_rOth9bJL-3hSPlvOqvszP_DNc8uqqXIrv38R8fmEv2t9Ch90s2hCUr-NVI8fqx28JHted5g103TmleNJK0Tba0OVNtO3UvsbPXG7q57fQz2OQLljnHLegdNx0jq8-x_DAYJ58i48BkoWwQa441zM7gJEB-NHY6K8Sm5D7GTYoSvPxamn_VceqOm0RiLipFi6fNj5bwLj1bTTdf_Pp9YHvCjj4Kk5p46ewEfAiFHGUKsWCSARcpkxRaUxwQnScy7wowEmRimhta4xTSTUPJU8lKWJ6B41K4MgOwgkXlGtBFFMkEjxNKI2lEuAvcip1KD1Eu4XNlMtubopszDN7ZcfhlNPyMjMszhyLPeT3vZZtdo9_0L8yMtPTmtzc9gWsZeZUPQsk15qA1HNNYOuXSawSwYTIi1jlhGkPPTQSl7VA197CZBOLCmbgr3vosaUw-TlKEwA0E6u6zt6-_7wG0fHHAdFTR1RUwA4lHOgC5mTyfg0o9waUYGXUoHnH6EfHlTqDo2ZqsIxBAD07nbm8-VHfbAY1QX2lrlaWhpnyAox56G6rYj1naZJQ-Dj3UDJQvgHrhy3l2alNjw67NzNF6j007vV0rdXd_d8O99A1Aj6ujRxke2jUnK_0ffBRG_nAmaZfgJaTdQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stitched+vision+transformer+for+age-related+macular+degeneration+detection+using+retinal+optical+coherence+tomography+images&rft.jtitle=PloS+one&rft.au=Azizi%2C+Mohammad+Mahdi&rft.au=Abhari%2C+Setareh&rft.au=Sajedi%2C+Hedieh&rft.date=2024-06-05&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0304943&rft_id=info:doi/10.1371%2Fjournal.pone.0304943&rft_id=info%3Apmid%2F38837967&rft.externalDocID=38837967 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |