A novel maximum likelihood based probabilistic behavioral data fusion algorithm for modeling residential energy consumption

The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we conside...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 11; p. e0309509
Main Authors Bhowmik, Tanmoy, Iraganaboina, Naveen Chandra, Eluru, Naveen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.11.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0309509

Cover

Abstract The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption.
AbstractList The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption.
The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption.The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption.
Audience Academic
Author Iraganaboina, Naveen Chandra
Eluru, Naveen
Bhowmik, Tanmoy
AuthorAffiliation Universita degli Studi del Molise, ITALY
1 Department of Civil and Environmental Engineering, Portland State University, Portland, OR, United States of America
2 Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL, United States of America
AuthorAffiliation_xml – name: 1 Department of Civil and Environmental Engineering, Portland State University, Portland, OR, United States of America
– name: 2 Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL, United States of America
– name: Universita degli Studi del Molise, ITALY
Author_xml – sequence: 1
  givenname: Tanmoy
  orcidid: 0000-0002-0258-1692
  surname: Bhowmik
  fullname: Bhowmik, Tanmoy
– sequence: 2
  givenname: Naveen Chandra
  surname: Iraganaboina
  fullname: Iraganaboina, Naveen Chandra
– sequence: 3
  givenname: Naveen
  surname: Eluru
  fullname: Eluru, Naveen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39495783$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tr3DAQhU1JaS7tPyitoFDah93qZsnuS1lCL4FAoLdXMbZlr1JZciR7m9A_X213E7IhlNgGG_k7RzNn7MNsz3mns-w5wXPCJHl37qfgwM6HtDzHDJc5Lh9lB6RkdCYoZnu3nvezwxjPMc5ZIcSTbJ-VvMxlwQ6yPwvk_Epb1MOl6aceWfNLW7P0vkEVRN2gIfgKKmNNHE2NKr2ElfEBLGpgBNRO0XiHwHY-mHHZo9YH1PsmebgOBR1No91oEq6dDt0Vqr2LUz-MSfU0e9yCjfrZ9n6U_fj08fvxl9np2eeT48XprBYlG2eyIhpT4LKmQmAtCykrjlvRlrQkVNOGS6hxThnOG4lzXFBOCRHAQWpGecmOspcb38H6qLa5RcUI5TgngheJONkQjYdzNQTTQ7hSHoz6t-BDpyCk9q1WrAEqaEUrwC3PQVYyT0dJRcFl07Y0eeUbr8kNcPUbrL0xJFitR3ddglqPTm1Hl3QftlVOVa-bOsUWwO4Us_vGmaXq_EoRkjNOBU4Ob7YOwV9MOo6qN7HW1oLTfto0nC7JRUJf3UHvj2VLdZA6N671aeN6baoWBeEFLnK8bnh-D5XORvcmjVu3Jq3vCN7uCBIz6suxgylGdfLt68PZs5-77Otb7FKDHZfR22n9rcVd8MXtqG8yvv4tEsA3QB18jEG3Dx3h-zuy2oyw3j4lYuz_xX8B_sU1Tw
CitedBy_id crossref_primary_10_1016_j_trc_2024_104753
crossref_primary_10_1080_19427867_2024_2430109
crossref_primary_10_1016_j_enbuild_2025_115626
Cites_doi 10.1016/j.enbuild.2021.111828
10.1016/j.trb.2021.09.008
10.1371/journal.pone.0249133
10.1016/j.eneco.2016.05.006
10.1109/IECON.2015.7392809
10.1016/j.energy.2015.04.101
10.1016/j.trpro.2018.12.211
10.1016/j.jue.2008.09.002
10.1109/JIOT.2017.2723424
10.1016/j.aap.2015.08.009
10.1016/j.euroecorev.2012.02.007
10.1016/j.jeem.2007.10.001
10.3390/s21217035
10.1038/ncomms14916
10.1016/j.enbuild.2022.112566
10.1061/JTEPBS.0000294
10.1016/j.autcon.2018.07.007
10.1016/j.enbuild.2012.10.016
10.1016/j.jocm.2021.100283
10.1016/j.compenvurbsys.2016.06.003
10.1007/s11116-015-9597-y
10.1016/j.enpol.2019.111103
10.1016/j.trpro.2015.06.012
10.1016/j.enbuild.2019.05.002
10.1016/j.inffus.2020.07.003
10.1016/j.enbuild.2016.08.014
10.1109/TBDATA.2016.2631141
10.1016/j.enpol.2011.02.047
10.1016/j.eneco.2015.08.015
10.1016/j.tre.2020.101890
10.1016/j.apenergy.2019.02.066
10.2307/1911493
10.1016/j.enbuild.2021.110934
10.1016/j.enpol.2010.03.056
10.1109/TSG.2021.3091469
10.1088/1742-6596/2143/1/012030
10.1111/1467-9442.00236
10.1016/j.apenergy.2021.117775
10.1016/S0360-5442(97)00034-0
10.1016/j.trc.2014.01.002
ContentType Journal Article
Copyright Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Bhowmik et al 2024 Bhowmik et al
2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Bhowmik et al 2024 Bhowmik et al
– notice: 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0309509
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



CrossRef
MEDLINE

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Probabilistic fusion model for residential energy forecast
EISSN 1932-6203
ExternalDocumentID 3124051648
oai_doaj_org_article_3da262b2ba0f45a7b75555926847dff2
10.1371/journal.pone.0309509
PMC11534260
A814808502
39495783
10_1371_journal_pone_0309509
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-7b1e02a47c2660e7877b40f6f92912e2d47ac052305d70508242116a4a7e32493
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:32 EDT 2025
Fri Oct 03 12:51:52 EDT 2025
Sun Oct 26 04:10:00 EDT 2025
Tue Sep 30 17:07:17 EDT 2025
Fri Sep 05 06:58:10 EDT 2025
Tue Oct 07 07:44:38 EDT 2025
Mon Oct 20 22:46:52 EDT 2025
Mon Oct 20 16:55:21 EDT 2025
Thu Oct 16 15:49:15 EDT 2025
Thu Oct 16 15:49:12 EDT 2025
Thu May 22 21:24:05 EDT 2025
Thu Apr 03 06:55:25 EDT 2025
Wed Oct 01 02:38:20 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-7b1e02a47c2660e7877b40f6f92912e2d47ac052305d70508242116a4a7e32493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-0258-1692
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0309509
PMID 39495783
PQID 3124051648
PQPubID 1436336
PageCount e0309509
ParticipantIDs plos_journals_3124051648
doaj_primary_oai_doaj_org_article_3da262b2ba0f45a7b75555926847dff2
unpaywall_primary_10_1371_journal_pone_0309509
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11534260
proquest_miscellaneous_3124124746
proquest_journals_3124051648
gale_infotracmisc_A814808502
gale_infotracacademiconefile_A814808502
gale_incontextgauss_ISR_A814808502
gale_incontextgauss_IOV_A814808502
gale_healthsolutions_A814808502
pubmed_primary_39495783
crossref_primary_10_1371_journal_pone_0309509
crossref_citationtrail_10_1371_journal_pone_0309509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-04
PublicationDateYYYYMMDD 2024-11-04
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References F Guarino (pone.0309509.ref012) 2019; 196
SU Momtaz (pone.0309509.ref019) 2020; 146
D Fawzy (pone.0309509.ref046) 2021; 21
D De Silva (pone.0309509.ref050) 2016
E Leahy (pone.0309509.ref058) 2010; 38
pone.0309509.ref009
M Bedir (pone.0309509.ref025) 2013; 58
CBC News (pone.0309509.ref052)
JL Reyna (pone.0309509.ref053) 2017; 8
AR Pinjari (pone.0309509.ref032) 2021; 39
US-DOE (pone.0309509.ref003) 2019
N He (pone.0309509.ref049) 2022
2022 W. United States Population (pone.0309509.ref002) 2022
L Montero (pone.0309509.ref016) 2019; 37
Y Himeur (pone.0309509.ref014) 2020; 64
TF Golob (pone.0309509.ref056) 2009; 65
WH Huang (pone.0309509.ref026) 2015; 87
Y Martín (pone.0309509.ref021) 2020
I Varlamis (pone.0309509.ref010) 2022; 305
ET Mansur (pone.0309509.ref030) 2008; 55
Z Wang (pone.0309509.ref011) 2019; 240
D Wijayasekara (pone.0309509.ref051) 2015
T Bhowmik (pone.0309509.ref059) 2021; 153
NO Kapustin (pone.0309509.ref008) 2020; 137
A Sivakumar (pone.0309509.ref017)
US-EIA2021 (pone.0309509.ref006)
B Anderson (pone.0309509.ref036) 2017; 63
T Bhowmik (pone.0309509.ref005) 2021; 16
DJ Sailor (pone.0309509.ref033) 1997; 22
Electrek (pone.0309509.ref007)
J Xie (pone.0309509.ref044) 2022; 277
D Brounen (pone.0309509.ref057) 2012; 56
C-F Liao (pone.0309509.ref018)
C Boomsma (pone.0309509.ref038) 2016
F Belaïd (pone.0309509.ref027) 2016; 57
USAToday (pone.0309509.ref055)
Y Xu (pone.0309509.ref024) 2015; 42
US-EIA2020 (pone.0309509.ref001)
MS Iqbal (pone.0309509.ref040) 2014; 40
S Jiang (pone.0309509.ref023) 2016; 3
X Li (pone.0309509.ref041) 2016; 129
JA Dubin (pone.0309509.ref034) 1984; 52
L Dale (pone.0309509.ref029)
N Nesa (pone.0309509.ref048) 2017; 4
W Wang (pone.0309509.ref047) 2018; 94
D Wiesmann (pone.0309509.ref028) 2011; 39
J Harold (pone.0309509.ref035) 2015; 51
JP Gouveia (pone.0309509.ref013) 2015
S Yasmin (pone.0309509.ref022) 2015; 84
R. Nesbakken (pone.0309509.ref037) 2001; 103
C Wu (pone.0309509.ref039) 2015; 7
pone.0309509.ref054
D Peng (pone.0309509.ref045) 2021; 2143
D Zhao (pone.0309509.ref020) 2020; 136
NC Iraganaboina (pone.0309509.ref031) 2021; 240
L Jiang (pone.0309509.ref042) 2021; 12
C Yang (pone.0309509.ref015) 2020
SY Tan (pone.0309509.ref043) 2022; 258
US-EIA (pone.0309509.ref004) 2019
References_xml – volume: 258
  start-page: 111828
  year: 2022
  ident: pone.0309509.ref043
  article-title: Multimodal sensor fusion framework for residential building occupancy detection.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111828
– volume: 153
  start-page: 172
  year: 2021
  ident: pone.0309509.ref059
  article-title: A New Econometric Approach for Modeling Several Count Variables: A Case Study of Crash Frequency Analysis by Crash Type and Severity
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2021.09.008
– start-page: 8
  year: 2016
  ident: pone.0309509.ref038
  article-title: Energy Saving Behaviours Among Social Housing Tenants: Exploring the Relationship With Dwelling Characteristics, Monetary Concerns, and Psychological Motivations.
  publication-title: 4th Eur Conf Behav Energy Effic (Behave 2016)
– volume: 16
  year: 2021
  ident: pone.0309509.ref005
  article-title: A comprehensive analysis of COVID-19 transmission and mortality rates at the county level in the United States considering socio-demographics, health indicators, mobility trends and health care infrastructure attributes.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0249133
– volume: 57
  start-page: 204
  year: 2016
  ident: pone.0309509.ref027
  article-title: Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data.
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2016.05.006
– start-page: 4550
  year: 2015
  ident: pone.0309509.ref051
  article-title: Data-fusion for increasing temporal resolution of building energy management system data.
  publication-title: IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc
  doi: 10.1109/IECON.2015.7392809
– volume: 87
  start-page: 120
  year: 2015
  ident: pone.0309509.ref026
  article-title: The determinants of household electricity consumption in Taiwan: Evidence from quantile regression.
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.101
– volume: 37
  start-page: 417
  year: 2019
  ident: pone.0309509.ref016
  article-title: Fusing mobile phone data with other data sources to generate input OD matrices for transport models.
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2018.12.211
– ident: pone.0309509.ref007
  publication-title: Global market share of electric cars more than doubled in 2021 as the EV revolution gains steam—Electrek
– year: 2019
  ident: pone.0309509.ref003
  publication-title: Energy Data Facts | Residential Program Solution Center
– ident: pone.0309509.ref018
  publication-title: Fusing Public and Private Truck Data to Support Regional Freight Planning and Modeling Traffic Information for People with Vision Impairment View project Fusing Public and Private Truck Data to Support Regional Freight Planning and Modeling
– volume: 65
  start-page: 91
  year: 2009
  ident: pone.0309509.ref056
  article-title: The Impact of Residential Density on Vehicle Usage and Energy Consumption.
  publication-title: J Urban Econ
  doi: 10.1016/j.jue.2008.09.002
– volume: 4
  start-page: 1563
  year: 2017
  ident: pone.0309509.ref048
  article-title: IoT-Based Sensor Data Fusion for Occupancy Sensing Using Dempster-Shafer Evidence Theory for Smart Buildings.
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2723424
– volume: 84
  start-page: 112
  year: 2015
  ident: pone.0309509.ref022
  article-title: Pooling data from fatality analysis reporting system (FARS) and generalized estimates system (GES) to explore the continuum of injury severity spectrum.
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2015.08.009
– year: 2020
  ident: pone.0309509.ref021
  publication-title: Bridging Twitter and Survey Data for Evacuation Assessment of Hurricane Matthew and Hurricane Irma
– ident: pone.0309509.ref052
  publication-title: Why mobile home residents are paying for more electricity | CBC News,
– volume: 56
  start-page: 931
  year: 2012
  ident: pone.0309509.ref057
  article-title: Residential energy use and conservation: Economics and demographics
  publication-title: Eur Econ Rev
  doi: 10.1016/j.euroecorev.2012.02.007
– volume: 55
  start-page: 175
  year: 2008
  ident: pone.0309509.ref030
  article-title: Climate change adaptation: A study of fuel choice and consumption in the US energy sector.
  publication-title: J Environ Econ Manage
  doi: 10.1016/j.jeem.2007.10.001
– volume: 21
  start-page: 7035
  year: 2021
  ident: pone.0309509.ref046
  article-title: The spatiotemporal data fusion (Stdf) approach: Iot-based data fusion using big data analytics.
  publication-title: Sensors
  doi: 10.3390/s21217035
– volume: 8
  start-page: 1
  year: 2017
  ident: pone.0309509.ref053
  article-title: Energy efficiency to reduce residential electricity and natural gas use under climate change.
  publication-title: Nat Commun
  doi: 10.1038/ncomms14916
– volume: 277
  start-page: 112566
  year: 2022
  ident: pone.0309509.ref044
  article-title: A multi-information fusion model for short term load forecasting of an architectural complex considering spatio-temporal characteristics.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.112566
– volume: 146
  start-page: 04019070
  year: 2020
  ident: pone.0309509.ref019
  article-title: Fusing Freight Analysis Framework and Transearch Data: Econometric Data Fusion Approach with Application to Florida
  publication-title: J Transp Eng Part A Syst
  doi: 10.1061/JTEPBS.0000294
– volume: 94
  start-page: 233
  year: 2018
  ident: pone.0309509.ref047
  article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings.
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.07.007
– ident: pone.0309509.ref029
  article-title: Price Impact on the Demand for Water and Energy in California Residences.
  publication-title: Public Interes Energy Res Progr Reports CEC-500-2009-032-D, Calif Energy Comm Sacramento, CA
– year: 2020
  ident: pone.0309509.ref015
  article-title: Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics.
  publication-title: J Adv Transp
– volume: 58
  start-page: 194
  year: 2013
  ident: pone.0309509.ref025
  article-title: Determinants of electricity consumption in Dutch dwellings.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.10.016
– volume: 39
  year: 2021
  ident: pone.0309509.ref032
  article-title: Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis.
  publication-title: J Choice Model
  doi: 10.1016/j.jocm.2021.100283
– start-page: 4594
  year: 2016
  ident: pone.0309509.ref050
  article-title: A data fusion technique for smart home energy management and analysis
  publication-title: IECON Proc (Industrial Electron Conf
– ident: pone.0309509.ref001
  article-title: Frequently Asked Questions (FAQs)—U.S.
  publication-title: Energy Information Administration (EIA)
– ident: pone.0309509.ref006
  publication-title: Total Energy Monthly Data—U.S. Energy Information Administration (EIA)
– volume: 63
  start-page: 58
  year: 2017
  ident: pone.0309509.ref036
  article-title: Electricity consumption and household characteristics: Implications for census-taking in a smart metered future.
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2016.06.003
– volume: 42
  start-page: 625
  year: 2015
  ident: pone.0309509.ref024
  article-title: Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach.
  publication-title: Transportation (Amst)
  doi: 10.1007/s11116-015-9597-y
– ident: pone.0309509.ref055
  publication-title: Sustainability study shows that women consume more energy
– volume: 137
  start-page: 111103
  year: 2020
  ident: pone.0309509.ref008
  article-title: Long-term electric vehicles outlook and their potential impact on electric grid.
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2019.111103
– ident: pone.0309509.ref054
  publication-title: 2020 R. All-Electric New Homes: A Win for the Climate and the Economy—RMI
– year: 2022
  ident: pone.0309509.ref049
  article-title: Air Conditioning Load Prediction Based on Data Fusion Model.
  publication-title: SSRN Electron J
– start-page: 7228
  ident: pone.0309509.ref017
  publication-title: An exploration of data pooling techniques: Modelling activity participation and household technology holdings Abstract
– ident: pone.0309509.ref009
  publication-title: Data Fusion—an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/computer-science/data-fusion
– year: 2022
  ident: pone.0309509.ref002
– volume: 7
  start-page: 212
  year: 2015
  ident: pone.0309509.ref039
  article-title: Cellpath: Fusion of Cellular and Traffic Sensor Data for Route Flow Estimation via Convex Optimization.
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2015.06.012
– volume: 196
  start-page: 240
  year: 2019
  ident: pone.0309509.ref012
  article-title: Data fusion analysis applied to different climate change models: An application to the energy consumptions of a building office.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.05.002
– volume: 64
  start-page: 99
  year: 2020
  ident: pone.0309509.ref014
  article-title: Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations.
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2020.07.003
– start-page: 957
  year: 2015
  ident: pone.0309509.ref013
  article-title: Understanding electricity consumption patterns in households through data fusion of smart meters and door-to-door surveys.
  publication-title: Eceee 2015
– volume: 129
  start-page: 227
  year: 2016
  ident: pone.0309509.ref041
  article-title: System identification and data fusion for on-line adaptive energy forecasting in virtual and real commercial buildings.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.08.014
– volume: 3
  start-page: 208
  year: 2016
  ident: pone.0309509.ref023
  article-title: Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2016.2631141
– year: 2019
  ident: pone.0309509.ref004
  publication-title: U.S. Energy Information Administration—EIA—Independent Statistics and Analysis
– volume: 39
  start-page: 2772
  year: 2011
  ident: pone.0309509.ref028
  article-title: Residential electricity consumption in Portugal: Findings from top-down and bottom-up models.
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.02.047
– volume: 51
  start-page: 475
  year: 2015
  ident: pone.0309509.ref035
  article-title: The determinants of residential gas demand in Ireland.
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2015.08.015
– volume: 136
  start-page: 101890
  year: 2020
  ident: pone.0309509.ref020
  article-title: Weight-categorized truck flow estimation: A data-fusion approach and a Florida case study.
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2020.101890
– volume: 240
  start-page: 386
  year: 2019
  ident: pone.0309509.ref011
  article-title: Data fusion in predicting internal heat gains for office buildings through a deep learning approach.
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.066
– volume: 52
  start-page: 345
  year: 1984
  ident: pone.0309509.ref034
  article-title: An Econometric Analysis of Residential Electric Appliance Holdings and Consumption.
  publication-title: Econometrica
  doi: 10.2307/1911493
– volume: 240
  year: 2021
  ident: pone.0309509.ref031
  article-title: An examination of factors affecting residential energy consumption using a multiple discrete continuous approach.
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.110934
– volume: 38
  start-page: 4265
  year: 2010
  ident: pone.0309509.ref058
  article-title: Energy use and appliance ownership in Ireland.
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.03.056
– volume: 12
  start-page: 5362
  year: 2021
  ident: pone.0309509.ref042
  article-title: Hybrid Multitask Multi-Information Fusion Deep Learning for Household Short-Term Load Forecasting
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3091469
– volume: 2143
  start-page: 012030
  year: 2021
  ident: pone.0309509.ref045
  article-title: Intelligent Building Data Fusion Algorithm by Using the Internet of Things Technology
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/2143/1/012030
– volume: 103
  start-page: 165
  year: 2001
  ident: pone.0309509.ref037
  article-title: Energy consumption for space heating: A discrete-continuous approach
  publication-title: Scand J Econ
  doi: 10.1111/1467-9442.00236
– volume: 305
  start-page: 117775
  year: 2022
  ident: pone.0309509.ref010
  article-title: Smart fusion of sensor data and human feedback for personalized energy-saving recommendations.
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117775
– volume: 22
  start-page: 987
  year: 1997
  ident: pone.0309509.ref033
  article-title: Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states.
  publication-title: Energy
  doi: 10.1016/S0360-5442(97)00034-0
– volume: 40
  start-page: 63
  year: 2014
  ident: pone.0309509.ref040
  article-title: Development of origin-destination matrices using mobile phone call data
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2014.01.002
SSID ssj0053866
Score 2.4760044
Snippet The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0309509
SubjectTerms Algorithms
Biology and Life Sciences
COVID-19
Data analysis
Data fusion
Data integration
Datasets
Dependent variables
Earth Sciences
Electric vehicles
Electricity
Energy consumption
Energy development
Energy usage
Engineering and Technology
Environmental aspects
Fuel consumption
Households
Housing
Humans
Independent variables
Likelihood Functions
Mathematical models
Maximum likelihood estimates (Statistics)
Methods
Modelling
Models, Statistical
Natural gas
Physical Sciences
Research and Analysis Methods
Residential energy
Smartphones
Social Sciences
Surveys
Trip surveys
Weighting methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4djJ8cFURUkQAKKeoscx24jssmq2fAQf54Zxxs2olJ7YLWn9WSlzHuSmW8Ieaa0SUVahH5WpsxnuuR-kajULwuIJrFUELKxUHz_gR8ds3cnycnWqi_sCRvggQfGHcSljHhURIUMDEukKEQCnwxBSkRpjPW-QZptiqnBB4MVc-4G5WIRHji5zFdto-f4UiHBBsStQGTx-kevPFvVbXdRyvlv5-T1vlnJXz9kXW-FpcNb5KbLJ-liuI8dck03t8mOs9iOvnCw0i_vkN8L2rTfdU2X8me17Je0rr7pukJYY4qxrKS4XMYC7iJ2M_07wE-xjZSaHh-sUVmftufV-mxJId2ldpEORD8KVXtlZ36BXNt5QqrsdKd1SXfJ8eGbL6-PfLd6wVc8i9e-KEIdRJIJBQE80GDVomCB4QayqTDSUcmEVPaJclKKAJI8fLMccsmk0JCiZfE9MmuA2buEBiCmQAkepAaqsbKQEkSCaZ8JeGZk4pF4I4dcOVxyXI9R5_Zlm4D6ZGBljtLLnfQ84o9XrQZcjkvoX6GIR1pE1bY_gK7lTtfyy3TNI49RQfJhRHX0DfkihaISsf-A4qmlQGSNBlt3TmXfdfnbj1-vQPT504TouSMyLbBDSTcuAfeEiF0Tyv0JJfgHNTneRXXecKXLY0jpwBVzlsKVGxW_-PjJeIx_iu14jW77gQa-gnGP3B8sYuRsnEHNLdLYI-nEViasn5401ZkFNofqJMaNCR6Zj2Z1Jenu_Q_pPiA3IshY7aAp2yez9XmvH0LGuS4eWefyB0ndf6k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAv08bXwgYYhAQ8pEsTx04eEOrQpoFEQYOhvUWO43QVaVLWhg_xz3PnONkiJljVp_pSKXe-L_vud4Q8UzqPRJSO3DiLmMt0xt00VJGbpeBNAqnAZWOi-H7Cj07Yu9PwdI1M2l4YLKtsbaIx1Fml8Ix8LwBHBBuIs-j14puLU6PwdrUdoSHtaIXslYEYu0HWfUTGGpD1_YPJx-PWNoN2c24b6AIx2rPyGi6qUg_xsiHEwsRLDsrg-HfWerAoquVVoejfFZU363Ihf_2QRXHJXR1ukg0bZ9JxszG2yJoub5Mtq8lL-sLCTb-8Q36PaVl91wWdy5-zeT2nxeyrLmYId0zRx2UUh84YIF7EdKYXjf0Uy0tpXuOBG5XFFNi1OptTCIOpGbADXpFCNj8zvcBArk2fIVWm69OYqrvk5PDg85sj145kcBWPg5Ur0pH2fMmEAsfuadB2kTIv5zlEWSNf-xkTUpmT5jATHgR_eOM84pJJoSF0i4N7ZFACs7cJ9USWe0pwL8ohS8tSKUEkGA7mHo9zGTokaOWQKItXjmMzisRcwgnIWxpWJii9xErPIW731KLB6_gP_T6KuKNFtG3zQ3U-TazyJkEmfe6nfiq9nIVSpCKET4xAOfASue-Qx7hBkqZ1tbMZyTiCZBMxAYHiqaFAxI0SS3qmsl4uk7cfvlyD6NNxj-i5JcorYIeSto0C3gmRvHqUuz1KsBuqt7yN27nlyjK50DB4st3iVy8_6ZbxT7FMr9RV3dDAVzDukPuNRnScDWLIxUUUOCTq6UqP9f2VcnZmAM8hawlwkoJDhp1aXUu6D_79Ijvklg8xqmktZbtksDqv9UOIMVfpI2s4_gC3cn3g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wACDkACJhDQfdvJYENNA2kBA0XiKbMfZoqVJtTZ8_vPcOW5YYIhS5ak-R_LZd_e72PczIQ-VLhKeyLGb5knkRjpnroxV4uYSokkoFIRsTBT3D9jeNHp9GB9ukKerWpiz-_chHz-zGvXmTa093A6IsVpvk8WAvEdkc3rwdvKp2zgOXBb4oa2O-1vXQfQxJP29Kx7Nq2ZxHs7887jkhbaei29fRFWdiUW7l8n-ahTdEZQTr11KT33_jeBx3WFeIZcsKKWTbhVtkQ1dXyVb1uwX9LHlpn5yjfyY0Lr5rCs6E1_LWTujVXmiqxK5kSkGxJziDTWGtRcJoOkvFgCKZ1Fp0eLXOSqqo-a0XB7PKGBmam7jgRBKIfUvTeEwiGtTlEiVKRE1fu06me6-_PBiz7X3N7iKpeHS5XKs_UBEXAEK8DW4Bi4jv2AFQLJxoIM84kKZz9Jxzn1Airg9PWYiElwDzkvDG2RUg0K2CfV5XviKMz8pIKXLpRCgNsSOhc_SQsQOCVfzmilLbo53bFSZ2bHjkOR0qsxQw5nVsEPcvte8I_f4h_xzXDK9LFJzmz9gKjNr6VmYi4AFMpDCL6JYcMlj-KXIqgODKAKH3MMFl3V1rr2DySYJZKZIIAgSD4wE0nPUeP7nSLSLRfbqzcc1hN6_Gwg9skJFA-pQwtZcwJiQ9msguTOQBCejBs3baB4rrSyyEHAh-HMWJdBzZTLnN9_vm_GleKav1k3bycDDI-aQm52F9ZoNU0jceRI6JBnY3kD1w5a6PDbs6JDihHjtgkO83kzXmt1b_9vhNrkYAMQ1lanRDhktT1t9ByDqUt61nuknMNaQag
  priority: 102
  providerName: Unpaywall
Title A novel maximum likelihood based probabilistic behavioral data fusion algorithm for modeling residential energy consumption
URI https://www.ncbi.nlm.nih.gov/pubmed/39495783
https://www.proquest.com/docview/3124051648
https://www.proquest.com/docview/3124124746
https://pubmed.ncbi.nlm.nih.gov/PMC11534260
https://doi.org/10.1371/journal.pone.0309509
https://doaj.org/article/3da262b2ba0f45a7b75555926847dff2
http://dx.doi.org/10.1371/journal.pone.0309509
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wCgGIQEPqfLh2MkDQt20MpBWpkHReIqcxOki0qQ0LWzin-fOSQMRnVhV5SE-R_Kdz3dn-35HyItYpb7wI9sMEp-ZTCXcjLzYN5MIrIkrYzDZGCgej_nRhH048862yLpma8PAamNoh_WkJot8cPH98i0o_BtdtUHY606DeVmoAR4ZeJjRtw22KsBiDsesPVcA7ea8SaC7qmfHQGkc_3a17s3zstrkiv57o_LmqpjLy58yz_8yV6M75HbjZ9JhPTF2yJYq7pKdRpMr-qqBm359j_wa0qL8oXI6kxfZbDWjefZN5RnCHVO0cQnFojMaiBcxnemfxH6K10tpusINNyrzabnIluczCm4w1QV2wCpSiOYznQsM5ErnGdJYZ33qpeo-mYwOPx8cmU1JBjPmgbs0RWQry5FMxGDYLQXaLiJmpTwFL8t2lJMwIWO90-wlwgLnD0-cbS6ZFApct8B9QHoFMHuXUEskqRULbvkpRGlJJCWIBN3B1OJBKj2DuGs5hHGDV45lM_JQH8IJiFtqVoYovbCRnkHMtte8xuv4D_0-irilRbRt_aJcTMNGeUM3kQ53IieSVso8KSLhwS9AoBwYROoY5ClOkLBOXW3XjHDoQ7CJmIBA8VxTIOJGgVd6pnJVVeH7j1-uQfTptEP0siFKS2BHLJs0ChgTInl1KPc6lLBuxJ3mXZzOa65UoQuuHizRnPnQcz3FNzc_a5vxo3hNr1DlqqaBv2DcIA9rjWg56wYQiwvfNYjf0ZUO67stRXauAc8hanGxkoJBBq1aXUu6j64e42NyywH_VKeVsj3SWy5W6gn4l8uoT26IMwFP_8DG5-hdn2zvH45PTvt6x6avlxR4NxmfDL_-BvbRgkQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VAuiPJqoNAFgYCDU8de7zoHhMKjSukDCVqUm1mv12mEY4c4plT8J34jM-tHa1FBL41yyo4jeWf2m5ndnW8Ieap07As_7FuDyGcW0xG3Qk_5VhSCN3GlApeNieL-AR8dsQ9jb7xCfte1MHitssZEA9RRpnCPfMsFRwQGxJn_ev7dwq5ReLpat9AozWJXn55Aypa_2nkH-n3mONvvD9-OrKqrgKX4wF1aIuxr25FMKPBNtgaDFSGzYx5DoNB3tBMxIZXZLPUiYUP8goemfS6ZFBqiDyRfAsi_xlzAElg_YtwkeIAdnFflea7ob1XW0Jtnqe7hUYaH1x7PuT_TJaDxBZ15kuUXBbp_39dcLdK5PD2RSXLOGW7fJDeqKJYOS7NbIys6vUXWKpzI6YuKzPrlbfJrSNPsh07oTP6czooZTabfdDJFMmWKHjSi2NLG0PwiYzQ9ow2geHmVxgVu51GZTEAZy-MZhSCbmvY94HPpQmO30RRQKqHaVDFSZWpKDRDeIUdXopq7pJPCZK8TaosotpXgth9DDhiFUoJKMNiMbT6Ipdclbq2HQFVs6NiUIwnMEZ-ArKicygC1F1Ta6xKreWpesoH8R_4NqriRRS5v80O2mAQVNARuJB3uhE4o7Zh5UoTCg88AaXjgJWKnSzbRQIKyMLZBpGDoQyqLjIMg8cRIIJ9HiheGJrLI82Dn45dLCH3-1BJ6XgnFGUyHklWRBrwT8oS1JDdakoBKqjW8juZcz0oenK1feLI28YuHHzfD-Kd4CTDVWVHKwFcw3iX3yhXRzKw7gExf-G6X-K210pr69kg6PTZ06pATudinoUt6zbK6lHbv__tFNsnq6HB_L9jbOdh9QK47EA2bIla2QTrLRaEfQjS7DB8ZCKHk61Vj1h97TrDf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQQIuiPKqodAFgYCDE8ePXfuAUKBEDYWCoEW5mfV6nUY4dkhiSsU_49cxs360FhX00iin7DiSZ2bnsTvzDSGPpUp87kd9M4h913RVzMzIk74ZR-BNHCHBZWOi-H6P7Ry4b8feeI38rnthsKyytonaUMe5xDPyngOOCBSIuX4vqcoiPm4PX86_mzhBCm9a63EapYrsquMjSN-WL0bbIOsntj18s_96x6wmDJiSBc7K5FFfWbZwuQQ_ZSlQXh65VsISCBr6trJjlwupD069mFsQy-AFap8JV3AFkQgCMYH5v8QdJ8ByQj5ukj2wI4xVrXoO7_cqzejO80x18VrDwxLIU65QTwxo_EJnnubLs4Lev2s3rxTZXBwfiTQ95RiH18m1KqKlg1IF18maym6Q9cpmLOmzCtj6-U3ya0Cz_IdK6Uz8nM6KGU2n31Q6RWBlit40pjjeRkP-Ino0PYEQoFjISpMCj_aoSCcgjNXhjELATfUoH_C_dKFw8mgGFiulSnc0Uqn7S7VRvEUOLkQ0t0knA2ZvEGrxOLEkZ5afQD4YR0KASDDwTCwWJMIziFPLIZQVMjoO6EhDfd3HIUMqWRmi9MJKegYxm6fmJTLIf-hfoYgbWsT11j_ki0lYmYnQiYXN7MiOhJW4nuAR9-ATICQPvERiG2QLFSQsm2Qb6xQOfEhrEX0QKB5pCsT2yHCXTESxXIajD1_OQfT5U4voaUWU5MAOKaqGDXgnxAxrUW62KMFCydbyBqpzzZVleLKX4claxc9eftgs459iQWCm8qKkgS93mUHulDui4awTQNbPfccgfmuvtFjfXsmmhxpaHfIjB2c2GKTbbKtzSffuv19ki1wGaxW-G-3t3iNXbQiMdT-ru0k6q0Wh7kNgu4oeaAtCydeLNll_ADZMtSI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wACDkACJhDQfdvJYENNA2kBA0XiKbMfZoqVJtTZ8_vPcOW5YYIhS5ak-R_LZd_e72PczIQ-VLhKeyLGb5knkRjpnroxV4uYSokkoFIRsTBT3D9jeNHp9GB9ukKerWpiz-_chHz-zGvXmTa093A6IsVpvk8WAvEdkc3rwdvKp2zgOXBb4oa2O-1vXQfQxJP29Kx7Nq2ZxHs7887jkhbaei29fRFWdiUW7l8n-ahTdEZQTr11KT33_jeBx3WFeIZcsKKWTbhVtkQ1dXyVb1uwX9LHlpn5yjfyY0Lr5rCs6E1_LWTujVXmiqxK5kSkGxJziDTWGtRcJoOkvFgCKZ1Fp0eLXOSqqo-a0XB7PKGBmam7jgRBKIfUvTeEwiGtTlEiVKRE1fu06me6-_PBiz7X3N7iKpeHS5XKs_UBEXAEK8DW4Bi4jv2AFQLJxoIM84kKZz9Jxzn1Airg9PWYiElwDzkvDG2RUg0K2CfV5XviKMz8pIKXLpRCgNsSOhc_SQsQOCVfzmilLbo53bFSZ2bHjkOR0qsxQw5nVsEPcvte8I_f4h_xzXDK9LFJzmz9gKjNr6VmYi4AFMpDCL6JYcMlj-KXIqgODKAKH3MMFl3V1rr2DySYJZKZIIAgSD4wE0nPUeP7nSLSLRfbqzcc1hN6_Gwg9skJFA-pQwtZcwJiQ9msguTOQBCejBs3baB4rrSyyEHAh-HMWJdBzZTLnN9_vm_GleKav1k3bycDDI-aQm52F9ZoNU0jceRI6JBnY3kD1w5a6PDbs6JDihHjtgkO83kzXmt1b_9vhNrkYAMQ1lanRDhktT1t9ByDqUt61nuknMNaQag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+maximum+likelihood+based+probabilistic+behavioral+data+fusion+algorithm+for+modeling+residential+energy+consumption&rft.jtitle=PloS+one&rft.au=Bhowmik%2C+Tanmoy&rft.au=Iraganaboina%2C+Naveen&rft.au=Eluru%2C+Naveen&rft.date=2024-11-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0309509&rft.externalDocID=3124051648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon