A novel maximum likelihood based probabilistic behavioral data fusion algorithm for modeling residential energy consumption
The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we conside...
Saved in:
| Published in | PloS one Vol. 19; no. 11; p. e0309509 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
04.11.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0309509 |
Cover
| Abstract | The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption. |
|---|---|
| AbstractList | The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption. The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption.The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum likelihood based probabilistic data fusion approach for modeling residential energy consumption. To demonstrate our data fusion algorithm, we consider energy usage by fuel type variables (for electricity and natural gas) in residential dwellings as our dependent variable of interest, drawn from residential energy consumption survey (RECS) data. The national household travel survey (NHTS) dataset was considered to incorporate additional variables that are not available in the RECS data. With a focus on improving the model for the residential energy use by fuel type, our proposed research provides a probabilistic mechanism for appropriately fusing records from the NHTS data with the RECS data. Specifically, instead of strictly matching records with only common attributes, we propose a flexible differential weighting method (probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for the two datasets. The fused dataset is employed to develop an updated model of residential energy use with additional independent variables contributed from the NHTS dataset. The newly estimated energy use model is compared with models estimated RECS data exclusively to see if there is any improvement offered by the newly fused variables. In our analysis, the model fit measures provide strong evidence for model improvement via fusion as well as weighted contribution estimation, thus highlighting the applicability of our proposed fusion algorithm. The analysis is further augmented through a validation exercise that provides evidence that the proposed algorithm offers enhanced explanatory power and predictive capability for the modeling energy use. Our proposed data fusion approach can be widely applied in various sectors including the use of location-based smartphone data to analyze mobility and ridehailing patterns that are likely to influence energy consumption with increasing electric vehicle (EV) adoption. |
| Audience | Academic |
| Author | Iraganaboina, Naveen Chandra Eluru, Naveen Bhowmik, Tanmoy |
| AuthorAffiliation | Universita degli Studi del Molise, ITALY 1 Department of Civil and Environmental Engineering, Portland State University, Portland, OR, United States of America 2 Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL, United States of America |
| AuthorAffiliation_xml | – name: 1 Department of Civil and Environmental Engineering, Portland State University, Portland, OR, United States of America – name: 2 Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL, United States of America – name: Universita degli Studi del Molise, ITALY |
| Author_xml | – sequence: 1 givenname: Tanmoy orcidid: 0000-0002-0258-1692 surname: Bhowmik fullname: Bhowmik, Tanmoy – sequence: 2 givenname: Naveen Chandra surname: Iraganaboina fullname: Iraganaboina, Naveen Chandra – sequence: 3 givenname: Naveen surname: Eluru fullname: Eluru, Naveen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39495783$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tr3DAQhU1JaS7tPyitoFDah93qZsnuS1lCL4FAoLdXMbZlr1JZciR7m9A_X213E7IhlNgGG_k7RzNn7MNsz3mns-w5wXPCJHl37qfgwM6HtDzHDJc5Lh9lB6RkdCYoZnu3nvezwxjPMc5ZIcSTbJ-VvMxlwQ6yPwvk_Epb1MOl6aceWfNLW7P0vkEVRN2gIfgKKmNNHE2NKr2ElfEBLGpgBNRO0XiHwHY-mHHZo9YH1PsmebgOBR1No91oEq6dDt0Vqr2LUz-MSfU0e9yCjfrZ9n6U_fj08fvxl9np2eeT48XprBYlG2eyIhpT4LKmQmAtCykrjlvRlrQkVNOGS6hxThnOG4lzXFBOCRHAQWpGecmOspcb38H6qLa5RcUI5TgngheJONkQjYdzNQTTQ7hSHoz6t-BDpyCk9q1WrAEqaEUrwC3PQVYyT0dJRcFl07Y0eeUbr8kNcPUbrL0xJFitR3ddglqPTm1Hl3QftlVOVa-bOsUWwO4Us_vGmaXq_EoRkjNOBU4Ob7YOwV9MOo6qN7HW1oLTfto0nC7JRUJf3UHvj2VLdZA6N671aeN6baoWBeEFLnK8bnh-D5XORvcmjVu3Jq3vCN7uCBIz6suxgylGdfLt68PZs5-77Otb7FKDHZfR22n9rcVd8MXtqG8yvv4tEsA3QB18jEG3Dx3h-zuy2oyw3j4lYuz_xX8B_sU1Tw |
| CitedBy_id | crossref_primary_10_1016_j_trc_2024_104753 crossref_primary_10_1080_19427867_2024_2430109 crossref_primary_10_1016_j_enbuild_2025_115626 |
| Cites_doi | 10.1016/j.enbuild.2021.111828 10.1016/j.trb.2021.09.008 10.1371/journal.pone.0249133 10.1016/j.eneco.2016.05.006 10.1109/IECON.2015.7392809 10.1016/j.energy.2015.04.101 10.1016/j.trpro.2018.12.211 10.1016/j.jue.2008.09.002 10.1109/JIOT.2017.2723424 10.1016/j.aap.2015.08.009 10.1016/j.euroecorev.2012.02.007 10.1016/j.jeem.2007.10.001 10.3390/s21217035 10.1038/ncomms14916 10.1016/j.enbuild.2022.112566 10.1061/JTEPBS.0000294 10.1016/j.autcon.2018.07.007 10.1016/j.enbuild.2012.10.016 10.1016/j.jocm.2021.100283 10.1016/j.compenvurbsys.2016.06.003 10.1007/s11116-015-9597-y 10.1016/j.enpol.2019.111103 10.1016/j.trpro.2015.06.012 10.1016/j.enbuild.2019.05.002 10.1016/j.inffus.2020.07.003 10.1016/j.enbuild.2016.08.014 10.1109/TBDATA.2016.2631141 10.1016/j.enpol.2011.02.047 10.1016/j.eneco.2015.08.015 10.1016/j.tre.2020.101890 10.1016/j.apenergy.2019.02.066 10.2307/1911493 10.1016/j.enbuild.2021.110934 10.1016/j.enpol.2010.03.056 10.1109/TSG.2021.3091469 10.1088/1742-6596/2143/1/012030 10.1111/1467-9442.00236 10.1016/j.apenergy.2021.117775 10.1016/S0360-5442(97)00034-0 10.1016/j.trc.2014.01.002 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Bhowmik et al 2024 Bhowmik et al 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Bhowmik et al 2024 Bhowmik et al – notice: 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0309509 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Probabilistic fusion model for residential energy forecast |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3124051648 oai_doaj_org_article_3da262b2ba0f45a7b75555926847dff2 10.1371/journal.pone.0309509 PMC11534260 A814808502 39495783 10_1371_journal_pone_0309509 |
| Genre | Journal Article |
| GeographicLocations | United States United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c693t-7b1e02a47c2660e7877b40f6f92912e2d47ac052305d70508242116a4a7e32493 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:17:32 EDT 2025 Fri Oct 03 12:51:52 EDT 2025 Sun Oct 26 04:10:00 EDT 2025 Tue Sep 30 17:07:17 EDT 2025 Fri Sep 05 06:58:10 EDT 2025 Tue Oct 07 07:44:38 EDT 2025 Mon Oct 20 22:46:52 EDT 2025 Mon Oct 20 16:55:21 EDT 2025 Thu Oct 16 15:49:15 EDT 2025 Thu Oct 16 15:49:12 EDT 2025 Thu May 22 21:24:05 EDT 2025 Thu Apr 03 06:55:25 EDT 2025 Wed Oct 01 02:38:20 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Copyright: © 2024 Bhowmik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-7b1e02a47c2660e7877b40f6f92912e2d47ac052305d70508242116a4a7e32493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-0258-1692 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0309509 |
| PMID | 39495783 |
| PQID | 3124051648 |
| PQPubID | 1436336 |
| PageCount | e0309509 |
| ParticipantIDs | plos_journals_3124051648 doaj_primary_oai_doaj_org_article_3da262b2ba0f45a7b75555926847dff2 unpaywall_primary_10_1371_journal_pone_0309509 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11534260 proquest_miscellaneous_3124124746 proquest_journals_3124051648 gale_infotracmisc_A814808502 gale_infotracacademiconefile_A814808502 gale_incontextgauss_ISR_A814808502 gale_incontextgauss_IOV_A814808502 gale_healthsolutions_A814808502 pubmed_primary_39495783 crossref_primary_10_1371_journal_pone_0309509 crossref_citationtrail_10_1371_journal_pone_0309509 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-04 |
| PublicationDateYYYYMMDD | 2024-11-04 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | F Guarino (pone.0309509.ref012) 2019; 196 SU Momtaz (pone.0309509.ref019) 2020; 146 D Fawzy (pone.0309509.ref046) 2021; 21 D De Silva (pone.0309509.ref050) 2016 E Leahy (pone.0309509.ref058) 2010; 38 pone.0309509.ref009 M Bedir (pone.0309509.ref025) 2013; 58 CBC News (pone.0309509.ref052) JL Reyna (pone.0309509.ref053) 2017; 8 AR Pinjari (pone.0309509.ref032) 2021; 39 US-DOE (pone.0309509.ref003) 2019 N He (pone.0309509.ref049) 2022 2022 W. United States Population (pone.0309509.ref002) 2022 L Montero (pone.0309509.ref016) 2019; 37 Y Himeur (pone.0309509.ref014) 2020; 64 TF Golob (pone.0309509.ref056) 2009; 65 WH Huang (pone.0309509.ref026) 2015; 87 Y Martín (pone.0309509.ref021) 2020 I Varlamis (pone.0309509.ref010) 2022; 305 ET Mansur (pone.0309509.ref030) 2008; 55 Z Wang (pone.0309509.ref011) 2019; 240 D Wijayasekara (pone.0309509.ref051) 2015 T Bhowmik (pone.0309509.ref059) 2021; 153 NO Kapustin (pone.0309509.ref008) 2020; 137 A Sivakumar (pone.0309509.ref017) US-EIA2021 (pone.0309509.ref006) B Anderson (pone.0309509.ref036) 2017; 63 T Bhowmik (pone.0309509.ref005) 2021; 16 DJ Sailor (pone.0309509.ref033) 1997; 22 Electrek (pone.0309509.ref007) J Xie (pone.0309509.ref044) 2022; 277 D Brounen (pone.0309509.ref057) 2012; 56 C-F Liao (pone.0309509.ref018) C Boomsma (pone.0309509.ref038) 2016 F Belaïd (pone.0309509.ref027) 2016; 57 USAToday (pone.0309509.ref055) Y Xu (pone.0309509.ref024) 2015; 42 US-EIA2020 (pone.0309509.ref001) MS Iqbal (pone.0309509.ref040) 2014; 40 S Jiang (pone.0309509.ref023) 2016; 3 X Li (pone.0309509.ref041) 2016; 129 JA Dubin (pone.0309509.ref034) 1984; 52 L Dale (pone.0309509.ref029) N Nesa (pone.0309509.ref048) 2017; 4 W Wang (pone.0309509.ref047) 2018; 94 D Wiesmann (pone.0309509.ref028) 2011; 39 J Harold (pone.0309509.ref035) 2015; 51 JP Gouveia (pone.0309509.ref013) 2015 S Yasmin (pone.0309509.ref022) 2015; 84 R. Nesbakken (pone.0309509.ref037) 2001; 103 C Wu (pone.0309509.ref039) 2015; 7 pone.0309509.ref054 D Peng (pone.0309509.ref045) 2021; 2143 D Zhao (pone.0309509.ref020) 2020; 136 NC Iraganaboina (pone.0309509.ref031) 2021; 240 L Jiang (pone.0309509.ref042) 2021; 12 C Yang (pone.0309509.ref015) 2020 SY Tan (pone.0309509.ref043) 2022; 258 US-EIA (pone.0309509.ref004) 2019 |
| References_xml | – volume: 258 start-page: 111828 year: 2022 ident: pone.0309509.ref043 article-title: Multimodal sensor fusion framework for residential building occupancy detection. publication-title: Energy Build doi: 10.1016/j.enbuild.2021.111828 – volume: 153 start-page: 172 year: 2021 ident: pone.0309509.ref059 article-title: A New Econometric Approach for Modeling Several Count Variables: A Case Study of Crash Frequency Analysis by Crash Type and Severity publication-title: Transp Res Part B Methodol doi: 10.1016/j.trb.2021.09.008 – start-page: 8 year: 2016 ident: pone.0309509.ref038 article-title: Energy Saving Behaviours Among Social Housing Tenants: Exploring the Relationship With Dwelling Characteristics, Monetary Concerns, and Psychological Motivations. publication-title: 4th Eur Conf Behav Energy Effic (Behave 2016) – volume: 16 year: 2021 ident: pone.0309509.ref005 article-title: A comprehensive analysis of COVID-19 transmission and mortality rates at the county level in the United States considering socio-demographics, health indicators, mobility trends and health care infrastructure attributes. publication-title: PLoS One doi: 10.1371/journal.pone.0249133 – volume: 57 start-page: 204 year: 2016 ident: pone.0309509.ref027 article-title: Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data. publication-title: Energy Econ doi: 10.1016/j.eneco.2016.05.006 – start-page: 4550 year: 2015 ident: pone.0309509.ref051 article-title: Data-fusion for increasing temporal resolution of building energy management system data. publication-title: IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc doi: 10.1109/IECON.2015.7392809 – volume: 87 start-page: 120 year: 2015 ident: pone.0309509.ref026 article-title: The determinants of household electricity consumption in Taiwan: Evidence from quantile regression. publication-title: Energy doi: 10.1016/j.energy.2015.04.101 – volume: 37 start-page: 417 year: 2019 ident: pone.0309509.ref016 article-title: Fusing mobile phone data with other data sources to generate input OD matrices for transport models. publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2018.12.211 – ident: pone.0309509.ref007 publication-title: Global market share of electric cars more than doubled in 2021 as the EV revolution gains steam—Electrek – year: 2019 ident: pone.0309509.ref003 publication-title: Energy Data Facts | Residential Program Solution Center – ident: pone.0309509.ref018 publication-title: Fusing Public and Private Truck Data to Support Regional Freight Planning and Modeling Traffic Information for People with Vision Impairment View project Fusing Public and Private Truck Data to Support Regional Freight Planning and Modeling – volume: 65 start-page: 91 year: 2009 ident: pone.0309509.ref056 article-title: The Impact of Residential Density on Vehicle Usage and Energy Consumption. publication-title: J Urban Econ doi: 10.1016/j.jue.2008.09.002 – volume: 4 start-page: 1563 year: 2017 ident: pone.0309509.ref048 article-title: IoT-Based Sensor Data Fusion for Occupancy Sensing Using Dempster-Shafer Evidence Theory for Smart Buildings. publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2723424 – volume: 84 start-page: 112 year: 2015 ident: pone.0309509.ref022 article-title: Pooling data from fatality analysis reporting system (FARS) and generalized estimates system (GES) to explore the continuum of injury severity spectrum. publication-title: Accid Anal Prev doi: 10.1016/j.aap.2015.08.009 – year: 2020 ident: pone.0309509.ref021 publication-title: Bridging Twitter and Survey Data for Evacuation Assessment of Hurricane Matthew and Hurricane Irma – ident: pone.0309509.ref052 publication-title: Why mobile home residents are paying for more electricity | CBC News, – volume: 56 start-page: 931 year: 2012 ident: pone.0309509.ref057 article-title: Residential energy use and conservation: Economics and demographics publication-title: Eur Econ Rev doi: 10.1016/j.euroecorev.2012.02.007 – volume: 55 start-page: 175 year: 2008 ident: pone.0309509.ref030 article-title: Climate change adaptation: A study of fuel choice and consumption in the US energy sector. publication-title: J Environ Econ Manage doi: 10.1016/j.jeem.2007.10.001 – volume: 21 start-page: 7035 year: 2021 ident: pone.0309509.ref046 article-title: The spatiotemporal data fusion (Stdf) approach: Iot-based data fusion using big data analytics. publication-title: Sensors doi: 10.3390/s21217035 – volume: 8 start-page: 1 year: 2017 ident: pone.0309509.ref053 article-title: Energy efficiency to reduce residential electricity and natural gas use under climate change. publication-title: Nat Commun doi: 10.1038/ncomms14916 – volume: 277 start-page: 112566 year: 2022 ident: pone.0309509.ref044 article-title: A multi-information fusion model for short term load forecasting of an architectural complex considering spatio-temporal characteristics. publication-title: Energy Build doi: 10.1016/j.enbuild.2022.112566 – volume: 146 start-page: 04019070 year: 2020 ident: pone.0309509.ref019 article-title: Fusing Freight Analysis Framework and Transearch Data: Econometric Data Fusion Approach with Application to Florida publication-title: J Transp Eng Part A Syst doi: 10.1061/JTEPBS.0000294 – volume: 94 start-page: 233 year: 2018 ident: pone.0309509.ref047 article-title: Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings. publication-title: Autom Constr doi: 10.1016/j.autcon.2018.07.007 – ident: pone.0309509.ref029 article-title: Price Impact on the Demand for Water and Energy in California Residences. publication-title: Public Interes Energy Res Progr Reports CEC-500-2009-032-D, Calif Energy Comm Sacramento, CA – year: 2020 ident: pone.0309509.ref015 article-title: Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics. publication-title: J Adv Transp – volume: 58 start-page: 194 year: 2013 ident: pone.0309509.ref025 article-title: Determinants of electricity consumption in Dutch dwellings. publication-title: Energy Build doi: 10.1016/j.enbuild.2012.10.016 – volume: 39 year: 2021 ident: pone.0309509.ref032 article-title: Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis. publication-title: J Choice Model doi: 10.1016/j.jocm.2021.100283 – start-page: 4594 year: 2016 ident: pone.0309509.ref050 article-title: A data fusion technique for smart home energy management and analysis publication-title: IECON Proc (Industrial Electron Conf – ident: pone.0309509.ref001 article-title: Frequently Asked Questions (FAQs)—U.S. publication-title: Energy Information Administration (EIA) – ident: pone.0309509.ref006 publication-title: Total Energy Monthly Data—U.S. Energy Information Administration (EIA) – volume: 63 start-page: 58 year: 2017 ident: pone.0309509.ref036 article-title: Electricity consumption and household characteristics: Implications for census-taking in a smart metered future. publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2016.06.003 – volume: 42 start-page: 625 year: 2015 ident: pone.0309509.ref024 article-title: Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach. publication-title: Transportation (Amst) doi: 10.1007/s11116-015-9597-y – ident: pone.0309509.ref055 publication-title: Sustainability study shows that women consume more energy – volume: 137 start-page: 111103 year: 2020 ident: pone.0309509.ref008 article-title: Long-term electric vehicles outlook and their potential impact on electric grid. publication-title: Energy Policy doi: 10.1016/j.enpol.2019.111103 – ident: pone.0309509.ref054 publication-title: 2020 R. All-Electric New Homes: A Win for the Climate and the Economy—RMI – year: 2022 ident: pone.0309509.ref049 article-title: Air Conditioning Load Prediction Based on Data Fusion Model. publication-title: SSRN Electron J – start-page: 7228 ident: pone.0309509.ref017 publication-title: An exploration of data pooling techniques: Modelling activity participation and household technology holdings Abstract – ident: pone.0309509.ref009 publication-title: Data Fusion—an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/computer-science/data-fusion – year: 2022 ident: pone.0309509.ref002 – volume: 7 start-page: 212 year: 2015 ident: pone.0309509.ref039 article-title: Cellpath: Fusion of Cellular and Traffic Sensor Data for Route Flow Estimation via Convex Optimization. publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2015.06.012 – volume: 196 start-page: 240 year: 2019 ident: pone.0309509.ref012 article-title: Data fusion analysis applied to different climate change models: An application to the energy consumptions of a building office. publication-title: Energy Build doi: 10.1016/j.enbuild.2019.05.002 – volume: 64 start-page: 99 year: 2020 ident: pone.0309509.ref014 article-title: Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations. publication-title: Inf Fusion doi: 10.1016/j.inffus.2020.07.003 – start-page: 957 year: 2015 ident: pone.0309509.ref013 article-title: Understanding electricity consumption patterns in households through data fusion of smart meters and door-to-door surveys. publication-title: Eceee 2015 – volume: 129 start-page: 227 year: 2016 ident: pone.0309509.ref041 article-title: System identification and data fusion for on-line adaptive energy forecasting in virtual and real commercial buildings. publication-title: Energy Build doi: 10.1016/j.enbuild.2016.08.014 – volume: 3 start-page: 208 year: 2016 ident: pone.0309509.ref023 article-title: Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2016.2631141 – year: 2019 ident: pone.0309509.ref004 publication-title: U.S. Energy Information Administration—EIA—Independent Statistics and Analysis – volume: 39 start-page: 2772 year: 2011 ident: pone.0309509.ref028 article-title: Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. publication-title: Energy Policy doi: 10.1016/j.enpol.2011.02.047 – volume: 51 start-page: 475 year: 2015 ident: pone.0309509.ref035 article-title: The determinants of residential gas demand in Ireland. publication-title: Energy Econ doi: 10.1016/j.eneco.2015.08.015 – volume: 136 start-page: 101890 year: 2020 ident: pone.0309509.ref020 article-title: Weight-categorized truck flow estimation: A data-fusion approach and a Florida case study. publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2020.101890 – volume: 240 start-page: 386 year: 2019 ident: pone.0309509.ref011 article-title: Data fusion in predicting internal heat gains for office buildings through a deep learning approach. publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.066 – volume: 52 start-page: 345 year: 1984 ident: pone.0309509.ref034 article-title: An Econometric Analysis of Residential Electric Appliance Holdings and Consumption. publication-title: Econometrica doi: 10.2307/1911493 – volume: 240 year: 2021 ident: pone.0309509.ref031 article-title: An examination of factors affecting residential energy consumption using a multiple discrete continuous approach. publication-title: Energy Build doi: 10.1016/j.enbuild.2021.110934 – volume: 38 start-page: 4265 year: 2010 ident: pone.0309509.ref058 article-title: Energy use and appliance ownership in Ireland. publication-title: Energy Policy doi: 10.1016/j.enpol.2010.03.056 – volume: 12 start-page: 5362 year: 2021 ident: pone.0309509.ref042 article-title: Hybrid Multitask Multi-Information Fusion Deep Learning for Household Short-Term Load Forecasting publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3091469 – volume: 2143 start-page: 012030 year: 2021 ident: pone.0309509.ref045 article-title: Intelligent Building Data Fusion Algorithm by Using the Internet of Things Technology publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/2143/1/012030 – volume: 103 start-page: 165 year: 2001 ident: pone.0309509.ref037 article-title: Energy consumption for space heating: A discrete-continuous approach publication-title: Scand J Econ doi: 10.1111/1467-9442.00236 – volume: 305 start-page: 117775 year: 2022 ident: pone.0309509.ref010 article-title: Smart fusion of sensor data and human feedback for personalized energy-saving recommendations. publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117775 – volume: 22 start-page: 987 year: 1997 ident: pone.0309509.ref033 article-title: Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states. publication-title: Energy doi: 10.1016/S0360-5442(97)00034-0 – volume: 40 start-page: 63 year: 2014 ident: pone.0309509.ref040 article-title: Development of origin-destination matrices using mobile phone call data publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2014.01.002 |
| SSID | ssj0053866 |
| Score | 2.4760044 |
| Snippet | The current research effort is focused on improving the effective use of the multiple disparate sources of data available by proposing a novel maximum... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0309509 |
| SubjectTerms | Algorithms Biology and Life Sciences COVID-19 Data analysis Data fusion Data integration Datasets Dependent variables Earth Sciences Electric vehicles Electricity Energy consumption Energy development Energy usage Engineering and Technology Environmental aspects Fuel consumption Households Housing Humans Independent variables Likelihood Functions Mathematical models Maximum likelihood estimates (Statistics) Methods Modelling Models, Statistical Natural gas Physical Sciences Research and Analysis Methods Residential energy Smartphones Social Sciences Surveys Trip surveys Weighting methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4djJ8cFURUkQAKKeoscx24jssmq2fAQf54Zxxs2olJ7YLWn9WSlzHuSmW8Ieaa0SUVahH5WpsxnuuR-kajULwuIJrFUELKxUHz_gR8ds3cnycnWqi_sCRvggQfGHcSljHhURIUMDEukKEQCnwxBSkRpjPW-QZptiqnBB4MVc-4G5WIRHji5zFdto-f4UiHBBsStQGTx-kevPFvVbXdRyvlv5-T1vlnJXz9kXW-FpcNb5KbLJ-liuI8dck03t8mOs9iOvnCw0i_vkN8L2rTfdU2X8me17Je0rr7pukJYY4qxrKS4XMYC7iJ2M_07wE-xjZSaHh-sUVmftufV-mxJId2ldpEORD8KVXtlZ36BXNt5QqrsdKd1SXfJ8eGbL6-PfLd6wVc8i9e-KEIdRJIJBQE80GDVomCB4QayqTDSUcmEVPaJclKKAJI8fLMccsmk0JCiZfE9MmuA2buEBiCmQAkepAaqsbKQEkSCaZ8JeGZk4pF4I4dcOVxyXI9R5_Zlm4D6ZGBljtLLnfQ84o9XrQZcjkvoX6GIR1pE1bY_gK7lTtfyy3TNI49RQfJhRHX0DfkihaISsf-A4qmlQGSNBlt3TmXfdfnbj1-vQPT504TouSMyLbBDSTcuAfeEiF0Tyv0JJfgHNTneRXXecKXLY0jpwBVzlsKVGxW_-PjJeIx_iu14jW77gQa-gnGP3B8sYuRsnEHNLdLYI-nEViasn5401ZkFNofqJMaNCR6Zj2Z1Jenu_Q_pPiA3IshY7aAp2yez9XmvH0LGuS4eWefyB0ndf6k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAv08bXwgYYhAQ8pEsTx04eEOrQpoFEQYOhvUWO43QVaVLWhg_xz3PnONkiJljVp_pSKXe-L_vud4Q8UzqPRJSO3DiLmMt0xt00VJGbpeBNAqnAZWOi-H7Cj07Yu9PwdI1M2l4YLKtsbaIx1Fml8Ix8LwBHBBuIs-j14puLU6PwdrUdoSHtaIXslYEYu0HWfUTGGpD1_YPJx-PWNoN2c24b6AIx2rPyGi6qUg_xsiHEwsRLDsrg-HfWerAoquVVoejfFZU363Ihf_2QRXHJXR1ukg0bZ9JxszG2yJoub5Mtq8lL-sLCTb-8Q36PaVl91wWdy5-zeT2nxeyrLmYId0zRx2UUh84YIF7EdKYXjf0Uy0tpXuOBG5XFFNi1OptTCIOpGbADXpFCNj8zvcBArk2fIVWm69OYqrvk5PDg85sj145kcBWPg5Ur0pH2fMmEAsfuadB2kTIv5zlEWSNf-xkTUpmT5jATHgR_eOM84pJJoSF0i4N7ZFACs7cJ9USWe0pwL8ohS8tSKUEkGA7mHo9zGTokaOWQKItXjmMzisRcwgnIWxpWJii9xErPIW731KLB6_gP_T6KuKNFtG3zQ3U-TazyJkEmfe6nfiq9nIVSpCKET4xAOfASue-Qx7hBkqZ1tbMZyTiCZBMxAYHiqaFAxI0SS3qmsl4uk7cfvlyD6NNxj-i5JcorYIeSto0C3gmRvHqUuz1KsBuqt7yN27nlyjK50DB4st3iVy8_6ZbxT7FMr9RV3dDAVzDukPuNRnScDWLIxUUUOCTq6UqP9f2VcnZmAM8hawlwkoJDhp1aXUu6D_79Ijvklg8xqmktZbtksDqv9UOIMVfpI2s4_gC3cn3g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wACDkACJhDQfdvJYENNA2kBA0XiKbMfZoqVJtTZ8_vPcOW5YYIhS5ak-R_LZd_e72PczIQ-VLhKeyLGb5knkRjpnroxV4uYSokkoFIRsTBT3D9jeNHp9GB9ukKerWpiz-_chHz-zGvXmTa093A6IsVpvk8WAvEdkc3rwdvKp2zgOXBb4oa2O-1vXQfQxJP29Kx7Nq2ZxHs7887jkhbaei29fRFWdiUW7l8n-ahTdEZQTr11KT33_jeBx3WFeIZcsKKWTbhVtkQ1dXyVb1uwX9LHlpn5yjfyY0Lr5rCs6E1_LWTujVXmiqxK5kSkGxJziDTWGtRcJoOkvFgCKZ1Fp0eLXOSqqo-a0XB7PKGBmam7jgRBKIfUvTeEwiGtTlEiVKRE1fu06me6-_PBiz7X3N7iKpeHS5XKs_UBEXAEK8DW4Bi4jv2AFQLJxoIM84kKZz9Jxzn1Airg9PWYiElwDzkvDG2RUg0K2CfV5XviKMz8pIKXLpRCgNsSOhc_SQsQOCVfzmilLbo53bFSZ2bHjkOR0qsxQw5nVsEPcvte8I_f4h_xzXDK9LFJzmz9gKjNr6VmYi4AFMpDCL6JYcMlj-KXIqgODKAKH3MMFl3V1rr2DySYJZKZIIAgSD4wE0nPUeP7nSLSLRfbqzcc1hN6_Gwg9skJFA-pQwtZcwJiQ9msguTOQBCejBs3baB4rrSyyEHAh-HMWJdBzZTLnN9_vm_GleKav1k3bycDDI-aQm52F9ZoNU0jceRI6JBnY3kD1w5a6PDbs6JDihHjtgkO83kzXmt1b_9vhNrkYAMQ1lanRDhktT1t9ByDqUt61nuknMNaQag priority: 102 providerName: Unpaywall |
| Title | A novel maximum likelihood based probabilistic behavioral data fusion algorithm for modeling residential energy consumption |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39495783 https://www.proquest.com/docview/3124051648 https://www.proquest.com/docview/3124124746 https://pubmed.ncbi.nlm.nih.gov/PMC11534260 https://doi.org/10.1371/journal.pone.0309509 https://doaj.org/article/3da262b2ba0f45a7b75555926847dff2 http://dx.doi.org/10.1371/journal.pone.0309509 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wCgGIQEPqfLh2MkDQt20MpBWpkHReIqcxOki0qQ0LWzin-fOSQMRnVhV5SE-R_Kdz3dn-35HyItYpb7wI9sMEp-ZTCXcjLzYN5MIrIkrYzDZGCgej_nRhH048862yLpma8PAamNoh_WkJot8cPH98i0o_BtdtUHY606DeVmoAR4ZeJjRtw22KsBiDsesPVcA7ea8SaC7qmfHQGkc_3a17s3zstrkiv57o_LmqpjLy58yz_8yV6M75HbjZ9JhPTF2yJYq7pKdRpMr-qqBm359j_wa0qL8oXI6kxfZbDWjefZN5RnCHVO0cQnFojMaiBcxnemfxH6K10tpusINNyrzabnIluczCm4w1QV2wCpSiOYznQsM5ErnGdJYZ33qpeo-mYwOPx8cmU1JBjPmgbs0RWQry5FMxGDYLQXaLiJmpTwFL8t2lJMwIWO90-wlwgLnD0-cbS6ZFApct8B9QHoFMHuXUEskqRULbvkpRGlJJCWIBN3B1OJBKj2DuGs5hHGDV45lM_JQH8IJiFtqVoYovbCRnkHMtte8xuv4D_0-irilRbRt_aJcTMNGeUM3kQ53IieSVso8KSLhwS9AoBwYROoY5ClOkLBOXW3XjHDoQ7CJmIBA8VxTIOJGgVd6pnJVVeH7j1-uQfTptEP0siFKS2BHLJs0ChgTInl1KPc6lLBuxJ3mXZzOa65UoQuuHizRnPnQcz3FNzc_a5vxo3hNr1DlqqaBv2DcIA9rjWg56wYQiwvfNYjf0ZUO67stRXauAc8hanGxkoJBBq1aXUu6j64e42NyywH_VKeVsj3SWy5W6gn4l8uoT26IMwFP_8DG5-hdn2zvH45PTvt6x6avlxR4NxmfDL_-BvbRgkQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VAuiPJqoNAFgYCDU8de7zoHhMKjSukDCVqUm1mv12mEY4c4plT8J34jM-tHa1FBL41yyo4jeWf2m5ndnW8Ieap07As_7FuDyGcW0xG3Qk_5VhSCN3GlApeNieL-AR8dsQ9jb7xCfte1MHitssZEA9RRpnCPfMsFRwQGxJn_ev7dwq5ReLpat9AozWJXn55Aypa_2nkH-n3mONvvD9-OrKqrgKX4wF1aIuxr25FMKPBNtgaDFSGzYx5DoNB3tBMxIZXZLPUiYUP8goemfS6ZFBqiDyRfAsi_xlzAElg_YtwkeIAdnFflea7ob1XW0Jtnqe7hUYaH1x7PuT_TJaDxBZ15kuUXBbp_39dcLdK5PD2RSXLOGW7fJDeqKJYOS7NbIys6vUXWKpzI6YuKzPrlbfJrSNPsh07oTP6czooZTabfdDJFMmWKHjSi2NLG0PwiYzQ9ow2geHmVxgVu51GZTEAZy-MZhSCbmvY94HPpQmO30RRQKqHaVDFSZWpKDRDeIUdXopq7pJPCZK8TaosotpXgth9DDhiFUoJKMNiMbT6Ipdclbq2HQFVs6NiUIwnMEZ-ArKicygC1F1Ta6xKreWpesoH8R_4NqriRRS5v80O2mAQVNARuJB3uhE4o7Zh5UoTCg88AaXjgJWKnSzbRQIKyMLZBpGDoQyqLjIMg8cRIIJ9HiheGJrLI82Dn45dLCH3-1BJ6XgnFGUyHklWRBrwT8oS1JDdakoBKqjW8juZcz0oenK1feLI28YuHHzfD-Kd4CTDVWVHKwFcw3iX3yhXRzKw7gExf-G6X-K210pr69kg6PTZ06pATudinoUt6zbK6lHbv__tFNsnq6HB_L9jbOdh9QK47EA2bIla2QTrLRaEfQjS7DB8ZCKHk61Vj1h97TrDf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQQIuiPKqodAFgYCDE8ePXfuAUKBEDYWCoEW5mfV6nUY4dkhiSsU_49cxs360FhX00iin7DiSZ2bnsTvzDSGPpUp87kd9M4h913RVzMzIk74ZR-BNHCHBZWOi-H6P7Ry4b8feeI38rnthsKyytonaUMe5xDPyngOOCBSIuX4vqcoiPm4PX86_mzhBCm9a63EapYrsquMjSN-WL0bbIOsntj18s_96x6wmDJiSBc7K5FFfWbZwuQQ_ZSlQXh65VsISCBr6trJjlwupD069mFsQy-AFap8JV3AFkQgCMYH5v8QdJ8ByQj5ukj2wI4xVrXoO7_cqzejO80x18VrDwxLIU65QTwxo_EJnnubLs4Lev2s3rxTZXBwfiTQ95RiH18m1KqKlg1IF18maym6Q9cpmLOmzCtj6-U3ya0Cz_IdK6Uz8nM6KGU2n31Q6RWBlit40pjjeRkP-Ino0PYEQoFjISpMCj_aoSCcgjNXhjELATfUoH_C_dKFw8mgGFiulSnc0Uqn7S7VRvEUOLkQ0t0knA2ZvEGrxOLEkZ5afQD4YR0KASDDwTCwWJMIziFPLIZQVMjoO6EhDfd3HIUMqWRmi9MJKegYxm6fmJTLIf-hfoYgbWsT11j_ki0lYmYnQiYXN7MiOhJW4nuAR9-ATICQPvERiG2QLFSQsm2Qb6xQOfEhrEX0QKB5pCsT2yHCXTESxXIajD1_OQfT5U4voaUWU5MAOKaqGDXgnxAxrUW62KMFCydbyBqpzzZVleLKX4claxc9eftgs459iQWCm8qKkgS93mUHulDui4awTQNbPfccgfmuvtFjfXsmmhxpaHfIjB2c2GKTbbKtzSffuv19ki1wGaxW-G-3t3iNXbQiMdT-ru0k6q0Wh7kNgu4oeaAtCydeLNll_ADZMtSI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wACDkACJhDQfdvJYENNA2kBA0XiKbMfZoqVJtTZ8_vPcOW5YYIhS5ak-R_LZd_e72PczIQ-VLhKeyLGb5knkRjpnroxV4uYSokkoFIRsTBT3D9jeNHp9GB9ukKerWpiz-_chHz-zGvXmTa093A6IsVpvk8WAvEdkc3rwdvKp2zgOXBb4oa2O-1vXQfQxJP29Kx7Nq2ZxHs7887jkhbaei29fRFWdiUW7l8n-ahTdEZQTr11KT33_jeBx3WFeIZcsKKWTbhVtkQ1dXyVb1uwX9LHlpn5yjfyY0Lr5rCs6E1_LWTujVXmiqxK5kSkGxJziDTWGtRcJoOkvFgCKZ1Fp0eLXOSqqo-a0XB7PKGBmam7jgRBKIfUvTeEwiGtTlEiVKRE1fu06me6-_PBiz7X3N7iKpeHS5XKs_UBEXAEK8DW4Bi4jv2AFQLJxoIM84kKZz9Jxzn1Airg9PWYiElwDzkvDG2RUg0K2CfV5XviKMz8pIKXLpRCgNsSOhc_SQsQOCVfzmilLbo53bFSZ2bHjkOR0qsxQw5nVsEPcvte8I_f4h_xzXDK9LFJzmz9gKjNr6VmYi4AFMpDCL6JYcMlj-KXIqgODKAKH3MMFl3V1rr2DySYJZKZIIAgSD4wE0nPUeP7nSLSLRfbqzcc1hN6_Gwg9skJFA-pQwtZcwJiQ9msguTOQBCejBs3baB4rrSyyEHAh-HMWJdBzZTLnN9_vm_GleKav1k3bycDDI-aQm52F9ZoNU0jceRI6JBnY3kD1w5a6PDbs6JDihHjtgkO83kzXmt1b_9vhNrkYAMQ1lanRDhktT1t9ByDqUt61nuknMNaQag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+maximum+likelihood+based+probabilistic+behavioral+data+fusion+algorithm+for+modeling+residential+energy+consumption&rft.jtitle=PloS+one&rft.au=Bhowmik%2C+Tanmoy&rft.au=Iraganaboina%2C+Naveen&rft.au=Eluru%2C+Naveen&rft.date=2024-11-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0309509&rft.externalDocID=3124051648 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |