Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis

Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 8; p. e0306493
Main Authors Gunasekaran, Subathra, Mercy Bai, Prabin Selvestar, Mathivanan, Sandeep Kumar, Rajadurai, Hariharan, Shivahare, Basu Dev, Shah, Mohd Asif
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.08.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0306493

Cover

Abstract Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain’s intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.
AbstractList Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.
Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.
Audience Academic
Author Shah, Mohd Asif
Mathivanan, Sandeep Kumar
Gunasekaran, Subathra
Shivahare, Basu Dev
Rajadurai, Hariharan
Mercy Bai, Prabin Selvestar
AuthorAffiliation 2 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
4 School of Computing Science and Engineering, VIT Bhopal University, Sehore, India
1 Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India
National Textile University, PAKISTAN
5 Faculty of Kebri Dehar University, Somali, Ethiopia
6 Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
7 Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
3 School of Computer Science and Engineering, Galgotias University, Greater Noida, India
AuthorAffiliation_xml – name: 5 Faculty of Kebri Dehar University, Somali, Ethiopia
– name: 1 Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India
– name: 7 Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
– name: 4 School of Computing Science and Engineering, VIT Bhopal University, Sehore, India
– name: 6 Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
– name: National Textile University, PAKISTAN
– name: 2 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
– name: 3 School of Computer Science and Engineering, Galgotias University, Greater Noida, India
Author_xml – sequence: 1
  givenname: Subathra
  surname: Gunasekaran
  fullname: Gunasekaran, Subathra
– sequence: 2
  givenname: Prabin Selvestar
  surname: Mercy Bai
  fullname: Mercy Bai, Prabin Selvestar
– sequence: 3
  givenname: Sandeep Kumar
  surname: Mathivanan
  fullname: Mathivanan, Sandeep Kumar
– sequence: 4
  givenname: Hariharan
  surname: Rajadurai
  fullname: Rajadurai, Hariharan
– sequence: 5
  givenname: Basu Dev
  surname: Shivahare
  fullname: Shivahare, Basu Dev
– sequence: 6
  givenname: Mohd Asif
  orcidid: 0000-0002-0351-9559
  surname: Shah
  fullname: Shah, Mohd Asif
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39190622$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2w2BsF8ksS5as3oxQui3QUeg-boUsyY6CLHmSvCz_fsqSlqQUVnwhc_yc1-85LzrNjqyzKstegmIKIAEflm70lpvpkMrTAhYYUfgkOwEUlhNcFvBo7_04Ow1hWRQVrDF-lh1DCmiBy_IkW8zG6Hoelcwbz7XN49g7n0vNO-tC1CKc55f94FbKa9vlVo3eTZwVzrhuna90XORSqSE3inubiEnDQ9L6ejPPdc87lfPkcR10eJ49bbkJ6sXuPMt-fLr8fvFlcnX9eX4xu5oITGGcVLQFCgHaCkzqEte8xESgNjmXlUQVJTXiyTqRgFQIyIbLom4khggqWkpawbPs9VZ3MC6w3ZICgwUlpCaIgETMt4R0fMkGn3z6NXNcs38F5zvGfZrcKNYgilXdtKhqSyQE4DWtsGyTmRIIglXSqrZaox34esWNuRMEBdvkdGuBbXJiu5xS38edy7HplRTKRs_NgZnDL1YvWOd-MwAgogCUSeHdTsG7X6MKkfU6CGUMt8qN24HrCkBQJ_TNPfThteyojqfJtW1d-rHYiLJZXWBYEFJtqOkDVHqk6rVII7Y61Q8a3h80JCaqP7HjYwhs_u3m8ez1z0P27R67UNzERXBmjNrZcAi-2l_13Y5v70ACzreA8C4Er1omdOQbnTSaNv8LEt1rflT-fwG1Ei5m
CitedBy_id crossref_primary_10_1016_j_ins_2025_122046
Cites_doi 10.1016/j.irbm.2021.06.003
10.1002/jemt.23694
10.1109/LSP.2022.3198594
10.1155/2022/4380901
10.1109/TIP.2021.3070752
10.1109/ACCESS.2022.3222536
10.1016/j.jksues.2020.06.001
10.1109/ACCESS.2019.2948266
10.1109/JTEHM.2022.3176737
10.1016/j.ijcce.2022.11.001
10.1109/ACCESS.2021.3111131
10.56714/bjrs.49.2.9
10.1016/j.jksuci.2021.05.008
10.1007/s10115-023-01851-4
10.1007/s00521-023-09204-6
10.11591/ijeecs.v28.i1.pp183-191
10.1145/3450519
10.1109/ACCESS.2020.2983075
10.1109/JBHI.2021.3122328
10.1007/978-3-030-51971-1_5
ContentType Journal Article
Copyright Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Gunasekaran et al 2024 Gunasekaran et al
2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Gunasekaran et al 2024 Gunasekaran et al
– notice: 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0306493
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Agricultural Science Database


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
EISSN 1932-6203
ExternalDocumentID 3097787471
oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e
10.1371/journal.pone.0306493
PMC11349112
A806307751
39190622
10_1371_journal_pone_0306493
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-59f1e419fc678268a267c4f053d5d459784a9067d17541dbad08bd6343e92d953
IEDL.DBID UNPAY
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:53 EDT 2025
Fri Oct 03 12:51:24 EDT 2025
Sun Oct 26 04:04:23 EDT 2025
Tue Sep 30 17:07:53 EDT 2025
Fri Sep 05 09:12:57 EDT 2025
Tue Oct 07 09:19:55 EDT 2025
Mon Oct 20 22:49:55 EDT 2025
Mon Oct 20 16:56:37 EDT 2025
Thu Oct 16 15:59:54 EDT 2025
Thu Oct 16 16:18:49 EDT 2025
Thu May 22 21:24:23 EDT 2025
Mon Jul 21 06:03:30 EDT 2025
Wed Oct 01 03:16:36 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-59f1e419fc678268a267c4f053d5d459784a9067d17541dbad08bd6343e92d953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: NO authors have competing interests.
ORCID 0000-0002-0351-9559
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0306493
PMID 39190622
PQID 3097787471
PQPubID 1436336
PageCount e0306493
ParticipantIDs plos_journals_3097787471
doaj_primary_oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e
unpaywall_primary_10_1371_journal_pone_0306493
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349112
proquest_miscellaneous_3097851318
proquest_journals_3097787471
gale_infotracmisc_A806307751
gale_infotracacademiconefile_A806307751
gale_incontextgauss_ISR_A806307751
gale_incontextgauss_IOV_A806307751
gale_healthsolutions_A806307751
pubmed_primary_39190622
crossref_citationtrail_10_1371_journal_pone_0306493
crossref_primary_10_1371_journal_pone_0306493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-27
PublicationDateYYYYMMDD 2024-08-27
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Heba Mamdouh Farghaly (pone.0306493.ref032) 2023; 65
A. Doaa (pone.0306493.ref030) 2024; 13
M.O. Khairandish (pone.0306493.ref017) 2022; 43
Ramin Ranjbarzadeh (pone.0306493.ref004) 2021; 11
Jianxin Zhang (pone.0306493.ref006) 2020; 8
pone.0306493.ref026
Mohammad Ashraf Ottom (pone.0306493.ref014) 2022; 10
Nivea Kesav (pone.0306493.ref005) 2022; 34
Jingchao Sun (pone.0306493.ref008) 2020; 80
Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref033) 2019; 7
Yu Liu (pone.0306493.ref013) 2022; 29
Entesar Hamed I. Eliwa (pone.0306493.ref031) 2024; 13
He-Xuan Hu (pone.0306493.ref019) 2021; 21
Lamia H. Shehab (pone.0306493.ref020) 2021; 33
Morarjee Kolla (pone.0306493.ref009) 2022; 9015778
Shidong Li (pone.0306493.ref021) 2022; 13
Neil Micallef (pone.0306493.ref016) 2021; 9
Sreekar Tankala (pone.0306493.ref001) 2022; 2
Pranjal Agrawal (pone.0306493.ref003) 2022; 3
Meqdam A. Mohammed (pone.0306493.ref035) 2023; 2
Ahmed Omar (pone.0306493.ref027) 2024; 36
Amjad Rehman Khan (pone.0306493.ref022) 2021; 84
S. Saravanan (pone.0306493.ref024) 2022; 4380901
Naveed Ilyas (pone.0306493.ref018) 2022; 10
Saravanan Srinivasan (pone.0306493.ref025) 2023; 13
R. Pitchai (pone.0306493.ref015) 2020; 53
Ping Liu (pone.0306493.ref010) 2020; 8
Tarek Abd El-Hafeez (pone.0306493.ref028) 2024; 14
Hend Muslim Jasim (pone.0306493.ref036) 2023; 47
Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref037) 2019; 9
Dhafer G. Honi (pone.0306493.ref038) 2022
Yi Ding (pone.0306493.ref012) 2021; 26
Raghav Mehta (pone.0306493.ref039) 2022; 1
K. R Aravind Britto (pone.0306493.ref023) 2023; 5
Esraa Hassan (pone.0306493.ref029) 2024; 14
Tongxue Zhou (pone.0306493.ref007) 2021; 30
Chengdong Yan (pone.0306493.ref011) 2022; 10
Jiawei Sun (pone.0306493.ref002) 2019; 43
Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref034) 2022; 28
References_xml – volume: 43
  start-page: 290
  issue: 4
  year: 2022
  ident: pone.0306493.ref017
  article-title: A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images
  publication-title: IRBM
  doi: 10.1016/j.irbm.2021.06.003
– volume: 2
  start-page: 1
  issue: 4
  year: 2022
  ident: pone.0306493.ref001
  article-title: ’A novel depth search based light weight CAR network for the segmentation of brain tumour from MR images
  publication-title: Neuroscience Informatics
– volume: 9015778
  start-page: 1
  year: 2022
  ident: pone.0306493.ref009
  article-title: CNN-Based Brain Tumor Detection Model Using Local Binary Pattern and Multilayered SVM Classifier
  publication-title: Computational Overhead vs. Learning Speed and Accuracy of Deep Networks
– volume: 84
  start-page: 1389
  issue: 7
  year: 2021
  ident: pone.0306493.ref022
  article-title: Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23694
– volume: 29
  start-page: 1799
  issue: 1
  year: 2022
  ident: pone.0306493.ref013
  article-title: SF-Net: A Multi-Task Model for Brain Tumor Segmentation in Multimodal MRI via Image Fusion
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2022.3198594
– volume: 5
  start-page: 1
  issue: 1
  year: 2023
  ident: pone.0306493.ref023
  article-title: A multi-dimensional hybrid CNN-BiLSTM framework for epileptic seizure detection using electroencephalogram signal scrutiny
  publication-title: Systems and Soft Computing
– volume: 43
  start-page: 1
  issue: 7
  year: 2019
  ident: pone.0306493.ref002
  article-title: DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation
  publication-title: Journal of Medical Systems
– volume: 13
  start-page: 1
  issue: 1
  year: 2024
  ident: pone.0306493.ref030
  article-title: Predicting female pelvic tilt and lumbar angle using machine learning in case of urinary incontinence and sexual dysfunction
  publication-title: Scientific reports
– volume: 80
  start-page: 34203
  issue: 1
  year: 2020
  ident: pone.0306493.ref008
  article-title: Semantic segmentation of brain tumor with nested residual attention networks
  publication-title: Multimedia Tools and Applications
– volume: 4380901
  start-page: 1
  year: 2022
  ident: pone.0306493.ref024
  article-title: Computational and Mathematical Methods in Medicine Glioma Brain Tumor Detection and Classification Using Convolutional Neural Network
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2022/4380901
– volume: 13
  start-page: 1
  issue: 1
  year: 2024
  ident: pone.0306493.ref031
  article-title: Utilizing convolutional neural networks to classify monkeypox skin lesions
  publication-title: Scientific reports
– volume: 30
  start-page: 4263
  issue: 2
  year: 2021
  ident: pone.0306493.ref007
  article-title: Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3070752
– volume: 10
  start-page: 117033
  issue: 1
  year: 2022
  ident: pone.0306493.ref011
  article-title: SEResU-Net for Multimodal Brain Tumor Segmentation
  publication-title: IEEE Access
– volume: 8
  start-page: 34029
  issue: 1
  year: 2020
  ident: pone.0306493.ref010
  article-title: An Encoder-Decoder Neural Network With 3D Squeeze-and-Excitation and Deep Supervision for Brain Tumor Segmentation
  publication-title: IEEE Access
– volume: 10
  start-page: 122658
  issue: 1
  year: 2022
  ident: pone.0306493.ref018
  article-title: Hybrid-DANet: An Encoder-Decoder Based Hybrid Weights Alignment with Multi-Dilated Attention Network for Automatic Brain Tumor Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3222536
– volume: 33
  start-page: 404
  issue: 6
  year: 2021
  ident: pone.0306493.ref020
  article-title: An efficient brain tumor image segmentation based on deep residual networks (ResNets)
  publication-title: Journal of King Saud University—Engineering Sciences
  doi: 10.1016/j.jksues.2020.06.001
– volume: 7
  start-page: 169142
  issue: 1
  year: 2019
  ident: pone.0306493.ref033
  article-title: Greedy Learning of Deep Boltzmann Machine (GDBM)’s Variance and Search Algorithm for Efficient Image Retrieval
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948266
– volume: 10
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0306493.ref014
  article-title: Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation
  publication-title: IEEE Journal Transl Eng Health Med
  doi: 10.1109/JTEHM.2022.3176737
– volume: 3
  start-page: 199
  issue: 1
  year: 2022
  ident: pone.0306493.ref003
  article-title: Segmentation and classification of brain tumor using 3D-UNet deep neural networks
  publication-title: International Journal of Cognitive Computing in Engineering
  doi: 10.1016/j.ijcce.2022.11.001
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0306493.ref004
  article-title: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
  publication-title: Scientific reports
– volume: 9
  start-page: 125523
  issue: 1
  year: 2021
  ident: pone.0306493.ref016
  article-title: Exploring the U-Net++ Model for Automatic Brain Tumor Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111131
– volume: 2
  start-page: 94
  issue: 2
  year: 2023
  ident: pone.0306493.ref035
  article-title: Secure Content Based Image Retrieval System Using Deep Learning
  publication-title: Basrah Researches Sciences 49
  doi: 10.56714/bjrs.49.2.9
– volume: 14
  start-page: 1
  issue: 1
  year: 2024
  ident: pone.0306493.ref028
  article-title: Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs
  publication-title: Scientific Reports
– volume: 34
  start-page: 6229
  issue: 8
  year: 2022
  ident: pone.0306493.ref005
  article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN
  publication-title: Journal of King Saud University—Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.05.008
– volume: 14
  start-page: 1
  issue: 1
  year: 2024
  ident: pone.0306493.ref029
  article-title: Optimizing classification of diseases through language model analysis of symptoms
  publication-title: Scientific reports
– start-page: 239
  year: 2022
  ident: pone.0306493.ref038
  article-title: Towards Fast Edge Detection Approach for Industrial Products
  publication-title: 2022 IEEE 21st International Conference on Ubiquitous Computing and Communications
– volume: 65
  start-page: 2595
  issue: 1
  year: 2023
  ident: pone.0306493.ref032
  article-title: Hepatitis C Virus prediction based on machine learning framework: a real-world case study in Egypt
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-023-01851-4
– volume: 36
  start-page: 2835
  issue: 1
  year: 2024
  ident: pone.0306493.ref027
  article-title: Optimizing epileptic seizure recognition performance with feature scaling and dropout layers
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-09204-6
– volume: 13
  start-page: 2435
  issue: 1
  year: 2022
  ident: pone.0306493.ref021
  article-title: Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 1
  start-page: 1
  issue: 2
  year: 2022
  ident: pone.0306493.ref039
  article-title: QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
  publication-title: J Mach Learn Biomed Imaging
– volume: 28
  start-page: 183
  issue: 1
  year: 2022
  ident: pone.0306493.ref034
  article-title: Fully automated model on breast cancer classification using deep learning classifiers
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v28.i1.pp183-191
– volume: 53
  start-page: 2519
  issue: 1
  year: 2020
  ident: pone.0306493.ref015
  article-title: Brain Tumor Segmentation Using Deep Learning and Fuzzy K-Means Clustering for Magnetic Resonance Images
  publication-title: Neural Processing Letters
– volume: 21
  start-page: 1
  issue: 3
  year: 2021
  ident: pone.0306493.ref019
  article-title: Multimodal Brain Tumor Segmentation Based on an Intelligent UNET-LSTM Algorithm in Smart Hospitals
  publication-title: ACM Transactions on Internet Technology
  doi: 10.1145/3450519
– volume: 8
  start-page: 58533
  issue: 1
  year: 2020
  ident: pone.0306493.ref006
  article-title: Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983075
– volume: 47
  start-page: 77
  issue: 8
  year: 2023
  ident: pone.0306493.ref036
  article-title: Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy
  publication-title: Informatica
– volume: 13
  start-page: 1
  issue: 6
  year: 2023
  ident: pone.0306493.ref025
  publication-title: Grade Classification of Tumors from Brain Magnetic Resonance Images Using a Deep Learning Technique
– volume: 26
  start-page: 1570
  issue: 4
  year: 2021
  ident: pone.0306493.ref012
  article-title: MVFusFra: A Multi-View Dynamic Fusion Framework for Multimodal Brain Tumor Segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2021.3122328
– ident: pone.0306493.ref026
  doi: 10.1007/978-3-030-51971-1_5
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0306493.ref037
  article-title: An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier
  publication-title: Human-centric Computing and Information Sciences
SSID ssj0053866
Score 2.4761257
Snippet Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0306493
SubjectTerms Accuracy
Algorithms
Analysis
Architecture
Artificial neural networks
Automation
Biology and Life Sciences
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain research
Brain tumors
Care and treatment
Classification
Computer and Information Sciences
Data acquisition
Data collection
Data entry
Datasets
Deep Learning
Diagnosis
Evaluation
Feature extraction
Human error
Humans
Image acquisition
Image analysis
Image enhancement
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Machine learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medical imaging equipment
Medical research
Medicine and Health Sciences
Neural networks
Neural Networks, Computer
Neuroimaging
Oncology
Performance evaluation
Predatory behavior
Research and Analysis Methods
Research methodology
Support vector machines
Surface properties
Technology application
Tumors
User interface
Whaling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByy3cSP2NwW1KpFKkiFot4iO3baSrtJ1N0I9d8zk3ijRlRqD1zjcaTMjGc-x-NvCHnvhLfWZzY2wmYx58LF2kkXGytTy5xPnMW7w0ff5cEJ_3YqTq-1-sKasJ4euFfcruVaemVLLsqUF0ViFCB6Vwrm0qTIpMfoO1N6s5nqYzCsYinDRTmWJbvBLtOmrvwUUTLXbJSIOr7-ISpPmkW9ugly_ls5eb-tGnP1xywW19LS_iPyMOBJOu-_Y4vc89VjshVW7Ip-DLTSn56Q83m7rgGfekct9oWg63ZZX1LX19ohW_NnurdssGsapDPaEV3GddWxWl9R_F9LnfcNDX0mzmJMgI4eHR_SiyVEJWoCv8lTcrK_9-vrQRz6LMSF1GwdC10mnie6LCBzpVKZVGYFL0GLTjgOOw7FjYas5gBqcDSemynrJOPM69RpwZ6RSQWa3SbUGObwcFmkTnEnE5tlCl5itEeePcMjwjZKz4tAQo69MBZ5d7KWwWak11uOpsqDqSISD7OanoTjFvkvaM9BFim0uwfgWHlwrPw2x4rIG_SGvL-POgSCfK6QpizLRBKRd50E0mhUWKdzZtrVKj_88fsOQj-PR0IfglBZgzoKE-5GwDchPddIcmckCcGgGA1vo-9utLLK2QwAvsI_DzBz4883D78dhvGlWHtX-brtZQCXQ_CPyPPe_QfNMp0g0XUaETVaGCPVj0eqi_OOxTxBYkxA-xGZDmvoTtZ98T-s-5I8SAGe4ulAmu2Qyfqy9a8AXq7t6y6S_AU-p3rI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_q9UERxNaPRquuIqgPuTabzSYRRK5ypRV6ymmlb2E3u7kW7pJ4d0H63zuTbGKDRfuanQR2ZudjMzO_IeS1DoxSJlSuDFToch5oN9ZCu1IJpnxtPK2wd_hkIo5O-eez4GyDTNpeGCyrbG1ibah1keI_8j1_HyKVCK9QH8ufLk6NwuxqO0JD2tEK-kMNMXaLbDJExhqQzYPx5Ou0tc2g3ULYBjo_9PasvIZlkZshRs889nsOqsbx76z1oJwXq-tC0b8rKm9XeSkvf8n5_Iq7OrxP7tk4k46ag7FFNky-Te6OrqQNtsmWVewVfWvRp989IOejal1AGGs0VTg-gq6rRbGkuinJQ1Dn93S8KHG4Gng9WuNhukVeg19fUvytS7UxJbXjKGYu-klNT6bH9GIBxotKC4PykJwejr9_OnLtOAY3FbG_doM48wz34iwFB8dEJJkIU54BU3WgOVxMIi5jcH4aIhKOMtb7kdLC576JmY4D_xEZ5MDoHUKl9DXmoAOmI66Fp0C08BEZG4Tjk9whfiuDJLVY5TgyY57UCbgQ7iwNGxOUXGIl5xC3e6tssDr-Q3-A4u1oEWm7flAsZ4lV3ETxWJhIZTzIGE9TT0Zwo9QZbJp5aSiMQ17g4UiattXOXiSjCNHMwjDwHPKqpkC0jRzLeWayWq2S4y8_bkD0bdojemOJsgLYkUrbQgF7QhSvHuVujxJsRtpb3sGj3HJllfzRLnizPd7XL7_slvGjWKKXm6JqaCB8Bx_hkMeNNnSc9WMP8bCZQ6KenvRY31_JL85rsHMP8TPhUuCQYadSN5Luk39v5Cm5wyA-xfQAC3fJYL2szDOIL9fquTUavwEMVn1L
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGeYCXaeNrYQMMQgIeUjWx82EkhAratCEVpEHR3iI7drpJbRKaRtD_nrvEjYgooq_x2ZLv-2L7d4S81IFRykTKlYGKXM4D7Qodaleq0FdMG08rfDs8-RyeT_mnq-Bqj2x6tloGVltLO-wnNV3Oh79-rN-Dwb9rujZE3mbSsCxyM8QcmAt2i9yGWCWwmcOEd-cKYN3N6SVmLW7oj5h9TPevVXrBqsH07zz3oJwX1ba09O_blXfqvJTrn3I-_yN0nR2QfZtz0nGrJIdkz-T3yKG16oq-ttDTb-6T63G9KiCHNZoq7B1BV_WiWFLd3sdDROe39HRRYmc1CHm0AcN0i7xBvl5T_KdLtTEltb0oZi4GSU0nlxf0ZgGei0qLgfKATM9Ov308d20vBjcNBVu5gcg8wz2RpRDd_DCWfhilPAOO6kBzqEpiLgVEPg3pCEcB61GsdMg4M8LXImAPySAHzh4RKiXTeAAd-DrmOvRUFMWwiBQGsfgkdwjbMD1JLVA59suYJ83pWwQFS8u3BEWVWFE5xO1mlS1Qx3_oP6A8O1qE2W4-FMtZYq02UVyEJlYZDzKfp6knYygndQab9r00Co1DnqE2JO2b1c5ZJOMYocyiKPAc8qKhQKiNHO_yzGRdVcnFl-87EH297BG9skRZAexIpX0_AXtCCK8e5UmPEhxG2hs-Qt3dcKVK2AiKgBj_TsDMjT5vH37eDeOieD8vN0Xd0kDuDgHCIY9a9e84y4SHYNi-Q-KeYfRY3x_Jb64bpHMPwTOhInDIsLOhnaT7eGdmHZO7PuSpeEzgRydksFrW5gnkmSv1tHEdvwHLHX1y
  priority: 102
  providerName: Scholars Portal
Title Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/39190622
https://www.proquest.com/docview/3097787471
https://www.proquest.com/docview/3097851318
https://pubmed.ncbi.nlm.nih.gov/PMC11349112
https://doi.org/10.1371/journal.pone.0306493
https://doaj.org/article/b496e8bf45f24cc1a8956df53d21c76e
http://dx.doi.org/10.1371/journal.pone.0306493
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe29gFegPG1wCgGIQESKU3ixAlv3dSyIbVMhU7lKbJjZ5tok2pthMZfz13iRgsMMV78EJ8j-ez7sn2_I-SV8rWUmktb-JLbjPnKjlSgbCEDV3pKO0pi7vBoHBxO2aeZP9si7za5MFfv7z3uvDcc7S7zTHfRv2WRt03agQ-ed4u0p-Pj_rfq4ti1A7fnmey4vw1tWJ8SpL9Wxa3lPF9d52f--VzyVpEtxeUPMZ9fsUXDu2S0mUX1BOV7t1jLbvLzN4DHm07zHrljnFLar3bRDtnS2X2yY8R-Rd8YbOq3D8hZv1jn4ORqRSUWl6DrYpFfUFU92EPI5w90sFhi6TWwibREy7TzrITGvqR46EuV1ktqilWc2mhFFR1Njuj5AlQbFQYk5SGZDgdfDw5tU6zBToLIW9t-lDqaOVGagPlzg1C4AU9YCjKufMUgbAmZiMA0KvBXGO4A1QulCjzm6chVke89Iq0MZr9LqBCewhtq31UhU4EjOQ_hJyLSCNYnmEW8zSLGiUEyx4Ia87i8nuMQ0VR8i5GdsWGnRex61LJC8vgH_T7uj5oWcbjLD7BusRHrWLIo0KFMmZ-6LEkcEUK8qVKYtOskPNAWeY67K66SWmttEvdDxDrj3Hcs8rKkQCyODB_7nIpitYqPPp_cgOjLpEH02hClObAjESbBAuaEGF8Nyr0GJWiUpNG9i7Kw4coq9noQJYR4fAEjN_JxffeLuht_ig_4Mp0XFQ0492BBLPK4Eqeas17kIFq2a5GwIWgN1jd7svOzEgrdQXRNCBks0q1l8kar--R_Bzwlt13wZ_E6weV7pLW-KPQz8EfXskO2-YxDGx442A4_dkh7fzA-nnTKEx5oRyzsGGX1CyP4kK0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8TCEhNj4WGAwg0DAQ7olcb6QECqwqWXrkMaG-hbs2OkmtUloGk39p_gbuUucsIgJ9rLX-hLVd-ff3cX27wh5KV0lhPKFyV3hm4y50gylJ00uPFs4UllS4N3h0ZE3OGVfxu54hfxq7sLgscoGEyugllmM38h3nF3IVAIsoT7kP03sGoW7q00LjdotDtTyAkq24v3wM9j3lW3v7518Gpi6q4AZe6GzMN0wsRSzwiQGnLa9gNueH7MEnFG6kkF-HTAeAoZLCKwM_6rcDYT0HOao0JYhdokAyL_FHMASWD_-uC3wADs8T1_Pc3xrR3tDL89S1cPcnIVOJ_xVXQLaWLCaT7PiqkT37_Oaa2Wa8-UFn04vBcP9e-SuzmJpv3a7dbKi0g1yp39pU2KDrGvYKOgbzW399j4565eLDJJkJanA5hR0Uc6yOZX1gT-kjH5H92Y5tm6DmEortk0zSytq7SXFj8ZUKpVT3exiYmIUlnR0PKTnM4BGyjXJygNyeiNmeUhWU1D0JqGcOxJ3uF1bBkx6lgDHgZfwUCHZH2cGcRobRLFmQseGHNOo2t7zoSKq1Rih5SJtOYOY7VN5zQTyH_mPaN5WFnm8qx-y-STSsBAJFnoqEAlzE5vFscUDqFdlApO2rdj3lEG20Tmi-lJsi0ZRP0CuNN93LYO8qCSQyyPFw0ITXhZFNPz6_RpC3447Qq-1UJKBOmKuL2jAnJAjrCO51ZEERIo7w5voyo1WiujP2oUnG_e-evh5O4wvxQOAqcrKWgaKA4hABnlUr4ZWs05oIdu2bZCgs046qu-OpOdnFZW6heycUHIYpNcuqWtZ9_G_J7JN1gYno8PocHh08ITctiETxo0I298iq4t5qZ5CJrsQzyr4oOTHTePVbzkmscw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIgFCQmy8LDCYQSDgQ7olcd6QECps1crYQIOhfgt27HST2iQ0jab-NX4dd4kTFjHBvuxrfImSu_Nzd7H9HCHPpauEUL4wuSt8kzFXmqH0pMmFZwtHKksKPDt8cOjtHbOPY3e8Qn41Z2FwW2WDiRVQyyzGf-RbzjZkKgGWUFuJ3hbxZWf4Lv9pYgcpXGlt2mnULrKvlmdQvhVvRztg6xe2Pdz99mHP1B0GzNgLnYXphomlmBUmMWC27QXc9vyYJeCY0pUMcu2A8RDwXEKQZfjacjsQ0nOYo0JbhtgxAuD_mu84IW4n9MdtsQc44nn6qJ4D76w9o59nqepjns5CpxMKq44BbVzo5dOsuCjp_Xvv5o0yzfnyjE-n5wLj8A65rTNaOqhdcJWsqHSN3BqcW6BYI6saQgr6SvNcv75LTgblIoOEWUkqsFEFXZSzbE5lvfkP6aPf0N1Zjm3cIL7SinnTzNKKZntJ8QcylUrlVDe-mJgYkSU9OBrR0xnAJOWacOUeOb4Ss9wnvRQUvU4o547E1W7XlgGTniXAieAhPFRI_MeZQZzGBlGsWdGxOcc0qpb6fKiOajVGaLlIW84gZntXXrOC_Ef-PZq3lUVO7-pCNp9EGiIiwUJPBSJhbmKzOLZ4ALWrTOCjbSv2PWWQTXSOqD4g2yJTNAiQN833XcsgzyoJ5PVIcYZMeFkU0ejz90sIfT3qCL3UQkkG6oi5PqwB34R8YR3JjY4koFPcGV5HV260UkR_5jHc2bj3xcNP22F8KG4GTFVW1jJQKEA0MsiDeja0mnVCC5m3bYMEnXnSUX13JD09qWjVLWTqhPLDIP12Sl3Kug___SGb5DogVfRpdLj_iNy0ISnGNQnb3yC9xbxUjyGpXYgnFXpQ8uOq4eo37vi2Dw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESmM7TsJbQZs2pA40GNqeIjt2tok2idZGaPz13CVutMAQ5TU-W7qz78Px3e8IeWFCq7WNtK9CHflChMZPjDS-0pJpbmxgNNYOT_bl7qH4eBQerZE3y1qYy-_3PAreOokOq7KwQ4xvRcKvkXUZQuQ9IOuH-5_Hx-3DMfMlG3FXHfe3qT3v04D0d6Z4UE3L-VVx5p_pktfrolIXP9R0eskX7dwikyUXbQrK92G90MPs528Aj6uyeZvcdEEpHbenaIOs2eIO2XBqP6evHDb167vkdFwvSghyraEam0vQRT0rz6lpE_YQ8vkd3Z5V2HoNfCJt0DL9smigsS8o_vSlxtqKumYVJz56UUMnB3v0bAamjSoHknKPHO5sf_2w67tmDX4mE77wwyQPrAiSPAP3x2SsmIwykYOOm9AIuLbEQiXgGg3EKwJPgBnF2kguuE2YSUJ-nwwK4H6TUKW4wRfqkJlYGBnoKIphEZVYBOtTwiN8uYlp5pDMsaHGNG2e5yK40bRyS1GcqROnR_xuVtUiefyD_j2ej44WcbibD7BvqVPrVItE2ljnIsyZyLJAxXDfNDkwzYIsktYjT_F0pW1Ra2dN0nGMWGdRFAYeed5QIBZHgck-J6qez9O9T99WIPpy0CN66YjyEsSRKVdgATwhxlePcqtHCRYl6w1voi4spTJP-QhuCTH-voCZS_24evhZN4yLYgJfYcu6pYHgHjyIRx606tRJlicBomUzj8Q9ReuJvj9SnJ02UOgBomvClcEjw04nV9rdh_874RG5wSCexecEFm2RweK8to8hHl3oJ84M_QIwSYqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+brain+tumor+diagnostics%3A+Empowering+neuro-oncology+with+deep+learning-based+MRI+image+analysis&rft.jtitle=PloS+one&rft.au=Gunasekaran%2C+Subathra&rft.au=Mercy+Bai%2C+Prabin+Selvestar&rft.au=Mathivanan%2C+Sandeep+Kumar&rft.au=Rajadurai%2C+Hariharan&rft.date=2024-08-27&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=8&rft.spage=e0306493&rft_id=info:doi/10.1371%2Fjournal.pone.0306493&rft.externalDocID=A806307751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon