Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis
Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed...
        Saved in:
      
    
          | Published in | PloS one Vol. 19; no. 8; p. e0306493 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        27.08.2024
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0306493 | 
Cover
| Abstract | Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain’s intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s. | 
    
|---|---|
| AbstractList | Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s. Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful treatment and improved patient outcomes. Magnetic Resonance Imaging (MRI) is the primary diagnostic tool for brain tumors, providing detailed visualizations of the brain's intricate structures. However, the complexity and variability of tumor shapes and locations often challenge physicians in achieving accurate tumor segmentation on MRI images. Precise tumor segmentation is essential for effective treatment planning and prognosis. To address this challenge, we propose a novel hybrid deep learning technique, Convolutional Neural Network and ResNeXt101 (ConvNet-ResNeXt101), for automated tumor segmentation and classification. Our approach commences with data acquisition from the BRATS 2020 dataset, a benchmark collection of MRI images with corresponding tumor segmentations. Next, we employ batch normalization to smooth and enhance the collected data, followed by feature extraction using the AlexNet model. This involves extracting features based on tumor shape, position, shape, and surface characteristics. To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). AWO mimics the hunting behavior of humpback whales to iteratively search for the optimal feature subset. With the selected features, we perform image segmentation using the ConvNet-ResNeXt101 model. This deep learning architecture combines the strengths of ConvNet and ResNeXt101, a type of ConvNet with aggregated residual connections. Finally, we apply the same ConvNet-ResNeXt101 model for tumor classification, categorizing the segmented tumor into distinct types. Our experiments demonstrate the superior performance of our proposed ConvNet-ResNeXt101 model compared to existing approaches, achieving an accuracy of 99.27% for the tumor core class with a minimum learning elapsed time of 0.53 s.  | 
    
| Audience | Academic | 
    
| Author | Shah, Mohd Asif Mathivanan, Sandeep Kumar Gunasekaran, Subathra Shivahare, Basu Dev Rajadurai, Hariharan Mercy Bai, Prabin Selvestar  | 
    
| AuthorAffiliation | 2 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India 4 School of Computing Science and Engineering, VIT Bhopal University, Sehore, India 1 Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India National Textile University, PAKISTAN 5 Faculty of Kebri Dehar University, Somali, Ethiopia 6 Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India 7 Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India 3 School of Computer Science and Engineering, Galgotias University, Greater Noida, India  | 
    
| AuthorAffiliation_xml | – name: 5 Faculty of Kebri Dehar University, Somali, Ethiopia – name: 1 Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India – name: 7 Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India – name: 4 School of Computing Science and Engineering, VIT Bhopal University, Sehore, India – name: 6 Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India – name: National Textile University, PAKISTAN – name: 2 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India – name: 3 School of Computer Science and Engineering, Galgotias University, Greater Noida, India  | 
    
| Author_xml | – sequence: 1 givenname: Subathra surname: Gunasekaran fullname: Gunasekaran, Subathra – sequence: 2 givenname: Prabin Selvestar surname: Mercy Bai fullname: Mercy Bai, Prabin Selvestar – sequence: 3 givenname: Sandeep Kumar surname: Mathivanan fullname: Mathivanan, Sandeep Kumar – sequence: 4 givenname: Hariharan surname: Rajadurai fullname: Rajadurai, Hariharan – sequence: 5 givenname: Basu Dev surname: Shivahare fullname: Shivahare, Basu Dev – sequence: 6 givenname: Mohd Asif orcidid: 0000-0002-0351-9559 surname: Shah fullname: Shah, Mohd Asif  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39190622$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk11r2zAUhs3oWD-2fzA2w2BsF8ksS5as3oxQui3QUeg-boUsyY6CLHmSvCz_fsqSlqQUVnwhc_yc1-85LzrNjqyzKstegmIKIAEflm70lpvpkMrTAhYYUfgkOwEUlhNcFvBo7_04Ow1hWRQVrDF-lh1DCmiBy_IkW8zG6Hoelcwbz7XN49g7n0vNO-tC1CKc55f94FbKa9vlVo3eTZwVzrhuna90XORSqSE3inubiEnDQ9L6ejPPdc87lfPkcR10eJ49bbkJ6sXuPMt-fLr8fvFlcnX9eX4xu5oITGGcVLQFCgHaCkzqEte8xESgNjmXlUQVJTXiyTqRgFQIyIbLom4khggqWkpawbPs9VZ3MC6w3ZICgwUlpCaIgETMt4R0fMkGn3z6NXNcs38F5zvGfZrcKNYgilXdtKhqSyQE4DWtsGyTmRIIglXSqrZaox34esWNuRMEBdvkdGuBbXJiu5xS38edy7HplRTKRs_NgZnDL1YvWOd-MwAgogCUSeHdTsG7X6MKkfU6CGUMt8qN24HrCkBQJ_TNPfThteyojqfJtW1d-rHYiLJZXWBYEFJtqOkDVHqk6rVII7Y61Q8a3h80JCaqP7HjYwhs_u3m8ez1z0P27R67UNzERXBmjNrZcAi-2l_13Y5v70ACzreA8C4Er1omdOQbnTSaNv8LEt1rflT-fwG1Ei5m | 
    
| CitedBy_id | crossref_primary_10_1016_j_ins_2025_122046 | 
    
| Cites_doi | 10.1016/j.irbm.2021.06.003 10.1002/jemt.23694 10.1109/LSP.2022.3198594 10.1155/2022/4380901 10.1109/TIP.2021.3070752 10.1109/ACCESS.2022.3222536 10.1016/j.jksues.2020.06.001 10.1109/ACCESS.2019.2948266 10.1109/JTEHM.2022.3176737 10.1016/j.ijcce.2022.11.001 10.1109/ACCESS.2021.3111131 10.56714/bjrs.49.2.9 10.1016/j.jksuci.2021.05.008 10.1007/s10115-023-01851-4 10.1007/s00521-023-09204-6 10.11591/ijeecs.v28.i1.pp183-191 10.1145/3450519 10.1109/ACCESS.2020.2983075 10.1109/JBHI.2021.3122328 10.1007/978-3-030-51971-1_5  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Gunasekaran et al 2024 Gunasekaran et al 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Gunasekaran et al 2024 Gunasekaran et al – notice: 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0306493 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Architecture  | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3097787471 oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e 10.1371/journal.pone.0306493 PMC11349112 A806307751 39190622 10_1371_journal_pone_0306493  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c693t-59f1e419fc678268a267c4f053d5d459784a9067d17541dbad08bd6343e92d953 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Wed Aug 13 01:19:53 EDT 2025 Fri Oct 03 12:51:24 EDT 2025 Sun Oct 26 04:04:23 EDT 2025 Tue Sep 30 17:07:53 EDT 2025 Fri Sep 05 09:12:57 EDT 2025 Tue Oct 07 09:19:55 EDT 2025 Mon Oct 20 22:49:55 EDT 2025 Mon Oct 20 16:56:37 EDT 2025 Thu Oct 16 15:59:54 EDT 2025 Thu Oct 16 16:18:49 EDT 2025 Thu May 22 21:24:23 EDT 2025 Mon Jul 21 06:03:30 EDT 2025 Wed Oct 01 03:16:36 EDT 2025 Thu Apr 24 23:10:48 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | Copyright: © 2024 Gunasekaran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c693t-59f1e419fc678268a267c4f053d5d459784a9067d17541dbad08bd6343e92d953 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: NO authors have competing interests.  | 
    
| ORCID | 0000-0002-0351-9559 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0306493 | 
    
| PMID | 39190622 | 
    
| PQID | 3097787471 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0306493 | 
    
| ParticipantIDs | plos_journals_3097787471 doaj_primary_oai_doaj_org_article_b496e8bf45f24cc1a8956df53d21c76e unpaywall_primary_10_1371_journal_pone_0306493 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349112 proquest_miscellaneous_3097851318 proquest_journals_3097787471 gale_infotracmisc_A806307751 gale_infotracacademiconefile_A806307751 gale_incontextgauss_ISR_A806307751 gale_incontextgauss_IOV_A806307751 gale_healthsolutions_A806307751 pubmed_primary_39190622 crossref_citationtrail_10_1371_journal_pone_0306493 crossref_primary_10_1371_journal_pone_0306493  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-27 | 
    
| PublicationDateYYYYMMDD | 2024-08-27 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2024 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | Heba Mamdouh Farghaly (pone.0306493.ref032) 2023; 65 A. Doaa (pone.0306493.ref030) 2024; 13 M.O. Khairandish (pone.0306493.ref017) 2022; 43 Ramin Ranjbarzadeh (pone.0306493.ref004) 2021; 11 Jianxin Zhang (pone.0306493.ref006) 2020; 8 pone.0306493.ref026 Mohammad Ashraf Ottom (pone.0306493.ref014) 2022; 10 Nivea Kesav (pone.0306493.ref005) 2022; 34 Jingchao Sun (pone.0306493.ref008) 2020; 80 Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref033) 2019; 7 Yu Liu (pone.0306493.ref013) 2022; 29 Entesar Hamed I. Eliwa (pone.0306493.ref031) 2024; 13 He-Xuan Hu (pone.0306493.ref019) 2021; 21 Lamia H. Shehab (pone.0306493.ref020) 2021; 33 Morarjee Kolla (pone.0306493.ref009) 2022; 9015778 Shidong Li (pone.0306493.ref021) 2022; 13 Neil Micallef (pone.0306493.ref016) 2021; 9 Sreekar Tankala (pone.0306493.ref001) 2022; 2 Pranjal Agrawal (pone.0306493.ref003) 2022; 3 Meqdam A. Mohammed (pone.0306493.ref035) 2023; 2 Ahmed Omar (pone.0306493.ref027) 2024; 36 Amjad Rehman Khan (pone.0306493.ref022) 2021; 84 S. Saravanan (pone.0306493.ref024) 2022; 4380901 Naveed Ilyas (pone.0306493.ref018) 2022; 10 Saravanan Srinivasan (pone.0306493.ref025) 2023; 13 R. Pitchai (pone.0306493.ref015) 2020; 53 Ping Liu (pone.0306493.ref010) 2020; 8 Tarek Abd El-Hafeez (pone.0306493.ref028) 2024; 14 Hend Muslim Jasim (pone.0306493.ref036) 2023; 47 Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref037) 2019; 9 Dhafer G. Honi (pone.0306493.ref038) 2022 Yi Ding (pone.0306493.ref012) 2021; 26 Raghav Mehta (pone.0306493.ref039) 2022; 1 K. R Aravind Britto (pone.0306493.ref023) 2023; 5 Esraa Hassan (pone.0306493.ref029) 2024; 14 Tongxue Zhou (pone.0306493.ref007) 2021; 30 Chengdong Yan (pone.0306493.ref011) 2022; 10 Jiawei Sun (pone.0306493.ref002) 2019; 43 Mudhafar Jalil Jassim Ghrabat (pone.0306493.ref034) 2022; 28  | 
    
| References_xml | – volume: 43 start-page: 290 issue: 4 year: 2022 ident: pone.0306493.ref017 article-title: A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images publication-title: IRBM doi: 10.1016/j.irbm.2021.06.003 – volume: 2 start-page: 1 issue: 4 year: 2022 ident: pone.0306493.ref001 article-title: ’A novel depth search based light weight CAR network for the segmentation of brain tumour from MR images publication-title: Neuroscience Informatics – volume: 9015778 start-page: 1 year: 2022 ident: pone.0306493.ref009 article-title: CNN-Based Brain Tumor Detection Model Using Local Binary Pattern and Multilayered SVM Classifier publication-title: Computational Overhead vs. Learning Speed and Accuracy of Deep Networks – volume: 84 start-page: 1389 issue: 7 year: 2021 ident: pone.0306493.ref022 article-title: Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification publication-title: Microsc Res Tech doi: 10.1002/jemt.23694 – volume: 29 start-page: 1799 issue: 1 year: 2022 ident: pone.0306493.ref013 article-title: SF-Net: A Multi-Task Model for Brain Tumor Segmentation in Multimodal MRI via Image Fusion publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2022.3198594 – volume: 5 start-page: 1 issue: 1 year: 2023 ident: pone.0306493.ref023 article-title: A multi-dimensional hybrid CNN-BiLSTM framework for epileptic seizure detection using electroencephalogram signal scrutiny publication-title: Systems and Soft Computing – volume: 43 start-page: 1 issue: 7 year: 2019 ident: pone.0306493.ref002 article-title: DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation publication-title: Journal of Medical Systems – volume: 13 start-page: 1 issue: 1 year: 2024 ident: pone.0306493.ref030 article-title: Predicting female pelvic tilt and lumbar angle using machine learning in case of urinary incontinence and sexual dysfunction publication-title: Scientific reports – volume: 80 start-page: 34203 issue: 1 year: 2020 ident: pone.0306493.ref008 article-title: Semantic segmentation of brain tumor with nested residual attention networks publication-title: Multimedia Tools and Applications – volume: 4380901 start-page: 1 year: 2022 ident: pone.0306493.ref024 article-title: Computational and Mathematical Methods in Medicine Glioma Brain Tumor Detection and Classification Using Convolutional Neural Network publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2022/4380901 – volume: 13 start-page: 1 issue: 1 year: 2024 ident: pone.0306493.ref031 article-title: Utilizing convolutional neural networks to classify monkeypox skin lesions publication-title: Scientific reports – volume: 30 start-page: 4263 issue: 2 year: 2021 ident: pone.0306493.ref007 article-title: Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3070752 – volume: 10 start-page: 117033 issue: 1 year: 2022 ident: pone.0306493.ref011 article-title: SEResU-Net for Multimodal Brain Tumor Segmentation publication-title: IEEE Access – volume: 8 start-page: 34029 issue: 1 year: 2020 ident: pone.0306493.ref010 article-title: An Encoder-Decoder Neural Network With 3D Squeeze-and-Excitation and Deep Supervision for Brain Tumor Segmentation publication-title: IEEE Access – volume: 10 start-page: 122658 issue: 1 year: 2022 ident: pone.0306493.ref018 article-title: Hybrid-DANet: An Encoder-Decoder Based Hybrid Weights Alignment with Multi-Dilated Attention Network for Automatic Brain Tumor Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3222536 – volume: 33 start-page: 404 issue: 6 year: 2021 ident: pone.0306493.ref020 article-title: An efficient brain tumor image segmentation based on deep residual networks (ResNets) publication-title: Journal of King Saud University—Engineering Sciences doi: 10.1016/j.jksues.2020.06.001 – volume: 7 start-page: 169142 issue: 1 year: 2019 ident: pone.0306493.ref033 article-title: Greedy Learning of Deep Boltzmann Machine (GDBM)’s Variance and Search Algorithm for Efficient Image Retrieval publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948266 – volume: 10 start-page: 1 issue: 1 year: 2022 ident: pone.0306493.ref014 article-title: Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation publication-title: IEEE Journal Transl Eng Health Med doi: 10.1109/JTEHM.2022.3176737 – volume: 3 start-page: 199 issue: 1 year: 2022 ident: pone.0306493.ref003 article-title: Segmentation and classification of brain tumor using 3D-UNet deep neural networks publication-title: International Journal of Cognitive Computing in Engineering doi: 10.1016/j.ijcce.2022.11.001 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: pone.0306493.ref004 article-title: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images publication-title: Scientific reports – volume: 9 start-page: 125523 issue: 1 year: 2021 ident: pone.0306493.ref016 article-title: Exploring the U-Net++ Model for Automatic Brain Tumor Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111131 – volume: 2 start-page: 94 issue: 2 year: 2023 ident: pone.0306493.ref035 article-title: Secure Content Based Image Retrieval System Using Deep Learning publication-title: Basrah Researches Sciences 49 doi: 10.56714/bjrs.49.2.9 – volume: 14 start-page: 1 issue: 1 year: 2024 ident: pone.0306493.ref028 article-title: Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs publication-title: Scientific Reports – volume: 34 start-page: 6229 issue: 8 year: 2022 ident: pone.0306493.ref005 article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN publication-title: Journal of King Saud University—Computer and Information Sciences doi: 10.1016/j.jksuci.2021.05.008 – volume: 14 start-page: 1 issue: 1 year: 2024 ident: pone.0306493.ref029 article-title: Optimizing classification of diseases through language model analysis of symptoms publication-title: Scientific reports – start-page: 239 year: 2022 ident: pone.0306493.ref038 article-title: Towards Fast Edge Detection Approach for Industrial Products publication-title: 2022 IEEE 21st International Conference on Ubiquitous Computing and Communications – volume: 65 start-page: 2595 issue: 1 year: 2023 ident: pone.0306493.ref032 article-title: Hepatitis C Virus prediction based on machine learning framework: a real-world case study in Egypt publication-title: Knowledge and Information Systems doi: 10.1007/s10115-023-01851-4 – volume: 36 start-page: 2835 issue: 1 year: 2024 ident: pone.0306493.ref027 article-title: Optimizing epileptic seizure recognition performance with feature scaling and dropout layers publication-title: Neural Computing and Applications doi: 10.1007/s00521-023-09204-6 – volume: 13 start-page: 2435 issue: 1 year: 2022 ident: pone.0306493.ref021 article-title: Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net publication-title: International Journal of Machine Learning and Cybernetics – volume: 1 start-page: 1 issue: 2 year: 2022 ident: pone.0306493.ref039 article-title: QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results publication-title: J Mach Learn Biomed Imaging – volume: 28 start-page: 183 issue: 1 year: 2022 ident: pone.0306493.ref034 article-title: Fully automated model on breast cancer classification using deep learning classifiers publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v28.i1.pp183-191 – volume: 53 start-page: 2519 issue: 1 year: 2020 ident: pone.0306493.ref015 article-title: Brain Tumor Segmentation Using Deep Learning and Fuzzy K-Means Clustering for Magnetic Resonance Images publication-title: Neural Processing Letters – volume: 21 start-page: 1 issue: 3 year: 2021 ident: pone.0306493.ref019 article-title: Multimodal Brain Tumor Segmentation Based on an Intelligent UNET-LSTM Algorithm in Smart Hospitals publication-title: ACM Transactions on Internet Technology doi: 10.1145/3450519 – volume: 8 start-page: 58533 issue: 1 year: 2020 ident: pone.0306493.ref006 article-title: Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983075 – volume: 47 start-page: 77 issue: 8 year: 2023 ident: pone.0306493.ref036 article-title: Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy publication-title: Informatica – volume: 13 start-page: 1 issue: 6 year: 2023 ident: pone.0306493.ref025 publication-title: Grade Classification of Tumors from Brain Magnetic Resonance Images Using a Deep Learning Technique – volume: 26 start-page: 1570 issue: 4 year: 2021 ident: pone.0306493.ref012 article-title: MVFusFra: A Multi-View Dynamic Fusion Framework for Multimodal Brain Tumor Segmentation publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2021.3122328 – ident: pone.0306493.ref026 doi: 10.1007/978-3-030-51971-1_5 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: pone.0306493.ref037 article-title: An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier publication-title: Human-centric Computing and Information Sciences  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.4761257 | 
    
| Snippet | Brain tumors, characterized by the uncontrolled growth of abnormal cells, pose a significant threat to human health. Early detection is crucial for successful... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0306493 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Architecture Artificial neural networks Automation Biology and Life Sciences Brain Brain cancer Brain Neoplasms - diagnostic imaging Brain research Brain tumors Care and treatment Classification Computer and Information Sciences Data acquisition Data collection Data entry Datasets Deep Learning Diagnosis Evaluation Feature extraction Human error Humans Image acquisition Image analysis Image enhancement Image processing Image Processing, Computer-Assisted - methods Image segmentation Machine learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medical imaging equipment Medical research Medicine and Health Sciences Neural networks Neural Networks, Computer Neuroimaging Oncology Performance evaluation Predatory behavior Research and Analysis Methods Research methodology Support vector machines Surface properties Technology application Tumors User interface Whaling  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByy3cSP2NwW1KpFKkiFot4iO3baSrtJ1N0I9d8zk3ijRlRqD1zjcaTMjGc-x-NvCHnvhLfWZzY2wmYx58LF2kkXGytTy5xPnMW7w0ff5cEJ_3YqTq-1-sKasJ4euFfcruVaemVLLsqUF0ViFCB6Vwrm0qTIpMfoO1N6s5nqYzCsYinDRTmWJbvBLtOmrvwUUTLXbJSIOr7-ISpPmkW9ugly_ls5eb-tGnP1xywW19LS_iPyMOBJOu-_Y4vc89VjshVW7Ip-DLTSn56Q83m7rgGfekct9oWg63ZZX1LX19ohW_NnurdssGsapDPaEV3GddWxWl9R_F9LnfcNDX0mzmJMgI4eHR_SiyVEJWoCv8lTcrK_9-vrQRz6LMSF1GwdC10mnie6LCBzpVKZVGYFL0GLTjgOOw7FjYas5gBqcDSemynrJOPM69RpwZ6RSQWa3SbUGObwcFmkTnEnE5tlCl5itEeePcMjwjZKz4tAQo69MBZ5d7KWwWak11uOpsqDqSISD7OanoTjFvkvaM9BFim0uwfgWHlwrPw2x4rIG_SGvL-POgSCfK6QpizLRBKRd50E0mhUWKdzZtrVKj_88fsOQj-PR0IfglBZgzoKE-5GwDchPddIcmckCcGgGA1vo-9utLLK2QwAvsI_DzBz4883D78dhvGlWHtX-brtZQCXQ_CPyPPe_QfNMp0g0XUaETVaGCPVj0eqi_OOxTxBYkxA-xGZDmvoTtZ98T-s-5I8SAGe4ulAmu2Qyfqy9a8AXq7t6y6S_AU-p3rI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_q9UERxNaPRquuIqgPuTabzSYRRK5ypRV6ymmlb2E3u7kW7pJ4d0H63zuTbGKDRfuanQR2ZudjMzO_IeS1DoxSJlSuDFToch5oN9ZCu1IJpnxtPK2wd_hkIo5O-eez4GyDTNpeGCyrbG1ibah1keI_8j1_HyKVCK9QH8ufLk6NwuxqO0JD2tEK-kMNMXaLbDJExhqQzYPx5Ou0tc2g3ULYBjo_9PasvIZlkZshRs889nsOqsbx76z1oJwXq-tC0b8rKm9XeSkvf8n5_Iq7OrxP7tk4k46ag7FFNky-Te6OrqQNtsmWVewVfWvRp989IOejal1AGGs0VTg-gq6rRbGkuinJQ1Dn93S8KHG4Gng9WuNhukVeg19fUvytS7UxJbXjKGYu-klNT6bH9GIBxotKC4PykJwejr9_OnLtOAY3FbG_doM48wz34iwFB8dEJJkIU54BU3WgOVxMIi5jcH4aIhKOMtb7kdLC576JmY4D_xEZ5MDoHUKl9DXmoAOmI66Fp0C08BEZG4Tjk9whfiuDJLVY5TgyY57UCbgQ7iwNGxOUXGIl5xC3e6tssDr-Q3-A4u1oEWm7flAsZ4lV3ETxWJhIZTzIGE9TT0Zwo9QZbJp5aSiMQ17g4UiattXOXiSjCNHMwjDwHPKqpkC0jRzLeWayWq2S4y8_bkD0bdojemOJsgLYkUrbQgF7QhSvHuVujxJsRtpb3sGj3HJllfzRLnizPd7XL7_slvGjWKKXm6JqaCB8Bx_hkMeNNnSc9WMP8bCZQ6KenvRY31_JL85rsHMP8TPhUuCQYadSN5Luk39v5Cm5wyA-xfQAC3fJYL2szDOIL9fquTUavwEMVn1L priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGeYCXaeNrYQMMQgIeUjWx82EkhAratCEVpEHR3iI7drpJbRKaRtD_nrvEjYgooq_x2ZLv-2L7d4S81IFRykTKlYGKXM4D7Qodaleq0FdMG08rfDs8-RyeT_mnq-Bqj2x6tloGVltLO-wnNV3Oh79-rN-Dwb9rujZE3mbSsCxyM8QcmAt2i9yGWCWwmcOEd-cKYN3N6SVmLW7oj5h9TPevVXrBqsH07zz3oJwX1ba09O_blXfqvJTrn3I-_yN0nR2QfZtz0nGrJIdkz-T3yKG16oq-ttDTb-6T63G9KiCHNZoq7B1BV_WiWFLd3sdDROe39HRRYmc1CHm0AcN0i7xBvl5T_KdLtTEltb0oZi4GSU0nlxf0ZgGei0qLgfKATM9Ov308d20vBjcNBVu5gcg8wz2RpRDd_DCWfhilPAOO6kBzqEpiLgVEPg3pCEcB61GsdMg4M8LXImAPySAHzh4RKiXTeAAd-DrmOvRUFMWwiBQGsfgkdwjbMD1JLVA59suYJ83pWwQFS8u3BEWVWFE5xO1mlS1Qx3_oP6A8O1qE2W4-FMtZYq02UVyEJlYZDzKfp6knYygndQab9r00Co1DnqE2JO2b1c5ZJOMYocyiKPAc8qKhQKiNHO_yzGRdVcnFl-87EH297BG9skRZAexIpX0_AXtCCK8e5UmPEhxG2hs-Qt3dcKVK2AiKgBj_TsDMjT5vH37eDeOieD8vN0Xd0kDuDgHCIY9a9e84y4SHYNi-Q-KeYfRY3x_Jb64bpHMPwTOhInDIsLOhnaT7eGdmHZO7PuSpeEzgRydksFrW5gnkmSv1tHEdvwHLHX1y priority: 102 providerName: Scholars Portal  | 
    
| Title | Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39190622 https://www.proquest.com/docview/3097787471 https://www.proquest.com/docview/3097851318 https://pubmed.ncbi.nlm.nih.gov/PMC11349112 https://doi.org/10.1371/journal.pone.0306493 https://doaj.org/article/b496e8bf45f24cc1a8956df53d21c76e http://dx.doi.org/10.1371/journal.pone.0306493  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe29gFegPG1wCgGIQESKU3ixAlv3dSyIbVMhU7lKbJjZ5tok2pthMZfz13iRgsMMV78EJ8j-ez7sn2_I-SV8rWUmktb-JLbjPnKjlSgbCEDV3pKO0pi7vBoHBxO2aeZP9si7za5MFfv7z3uvDcc7S7zTHfRv2WRt03agQ-ed4u0p-Pj_rfq4ti1A7fnmey4vw1tWJ8SpL9Wxa3lPF9d52f--VzyVpEtxeUPMZ9fsUXDu2S0mUX1BOV7t1jLbvLzN4DHm07zHrljnFLar3bRDtnS2X2yY8R-Rd8YbOq3D8hZv1jn4ORqRSUWl6DrYpFfUFU92EPI5w90sFhi6TWwibREy7TzrITGvqR46EuV1ktqilWc2mhFFR1Njuj5AlQbFQYk5SGZDgdfDw5tU6zBToLIW9t-lDqaOVGagPlzg1C4AU9YCjKufMUgbAmZiMA0KvBXGO4A1QulCjzm6chVke89Iq0MZr9LqBCewhtq31UhU4EjOQ_hJyLSCNYnmEW8zSLGiUEyx4Ia87i8nuMQ0VR8i5GdsWGnRex61LJC8vgH_T7uj5oWcbjLD7BusRHrWLIo0KFMmZ-6LEkcEUK8qVKYtOskPNAWeY67K66SWmttEvdDxDrj3Hcs8rKkQCyODB_7nIpitYqPPp_cgOjLpEH02hClObAjESbBAuaEGF8Nyr0GJWiUpNG9i7Kw4coq9noQJYR4fAEjN_JxffeLuht_ig_4Mp0XFQ0492BBLPK4Eqeas17kIFq2a5GwIWgN1jd7svOzEgrdQXRNCBks0q1l8kar--R_Bzwlt13wZ_E6weV7pLW-KPQz8EfXskO2-YxDGx442A4_dkh7fzA-nnTKEx5oRyzsGGX1CyP4kK0 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8TCEhNj4WGAwg0DAQ7olcb6QECqwqWXrkMaG-hbs2OkmtUloGk39p_gbuUucsIgJ9rLX-hLVd-ff3cX27wh5KV0lhPKFyV3hm4y50gylJ00uPFs4UllS4N3h0ZE3OGVfxu54hfxq7sLgscoGEyugllmM38h3nF3IVAIsoT7kP03sGoW7q00LjdotDtTyAkq24v3wM9j3lW3v7518Gpi6q4AZe6GzMN0wsRSzwiQGnLa9gNueH7MEnFG6kkF-HTAeAoZLCKwM_6rcDYT0HOao0JYhdokAyL_FHMASWD_-uC3wADs8T1_Pc3xrR3tDL89S1cPcnIVOJ_xVXQLaWLCaT7PiqkT37_Oaa2Wa8-UFn04vBcP9e-SuzmJpv3a7dbKi0g1yp39pU2KDrGvYKOgbzW399j4565eLDJJkJanA5hR0Uc6yOZX1gT-kjH5H92Y5tm6DmEortk0zSytq7SXFj8ZUKpVT3exiYmIUlnR0PKTnM4BGyjXJygNyeiNmeUhWU1D0JqGcOxJ3uF1bBkx6lgDHgZfwUCHZH2cGcRobRLFmQseGHNOo2t7zoSKq1Rih5SJtOYOY7VN5zQTyH_mPaN5WFnm8qx-y-STSsBAJFnoqEAlzE5vFscUDqFdlApO2rdj3lEG20Tmi-lJsi0ZRP0CuNN93LYO8qCSQyyPFw0ITXhZFNPz6_RpC3447Qq-1UJKBOmKuL2jAnJAjrCO51ZEERIo7w5voyo1WiujP2oUnG_e-evh5O4wvxQOAqcrKWgaKA4hABnlUr4ZWs05oIdu2bZCgs046qu-OpOdnFZW6heycUHIYpNcuqWtZ9_G_J7JN1gYno8PocHh08ITctiETxo0I298iq4t5qZ5CJrsQzyr4oOTHTePVbzkmscw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIgFCQmy8LDCYQSDgQ7olcd6QECps1crYQIOhfgt27HST2iQ0jab-NX4dd4kTFjHBvuxrfImSu_Nzd7H9HCHPpauEUL4wuSt8kzFXmqH0pMmFZwtHKksKPDt8cOjtHbOPY3e8Qn41Z2FwW2WDiRVQyyzGf-RbzjZkKgGWUFuJ3hbxZWf4Lv9pYgcpXGlt2mnULrKvlmdQvhVvRztg6xe2Pdz99mHP1B0GzNgLnYXphomlmBUmMWC27QXc9vyYJeCY0pUMcu2A8RDwXEKQZfjacjsQ0nOYo0JbhtgxAuD_mu84IW4n9MdtsQc44nn6qJ4D76w9o59nqepjns5CpxMKq44BbVzo5dOsuCjp_Xvv5o0yzfnyjE-n5wLj8A65rTNaOqhdcJWsqHSN3BqcW6BYI6saQgr6SvNcv75LTgblIoOEWUkqsFEFXZSzbE5lvfkP6aPf0N1Zjm3cIL7SinnTzNKKZntJ8QcylUrlVDe-mJgYkSU9OBrR0xnAJOWacOUeOb4Ss9wnvRQUvU4o547E1W7XlgGTniXAieAhPFRI_MeZQZzGBlGsWdGxOcc0qpb6fKiOajVGaLlIW84gZntXXrOC_Ef-PZq3lUVO7-pCNp9EGiIiwUJPBSJhbmKzOLZ4ALWrTOCjbSv2PWWQTXSOqD4g2yJTNAiQN833XcsgzyoJ5PVIcYZMeFkU0ejz90sIfT3qCL3UQkkG6oi5PqwB34R8YR3JjY4koFPcGV5HV260UkR_5jHc2bj3xcNP22F8KG4GTFVW1jJQKEA0MsiDeja0mnVCC5m3bYMEnXnSUX13JD09qWjVLWTqhPLDIP12Sl3Kug___SGb5DogVfRpdLj_iNy0ISnGNQnb3yC9xbxUjyGpXYgnFXpQ8uOq4eo37vi2Dw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESmM7TsJbQZs2pA40GNqeIjt2tok2idZGaPz13CVutMAQ5TU-W7qz78Px3e8IeWFCq7WNtK9CHflChMZPjDS-0pJpbmxgNNYOT_bl7qH4eBQerZE3y1qYy-_3PAreOokOq7KwQ4xvRcKvkXUZQuQ9IOuH-5_Hx-3DMfMlG3FXHfe3qT3v04D0d6Z4UE3L-VVx5p_pktfrolIXP9R0eskX7dwikyUXbQrK92G90MPs528Aj6uyeZvcdEEpHbenaIOs2eIO2XBqP6evHDb167vkdFwvSghyraEam0vQRT0rz6lpE_YQ8vkd3Z5V2HoNfCJt0DL9smigsS8o_vSlxtqKumYVJz56UUMnB3v0bAamjSoHknKPHO5sf_2w67tmDX4mE77wwyQPrAiSPAP3x2SsmIwykYOOm9AIuLbEQiXgGg3EKwJPgBnF2kguuE2YSUJ-nwwK4H6TUKW4wRfqkJlYGBnoKIphEZVYBOtTwiN8uYlp5pDMsaHGNG2e5yK40bRyS1GcqROnR_xuVtUiefyD_j2ej44WcbibD7BvqVPrVItE2ljnIsyZyLJAxXDfNDkwzYIsktYjT_F0pW1Ra2dN0nGMWGdRFAYeed5QIBZHgck-J6qez9O9T99WIPpy0CN66YjyEsSRKVdgATwhxlePcqtHCRYl6w1voi4spTJP-QhuCTH-voCZS_24evhZN4yLYgJfYcu6pYHgHjyIRx606tRJlicBomUzj8Q9ReuJvj9SnJ02UOgBomvClcEjw04nV9rdh_874RG5wSCexecEFm2RweK8to8hHl3oJ84M_QIwSYqq | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+brain+tumor+diagnostics%3A+Empowering+neuro-oncology+with+deep+learning-based+MRI+image+analysis&rft.jtitle=PloS+one&rft.au=Gunasekaran%2C+Subathra&rft.au=Mercy+Bai%2C+Prabin+Selvestar&rft.au=Mathivanan%2C+Sandeep+Kumar&rft.au=Rajadurai%2C+Hariharan&rft.date=2024-08-27&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=8&rft.spage=e0306493&rft_id=info:doi/10.1371%2Fjournal.pone.0306493&rft.externalDocID=A806307751 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |