CT scan pancreatic cancer segmentation and classification using deep learning and the tunicate swarm algorithm
Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tiss...
        Saved in:
      
    
          | Published in | PloS one Vol. 18; no. 11; p. e0292785 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        06.11.2023
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0292785 | 
Cover
| Abstract | Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification. | 
    
|---|---|
| AbstractList | Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification. Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification.Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification.  | 
    
| Audience | Academic | 
    
| Author | S., Abirami M., Sunil Kumar Gandikota, Hari Prasad  | 
    
| AuthorAffiliation | 2 School of Computing, Mohan Babu University, Tirupati, Andhra Pradesh, India 1 Department of Computer Science & Engineering, Annamalai University, Chidambaram, Tamilnadu, India UNITEN: Universiti Tenaga Nasional, MALAYSIA  | 
    
| AuthorAffiliation_xml | – name: UNITEN: Universiti Tenaga Nasional, MALAYSIA – name: 1 Department of Computer Science & Engineering, Annamalai University, Chidambaram, Tamilnadu, India – name: 2 School of Computing, Mohan Babu University, Tirupati, Andhra Pradesh, India  | 
    
| Author_xml | – sequence: 1 givenname: Hari Prasad orcidid: 0009-0002-0072-3551 surname: Gandikota fullname: Gandikota, Hari Prasad – sequence: 2 givenname: Abirami surname: S. fullname: S., Abirami – sequence: 3 givenname: Sunil Kumar surname: M. fullname: M., Sunil Kumar  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37930963$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW51sGW5NyWEHgKBQBN6K2blsVdBljaS3TRvX7m7Cbsh0OALW6Nvfs_8Ix1me847zLLXlMwpr-inKz8GB3a-SuE5YTWrZPksO6A1ZzPBCN_b-t7PDmO8IqTkUogX2T6vak5qwQ8yd3KZRw0uX4HTAWEwOk9LjSGP2PXohhTyLgfX5NpCjKY1eh0ao3Fd3iCucosQ3LSasGGJ-TC6CcM83kDoc7CdD2ZY9i-z5y3YiK8276Ps4tvXy5Mfs7Pz76cnx2czLWo-zJhkZVOUWvOmRKhayRihTSUFEMF1gVIsyrKibNpBWSICoUJSppFTUfKj7O1adWV9VBujouJE1EwSXrBEnK6JxsOVWgXTQ7hVHoz6F_ChUxCSFxYVB82ELFIBoixw0QIs6qKFVvIFAK110irXWqNbwe0NWHsvSImaZnVXgppmpTazSnlfNlWOix4bnbwOYHeK2d1xZqk6_zupClYVJU0KHzYKwV-PGAfVm6jRWnDox6iYlMnOiosqoe8eoI_bsqE6SJ0b1_r0Yz2JquOqopKQpJao-SNUehrsjU4ttibFdxI-7iQkZsA_QwdjjOr04ufT2fNfu-z7LXaJYIdl9HacjmfcBd9sW33v8d09SMDnNaCDjzFgq7RZn_zUmrH_G2TxIPlJ8_8LrAgwjw | 
    
| CitedBy_id | crossref_primary_10_1002_ueg2_12723 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1371_journal_pone_0307900 crossref_primary_10_1016_j_bspc_2024_107413 crossref_primary_10_3389_fendo_2024_1381822  | 
    
| Cites_doi | 10.1109/ICCMC56507.2023.10083716 10.3390/app13116667 10.3389/fonc.2021.665929 10.1016/j.radonc.2020.01.021 10.1186/s13550-023-00985-4 10.3390/app13064054 10.14569/IJACSA.2023.0140307 10.3390/math10183405 10.1016/j.future.2020.04.037 10.1148/radiol.220171 10.1016/j.acra.2019.08.014 10.1016/S2589-7500(20)30078-9 10.3390/healthcare10040677 10.1016/j.media.2020.101884 10.14704/WEB/V18SI02/WEB18105 10.3389/fonc.2022.894970 10.3390/app10103360 10.3390/jcm10163589 10.3390/en15031205  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Gandikota et al 2023 Gandikota et al 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Gandikota et al 2023 Gandikota et al – notice: 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0292785 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection PROQUEST Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Pancreatic cancer segmentation and classification using deep learning | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3069280342 oai_doaj_org_article_3ac2684201654ebfaab94faf83baa19c 10.1371/journal.pone.0292785 PMC10627451 A771800373 37930963 10_1371_journal_pone_0292785  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c693t-2825d45cc3d5ea7f82201d786a063c4e86b557127f82e85eea016812ce31653 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Wed Aug 13 01:18:22 EDT 2025 Fri Oct 03 12:46:10 EDT 2025 Sun Oct 26 04:17:05 EDT 2025 Tue Sep 30 17:11:36 EDT 2025 Fri Sep 05 08:11:00 EDT 2025 Tue Oct 07 07:44:50 EDT 2025 Mon Oct 20 23:11:07 EDT 2025 Mon Oct 20 17:15:13 EDT 2025 Thu Oct 16 15:58:21 EDT 2025 Thu Oct 16 16:22:52 EDT 2025 Thu May 22 21:20:01 EDT 2025 Thu Apr 03 07:00:35 EDT 2025 Wed Oct 01 04:15:09 EDT 2025 Thu Apr 24 22:53:14 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | Copyright: © 2023 Gandikota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c693t-2825d45cc3d5ea7f82201d786a063c4e86b557127f82e85eea016812ce31653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0009-0002-0072-3551 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0292785 | 
    
| PMID | 37930963 | 
    
| PQID | 3069280342 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0292785 | 
    
| ParticipantIDs | plos_journals_3069280342 doaj_primary_oai_doaj_org_article_3ac2684201654ebfaab94faf83baa19c unpaywall_primary_10_1371_journal_pone_0292785 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10627451 proquest_miscellaneous_2886937367 proquest_journals_3069280342 gale_infotracmisc_A771800373 gale_infotracacademiconefile_A771800373 gale_incontextgauss_ISR_A771800373 gale_incontextgauss_IOV_A771800373 gale_healthsolutions_A771800373 pubmed_primary_37930963 crossref_citationtrail_10_1371_journal_pone_0292785 crossref_primary_10_1371_journal_pone_0292785  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-06 | 
    
| PublicationDateYYYYMMDD | 2023-11-06 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2023 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | W Xuan (pone.0292785.ref003) 2020; 111 KV Chaithanyadas (pone.0292785.ref010) 2022 HJ Park (pone.0292785.ref008) 2023; 306 M Yang (pone.0292785.ref018) 2022; 12 pone.0292785.ref004 pone.0292785.ref024 MH Bagheri (pone.0292785.ref015) 2020; 27 X Li (pone.0292785.ref001) 2023 Y Lei (pone.0292785.ref021) 2023; 13 SS Bairaboina (pone.0292785.ref020) 2023; 13 R. Na (pone.0292785.ref002) 2021; 38 Y Zhang (pone.0292785.ref012) 2021; 68 T Vaiyapuri (pone.0292785.ref011) 2022; 10 M.M. Althobaiti (pone.0292785.ref014) 2022 R Khdhir (pone.0292785.ref016) 2023; 14 KL Liu (pone.0292785.ref019) 2020; 2 G Zhang (pone.0292785.ref013) 2023; 13 pone.0292785.ref006 M Nishio (pone.0292785.ref017) 2020; 10 Y. Cui (pone.0292785.ref023) 2022; 10 H Fu (pone.0292785.ref007) 2021; 11 X. Li (pone.0292785.ref022) 2022; 15 Y Iwasa (pone.0292785.ref005) 2021; 10 Y Liang (pone.0292785.ref009) 2020; 145  | 
    
| References_xml | – volume: 38 start-page: 273 year: 2021 ident: pone.0292785.ref002 article-title: Detection and Identification of Pancreatic Cancer Using Probabilistic Neural Network publication-title: Smart Intelligent Computing and Communication Technology – ident: pone.0292785.ref006 doi: 10.1109/ICCMC56507.2023.10083716 – volume: 13 start-page: 6667 issue: 11 year: 2023 ident: pone.0292785.ref021 article-title: Lightweight YOLOv5s Human Ear Recognition Based on MobileNetV3 and Ghostnet publication-title: Applied Sciences doi: 10.3390/app13116667 – year: 2022 ident: pone.0292785.ref014 article-title: Design of Optimal Deep Learning-Based Pancreatic Tumor and Nontumor Classification Model Using Computed Tomography Scans publication-title: Journal of Healthcare Engineering – volume: 11 start-page: 665929 year: 2021 ident: pone.0292785.ref007 article-title: Automatic pancreatic ductal adenocarcinoma detection in whole slide images using deep convolutional neural networks publication-title: Frontiers in oncology doi: 10.3389/fonc.2021.665929 – volume: 145 start-page: 193 year: 2020 ident: pone.0292785.ref009 article-title: Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks publication-title: Radiotherapy and Oncology doi: 10.1016/j.radonc.2020.01.021 – volume: 13 start-page: 49 issue: 1 year: 2023 ident: pone.0292785.ref013 article-title: 18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery publication-title: EJNMMI research doi: 10.1186/s13550-023-00985-4 – volume: 13 start-page: 4054 issue: 6 year: 2023 ident: pone.0292785.ref020 article-title: Ghost-ResNeXt: An Effective Deep Learning Based on Mature and Immature WBC Classification publication-title: Applied Sciences doi: 10.3390/app13064054 – volume: 14 issue: 3 year: 2023 ident: pone.0292785.ref016 article-title: Pancreatic Cancer Segmentation and Classification in CT Imaging using Antlion Optimization and Deep Learning Mechanism publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2023.0140307 – volume: 10 start-page: 3405 issue: 18 year: 2022 ident: pone.0292785.ref023 article-title: CLTSA: A Novel Tunicate Swarm Algorithm Based on Chaotic-Lévy Flight Strategy for Solving Optimization Problems publication-title: Mathematics doi: 10.3390/math10183405 – volume: 111 start-page: 132 year: 2020 ident: pone.0292785.ref003 article-title: Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.04.037 – volume: 306 start-page: 140 issue: 1 year: 2023 ident: pone.0292785.ref008 article-title: Deep learning–based detection of solid and cystic pancreatic neoplasms at contrast-enhanced CT publication-title: Radiology doi: 10.1148/radiol.220171 – volume: 27 start-page: 689 issue: 5 year: 2020 ident: pone.0292785.ref015 article-title: Technical and clinical factors affecting success rate of a deep learning method for pancreas segmentation on CT publication-title: Academic radiology doi: 10.1016/j.acra.2019.08.014 – volume: 2 start-page: e303 issue: 6 year: 2020 ident: pone.0292785.ref019 article-title: Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation publication-title: The Lancet Digital Health doi: 10.1016/S2589-7500(20)30078-9 – volume: 10 start-page: 677 issue: 4 year: 2022 ident: pone.0292785.ref011 article-title: Intelligent deep-learning-enabled decision-making medical system for pancreatic tumor classification on CT images publication-title: InHealthcare doi: 10.3390/healthcare10040677 – volume: 68 start-page: 101884 year: 2021 ident: pone.0292785.ref012 article-title: A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101884 – ident: pone.0292785.ref024 – year: 2023 ident: pone.0292785.ref001 article-title: Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography publication-title: IEEE Transactions on Medical Imaging – ident: pone.0292785.ref004 doi: 10.14704/WEB/V18SI02/WEB18105 – volume: 12 start-page: 894970 year: 2022 ident: pone.0292785.ref018 article-title: AX-Unet: A deep learning framework for image segmentation to assist pancreatic tumor diagnosis publication-title: Frontiers in Oncology doi: 10.3389/fonc.2022.894970 – volume: 10 start-page: 3360 issue: 10 year: 2020 ident: pone.0292785.ref017 article-title: Automatic pancreas segmentation using coarse-scaled 2d model of deep learning: usefulness of data augmentation and deep U-net publication-title: Applied Sciences doi: 10.3390/app10103360 – volume: 10 start-page: 3589 issue: 16 year: 2021 ident: pone.0292785.ref005 article-title: Automatic segmentation of pancreatic tumors using deep learning on a video image of contrast-enhanced endoscopic ultrasound publication-title: Journal of clinical medicine doi: 10.3390/jcm10163589 – start-page: 289 volume-title: Computational Vision and Bio-Inspired Computing: Proceedings of ICCVBIC year: 2022 ident: pone.0292785.ref010 – volume: 15 start-page: 1205 issue: 3 year: 2022 ident: pone.0292785.ref022 article-title: An Engine Fault Detection Method Based on the Deep Echo State Network and Improved Multi-Verse Optimizer publication-title: Energies doi: 10.3390/en15031205  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.512755 | 
    
| Snippet | Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0292785 | 
    
| SubjectTerms | Algorithms Analysis Artificial neural networks Automation Biology and Life Sciences Cancer Care and treatment Classification Computed tomography Computer and Information Sciences CT imaging Data integrity Deep Learning Diagnosis Diagnostic imaging Evaluation Feature extraction Humans Image analysis Image processing Image segmentation Machine learning Medical diagnosis Medical imaging Medical imaging equipment Medicine and Health Sciences Neural networks Pancreas Pancreatic cancer Pancreatic Neoplasms Physical characteristics Physical Sciences Research and Analysis Methods Segmentation Survival Tomography, X-Ray Computed - methods  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFsfFjGRsYhAQ8pEtiJ3Eex8Q0kACJDbQ3y3bsblKbVk2rif-eu9iNGjFpe-A1viTKfXfns3L3HSHvasuFrjMeq0S5mGvBY10bFZdOC2zN5KnBfudv34uzX_zrZX65NeoLa8I8PbBX3BFTBglJsq7txmqnlK64U04wrVRaGYy-iag2hykfg8GLiyI0yrEyPQq4jBfzxo6TrMpKnJ28tRF1fP19VB4tpvP2tpTz38rJh-tmof7cqOl0a1s6fUIeh3ySHvvv2CEPbLNLdoLHtvRDoJX--JQ0Jxe0BUVS8H-fKhpqEPMlbe1kFnqQGqqamhrMqbGIyF_C4vgJra1d0DBlYtKJQfJIV769xNL2Ri1nVE0n8-X16mr2jJyffr44OYvDtIXYFBVbxdjEWvPcGFbnVpUOMockrUtRKMhiDLei0HlephmuWJFbqwASwNNYBtCw52TUgHb3CHUud5mucsUTMATFhLOQhqRGqCwxVouIsI3ipQlE5DgPYyq7v2slHEi87iTCJQNcEYn7uxaeiOMO-U-IaS-LNNrdBTAuGYxL3mVcEXmNFiF9T2ofDORxCVs6UvewiLztJJBKo8FanYlat6388uP3PYTOfw6E3gchNwd1GBX6I-CbkKJrIHkwkISAYAbLe2i_G620Ek6FFQ4h4xncubHp25ff9Mv4UKy_a-x83cpMCDCSkhVlRF54F-g1yyDEw0EY3isGzjFQ_XClub7qmMxTJMnmeRqRce9H90J3_3-g-5I8yiBl7TpLiwMyWi3X9hBSzJV-1UWTv26YfWc priority: 102 providerName: Directory of Open Access Journals – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEN_U64O-GOtX0aqrMVEfuB7sAsuDMW3Tppp4mraavpFhWajJHZzHXRr_e2dgwRIb7Ss7QJiv_QEzv2HsdWakSjNfujCB3JWpkm6aaXCjPFXUmik9Tf3On6fh8Tf56Tw432DTrheGyiq7nNgk6qzS9I18F6FtTJOUpP9h8dOlqVH0d7UboQF2tEL2vqEYu8U2fWLGGrHN_cPp15MuN2N0h6FtoBORt2vtNV5UpRlP_NiPaKbylQ2q4fHvs_VoMavq66Do3xWVt9flAn5dwmx2Zbs6usfuWpzJ91rH2GIbprzPtmwk1_ytpZt-94CVB2e8RgVzzAsthNRcky8seW2Kue1NKjmUGdeEtam4qD1ERfMFz4xZcDt9omjEEFTyVdt2Ynh9Ccs5h1mB2lxdzB-y06PDs4Nj105hcHUYi5VLza2ZDLQWWWAgyhFRTLwsUiEgutHSqDANgsjzacWowBhAFIl21kZ4YSAesVGJ2t1mPM-D3E_jAOQEHQSEyg3CE08r8CfapMpholN8oi1BOc3JmCXNX7cIX1Ra3SVkrsSay2Fuf9aiJej4j_w-2bSXJXrt5kC1LBIbrYkATSw4ftPrZdIcII1lDrkSKYAXa4e9II9I2l7VPkkkexFu9UTpIxz2qpEgio2SangKWNd18vHL9xsInZ4MhN5YobxCdWiwfRP4TETdNZDcGUhiotCD5W3y304rdfInpPDMzqevX37ZL9NFqS6vNNW6Tnyl0EkiEUYOe9yGQK9ZgakfX5DxvmoQHAPVD1fKHxcNw7lH5Nky8Bw27uPoRtZ98u8Hecru-AhSm17ScIeNVsu1eYagcpU-t5niN78nekI priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaYIBBSIBESuKPxHksE9NA2kBsQ-PJsh2nm2jTqkk1wa_nOnGjBYYor_F1K1_fax_L9xwj9CK3TOicsFBFqgiZFizUuVFhWmjhqJksNo7vfHCY7J-wj6f8dAO9WXFhLt_f0zR-6z06nM9KO4xIRlLBr6HNhAPyHqDNk8PPo2_txTEJExJRz477W9fe7tOI9HdL8WA-mVVX4cw_yyWvL8u5-nGhJpNLe9HeLXSwGkVbgvJ9uKz10Pz8TeBx3WHeRjc9KMWjNoq20IYt76Atn_YVfuW1qV_fReXuMa5gNjAsIi3eNNi4wFngyo6nnshUYlXm2Dhg7iqR2k-uwn6Mc2vn2D9VMW7MAIHiuuWoWFxdqMUUq8l4tjivz6b30NHe--Pd_dA_2RCaJKN16JiwOePG0JxblRYAP6I4T0WiAAoZZkWiOU9j4lqs4NYqgJwQFMbSOOH0PhqU4IFthIuCF0RnXLEIoklRUVjAMrERikTGahEguppIabyauXtUYyKbK7oUTjWt76RzqfQuDVDY9Zq3ah7_sH_nYqSzdVrczQeYO-lTW1JlnGQOaYhhVhdK6YwVqhBUKxVnJkBPXYTJltjarShylAIucPo_NEDPGwunx1G6gp-xWlaV_PDp6xpGR196Ri-9UTEDdxjlSRYwJqfz1bPc6VnCqmJ6zdsuH1ZeqSQcLTP3khkj0HOVI1c3P-ua3Y-6Ir7SzpaVJEJAkKQ0SQP0oE2pzrMU9gk4TcP_il6y9VzfbynPzxo59NgpbTMeB2jY5eVas_vwfzs8QjcIYNyGiprsoEG9WNrHgElr_cQvRb8AjAuM2w priority: 102 providerName: Unpaywall  | 
    
| Title | CT scan pancreatic cancer segmentation and classification using deep learning and the tunicate swarm algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37930963 https://www.proquest.com/docview/3069280342 https://www.proquest.com/docview/2886937367 https://pubmed.ncbi.nlm.nih.gov/PMC10627451 https://doi.org/10.1371/journal.pone.0292785 https://doaj.org/article/3ac2684201654ebfaab94faf83baa19c http://dx.doi.org/10.1371/journal.pone.0292785  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed (Medline) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQnw8pGoSJ3YeEOqqlYG0Mu0DlafIcZwMqU2zptXYf89d4kZEFNhLHuxzqpzv7J_ru98R8jrRTMSJy2zZl6nNYsHsOFHS5mksMDWTOQrznY_HwdEF-zLxJ1tkfdFuFFhuPNphPamLxbT38-rmIzj8h6pqA3fWg3rFPNe9vhu6XPhviisbS0vhFayps7FNdmD7CrG-wzFrrhrA4YPA5NT97WWtPaui9m8W8E4xnZeb0OmfQZZ3Vnkhb67ldPrbDja6T-4Z6EkHta3ski2dPyC7xrlL-s4wUL9_SPLhOS1B5xSWihpVKqrQPBa01NnMpCvlVOYJVQi_Md6obsI4-owmWhfUFKTIKjHAmXRZZ6JoWl7LxYzKaQa6W17OHpGz0eH58Mg2hRlsFYTe0sZ814T5SnmJryVPAWT0nYSLQALgUUyLIPZ97rjYo4WvtQRgCVOvtOcEvveYdHLQ7h6haeqnbhz6kvXBZqQnUg2IxVFCun2lY2ERb634SBnOciydMY2qizgOZ5dadxFOV2SmyyJ2M6qoOTv-I3-Ac9rIIuN21TBfZJFx4MiTColx3Cr9S8eplHHIUpkKL5bSCZVFXqBFRHX6arNuRAMOuz-y_HgWeVVJIOtGjmE9mVyVZfT567dbCJ2dtoTeGqF0DupQ0qRSwDchm1dLcr8lCWuHanXvof2utVJGcIAMsV4Zc2Hk2qY3d79suvGlGKqX6_mqjFwhwEi4F3CLPKldoNGsB7sBnJnhd0XLOVqqb_fkPy4r0nMH-bSZ71ik1_jRrWb36b8_5Bm56wJurdJLg33SWS5W-jngzGXcJdt8wuEphg4-R5-6ZOfgcHxy2q3-uelW6wi0XYxPBt9_ATlOh_w | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VAuiPKqodAFgYCD09i7ttcHhEqhSukDiYYqJ6z1eu0iJbaJE0X9T_xIZuyNqUUFvfTqHSfxzOw338bzIORlormIE5fbciBTm8eC23GipB2kscDSTO4orHc-PvGH3_jnsTdeI79WtTCYVrnCxBqok0Lhf-Q7QG1DnKTE3fflTxunRuHb1dUIjcYtDvXFEo5s1buDj2DfV667_2m0N7TNVAFb-SGb21ismXBPKZZ4WgYpRMiBkwTClxCtFdfCjz0vcFxc0cLTWgIrgt-tNHN8nBEBgH-LM0AS2D3BuD3eAXL4vinOY4GzY3yhXxa57g_c0A1wXvOl4FfPCGgjQa-cFNVVNPfvbM31RV7Ki6WcTC6Fwv275I7hsHS3cboNsqbze2TDoERF35hW1m_vk3xvRCswHgXMaeipogr9bEYrnU1N3VNOZZ5QhTweE5eaS5iQn9FE65KayRZZLQaElc6bkhZNq6WcTamcZGCp-fn0ATm9AVs8JL0ctLtJaJp6qRuHnuQDcD7JRKqB-jhKSHegdCwswlaKj5Rpfo4zOCZR_UYvgENQo7sIzRUZc1nEbu8qm-Yf_5H_gDZtZbF1d32hmGWRQYKISYUddty6jkzHqZRxyFOZChZL6YTKItvoEVFTB9sCULQbAI3AdkHMIi9qCWzfkWN-UCYXVRUdfDm7htDp147QayOUFqAOJU1NBjwTtgXrSG51JAGEVGd5E_13pZUq-rNd4c6VT1-9_Lxdxg_FnL9cF4sqcoUAJwmYH1jkUbMFWs0yCCtw-IbvFZ3N0VF9dyX_cV53T3ewMTf3HIv02310Les-_veDbJP14ej4KDo6ODl8Qm67QIbrmlV_i_Tms4V-CuR1Hj-rMYOS7zcLUb8BCUqttQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIuiPKqodAFgYCDk3jXj_UBodISNRQKoi3KCWu9XqdIiW3iRFH_GT-PGXttalFBL716x4k8M_vNt_Y8CHmeaFfECXNtOZCp7cbCteNESTtIY4Glma6jsN7506G_f-J-GHvjNfKrqYXBtMoGEyugTnKF78j7QG1DnKTksn5q0iK-7A3fFj9tnCCFX1qbcRq1ixzosxUc38o3oz2w9QvGhu-Pd_dtM2HAVn7IFzYWbiaupxRPPC2DFKLlwEkC4UuI3MrVwo89L3AYrmjhaS2BIcEzKM0dH-dFAPhfCzgPMZkwGLdHPUAR3zeFejxw-sYvekWe6d6AhSzA2c3nAmE1L6CNCuvFNC8vorx_Z27eWGaFPFvJ6fRcWBzeJrcMn6U7tQNukDWd3SEbBjFK-sq0tX59l2S7x7QEQ1LAn5qqKqrQ5-a01JOZqYHKqMwSqpDTYxJTfQmT8yc00bqgZsrFpBID8koXdXmLpuVKzmdUTidgqcXp7B45ugJb3CfrGWh3k9A09VIWh550B-CIkotUAw1ylJBsoHQsLMIbxUfKNELHeRzTqPq6F8CBqNZdhOaKjLksYrd3FXUjkP_Iv0ObtrLYxru6kM8nkUGFiEuF3XZYVVOm41TKOHRTmQoeS-mEyiLb6BFRXRPbglG0EwClwNZB3CLPKgls5ZHhppjIZVlGo8_fLiF09LUj9NIIpTmoQ0lTnwHPhC3COpJbHUkAJNVZ3kT_bbRSRn-2LtzZ-PTFy0_bZfxRzP_LdL4sIyYEOEnA_cAiD-ot0GqWQ4iBgzj8r-hsjo7quyvZj9Oqk7qDTbpdz7FIr91Hl7Luw38_yDa5DuAUfRwdHjwiNxnw4qp81d8i64v5Uj8GHruIn1SQQcn3q0Wo33ZZsfg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaYIBBSIBESuKPxHksE9NA2kBsQ-PJsh2nm2jTqkk1wa_nOnGjBYYor_F1K1_fax_L9xwj9CK3TOicsFBFqgiZFizUuVFhWmjhqJksNo7vfHCY7J-wj6f8dAO9WXFhLt_f0zR-6z06nM9KO4xIRlLBr6HNhAPyHqDNk8PPo2_txTEJExJRz477W9fe7tOI9HdL8WA-mVVX4cw_yyWvL8u5-nGhJpNLe9HeLXSwGkVbgvJ9uKz10Pz8TeBx3WHeRjc9KMWjNoq20IYt76Atn_YVfuW1qV_fReXuMa5gNjAsIi3eNNi4wFngyo6nnshUYlXm2Dhg7iqR2k-uwn6Mc2vn2D9VMW7MAIHiuuWoWFxdqMUUq8l4tjivz6b30NHe--Pd_dA_2RCaJKN16JiwOePG0JxblRYAP6I4T0WiAAoZZkWiOU9j4lqs4NYqgJwQFMbSOOH0PhqU4IFthIuCF0RnXLEIoklRUVjAMrERikTGahEguppIabyauXtUYyKbK7oUTjWt76RzqfQuDVDY9Zq3ah7_sH_nYqSzdVrczQeYO-lTW1JlnGQOaYhhVhdK6YwVqhBUKxVnJkBPXYTJltjarShylAIucPo_NEDPGwunx1G6gp-xWlaV_PDp6xpGR196Ri-9UTEDdxjlSRYwJqfz1bPc6VnCqmJ6zdsuH1ZeqSQcLTP3khkj0HOVI1c3P-ua3Y-6Ir7SzpaVJEJAkKQ0SQP0oE2pzrMU9gk4TcP_il6y9VzfbynPzxo59NgpbTMeB2jY5eVas_vwfzs8QjcIYNyGiprsoEG9WNrHgElr_cQvRb8AjAuM2w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+scan+pancreatic+cancer+segmentation+and+classification+using+deep+learning+and+the+tunicate+swarm+algorithm&rft.jtitle=PloS+one&rft.au=Hari+Prasad+Gandikota&rft.au=Abirami%2C+S&rft.au=Sunil%2C+Kumar+M&rft.date=2023-11-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=11&rft.spage=e0292785&rft_id=info:doi/10.1371%2Fjournal.pone.0292785&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |