Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions
Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA repl...
Saved in:
Published in | PloS one Vol. 8; no. 11; p. e81162 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.11.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0081162 |
Cover
Abstract | Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. |
---|---|
AbstractList | Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy.Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. |
Audience | Academic |
Author | Ramalingam, Suresh S. Marullo, Rossella Doetsch, Paul W. Werner, Erica Moore, Bryn Altavilla, Giuseppe Degtyareva, Natalya |
AuthorAffiliation | 1 Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America 2 Department of Medical Oncology, University of Messina, Messina, Italy University of Pittsburgh, United States of America 4 Geisiner Medical Center, Danville, Pennsylvania, United States of America 5 Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America 3 Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America |
AuthorAffiliation_xml | – name: 3 Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America – name: 4 Geisiner Medical Center, Danville, Pennsylvania, United States of America – name: 5 Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America – name: 1 Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America – name: University of Pittsburgh, United States of America – name: 2 Department of Medical Oncology, University of Messina, Messina, Italy |
Author_xml | – sequence: 1 givenname: Rossella surname: Marullo fullname: Marullo, Rossella – sequence: 2 givenname: Erica surname: Werner fullname: Werner, Erica – sequence: 3 givenname: Natalya surname: Degtyareva fullname: Degtyareva, Natalya – sequence: 4 givenname: Bryn surname: Moore fullname: Moore, Bryn – sequence: 5 givenname: Giuseppe surname: Altavilla fullname: Altavilla, Giuseppe – sequence: 6 givenname: Suresh S. surname: Ramalingam fullname: Ramalingam, Suresh S. – sequence: 7 givenname: Paul W. surname: Doetsch fullname: Doetsch, Paul W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24260552$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11v0zAUhiM0xD7gHyCIhITgosVfsZNdII3CoNJQpW1wazm203pK7RI7aP0b_GJOt25qpgmhXDg65znvax-dc5jt-eBtlr3EaIypwB-uQt951Y5XEB4jVGLMyZPsAFeUjDhBdG_nfz87jPEKoYKWnD_L9gkjHBUFOcj-TFxctSo5n0-96bWNucq_uxT0InjTOdWOzmcX-bmN4BNtfrlQKZ8EnzpX9wnoFPLJOoUUrp12aZ1_tivrjfPzPPihEIiYcJ1fJJV6cPEm_-SC9bab2-R0ftp7nRyYPM-eNqqN9sX2PMp-nH65nHwbnc2-TicnZyPNK5JGjS05qjnRltSUNkQJXCpmFDWaaUMY07QRGiOBuEIVJDnTdV0KBmlcYk2Pste3uqs2RLltZ5SY8aJiQtACiOktYYK6kqvOLVW3lkE5eRMI3VyqDu7eWskbJCohClFgyjCvSypqQyokjNINQhy0Pm7d-nppjbbQQtUORIcZ7xZyHn5LWlJGMAOBd1uBLvzqbUxy6aK2bau8Df3NvXFZsqpCgL55gD7-ui01V_AA55sAvnojKk-YKAkSrBBAjR-h4DN26TTMXuMgPih4PygAJtnrNFd9jHJ6cf7_7OznkH27wy6satMihra_mZkh-Gq30_ctvht6ANgtoLsQY2ebewQjudmtu3bJzW7J7W5B2fGDMhh4tbGHjrj238V_ATU3K4E |
CitedBy_id | crossref_primary_10_1172_jci_insight_159600 crossref_primary_10_3390_toxics3020198 crossref_primary_10_1016_j_advms_2020_04_001 crossref_primary_10_1007_s10565_025_10003_z crossref_primary_10_2337_db24_0419 crossref_primary_10_3389_fragi_2022_905261 crossref_primary_10_3390_molecules28052008 crossref_primary_10_1007_s00432_023_05469_5 crossref_primary_10_3389_fonc_2019_00754 crossref_primary_10_3390_antiox11050819 crossref_primary_10_15392_2319_0612_2025_2614 crossref_primary_10_1016_j_cels_2020_12_001 crossref_primary_10_1039_C6RA17788C crossref_primary_10_1016_j_intimp_2024_112639 crossref_primary_10_1007_s12094_020_02461_0 crossref_primary_10_3389_fonc_2023_1178686 crossref_primary_10_1371_journal_pone_0105070 crossref_primary_10_1016_j_fct_2016_05_023 crossref_primary_10_1016_j_heliyon_2025_e42579 crossref_primary_10_1038_s42003_021_02546_8 crossref_primary_10_1155_2019_5381692 crossref_primary_10_1186_s13046_019_1294_9 crossref_primary_10_1016_j_tiv_2019_03_012 crossref_primary_10_1016_j_msec_2020_111808 crossref_primary_10_1667_RR14757_1_S1 crossref_primary_10_18632_oncotarget_23252 crossref_primary_10_1155_2020_3401067 crossref_primary_10_1016_j_ejphar_2024_176885 crossref_primary_10_1186_s13046_018_0909_x crossref_primary_10_3390_ijms21186866 crossref_primary_10_3389_fcell_2020_597835 crossref_primary_10_1016_j_jgr_2017_07_009 crossref_primary_10_18632_oncotarget_17810 crossref_primary_10_1158_2767_9764_CRC_22_0340 crossref_primary_10_1016_j_dnarep_2017_06_007 crossref_primary_10_1016_j_etp_2015_02_003 crossref_primary_10_1016_j_mito_2021_11_002 crossref_primary_10_1016_j_ica_2020_119517 crossref_primary_10_3390_ijms20143384 crossref_primary_10_1016_j_biopha_2018_02_112 crossref_primary_10_1016_j_dnarep_2018_08_014 crossref_primary_10_1074_mcp_M116_058321 crossref_primary_10_1186_s12967_024_05770_y crossref_primary_10_1002_cam4_5274 crossref_primary_10_3389_fimmu_2023_1236063 crossref_primary_10_1007_s00775_019_01677_y crossref_primary_10_1038_s41467_022_32101_w crossref_primary_10_1096_fj_202402243R crossref_primary_10_1016_j_neuro_2020_04_005 crossref_primary_10_1042_BST20190280 crossref_primary_10_3390_antiox9060468 crossref_primary_10_1016_j_ejps_2015_04_022 crossref_primary_10_1016_j_jchemneu_2021_101990 crossref_primary_10_1016_j_pbiomolbio_2024_02_005 crossref_primary_10_1016_j_ejphar_2016_08_003 crossref_primary_10_1186_s12885_020_07677_5 crossref_primary_10_1007_s10517_024_06170_4 crossref_primary_10_1016_j_aquatox_2023_106573 crossref_primary_10_14336_AD_2016_0118 crossref_primary_10_1016_j_nano_2015_12_367 crossref_primary_10_1039_C7NJ05173E crossref_primary_10_1021_acs_inorgchem_1c03957 crossref_primary_10_1097_MD_0000000000001413 crossref_primary_10_1021_acsanm_8b00279 crossref_primary_10_1111_jcmm_15839 crossref_primary_10_1021_acsbiomaterials_7b00980 crossref_primary_10_1515_jcim_2024_0250 crossref_primary_10_3390_ijms232113093 crossref_primary_10_3390_antiox13070761 crossref_primary_10_1016_j_saa_2021_120096 crossref_primary_10_2147_IJN_S408623 crossref_primary_10_3390_antiox12061159 crossref_primary_10_1021_acsmedchemlett_8b00199 crossref_primary_10_1016_j_cbpc_2022_109395 crossref_primary_10_1038_s41598_019_50048_9 crossref_primary_10_1093_nar_gky162 crossref_primary_10_3892_mmr_2015_3404 crossref_primary_10_7759_cureus_52526 crossref_primary_10_1016_j_canlet_2015_07_031 crossref_primary_10_1016_j_jinorgbio_2017_11_022 crossref_primary_10_1016_j_ejmech_2020_112535 crossref_primary_10_1016_j_jinorgbio_2017_11_021 crossref_primary_10_1016_j_bcp_2020_114202 crossref_primary_10_1016_j_compbiomed_2024_109324 crossref_primary_10_1016_j_cbi_2017_12_027 crossref_primary_10_1016_j_freeradbiomed_2019_01_014 crossref_primary_10_1080_10253890_2020_1777970 crossref_primary_10_1134_S0006297920100120 crossref_primary_10_1139_cjpp_2018_0528 crossref_primary_10_1002_cam4_2072 crossref_primary_10_1016_j_ijpharm_2019_118638 crossref_primary_10_1080_14787210_2020_1752665 crossref_primary_10_1111_cas_15125 crossref_primary_10_3389_fonc_2023_1217800 crossref_primary_10_3389_fonc_2022_920316 crossref_primary_10_1007_s12035_018_1455_4 crossref_primary_10_1111_ajco_13484 crossref_primary_10_3390_antiox8100449 crossref_primary_10_3390_metabo12050389 crossref_primary_10_1016_j_apjtm_2015_09_017 crossref_primary_10_3390_ijms22041534 crossref_primary_10_1002_JLB_4RI0418_151R crossref_primary_10_1038_s41420_022_01207_x crossref_primary_10_1007_s11010_020_03969_3 crossref_primary_10_1038_s41388_019_0935_y crossref_primary_10_3390_cancers14092272 crossref_primary_10_1155_2021_5834418 crossref_primary_10_1002_jcb_25653 crossref_primary_10_1021_acsbiomaterials_2c00316 crossref_primary_10_3389_ftox_2022_842396 crossref_primary_10_1021_acs_chemrestox_5b00176 crossref_primary_10_1097_CAD_0000000000000329 crossref_primary_10_1074_mcp_RA119_001808 crossref_primary_10_3390_antiox12030769 crossref_primary_10_1016_j_intimp_2016_05_019 crossref_primary_10_3390_antiox8090347 crossref_primary_10_1038_s41598_017_09426_4 crossref_primary_10_1007_s00210_024_03483_z crossref_primary_10_3389_fonc_2019_01410 crossref_primary_10_1016_j_expneurol_2019_113118 crossref_primary_10_29121_granthaalayah_v8_i10_2020_1782 crossref_primary_10_1158_1541_7786_MCR_24_0151 crossref_primary_10_1177_1559325818807382 crossref_primary_10_1126_scisignal_abj3490 crossref_primary_10_1146_annurev_bioeng_071516_044546 crossref_primary_10_1016_j_toxlet_2015_06_012 crossref_primary_10_1016_j_radonc_2024_110503 crossref_primary_10_18632_oncotarget_26259 crossref_primary_10_1007_s12668_020_00740_2 crossref_primary_10_3390_ijms26051890 crossref_primary_10_1021_acs_jafc_2c08921 crossref_primary_10_3390_plants10102197 crossref_primary_10_1155_2021_5599452 crossref_primary_10_3389_fendo_2024_1365321 crossref_primary_10_1016_j_jds_2025_01_012 crossref_primary_10_1016_j_steroids_2016_04_002 crossref_primary_10_1111_php_13344 crossref_primary_10_1093_g3journal_jkac066 crossref_primary_10_3390_cells10051262 crossref_primary_10_3390_md20040232 crossref_primary_10_1007_s12032_021_01511_z crossref_primary_10_1016_j_jep_2022_115100 crossref_primary_10_1093_carcin_bgv126 crossref_primary_10_29235_1561_8323_2019_63_4_437_444 crossref_primary_10_1016_j_heliyon_2024_e40297 crossref_primary_10_1089_ars_2017_7432 crossref_primary_10_18632_oncotarget_15470 crossref_primary_10_3390_ijms23136956 crossref_primary_10_1002_anie_202203546 crossref_primary_10_3390_biomedicines10051196 crossref_primary_10_1016_j_dnarep_2014_11_007 crossref_primary_10_3390_antiox11122364 crossref_primary_10_1016_j_toxlet_2018_05_033 crossref_primary_10_1002_tox_24308 crossref_primary_10_1590_1678_4685_gmb_2019_0104 crossref_primary_10_1016_j_snb_2017_03_171 crossref_primary_10_3390_polym11040733 crossref_primary_10_62347_RYSQ1416 crossref_primary_10_1016_j_jep_2021_114666 crossref_primary_10_1016_j_jconrel_2024_02_005 crossref_primary_10_1016_j_tibs_2017_08_006 crossref_primary_10_1158_1541_7786_MCR_19_1145 crossref_primary_10_3390_cancers14194553 crossref_primary_10_1177_1758835919891567 crossref_primary_10_1111_bcpt_12443 crossref_primary_10_32604_biocell_2021_015836 crossref_primary_10_1002_med_21734 crossref_primary_10_1021_acs_molpharmaceut_6b00205 crossref_primary_10_1039_C9BM01640F crossref_primary_10_1007_s10741_022_10289_9 crossref_primary_10_3390_ijms241411781 crossref_primary_10_3389_fphar_2022_879748 crossref_primary_10_1371_journal_pone_0108889 crossref_primary_10_1016_j_intimp_2024_112464 crossref_primary_10_1016_j_lfs_2021_119773 crossref_primary_10_1155_2018_4397159 crossref_primary_10_18632_oncotarget_6150 crossref_primary_10_1111_jpi_12316 crossref_primary_10_1007_s10637_015_0274_y crossref_primary_10_3390_antiox10101583 crossref_primary_10_1016_j_biopha_2021_112382 crossref_primary_10_3390_ijms20153791 crossref_primary_10_1038_s41419_018_0888_z crossref_primary_10_3390_nu11102523 crossref_primary_10_1007_s43188_024_00249_w crossref_primary_10_3390_md18050261 crossref_primary_10_3892_etm_2019_7459 crossref_primary_10_1007_s00204_016_1754_3 crossref_primary_10_1016_j_ejphar_2018_09_010 crossref_primary_10_1016_j_molstruc_2022_134542 crossref_primary_10_1016_j_stemcr_2017_03_005 crossref_primary_10_1155_2019_7187128 crossref_primary_10_1515_med_2024_0898 crossref_primary_10_1038_s42255_023_00781_3 crossref_primary_10_3390_ijms21228636 crossref_primary_10_3390_cells11030552 crossref_primary_10_1016_j_freeradbiomed_2016_03_006 crossref_primary_10_1016_j_molstruc_2024_138261 crossref_primary_10_1039_D1TB00753J crossref_primary_10_1007_s13205_024_04109_0 crossref_primary_10_1038_s41419_022_04668_1 crossref_primary_10_1016_j_cels_2018_01_008 crossref_primary_10_1002_med_21977 crossref_primary_10_4103_jcrt_jcrt_970_22 crossref_primary_10_1016_j_taap_2020_115018 crossref_primary_10_1002_jbt_21679 crossref_primary_10_1186_s12885_021_08155_2 crossref_primary_10_2217_nnm_2020_0400 crossref_primary_10_1016_j_lfs_2022_120704 crossref_primary_10_3390_ijms22094770 crossref_primary_10_3389_fcell_2022_751367 crossref_primary_10_3389_fendo_2023_1123928 crossref_primary_10_3389_fncel_2023_1197051 crossref_primary_10_3389_fonc_2018_00500 crossref_primary_10_1016_j_ejmech_2017_03_035 crossref_primary_10_1186_s12885_021_08495_z crossref_primary_10_1248_bpb_b21_00036 crossref_primary_10_1016_j_bbr_2023_114381 crossref_primary_10_1186_s13046_021_02176_2 crossref_primary_10_1007_s10555_022_10077_9 crossref_primary_10_1016_j_isci_2024_110975 crossref_primary_10_1016_j_genrep_2022_101614 crossref_primary_10_1016_j_taap_2021_115646 crossref_primary_10_1096_fj_201800547R crossref_primary_10_1093_molehr_gaaa008 crossref_primary_10_3390_app9102061 crossref_primary_10_1038_s41467_022_30101_4 crossref_primary_10_1016_j_vetimm_2020_110011 crossref_primary_10_3390_ijms19082219 crossref_primary_10_1155_2018_7364539 crossref_primary_10_1186_s40246_024_00679_5 crossref_primary_10_32708_uutfd_613912 crossref_primary_10_3390_cancers16020292 crossref_primary_10_1021_acs_analchem_0c01256 crossref_primary_10_1039_C9SC01218D crossref_primary_10_1016_j_archoralbio_2021_105317 crossref_primary_10_3390_antiox13020207 crossref_primary_10_3390_ijms23031909 crossref_primary_10_3390_molecules29010274 crossref_primary_10_3892_mmr_2015_3392 crossref_primary_10_1093_humrep_dex381 crossref_primary_10_1186_s13048_021_00817_w crossref_primary_10_1039_C6RA24325H crossref_primary_10_3390_jcm12041612 crossref_primary_10_3390_app8010134 crossref_primary_10_1093_mtomcs_mfac054 crossref_primary_10_3389_fcell_2023_1217149 crossref_primary_10_1016_j_heares_2022_108513 crossref_primary_10_1038_s41598_019_54065_6 crossref_primary_10_1007_s00432_023_04734_x crossref_primary_10_1021_acs_jmedchem_9b02000 crossref_primary_10_1142_S0192415X20500214 crossref_primary_10_1039_D1DT00517K crossref_primary_10_3390_antiox12091705 crossref_primary_10_1016_j_apsb_2016_09_002 crossref_primary_10_1002_jcb_25268 crossref_primary_10_1016_j_rechem_2022_100538 crossref_primary_10_3390_cancers16091664 crossref_primary_10_1039_C6MD00199H crossref_primary_10_1016_j_jinorgbio_2019_110758 crossref_primary_10_3390_pharmaceutics10040228 crossref_primary_10_1007_s00726_020_02882_9 crossref_primary_10_3390_antiox11112149 crossref_primary_10_3390_ijms241411486 crossref_primary_10_1371_journal_pone_0183368 crossref_primary_10_1016_j_cytogfr_2023_05_001 crossref_primary_10_1016_j_ijrobp_2017_09_033 crossref_primary_10_1016_j_biomaterials_2024_123026 crossref_primary_10_1038_s41589_023_01283_9 crossref_primary_10_1016_j_toxlet_2015_12_004 crossref_primary_10_1007_s12094_018_1958_5 crossref_primary_10_3390_antiox7010013 crossref_primary_10_1002_jbt_23492 crossref_primary_10_1016_j_molliq_2023_122421 crossref_primary_10_1016_j_ejphar_2016_12_005 crossref_primary_10_1016_j_mito_2022_09_003 crossref_primary_10_1111_bph_15420 crossref_primary_10_2174_1871520619666191209091230 crossref_primary_10_1038_s41420_023_01385_2 crossref_primary_10_1007_s11010_017_3162_2 crossref_primary_10_1371_journal_pgen_1009219 crossref_primary_10_3390_ijms19071882 crossref_primary_10_3390_plants11233357 crossref_primary_10_1021_acs_nanolett_6b04269 crossref_primary_10_3390_ph16030337 crossref_primary_10_1039_D1RA04679A crossref_primary_10_1681_ASN_2017040381 crossref_primary_10_3109_10799893_2016_1160931 crossref_primary_10_3390_antiox9121188 crossref_primary_10_1111_jnc_13355 crossref_primary_10_1016_j_expneurol_2021_113705 crossref_primary_10_3390_life11020160 crossref_primary_10_3390_ijms231710064 crossref_primary_10_1016_j_lfs_2021_120230 crossref_primary_10_1039_C7TX00020K crossref_primary_10_18632_oncotarget_8600 crossref_primary_10_3390_cancers16173082 crossref_primary_10_1042_BSR20200257 crossref_primary_10_1038_s41388_020_1184_9 crossref_primary_10_3390_molecules26154414 crossref_primary_10_1194_jlr_M080465 crossref_primary_10_3390_cancers11040439 crossref_primary_10_3892_ol_2014_2685 crossref_primary_10_1002_adfm_201905213 crossref_primary_10_1590_1806_9282_20220032 crossref_primary_10_1038_s41420_020_00343_6 crossref_primary_10_1186_s12885_015_1594_1 crossref_primary_10_3389_fphar_2022_826716 crossref_primary_10_3390_antiox9111137 crossref_primary_10_1038_s41419_019_2081_4 crossref_primary_10_3892_ol_2016_5288 crossref_primary_10_1080_10409238_2020_1828258 crossref_primary_10_1155_2020_7353618 crossref_primary_10_3390_ijms22010355 crossref_primary_10_1021_acs_inorgchem_8b00346 crossref_primary_10_1039_D1DT04294G crossref_primary_10_1016_j_biopha_2015_08_019 crossref_primary_10_1007_s13402_023_00823_8 crossref_primary_10_3389_fncel_2017_00393 crossref_primary_10_1016_j_jinorgbio_2018_10_002 crossref_primary_10_1681_ASN_2015070827 crossref_primary_10_37349_emed_2022_00073 crossref_primary_10_1080_01480545_2019_1659309 crossref_primary_10_1016_j_biopha_2020_110037 crossref_primary_10_1002_ange_202203546 crossref_primary_10_3390_antiox9020133 crossref_primary_10_1016_j_biocel_2015_07_014 crossref_primary_10_1016_j_bbacli_2015_01_006 crossref_primary_10_1089_ars_2015_6386 crossref_primary_10_1016_j_freeradbiomed_2015_04_032 crossref_primary_10_3390_ijms22147379 crossref_primary_10_3390_molecules29091927 crossref_primary_10_1093_nar_gkac1130 crossref_primary_10_1002_jcp_27881 crossref_primary_10_3390_molecules24132448 crossref_primary_10_1128_AAC_01617_21 crossref_primary_10_1002_osi2_1031 crossref_primary_10_1021_acsbiomaterials_1c01582 crossref_primary_10_1016_j_pharep_2016_05_007 crossref_primary_10_1016_j_biopha_2023_114238 crossref_primary_10_3390_cancers15092564 crossref_primary_10_1016_j_actbio_2017_02_019 crossref_primary_10_3390_molecules24213889 crossref_primary_10_1080_13510002_2024_2341470 crossref_primary_10_1016_j_funbio_2017_12_003 crossref_primary_10_3390_biomedicines10010028 crossref_primary_10_3390_ijms20010193 crossref_primary_10_47485_2767_5416_1039 crossref_primary_10_1016_j_scitotenv_2024_173668 crossref_primary_10_3892_mmr_2022_12903 crossref_primary_10_1016_j_fct_2019_110652 crossref_primary_10_1016_j_lfs_2022_120789 crossref_primary_10_1590_s2175_97902023e20960 crossref_primary_10_1016_j_biopha_2023_115036 crossref_primary_10_1080_09537104_2022_2151996 crossref_primary_10_1039_c9mt00049f crossref_primary_10_3390_nu14102058 crossref_primary_10_1016_j_molliq_2017_09_104 crossref_primary_10_1038_s41467_019_11696_7 crossref_primary_10_1016_j_ica_2024_122119 crossref_primary_10_1016_j_freeradbiomed_2024_09_054 crossref_primary_10_1007_s11010_015_2436_9 crossref_primary_10_1016_j_bbrc_2022_09_084 crossref_primary_10_1007_s11756_022_01124_5 crossref_primary_10_3389_fphar_2024_1518810 crossref_primary_10_3390_ijms241310858 crossref_primary_10_1038_s41420_021_00480_6 crossref_primary_10_1371_journal_pone_0135236 crossref_primary_10_7717_peerj_9908 crossref_primary_10_1016_j_bbrc_2017_04_089 crossref_primary_10_1016_j_freeradbiomed_2020_07_035 crossref_primary_10_1080_00207454_2021_1896507 crossref_primary_10_1681_ASN_2015101108 crossref_primary_10_1093_carcin_bgaa078 crossref_primary_10_3390_antiox12040900 crossref_primary_10_18632_oncotarget_28185 crossref_primary_10_1016_j_molliq_2017_10_100 crossref_primary_10_3892_ijo_2017_4179 crossref_primary_10_1007_s00394_022_02940_w crossref_primary_10_1002_ptr_7405 crossref_primary_10_1016_j_toxicon_2023_107243 crossref_primary_10_1371_journal_pone_0134139 crossref_primary_10_1007_s00210_023_02799_6 crossref_primary_10_2139_ssrn_3995250 crossref_primary_10_1016_j_fct_2019_110676 crossref_primary_10_3390_life11020105 crossref_primary_10_3390_molecules190915088 crossref_primary_10_3389_froh_2023_1080255 crossref_primary_10_3390_cells12020256 crossref_primary_10_1038_cddis_2016_105 crossref_primary_10_1177_1534735419872811 crossref_primary_10_18632_oncotarget_10209 crossref_primary_10_1093_narcan_zcae006 crossref_primary_10_1016_j_toxrep_2019_08_007 crossref_primary_10_1016_j_nano_2020_102243 crossref_primary_10_1016_j_mtbio_2024_101131 crossref_primary_10_3390_ph11040130 crossref_primary_10_1371_journal_pone_0287788 crossref_primary_10_1007_s12013_014_0231_y crossref_primary_10_1007_s12672_024_01445_8 crossref_primary_10_1042_BCJ20200897 crossref_primary_10_3389_fphar_2020_00095 crossref_primary_10_1038_s41598_020_79830_w crossref_primary_10_1155_2021_6668573 crossref_primary_10_1016_j_envpol_2021_116917 crossref_primary_10_1016_j_bcp_2018_08_025 crossref_primary_10_1016_j_phymed_2022_154094 crossref_primary_10_3390_molecules25225252 crossref_primary_10_1016_j_freeradbiomed_2024_09_049 crossref_primary_10_3390_metabo13040560 crossref_primary_10_1096_fj_202200324R crossref_primary_10_1016_j_critrevonc_2016_03_004 crossref_primary_10_3390_antiox9020175 crossref_primary_10_1080_00207454_2022_2147430 crossref_primary_10_3390_ijms22115938 crossref_primary_10_1016_j_mito_2014_06_002 crossref_primary_10_3389_fphys_2017_01090 crossref_primary_10_1021_acs_jpcb_3c07335 crossref_primary_10_1016_j_pharmthera_2024_108642 crossref_primary_10_1039_D2BM00334A crossref_primary_10_1177_20587384211066441 crossref_primary_10_1111_cpr_12411 crossref_primary_10_1007_s00228_019_02771_5 crossref_primary_10_1080_13510002_2016_1229885 crossref_primary_10_1093_nar_gky764 crossref_primary_10_3390_ijms232315410 crossref_primary_10_1016_j_toxlet_2020_09_006 crossref_primary_10_1371_journal_pone_0145016 crossref_primary_10_1007_s11897_024_00658_w crossref_primary_10_1111_fcp_12970 crossref_primary_10_1158_2159_8290_CD_21_0922 crossref_primary_10_1038_s41419_018_0537_6 crossref_primary_10_1007_s11033_023_08762_1 crossref_primary_10_1016_j_jconrel_2017_11_032 crossref_primary_10_1016_j_bioorg_2023_107056 crossref_primary_10_1134_S0006350919030102 crossref_primary_10_1016_j_critrevonc_2019_03_004 crossref_primary_10_3746_jkfn_2022_51_12_1252 crossref_primary_10_1016_j_tox_2019_05_002 crossref_primary_10_1002_slct_201800211 crossref_primary_10_1021_acsnano_7b04092 crossref_primary_10_1016_j_chempr_2022_02_010 crossref_primary_10_2174_1874467215666220620143655 crossref_primary_10_3389_fmolb_2022_838006 crossref_primary_10_3390_antiox9080723 crossref_primary_10_1038_s41388_018_0459_x crossref_primary_10_1089_ars_2021_0183 crossref_primary_10_1186_s12935_024_03523_x crossref_primary_10_20517_cdr_2024_141 crossref_primary_10_3889_oamjms_2022_9628 crossref_primary_10_3390_genes12071094 crossref_primary_10_1016_j_colsurfa_2020_125484 crossref_primary_10_2478_raon_2022_0028 crossref_primary_10_1002_adtp_202400340 crossref_primary_10_1016_j_lfs_2022_120594 crossref_primary_10_1016_j_jphotobiol_2019_02_004 crossref_primary_10_1093_g3journal_jkab426 crossref_primary_10_3390_biomedicines11030804 crossref_primary_10_3389_fphar_2023_1119837 crossref_primary_10_1016_j_adcanc_2023_100110 crossref_primary_10_1089_ars_2016_6874 crossref_primary_10_1111_cpr_12627 crossref_primary_10_3390_futurepharmacol1010002 crossref_primary_10_4103_jmau_jmau_86_24 crossref_primary_10_1038_s41388_018_0238_8 crossref_primary_10_1111_cas_15068 crossref_primary_10_1016_j_ygcen_2020_113620 crossref_primary_10_3390_cancers14061585 crossref_primary_10_1016_j_phymed_2016_09_003 crossref_primary_10_1515_plm_2015_0047 crossref_primary_10_1021_acsabm_9b00643 crossref_primary_10_1093_biolre_iox053 crossref_primary_10_1155_2020_4932587 crossref_primary_10_1002_lary_26309 crossref_primary_10_1038_s41388_024_03261_4 crossref_primary_10_1039_C7MT00153C crossref_primary_10_1002_wrna_1648 crossref_primary_10_1155_2017_1089359 crossref_primary_10_1007_s00284_023_03203_5 crossref_primary_10_3892_ijo_2019_4725 crossref_primary_10_1002_aoc_7399 crossref_primary_10_1016_j_dnarep_2024_103730 crossref_primary_10_3390_ijms20051180 crossref_primary_10_1142_S0192415X19500186 crossref_primary_10_1038_s41388_023_02667_w crossref_primary_10_1097_MBC_0000000000000546 crossref_primary_10_2174_0113816128261466231011114600 crossref_primary_10_1038_s41419_020_02880_5 crossref_primary_10_1007_s11033_020_06087_x crossref_primary_10_1590_1678_9199_jvatitd_2019_0104 crossref_primary_10_1016_j_taap_2020_114971 crossref_primary_10_3389_fphar_2021_702487 crossref_primary_10_1016_j_bcp_2020_113873 crossref_primary_10_1016_j_bfopcu_2017_04_001 crossref_primary_10_1016_j_canlet_2018_03_003 crossref_primary_10_1080_10717544_2024_2337423 crossref_primary_10_2217_nnm_2019_0126 crossref_primary_10_1016_j_fct_2018_07_018 crossref_primary_10_1155_2020_2851349 crossref_primary_10_33808_clinexphealthsci_797718 crossref_primary_10_1101_gad_302349_117 crossref_primary_10_3390_ijms21145040 crossref_primary_10_1172_JCI185149 crossref_primary_10_1042_BSR20240752 crossref_primary_10_1371_journal_pone_0182809 crossref_primary_10_1186_s12929_024_01041_6 crossref_primary_10_1093_fqsafe_fyab025 crossref_primary_10_3390_cells8080918 crossref_primary_10_1038_s41598_022_08509_1 crossref_primary_10_1016_j_bbcan_2025_189297 crossref_primary_10_3389_fcell_2022_1014798 crossref_primary_10_1016_j_colsurfa_2024_133748 crossref_primary_10_1016_j_breast_2022_08_012 crossref_primary_10_1073_pnas_1715724115 crossref_primary_10_3390_biomedicines12040751 crossref_primary_10_18632_oncotarget_24456 crossref_primary_10_21294_1814_4861_2021_20_1_87_96 crossref_primary_10_3390_cancers15051586 crossref_primary_10_1016_j_chembiol_2021_09_003 crossref_primary_10_1002_smsc_202400088 crossref_primary_10_1158_0008_5472_CAN_16_0530 crossref_primary_10_3389_fonc_2022_899009 crossref_primary_10_1111_jhn_12649 crossref_primary_10_1186_s12885_018_4332_7 crossref_primary_10_1016_j_jep_2018_12_035 crossref_primary_10_1186_s12885_019_6438_y crossref_primary_10_3390_ijms19041258 crossref_primary_10_1016_j_cej_2019_122540 crossref_primary_10_1111_php_13723 crossref_primary_10_3390_cancers13102403 crossref_primary_10_1021_acs_chemrev_6b00400 crossref_primary_10_1016_j_biopha_2020_110408 crossref_primary_10_12688_f1000research_139277_1 crossref_primary_10_1007_s00280_017_3358_x crossref_primary_10_1016_j_semcancer_2022_09_007 crossref_primary_10_1007_s11010_021_04087_4 crossref_primary_10_1200_OP_22_00710 crossref_primary_10_1039_D3DT01517C crossref_primary_10_1038_s41598_020_72420_w crossref_primary_10_15171_bi_2019_26 crossref_primary_10_1039_D1DT04070G crossref_primary_10_1074_mcp_RA118_001102 crossref_primary_10_2217_nnm_14_161 crossref_primary_10_1080_1120009X_2023_2300217 |
Cites_doi | 10.1006/taap.2001.9171 10.1002/(SICI)1097-0215(19960611)66:6<779::AID-IJC12>3.0.CO;2-Z 10.1006/meth.2001.1262 10.1200/JCO.1997.15.5.1844 10.1016/j.bcp.2010.04.007 10.1016/S0165-1218(97)00037-2 10.1002/ijc.25499 10.1152/ajprenal.1990.258.5.F1181 10.1158/1078-0432.CCR-06-1037 10.1200/JCO.2009.23.5622 10.1152/ajpcell.00265.2005 10.1007/BF00257239 10.1016/j.ejphar.2011.06.051 10.1369/0022155412446227 10.1016/j.freeradbiomed.2009.02.019 10.1038/bjc.1994.14 10.1016/j.ajpath.2011.10.003 10.1007/s10930-011-9354-9 10.1200/JCO.1999.17.1.409 10.1016/j.expneurol.2008.08.013 10.1016/j.freeradbiomed.2011.11.001 10.1126/science.1160809 10.1016/j.molcel.2011.10.015 10.1007/s00280-007-0459-y 10.1016/j.freeradbiomed.2010.05.031 10.1016/0041-008X(87)90178-5 10.1016/j.cell.2011.12.027 10.1093/toxsci/kfm052 10.1093/carcin/14.10.2177 10.1152/ajprenal.1986.250.6.F991 10.1073/pnas.82.14.4616 10.1016/0041-008X(76)90185-X 10.1038/nprot.2007.327 10.1016/j.ccr.2006.10.020 10.1007/s00280-008-0791-x 10.1124/mol.65.6.1496 10.1093/toxsci/kft102 10.1016/S0378-5955(96)00152-9 10.1073/pnas.0308710100 10.1128/MCB.24.22.9823-9834.2004 10.1016/0006-2952(74)90354-2 10.1038/sj.cdd.4400401 10.1016/0027-5107(82)90148-8 10.1016/S0891-5849(00)00362-2 10.1046/j.1432-1327.2001.02140.x 10.1128/MCB.19.4.2929 10.1200/JCO.1993.11.4.598 10.1016/j.nbd.2010.11.017 10.1196/annals.1338.047 10.1074/jbc.273.28.17477 10.1021/bi00347a005 10.1128/MCB.25.12.5196-5204.2005 10.1038/sj.emboj.7600819 10.1158/0008-5472.CAN-08-1173 10.1007/s00204-006-0173-2 10.1083/jcb.200105057 10.1016/j.freeradbiomed.2008.07.018 10.1002/jat.1284 10.1021/bi00324a025 10.1073/pnas.022630199 10.1093/toxsci/kfq085 10.1016/j.freeradbiomed.2005.10.056 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Marullo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Marullo et al 2013 Marullo et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Marullo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Marullo et al 2013 Marullo et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0081162 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Mitochondrial-ROS in Cisplatin Cytotoxicity |
EISSN | 1932-6203 |
ExternalDocumentID | 1465947735 oai_doaj_org_article_6f0797757513416b837bd2907dacf006 PMC3834214 3149499461 A478207457 24260552 10_1371_journal_pone_0081162 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Atlanta Georgia Georgia United States--US Pennsylvania |
GeographicLocations_xml | – name: Pennsylvania – name: Atlanta Georgia – name: United States--US – name: Georgia |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: ES011163 – fundername: NIEHS NIH HHS grantid: P01 ES011163 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF NPM PV9 RZL PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM AAPBV ABPTK BBAFP N95 |
ID | FETCH-LOGICAL-c692t-fe860b62ce2b33f2a718a4da3dc4cd244c3f7c10706a0971864cbb874c4c181c3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 06 00:11:14 EDT 2022 Wed Aug 27 01:25:35 EDT 2025 Thu Aug 21 18:07:31 EDT 2025 Mon Sep 08 11:16:07 EDT 2025 Sat Aug 23 13:30:51 EDT 2025 Tue Jun 17 21:40:52 EDT 2025 Tue Jun 10 20:19:59 EDT 2025 Fri Jun 27 03:33:29 EDT 2025 Fri Jun 27 03:45:45 EDT 2025 Thu May 22 21:21:36 EDT 2025 Thu Apr 03 07:01:50 EDT 2025 Tue Jul 01 02:15:27 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-fe860b62ce2b33f2a718a4da3dc4cd244c3f7c10706a0971864cbb874c4c181c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: RM EW ND PWD BM. Performed the experiments: RM. Analyzed the data: RM EW ND PWD SSR GA. Wrote the manuscript: RM EW ND PWD SSR GA. Competing Interests: The authors have declared that no competing interests exist. |
OpenAccessLink | https://www.proquest.com/docview/1465947735?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 24260552 |
PQID | 1465947735 |
PQPubID | 1436336 |
PageCount | e81162 |
ParticipantIDs | plos_journals_1465947735 doaj_primary_oai_doaj_org_article_6f0797757513416b837bd2907dacf006 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3834214 proquest_miscellaneous_1461884990 proquest_journals_1465947735 gale_infotracmisc_A478207457 gale_infotracacademiconefile_A478207457 gale_incontextgauss_ISR_A478207457 gale_incontextgauss_IOV_A478207457 gale_healthsolutions_A478207457 pubmed_primary_24260552 crossref_primary_10_1371_journal_pone_0081162 crossref_citationtrail_10_1371_journal_pone_0081162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-19 |
PublicationDateYYYYMMDD | 2013-11-19 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Y Gotoh (ref56) 1998; 273 BC Liang (ref18) 1998; 8 P Xiong (ref59) 2011; 30 Y Jiang (ref23) 2008; 68 P De Koning (ref11) 1987; 89 P Mukhopadhyay (ref30) 2007; 2 NA Santos (ref21) 2007; 81 JA Gordon (ref45) 1986; 250 H-M Shen (ref55) 2006; 40 OA Olivero (ref15) 1997; 391 DJ Stewart (ref14) 1982; 10 NM Martins (ref50) 2008; 28 Rodrı (ref36) 2000; 29 LD Marroquin (ref64) 2007; 97 G Achanta (ref34) 2005; 24 G Damia (ref3) 1996; 66 DP Brown (ref61) 2009; 63 V Beljanski (ref4) 2004; 65 JM Ward (ref13) 1976; 38 M Madesh (ref54) 2001; 155 C-H Li (ref39) 2010; 116 G Melli (ref24) 2008; 214 HR Brady (ref48) 1990; 258 W Qian (ref20) 2005; 289 NA Doudican (ref32) 2005; 25 JN Meyer (ref17) 2013; 134 DF Bajorin (ref52) 1993; 11 S Rodríguez-Enríquez (ref63) 2001; 268 A Horwich (ref53) 1997; 15 N Raimundo (ref58) 2012; 148 KCM Campbell (ref27) 1996; 102 T Hitosugi (ref65) 2011; 44 H-C Yen (ref19) 2005; 1042 JL Podratz (ref46) 2011; 41 DK Woo (ref29) 2012; 180 MA Kang (ref38) 2012; 3 JA Mello (ref9) 1995; II JL Arbiser (ref28) 2002; 99 T Kanki (ref41) 2004; 24 FM Santandreu (ref51) 2010; 49 KJ Livak (ref35) 2001; 25 S Bonnet (ref44) 2007; 11 Stadnicki (ref12) 1975 HN Hansson A (ref42) 2004; 101 ZK Zsengellér (ref47) 2012; 60 NA Santos (ref25) 2008; 61 KB Lee (ref5) 1993; 14 HA El-Beshbishy (ref26) 2011; 668 CG Azzoli (ref37) 2009; 27 JM Pascoe (ref1) 1974; 23 P Mukhopadhyay (ref49) 2012; 52 Z Yang (ref16) 2006; 12 N Dehne (ref22) 2001; 174 LH Stockwin (ref62) 2010; 127 R Alazard (ref6) 1982; 93 AL Pinto (ref7) 1985; 82 RB Ciccarelli (ref8) 1985; 24 RS Go (ref40) 1999; 17 T-C Hour (ref60) 2010; 80 MG Ormerod (ref10) 1994; 69 RL Swanson (ref31) 1999; 19 AMJ Fichtinger-Schepman (ref2) 1985; 24 BM Emerling (ref57) 2009; 46 MG Vander Heiden (ref43) 2009; 324 LA Rowe (ref33) 2008; 45 |
References_xml | – volume: 174 start-page: 27 year: 2001 ident: ref22 article-title: Cisplatin Ototoxicity: Involvement of Iron and Enhanced Formation of Superoxide Anion Radicals publication-title: Toxicol Appl Pharmacol doi: 10.1006/taap.2001.9171 – volume: 66 start-page: 779 year: 1996 ident: ref3 article-title: Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents publication-title: Int J Cancer doi: 10.1002/(SICI)1097-0215(19960611)66:6<779::AID-IJC12>3.0.CO;2-Z – volume: 25 start-page: 402 year: 2001 ident: ref35 article-title: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 15 start-page: 1844 year: 1997 ident: ref53 article-title: Randomized trial of bleomycin, etoposide, and cisplatin compared with bleomycin, etoposide, and carboplatin in good-prognosis metastatic nonseminomatous germ cell cancer: a Multiinstitutional Medical Research Council/European Organization for Research and Treatment of Cancer Trial publication-title: J Clin Oncol doi: 10.1200/JCO.1997.15.5.1844 – volume: 80 start-page: 325 year: 2010 ident: ref60 article-title: Transcriptional up-regulation of SOD1 by CEBPD: A potential target for cisplatin resistant human urothelial carcinoma cells publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2010.04.007 – volume: 391 start-page: 79 year: 1997 ident: ref15 article-title: Preferential formation and decreased removal of cisplatin–DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear publication-title: DNA. Mutation; Research /Genetic Toxicology and Environmental. Mutagenesis doi: 10.1016/S0165-1218(97)00037-2 – volume: 127 start-page: 2510 year: 2010 ident: ref62 article-title: Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC publication-title: Int J Cancer doi: 10.1002/ijc.25499 – volume: 258 start-page: F1181 year: 1990 ident: ref48 article-title: Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.1990.258.5.F1181 – volume: 12 start-page: 5817 year: 2006 ident: ref16 article-title: Cisplatin Preferentially Binds Mitochondrial DNA and Voltage-Dependent Anion Channel Protein in the Mitochondrial Membrane of Head and Neck Squamous Cell Carcinoma: Possible Role in Apoptosis publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1037 – volume: 27 start-page: 6251 year: 2009 ident: ref37 article-title: American Society of Clinical Oncology Clinical Practice Guideline Update on Chemotherapy for Stage IV Non–Small-Cell Lung Cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2009.23.5622 – volume: 289 start-page: C1466 year: 2005 ident: ref20 article-title: Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00265.2005 – volume: 10 start-page: 51 year: 1982 ident: ref14 article-title: Human tissue distribution of platinum after cis-diamminedichloroplatinum publication-title: Cancer Chemother Pharmacol doi: 10.1007/BF00257239 – volume: 668 start-page: 278 year: 2011 ident: ref26 article-title: Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2011.06.051 – volume: 60 start-page: 521 year: 2012 ident: ref47 article-title: Cisplatin Nephrotoxicity Involves Mitochondrial Injury with Impaired Tubular Mitochondrial Enzyme Activity publication-title: J Histochem Cytochem doi: 10.1369/0022155412446227 – volume: 46 start-page: 1386 year: 2009 ident: ref57 article-title: Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2009.02.019 – volume: 69 start-page: 93 year: 1994 ident: ref10 article-title: The role of apoptosis in cell killing by cisplatin: a flow cytometric study publication-title: Br J Cancer doi: 10.1038/bjc.1994.14 – volume: 180 start-page: 24 year: 2012 ident: ref29 article-title: Mitochondrial Genome Instability and ROS Enhance Intestinal Tumorigenesis in APCMin/+ Mice publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.10.003 – volume: 30 start-page: 499 year: 2011 ident: ref59 article-title: Proteomic Analyses of Sirt1-Mediated Cisplatin Resistance in OSCC Cell Line publication-title: Protein J doi: 10.1007/s10930-011-9354-9 – volume: 17 start-page: 409 year: 1999 ident: ref40 article-title: Review of the Comparative Pharmacology and Clinical Activity of Cisplatin and Carboplatin publication-title: J Clin Oncol doi: 10.1200/JCO.1999.17.1.409 – volume: 214 start-page: 276 year: 2008 ident: ref24 article-title: Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy publication-title: Exp Neurol doi: 10.1016/j.expneurol.2008.08.013 – volume: 52 start-page: 497 year: 2012 ident: ref49 article-title: Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2011.11.001 – volume: 324 start-page: 1029 year: 2009 ident: ref43 article-title: Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 44 start-page: 864 year: 2011 ident: ref65 article-title: Tyrosine Phosphorylation of Mitochondrial Pyruvate Dehydrogenase Kinase 1 Is Important for Cancer Metabolism publication-title: Mol Cell doi: 10.1016/j.molcel.2011.10.015 – volume: 61 start-page: 145 year: 2008 ident: ref25 article-title: Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-007-0459-y – volume: 49 start-page: 658 year: 2010 ident: ref51 article-title: Uncoupling protein-2 knockdown mediates the cytotoxic effects of cisplatin publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2010.05.031 – volume: 89 start-page: 81 year: 1987 ident: ref11 article-title: Evaluation of cis-diamminedichloroplatinum (II) (cisplatin) neurotoxicity in rats publication-title: Toxicol Appl Pharmacol doi: 10.1016/0041-008X(87)90178-5 – volume: 148 start-page: 716 year: 2012 ident: ref58 article-title: Mitochondrial Stress Engages E2F1 Apoptotic Signaling to Cause Deafness publication-title: Cell doi: 10.1016/j.cell.2011.12.027 – volume: 97 start-page: 539 year: 2007 ident: ref64 article-title: Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants publication-title: Toxicol Sci doi: 10.1093/toxsci/kfm052 – volume: 14 start-page: 2177 year: 1993 ident: ref5 article-title: Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3 publication-title: Carcinogenesis doi: 10.1093/carcin/14.10.2177 – volume: II year: 1995 ident: ref9 article-title: DNA Adducts of cis-Diamminedichloroplatinum(II) and Its publication-title: Trans Isomer Inhibit RNA Polymerase – volume: 250 start-page: F991 year: 1986 ident: ref45 article-title: Mitochondrial alterations in cisplatin-induced acute renal failure publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.1986.250.6.F991 – volume: 82 start-page: 4616 year: 1985 ident: ref7 article-title: Sequence-dependent termination of in vitro DNA synthesis by cis- and trans-diamminedichloroplatinum (II) publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.14.4616 – volume: 38 start-page: 535 year: 1976 ident: ref13 article-title: The nephrotoxic effects of cis-diammine-dichloroplatinum (II) (NSC-119875) in male F344 rats publication-title: Toxicol Appl Pharmacol doi: 10.1016/0041-008X(76)90185-X – volume: 2 start-page: 2295 year: 2007 ident: ref30 article-title: Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy publication-title: Nat Protoc doi: 10.1038/nprot.2007.327 – volume: 11 start-page: 37 year: 2007 ident: ref44 article-title: A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.10.020 – volume: 3 start-page: e249 year: 2012 ident: ref38 article-title: DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death publication-title: Drosophila Inf Serv – volume: 63 start-page: 723 year: 2009 ident: ref61 article-title: Targeting superoxide dismutase 1 to overcome cisplatin resistance in human ovarian cancer publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-008-0791-x – volume: 65 start-page: 1496 year: 2004 ident: ref4 article-title: DNA Damage-Processing Pathways Involved in the Eukaryotic Cellular Response to Anticancer DNA Cross-Linking Drugs publication-title: Mol Pharmacol doi: 10.1124/mol.65.6.1496 – volume: 134 start-page: 1 year: 2013 ident: ref17 article-title: Mitochondria as a Target of Environmental Toxicants publication-title: Toxicol Sci doi: 10.1093/toxsci/kft102 – volume: 102 start-page: 90 year: 1996 ident: ref27 article-title: d-Methionine provides excellent protection from cisplatin ototoxicity in the rat publication-title: Hear Res doi: 10.1016/S0378-5955(96)00152-9 – volume: 101 start-page: 3136 year: 2004 ident: ref42 article-title: A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308710100 – volume: 24 start-page: 9823 year: 2004 ident: ref41 article-title: Architectural Role of Mitochondrial Transcription Factor A in Maintenance of Human Mitochondrial DNA publication-title: Mol Cell Biol doi: 10.1128/MCB.24.22.9823-9834.2004 – volume: 23 start-page: 1345 year: 1974 ident: ref1 article-title: Interactions between mammalian cell DNA and inorganic platinum compounds-I: DNA interstrand cross-linking and cytotoxic properties of platinum(II) compounds publication-title: Biochem Pharmacol doi: 10.1016/0006-2952(74)90354-2 – volume: 8 start-page: 694 year: 1998 ident: ref18 article-title: Increased sensitivity to cis-diamminedichloroplatinum induced apoptosis with mitochondrial DNA depletion publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400401 – volume: 93 start-page: 327 year: 1982 ident: ref6 article-title: Mechanism of toxicity of platinum(II) compounds in repair-deficient strains of Escherichia coli publication-title: Mutat Res doi: 10.1016/0027-5107(82)90148-8 – volume: 29 start-page: 801 year: 2000 ident: ref36 article-title: Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H2O2 publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(00)00362-2 – volume: 268 start-page: 2512 year: 2001 ident: ref63 article-title: Multisite control of the Crabtree effect in ascites hepatoma cells publication-title: Eur J Biochem doi: 10.1046/j.1432-1327.2001.02140.x – volume: 19 start-page: 2929 year: 1999 ident: ref31 article-title: Overlapping Specificities of Base Excision Repair, Nucleotide Excision Repair, Recombination, and Translesion Synthesis Pathways for DNA Base Damage in Saccharomyces cerevisiae publication-title: Mol Cell Biol doi: 10.1128/MCB.19.4.2929 – volume: 11 start-page: 598 year: 1993 ident: ref52 article-title: Randomized trial of etoposide and cisplatin versus etoposide and carboplatin in patients with good-risk germ cell tumors: a multiinstitutional study publication-title: J Clin Oncol doi: 10.1200/JCO.1993.11.4.598 – volume: 41 start-page: 661 year: 2011 ident: ref46 article-title: Cisplatin induced Mitochondrial DNA damage in dorsal root ganglion neurons publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2010.11.017 – volume: 1042 start-page: 516 year: 2005 ident: ref19 article-title: Enhancement of Cisplatin-Induced Apoptosis and Caspase 3 Activation by Depletion of Mitochondrial DNA in a Human Osteosarcoma Cell Line publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1338.047 – volume: 273 start-page: 17477 year: 1998 ident: ref56 article-title: Reactive Oxygen Species- and Dimerization-induced Activation of Apoptosis Signal-regulating Kinase 1 in Tumor Necrosis Factor-α Signal Transduction publication-title: J Biol Chem doi: 10.1074/jbc.273.28.17477 – volume: 24 start-page: 7533 year: 1985 ident: ref8 article-title: In vivo effects of cis- and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein crosslinking, and inhibition of replication publication-title: Biochemistry doi: 10.1021/bi00347a005 – volume: 25 start-page: 5196 year: 2005 ident: ref32 article-title: Oxidative DNA Damage Causes Mitochondrial Genomic Instability in Saccharomyces cerevisiae publication-title: Mol Cell Biol doi: 10.1128/MCB.25.12.5196-5204.2005 – volume: 24 start-page: 3482 year: 2005 ident: ref34 article-title: Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol [gamma] publication-title: EMBO J doi: 10.1038/sj.emboj.7600819 – volume: 68 start-page: 6425 year: 2008 ident: ref23 article-title: Implications of Apurinic/Apyrimidinic Endonuclease in Reactive Oxygen Signaling Response after Cisplatin Treatment of Dorsal Root Ganglion Neurons publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1173 – year: 1975 ident: ref12 article-title: SW FR, Schaeppi U, Merriam P – volume: 81 start-page: 495 year: 2007 ident: ref21 article-title: Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria publication-title: Arch Toxicol doi: 10.1007/s00204-006-0173-2 – volume: 155 start-page: 1003 year: 2001 ident: ref54 article-title: VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release publication-title: J Cell Biol doi: 10.1083/jcb.200105057 – volume: 45 start-page: 1167 year: 2008 ident: ref33 article-title: DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2008.07.018 – volume: 28 start-page: 337 year: 2008 ident: ref50 article-title: Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver publication-title: J Appl Toxicol doi: 10.1002/jat.1284 – volume: 24 start-page: 707 year: 1985 ident: ref2 article-title: Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation publication-title: Biochemistry doi: 10.1021/bi00324a025 – volume: 99 start-page: 715 year: 2002 ident: ref28 article-title: Reactive oxygen generated by Nox1 triggers the angiogenic switch publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.022630199 – volume: 116 start-page: 140 year: 2010 ident: ref39 article-title: Chloramphenicol Causes Mitochondrial Stress, Decreases ATP Biosynthesis, Induces Matrix Metalloproteinase-13 Expression, and Solid-Tumor Cell Invasion publication-title: Toxicol Sci doi: 10.1093/toxsci/kfq085 – volume: 40 start-page: 928 year: 2006 ident: ref55 article-title: JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2005.10.056 |
SSID | ssj0053866 |
Score | 2.6186705 |
Snippet | Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e81162 |
SubjectTerms | Adducts Animals Anticancer properties Antineoplastic Agents - pharmacology Antitumor agents Apoptosis Apoptosis - drug effects Baking yeast Biochemistry Biocompatibility Blockage Cancer Cancer research Cancer treatment Cell death Cell Line, Tumor Cell Nucleus - drug effects Cell Nucleus - metabolism Chemotherapy Cisplatin Cisplatin - pharmacology Cytotoxicity Damage Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA adducts DNA Adducts - chemistry DNA biosynthesis DNA Damage DNA Repair - drug effects DNA replication Drug development Drug dosages Drug efficacy Exposure Hematology Humans Kinases Medical prognosis Medical research Mice Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial DNA Oncology Oxidation-Reduction Oxidative stress Pathogenesis Phosphorylation Protein biosynthesis Protein synthesis Reactive Oxygen Species - agonists Reactive Oxygen Species - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Signal transduction Stress response Studies Survival analysis Tissues Toxicity Transcription Transcription (Genetics) Tumor cell lines Tumors Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBBQxCAg6hSezYybFUVAUJKrUU9Rb5kbQrFWfVJFL5G_xiZmJv1KBK5cA1M5tk5-UZZeYbQt7oss40lP-x0Vkdc2t1rFOrYsk1WJcuSqNwGvnrN3Fwwr-c5qfXVn1hT5iHB_aC2xFNIiFHwc8DEHCFhoJK2wxKOqtME8C2kzLZFFM-BoMXCxEG5ZhMd4JePqxbVyOgaZqKbHYQjXj9U1RerC_a7qaU8-_OyWtH0f59ci_kkHTXv_sWuVO7B2QreGlH3wUo6fcPye-9VbfGbjdHofYekKroT3BiCHrOou3FR4fH9NI3yta0P1c9HbvXcQ0WcPctNb_6tm-vVgbydep35sJxR1s3vxFF5NErigNKAzzFWapXLb4IzrEZiufnaOKPyMn-p-97B3HYwhAbUWZ93NSFSLTIDCiVsSZTcJopbhWzhhsL2YFhjTRQRSZCISBVIbjRupAcyJA-GPaYLBzIfZtQDtWjyIFqE8Mlk5D7gCgTY3OhaqXyiLCNSioTIMpxU8ZFNX53k1CqeAlXqMgqKDIi8fSrtYfouIX_I2p74kWA7fECmF0VzK66zewi8hJtpfLTqlOYqHY5AhBKnsuIvB45EGTDYRfPmRq6rvp8-OMfmI6PZkxvA1PTgjiMCpMT8J8QvGvGuZxxQqgwM_I2WvZGKh3WfXnJpWQg-uXG2m8mv5rIeFPszHN1O4w8aVFA3ZxE5Il3jkmymP4leQ4SlzO3mYl-TnGr8xHjnBWMZyl_-j909YzczXCJCTZvlkuy6C-H-jmkkr1-MUaNP4IqdV8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9MIFUV4NFFgQEnAw9WO9ax8QakKjgtQUpS3qzdqH3UaqvKF2pPI3-MXM2GuDUQVcM-ONM-_Nzn5DyCuV5qGC7b-nVZh7zBjlqcBITzAF1qWSVEu8jXw45wen7PNZfLZB5t1dGGyr7GJiE6iN1fgf-S54dJwyIaL4w-qbh1Oj8HS1G6Eh3WgF876BGLtFNiEkx_6IbE72518WXWwG7-bcXaCLRLDr9PVuZcscgU6DgIeDBNXg-PfRerS6tNVNpeifHZW_pajZXXLH1ZZ0rzWGLbKRl_fIlvPeir5xENNv75Mf02W1wi64kuLsDqRKegjODcGwNGiT3uLomC7aBtqcnlzImiKQVTMeC7hrS6ffa1vb66WGOp5-bGbpQhqkthwuBIsYe02xqF3Dt5SGTpYWXwTvt2k6g7zamP4DcjrbP5keeG46g6d5GtZekSfcVzzUoOwoKkIJWU4yIyOjmTZQNeioEBp2lz6XCFSVcKaVSgQDMpQVOnpIRiXIfZtQBrtKHgPV-JqJSEBNBKL0tYm5zKWMxyTqVJJpB12OEzQus-Y8TsAWppVwhorMnCLHxOufWrXQHf_gn6C2e14E3m4-sFfnmfPjjBe-gJIZT6sg_3MF-3tlwtQXRuoCItiYPEdbydpbrH34yPYYAhMKFosxedlwIPhGid0953JdVdmno6__wXS8GDC9dkyFBXFo6W5UwG9CUK8B586AE0KIHpC30bI7qVTZL2eDJztrv5n8oifjotixV-Z23fAESQL7aX9MHrXO0UsWy0I_jkHiYuA2A9EPKeXyosE-j5KIhQF7_PfXekJuhzi2BNs10x0yqq_W-VMoHmv1zEWEn_7fc1Y priority: 102 providerName: ProQuest |
Title | Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24260552 https://www.proquest.com/docview/1465947735 https://www.proquest.com/docview/1461884990 https://pubmed.ncbi.nlm.nih.gov/PMC3834214 https://doaj.org/article/6f0797757513416b837bd2907dacf006 http://dx.doi.org/10.1371/journal.pone.0081162 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9MIFUV41hLAgJODgyo-11z4g1ISGgtQWpQ3KzdqH3UaK7BA7Uvo3-MXMrB0Lo_C4-OAZr-PZmdlvsrMzhLyWcepJCP9tJb3UZlpLW7pa2JxJ0C4ZxUrgaeSz8_B0yr7Mgtke2fZsbQRY7gztsJ_UdLU42ny__QAG_950beDu9qGjZZGnWK7UddEp75sdI0zmY-2-Ali32b1E1GKHnuM3h-n-NEpnsTI1_VvP3VsuinIXLP09u_KX5Wp8n9xrcCY9rhXjgOyl-QNy0FhySd825abfPSQ_RvNyiRlxOcU-HkgV9AwMHWSTa9RPe3JxSSd1Mm1Kr25ERbGolWmVBdxVQUe3VVEVm7kCTE8_mr66sCTSIu8OBIPoYkMR4K7hLbmmw3mBPwTPuik6hjXWmMEjMh2fXI1O7aZTg63C2KvsLI1CR4aegon3_cwTsOIJpoWvFVMaEITyM64g0nRCgUWropApKSPOgAwQQ_mPSS8HuR8SyiDCDAOgakcx7nPARyBKR-kgFKkQgUX87ZQkqiljjt00FonZm-MQztQSTnAik2YiLWK3Ty3rMh7_4B_ibLe8WITb3ChW10lj00mYORzgM-5cARYIJcT6Unuxw7VQGXgzi7xAXUnqE62tK0mOGRYp5CzgFnllOLAQR46ZPtdiXZbJ54tv_8F0OekwvWmYsgLEoURzugK-CQt8dTj7HU5wJ6pDPkTN3kqlxNgwiBnnPoi-v9X23eSXLRkHxey9PC3WhseNIoitHYs8qY2jlSxCRCcIQOK8YzYd0Xcp-fzG1EH3I595Lnv69w96Ru562MIEUzfjPulVq3X6HIBkJQfkDp9xuEYjF6_jTwOyPzw5_zoZmL9mBsZ3_ARrtXk7 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXRHk1UOiCQMDB1I_1rnOoUJM2SmiTojRFvZl9OG2kyg61I9q_wQ_itzHjrANGFXDpNTPerGd3v5nxzoOQV6qV-Arcf0crP3GYMcpRnpGOYAp2l4paWmI28mDIe8fs40l4skJ-VLkwGFZZYWIJ1CbT-I18C0502GJCBOGH2VcHu0bh7WrVQkPa1gpmuywxZhM79pOrb-DC5dv9XVjv177f3Rt3eo7tMuBo3vILZ5JE3FXc1zDpIJj4EtBaMiMDo5k2oP10MBEavCSXSyy4FHGmlYoEAzKoRx3AuLfIKsMPKA2y2t4bfhpVugDQhHObsBcIb8vuj_ezLE2wsKrncb-mEMu-AUvt0JidZ_l1pu-fEZy_qcTuPXLX2rJ0Z7H51shKkt4naxYtcvrWlrR-94B870zzGUbdpRR7hSBV0gGACYBvavAMOKPDIzpaBOwmdHwmC4qFs8p2XMBdZLRzVWRFdjnV4DfQ3bJ3L6hdmqX1gWAQk11SNKLn8C-poe1phhPBfDpNu6DHy6P2kBzfyDo9Io0U5L5OKAMvlodANa5mIhBgg4EoXW1CLhMpwyYJqiWJtS2Vjh07zuPy_k-Ay7SQcIwLGduFbBJn-dRsUSrkH_xtXO0lLxb6Ln_ILk5jixsxn7gCTHS8HQN7g6soEMr4LVcYqSeAmE2yiXslXmTNLuEq3mFYCFGwUDTJy5IDi32kGE10Kud5HvcPP_8H09GoxvTGMk0yEIeWNoMD3gmLiNU4N2qcAFm6Rl7HnV1JJY9_HW54strt15NfLMk4KEYIpkk2L3m8KAL_3W2Sx4vDsZQsmqFuGILERe3Y1ERfp6TTs7LWehAFzPfYk79Pa5Pc7o0HB_FBf7j_lNzxsWUKhoq2NkijuJgnz8BwLdRziw6UfLlpQPoJeeKwRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVOKGKK8GFbogEHAw8WO96xwq1CSNGkrTKm1Rb2YfdhupskPtiPZv8LP4Vcw464BRBVx6zYw39uzONzP2PAh5pbqJryD8d7TyE4cZoxzlGekIpuB0qairJVYj74_57gn7eBqerpAfdS0MplXWmFgBtck1viPvgEaHXSZEEHZSmxZxOBh-mH11cIIUfmmtx2lIO2bBbFXtxmyRx15y_Q3CuWJrNIC9f-37w53j_q5jJw44mnf90kmTiLuK-xoeIAhSXwJyS2ZkYDTTBiyhDlKhIWJyucTmSxFnWqlIMCCDqdQBrHuHrAqw-hAIrvZ2xoeT2i4AsnBui_cC4XXsWXk_y7MEm6x6HvcbxrGaIbC0FK3ZRV7c5Ab_mc35m3kc3if3rF9LtxcHcY2sJNkDsmaRo6BvbXvrdw_J9_60mGEGXkZxbghSJd0HYAEgzgzqgzM5OKKTRfJuQo_PZUmxiVY1mgu4y5z2r8u8zK-mGmIIOqjm-IIJpnnWXAgWMfkVRYd6Dv-SGdqb5ngjWFun6RBseqV2j8jJrezTY9LKQO7rhDKIaHkIVONqJgIB_hiI0tUm5DKRMmyToN6SWNu26Ti94yKuvgUKCJ8WEo5xI2O7kW3iLK-aLdqG_IO_h7u95MWm39UP-eVZbDEk5qkrwF3HL2Xge3AVBUIZv-sKI3UK6Nkmm3hW4kUF7RK64m2GTREFC0WbvKw4sPFHhip0JudFEY8OPv8H09GkwfTGMqU5iENLW80Bz4QNxRqcGw1OgC_dIK_jya6lUsS_FB2urE_7zeQXSzIuitmCWZLPKx4viiCWd9vkyUI5lpJFl9QNQ5C4aKhNQ_RNSjY9r_quB1HAfI89_fttbZK7AEzxp9F4b4O0yst58gzc1lI9t3hAyZfbhqCfZ-yyeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cisplatin+Induces+a+Mitochondrial-ROS+Response+That+Contributes+to+Cytotoxicity+Depending+on+Mitochondrial+Redox+Status+and+Bioenergetic+Functions&rft.jtitle=PloS+one&rft.date=2013-11-19&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=11&rft.spage=e81162&rft_id=info:doi/10.1371%2Fjournal.pone.0081162&rft.externalDocID=A478207457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |