Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions

Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The developm...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 12; p. e0244965
Main Authors Osapoetra, Laurentius O., Chan, William, Tran, William, Kolios, Michael C., Czarnota, Gregory J.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.12.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0244965

Cover

Abstract Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
AbstractList Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
Purpose Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. Methods Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. Results Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. Conclusions A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
Purpose Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions. Methods Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation. Results Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features. Conclusions A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
PurposeAccurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions.MethodsParametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation.ResultsClassifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features.ConclusionsA QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions.PURPOSEAccurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by detecting the disease early. Biopsy remains as the gold standard for pathological confirmation of malignancy and tumour grading. The development of diagnostic imaging techniques as an alternative for the rapid and accurate characterization of breast masses is necessitated. Quantitative ultrasound (QUS) spectroscopy is a modality well suited for this purpose. This study was carried out to evaluate different texture analysis methods applied on QUS spectral parametric images for the characterization of breast lesions.Parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation.METHODSParametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined using QUS spectroscopy from 193 patients with breast lesions. Texture methods were used to quantify heterogeneities of the parametric images. Three statistical-based approaches for texture analysis that include Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GRLM), and Gray Level Size Zone Matrix (GLSZM) methods were evaluated. QUS and texture-parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis in order to classify breast lesions as either benign or malignant. We developed a diagnostic model using different classification algorithms including linear discriminant analysis (LDA), k-nearest neighbours (KNN), support vector machine with radial basis function kernel (SVM-RBF), and an artificial neural network (ANN). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and hold-out validation.Classifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features.RESULTSClassifier performances ranged from 73% to 91% in terms of accuracy dependent on tumour margin inclusion and classifier methodology. Utilizing information from tumour core alone, the ANN achieved the best classification performance of 93% sensitivity, 88% specificity, 91% accuracy, 0.95 AUC using QUS parameters and their GLSZM texture features.A QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.CONCLUSIONSA QUS-based framework and texture analysis methods enabled classification of breast lesions with >90% accuracy. The results suggest that optimizing method for extracting discriminative textural features from QUS spectral parametric images can improve classification performance. Evaluation of the proposed technique on a larger cohort of patients with proper validation technique demonstrated the robustness and generalization of the approach.
Audience Academic
Author Kolios, Michael C.
Czarnota, Gregory J.
Chan, William
Osapoetra, Laurentius O.
Tran, William
AuthorAffiliation 5 University of Waterloo, Toronto, Ontario, Canada
1 Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
6 Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
University of Montreal, CANADA
4 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
3 Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
7 Department of Physics, Ryerson University, Toronto, Ontario, Canada
2 Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
AuthorAffiliation_xml – name: 5 University of Waterloo, Toronto, Ontario, Canada
– name: 7 Department of Physics, Ryerson University, Toronto, Ontario, Canada
– name: 3 Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
– name: 6 Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
– name: 2 Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
– name: 1 Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
– name: University of Montreal, CANADA
– name: 4 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Author_xml – sequence: 1
  givenname: Laurentius O.
  orcidid: 0000-0001-9278-0953
  surname: Osapoetra
  fullname: Osapoetra, Laurentius O.
– sequence: 2
  givenname: William
  surname: Chan
  fullname: Chan, William
– sequence: 3
  givenname: William
  surname: Tran
  fullname: Tran, William
– sequence: 4
  givenname: Michael C.
  orcidid: 0000-0002-9994-8293
  surname: Kolios
  fullname: Kolios, Michael C.
– sequence: 5
  givenname: Gregory J.
  surname: Czarnota
  fullname: Czarnota, Gregory J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33382837$$D View this record in MEDLINE/PubMed
BookMark eNqNk1uL1DAUx4usuBf9BqIFQfRhxjTp1QdhGbwMLCy6rq8hTU6mWdJmTFJ1_PSm2-4yXRZc-tByzu_8z7XH0UFnOoii5wlaJqRI3l2Z3nZML7fBvEQ4Tas8exQdJRXBixwjcrD3fRgdO3eFUEbKPH8SHRJCSlyS4ihqV6bdMquc6WIj4xZ8Y4SLpbGxhz--txCzkGXnlBv8Xy8v4oCzwFnFY9WyDbhYdbFvIOZN8HAPVv1lXo2CtQXmfKzBBYN7Gj2WTDt4Nr1PostPH7-vvizOzj-vV6dnC55X2C-kKBIgOWe1xByErLNUIMHLssw5EQmHGomaC5GwuqwQknUNMseZrEtAqUSSnEQvR92tNo5Ok3IUp0WahgxFEoj1SAjDrujWhk7sjhqm6LXB2A1l1iuugVYgMOYI80xAWmZlKVlWM17WpMo4zknQykatvtuy3W-m9a1gguiwrJsS6LAsOi0rxH2YquzrFgSHzlumZ8XMPZ1q6Mb8okVRZGGXQeDNJGDNzx6cp61yHLRmHZh-7DdDCUED-uoOev9UJmrDQuOqkybk5YMoPc3TIskKnKeBWt5DhUdAq3joUKpgnwW8nQUEZjiuDeudo-uLbw9nz3_M2dd7bANM-8YZ3Q_H5-bgi_1J34745j8IwPsR4NY4Z0FSrvz1EYfWlP7fHtM7wQ9a_z-hNzNt
CitedBy_id crossref_primary_10_1002_jum_16347
crossref_primary_10_1016_j_measurement_2023_114046
crossref_primary_10_18632_oncotarget_27867
crossref_primary_10_3389_fonc_2024_1400872
crossref_primary_10_3390_cancers14246217
crossref_primary_10_1148_rycan_230029
crossref_primary_10_1002_jum_16143
crossref_primary_10_1007_s11036_021_01901_7
crossref_primary_10_20535_ibb_2021_5_3_234990
crossref_primary_10_1007_s10479_022_04755_8
crossref_primary_10_3390_arts13010029
crossref_primary_10_1016_j_ultrasmedbio_2025_01_013
crossref_primary_10_1007_s11547_023_01694_7
crossref_primary_10_1177_08903344221081866
crossref_primary_10_1016_j_ultrasmedbio_2022_11_017
crossref_primary_10_2478_raon_2024_0040
crossref_primary_10_1111_andr_13131
Cites_doi 10.1016/S0301-5629(97)00013-6
10.1259/bjr/77245199
10.1016/j.ijrobp.2012.10.017
10.2217/iim.12.23
10.1016/j.media.2014.11.009
10.1007/BF00994018
10.1016/j.tranon.2019.06.004
10.1109/58.503779
10.1016/j.radonc.2011.10.014
10.1053/j.seminoncol.2010.11.006
10.1118/1.4931603
10.1109/TSMC.1973.4309314
10.1002/mp.13361
10.3233/CBM-2008-44-504
10.1016/0167-8655(90)90112-F
10.1016/j.chemolab.2004.02.005
10.1177/016173469001200104
10.1016/j.crad.2016.11.009
10.1038/s41598-017-13977-x
10.1038/labinvest.2014.155
10.1016/S0022-5347(05)64159-6
10.1118/1.1897463
10.1109/TMI.2012.2206398
10.1007/s00259-012-2247-0
10.18632/oncotarget.1950
10.1148/radiol.09090838
10.1136/hrt.2007.116384
10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
10.1016/j.ultrasmedbio.2009.10.006
10.1118/1.3566064
10.1016/j.jamcollsurg.2005.05.032
10.1172/JCI60534
10.1109/83.725367
10.1148/radiol.2017171920
10.1148/radiology.196.1.7784555
10.1016/j.tranon.2020.100827
10.1002/jmri.23971
10.1016/S0146-664X(75)80008-6
10.1016/0167-8655(91)80014-2
10.1109/TMI.2004.826953
10.1158/1078-0432.CCR-12-2965
10.1177/016173469301500401
10.1007/s13244-012-0196-6
10.1118/1.2401039
10.1016/S0039-6109(16)45030-9
10.1177/016173469001200105
10.1016/j.ultrasmedbio.2006.05.006
10.1142/S0218001413570024
10.1016/j.ultrasmedbio.2019.10.024
10.1088/1361-6560/aa82ec
10.1148/radiol.11110264
10.1109/TMI.2004.834617
10.1038/srep45733
10.1007/978-94-007-6952-6
10.1016/j.ultrasmedbio.2010.11.020
10.1016/j.ultras.2010.05.005
10.1016/S0301-5629(97)00200-7
10.1118/1.4852875
10.1158/1078-0432.CCR-14-0990
10.1148/radiol.2262011843
10.1186/s12943-015-0481-3
10.1109/58.655209
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Osapoetra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Osapoetra et al 2020 Osapoetra et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Osapoetra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Osapoetra et al 2020 Osapoetra et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0244965
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
Engineering Database
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Agricultural Science Database





MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions
EISSN 1932-6203
ExternalDocumentID 2474469271
oai_doaj_org_article_9ed22c02c5de48588fa5bac8b395c263
10.1371/journal.pone.0244965
PMC7775053
A647157264
33382837
10_1371_journal_pone_0244965
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations Canada
Toronto Ontario Canada
United States--US
GeographicLocations_xml – name: Canada
– name: United States--US
– name: Toronto Ontario Canada
GrantInformation_xml – fundername: CIHR
– fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-fd71e36cabf2cedfb54d0dc8886c3d1ceb0dbcdd1ab8900fbbef625fb8e04f0f3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun May 07 16:28:31 EDT 2023
Fri Oct 03 12:53:25 EDT 2025
Sun Oct 26 03:46:29 EDT 2025
Tue Sep 30 16:49:57 EDT 2025
Mon Sep 08 15:15:54 EDT 2025
Tue Oct 07 07:49:46 EDT 2025
Mon Oct 20 22:17:14 EDT 2025
Mon Oct 20 16:08:21 EDT 2025
Thu Oct 16 15:08:31 EDT 2025
Thu Oct 16 14:42:05 EDT 2025
Thu May 22 21:22:06 EDT 2025
Mon Jul 21 05:13:30 EDT 2025
Wed Oct 01 01:15:49 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-fd71e36cabf2cedfb54d0dc8886c3d1ceb0dbcdd1ab8900fbbef625fb8e04f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-9278-0953
0000-0002-9994-8293
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0244965
PMID 33382837
PQID 2474469271
PQPubID 1436336
PageCount e0244965
ParticipantIDs plos_journals_2474469271
doaj_primary_oai_doaj_org_article_9ed22c02c5de48588fa5bac8b395c263
unpaywall_primary_10_1371_journal_pone_0244965
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775053
proquest_miscellaneous_2474501303
proquest_journals_2474469271
gale_infotracmisc_A647157264
gale_infotracacademiconefile_A647157264
gale_incontextgauss_ISR_A647157264
gale_incontextgauss_IOV_A647157264
gale_healthsolutions_A647157264
pubmed_primary_33382837
crossref_citationtrail_10_1371_journal_pone_0244965
crossref_primary_10_1371_journal_pone_0244965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-31
PublicationDateYYYYMMDD 2020-12-31
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Sigel (pone.0244965.ref034) 1990; 70
pone.0244965.ref071
A Chu (pone.0244965.ref058) 1990; 11
S Joo (pone.0244965.ref011) 2004; 23
BV Dasarathy (pone.0244965.ref059) 1991; 12
SH Park (pone.0244965.ref068) 2018; 286
W Gomez (pone.0244965.ref054) 2012; 31
A Sadeghi-Naini (pone.0244965.ref008) 2017; 7
S Han (pone.0244965.ref013) 2017; 62
M Vaidya (pone.0244965.ref047) 2012; 102
pone.0244965.ref072
A Konig (pone.0244965.ref036) 2007; 93
CM Chen (pone.0244965.ref012) 2003; 226
Sadeghi-Naini (pone.0244965.ref025) 2013; 19
AT Stavros (pone.0244965.ref010) 1995; 196
V Goh (pone.0244965.ref048) 2011; 261
K Dobruch-Sobczak (pone.0244965.ref075) 2017; 72
G Thibault (pone.0244965.ref061) 2013; 27
F Davnall (pone.0244965.ref043) 2012; 3
G Berger (pone.0244965.ref065) 1990; 12
F Destrempes (pone.0244965.ref074) 2020; 46
LO Osapoetra (pone.0244965.ref009) 2020; 13
Z Klimonda (pone.0244965.ref063) 2019; 7963
PH Tsui (pone.0244965.ref073) 2010; 36
H Tadayyon (pone.0244965.ref038) 2014; 41
J Mamou (pone.0244965.ref037) 2011; 37
BS Garra (pone.0244965.ref052) 1993; 15
L Sannachi (pone.0244965.ref027) 2019; 12
RL Siegel (pone.0244965.ref001) 2016; 66
pone.0244965.ref003
D Sengupta (pone.0244965.ref042) 2016; 15
W Gomez (pone.0244965.ref050) 2012; 31
H Tadayyon (pone.0244965.ref062) 2017; 7
N Duric (pone.0244965.ref064) 2005; 32
EJ Feleppa (pone.0244965.ref031) 2011; 38
LX Yao (pone.0244965.ref015) 1990; 12
K Polyak (pone.0244965.ref040) 2011; 121
ML Oelze (pone.0244965.ref021) 2004; 23
A Sadeghi-Naini (pone.0244965.ref023) 2012; 4
A Sadeghi-Naini (pone.0244965.ref024) 2014; 5
MJ Silverstein (pone.0244965.ref004) 2005; 201
FL Lizzi (pone.0244965.ref018) 1997; 44
YY Liao (pone.0244965.ref051) 2011; 38
CM Bishop (pone.0244965.ref069) 2006
Y Labyed (pone.0244965.ref066) 2011; 51
on behalf of the ESMO Guidelines Committee (pone.0244965.ref002) 2015; 26
EJ Feleppa (pone.0244965.ref029) 1996; 43
RM Haralick (pone.0244965.ref049) 1973; 6
M Insana (pone.0244965.ref067) 1990; 12
S Tan (pone.0244965.ref045) 2013; 85
S Chicklore (pone.0244965.ref046) 2013; 40
MM Galloway (pone.0244965.ref056) 1975; 4
EJ Feleppa (pone.0244965.ref033) 2008; 4
A Ahmed (pone.0244965.ref044) 2013; 38
T Noritomi (pone.0244965.ref035) 1997; 23
pone.0244965.ref060
M Byra (pone.0244965.ref014) 2019; 46
X Tang (pone.0244965.ref057) 1998; 7
L Sannachi (pone.0244965.ref020) 2015; 20
MH Bharati (pone.0244965.ref055) 2004; 72
FL Lizzi (pone.0244965.ref019) 1986; 33
AV Alvarenga (pone.0244965.ref053) 2007; 34
A Sadeghi-Naini (pone.0244965.ref026) 2015; 42
FL Lizzi (pone.0244965.ref030) 1997; 8
ML Oelze (pone.0244965.ref006) 2012
ML Oelze (pone.0244965.ref022) 2006; 32
C Cortes (pone.0244965.ref070) 1995; 20
KC Balaji (pone.0244965.ref032) 2002; 168
CF Loughran (pone.0244965.ref005) 2011; 84
N Bhooshan (pone.0244965.ref007) 2010; 254
FL Lizzi (pone.0244965.ref017) 1997; 23
EJ Feleppa (pone.0244965.ref028) 2000; 4
JPB O’Connor (pone.0244965.ref039) 2015; 21
A Heindl (pone.0244965.ref041) 2015; 95
J Mamou (pone.0244965.ref016) 2013
References_xml – volume: 23
  start-page: 643
  year: 1997
  ident: pone.0244965.ref035
  article-title: Carotid Plaque Typing by Multiple-parameter Ultrasonic Tissue Characterization
  publication-title: Ultrasound Med. Biol
  doi: 10.1016/S0301-5629(97)00013-6
– volume: 7963
  start-page: 1
  year: 2019
  ident: pone.0244965.ref063
  article-title: Breast-lesions Characterization using Quantitative Ultrasound Features of Peritumoural Tissue
  publication-title: Scientific Reports
– volume: 84
  start-page: 869
  year: 2011
  ident: pone.0244965.ref005
  article-title: Seeding of Tumour Cells following Breast Biopsy: A Literature Review
  publication-title: The British Journal of Radiology
  doi: 10.1259/bjr/77245199
– volume: 85
  start-page: 1375
  year: 2013
  ident: pone.0244965.ref045
  article-title: Spatial-temporal [18F]FDG-PET Features for Predicting Pathologic Response of Esophageal Cancer to Neoadjuvant Chemoradiation Therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys
  doi: 10.1016/j.ijrobp.2012.10.017
– volume: 4
  start-page: 311
  year: 2012
  ident: pone.0244965.ref023
  article-title: Imaging Innovations for Cancer Therapy Response Monitoring
  publication-title: Imaging Med
  doi: 10.2217/iim.12.23
– volume: 20
  start-page: 224
  year: 2015
  ident: pone.0244965.ref020
  article-title: Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2014.11.009
– volume: 20
  start-page: 273
  year: 1995
  ident: pone.0244965.ref070
  article-title: Support-vector Networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 12
  start-page: 1271
  year: 2019
  ident: pone.0244965.ref027
  article-title: Breast Cancer Treatment Response Monitoring using Quantitative Ultrasound and Texture Analysis: Comparative Analysis of Computational Models
  publication-title: Translational Oncology
  doi: 10.1016/j.tranon.2019.06.004
– volume: 43
  start-page: 609
  year: 1996
  ident: pone.0244965.ref029
  article-title: Typing of Prostate Tissue by Ultrasonic Spectrum Analysis
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.503779
– volume: 102
  start-page: 239
  year: 2012
  ident: pone.0244965.ref047
  article-title: Combined PET/CT Image Characteristics for Radiotherapy Tumour Response in Lung Cancer
  publication-title: Radiother. Oncol
  doi: 10.1016/j.radonc.2011.10.014
– volume: 38
  start-page: 136
  year: 2011
  ident: pone.0244965.ref031
  article-title: Quantitative ultrasound in cancer imaging
  publication-title: Semin. Oncol
  doi: 10.1053/j.seminoncol.2010.11.006
– volume: 42
  start-page: 6130
  year: 2015
  ident: pone.0244965.ref026
  article-title: Early Detection of Chemotherapy-refractory Patients by Monitoring Textural Alterations in Diffuse Optical Spectroscopic Images
  publication-title: Med. Phys
  doi: 10.1118/1.4931603
– volume: 26
  start-page: v8
  year: 2015
  ident: pone.0244965.ref002
  article-title: Primary Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment, and Follow-up
  publication-title: Annals of Oncology
– volume: 6
  start-page: 610
  year: 1973
  ident: pone.0244965.ref049
  article-title: Textural Features for Image Classification
  publication-title: IEEE Trans. Syst. Man. Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 46
  start-page: 746
  year: 2019
  ident: pone.0244965.ref014
  article-title: Breast Mass Classification in Sonography with Transfer Learning using a Deep Convolutional Neural Network and Color Conversion
  publication-title: Medical Physics
  doi: 10.1002/mp.13361
– volume: 4
  start-page: 201
  year: 2008
  ident: pone.0244965.ref033
  article-title: Ultrasonic tissue-type imaging of the prostate: implications for biopsy and treatment guidance
  publication-title: Cancer biomarkers
  doi: 10.3233/CBM-2008-44-504
– volume: 11
  start-page: 415
  year: 1990
  ident: pone.0244965.ref058
  article-title: Use of Gray Value Distribution of Run-lengths for Texture Analysis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(90)90112-F
– volume: 72
  start-page: 57
  year: 2004
  ident: pone.0244965.ref055
  article-title: Image Texture Analysis: Methods and Comparisons
  publication-title: Chemometric and Intelligent Laboratory System
  doi: 10.1016/j.chemolab.2004.02.005
– volume: 12
  start-page: 47
  year: 1990
  ident: pone.0244965.ref065
  article-title: Global Breast Attenuation: Control Group and Benign Breast Diseases
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173469001200104
– volume: 72
  start-page: 339.e7
  year: 2017
  ident: pone.0244965.ref075
  article-title: Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound echoes in the diagnosis of breast lesions
  publication-title: Clinical radiology
  doi: 10.1016/j.crad.2016.11.009
– volume: 7
  start-page: 13638
  year: 2017
  ident: pone.0244965.ref008
  article-title: Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-13977-x
– volume: 95
  start-page: 377
  year: 2015
  ident: pone.0244965.ref041
  article-title: Mapping Spatial Heterogeneity in the Tumour Microenvironment: A New Era for Digital Pathology
  publication-title: Lab. Investig
  doi: 10.1038/labinvest.2014.155
– volume: 168
  start-page: 2422
  year: 2002
  ident: pone.0244965.ref032
  article-title: Role of advanced 2 and 3-dimensional ultrasound for detecting prostate cancer
  publication-title: J. Urol
  doi: 10.1016/S0022-5347(05)64159-6
– volume: 32
  start-page: 1375
  year: 2005
  ident: pone.0244965.ref064
  article-title: Development of Ultrasound Tomography for Breast Imaging: Technical Assessment
  publication-title: Med. Phys
  doi: 10.1118/1.1897463
– volume: 12
  start-page: 245
  year: 1990
  ident: pone.0244965.ref067
  article-title: Parametric Ultrasound Imaging from Backscatter Coefficient Measurements: Image Formation and Interpretation. Ultrason
  publication-title: Imaging
– volume: 31
  start-page: 1889
  year: 2012
  ident: pone.0244965.ref050
  article-title: Analysis of Co-occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound
  publication-title: IEEE Tran. Medical Imaging
  doi: 10.1109/TMI.2012.2206398
– volume: 40
  start-page: 133
  year: 2013
  ident: pone.0244965.ref046
  article-title: Quantifying Tumour Heterogeneity in 18F-FDG PET/CT Imaging by Texture Analysis
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-012-2247-0
– ident: pone.0244965.ref003
– start-page: 232
  year: 2012
  ident: pone.0244965.ref006
  article-title: Quantitative Ultrasound Techniques and Improvements to Diagnostic Ultrasound Imaging
  publication-title: IEEE International Ultrasonics Symposium, Dresden
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: pone.0244965.ref069
– volume: 5
  start-page: 3497
  year: 2014
  ident: pone.0244965.ref024
  article-title: Early Prediction of Therapy Responses and Outcomes in Breast Cancer Patients using Quantitative Ultrasound Spectral Texture
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1950
– volume: 254
  start-page: 680
  year: 2010
  ident: pone.0244965.ref007
  article-title: Cancerous Breast Lesions on Dynamic Contrast-enhanced MR Images: Computerized Characterization for Image-based Prognostic Markers
  publication-title: Radiology
  doi: 10.1148/radiol.09090838
– volume: 93
  start-page: 977
  year: 2007
  ident: pone.0244965.ref036
  article-title: Virtual histology
  publication-title: Heart
  doi: 10.1136/hrt.2007.116384
– volume: 8
  start-page: 3
  year: 1997
  ident: pone.0244965.ref030
  article-title: Ultrasonic spectrum analysis for tissue assays and therapy evaluation
  publication-title: Int. J. Imaging Syst. Technol
  doi: 10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
– volume: 36
  start-page: 209
  year: 2010
  ident: pone.0244965.ref073
  article-title: Ultrasound Nakagami Imaging: A Strategy to Visualize the Scatterers Properties of Benign and Malignant Breast Tumours
  publication-title: Ultrasound Med. Biol
  doi: 10.1016/j.ultrasmedbio.2009.10.006
– volume: 38
  start-page: 2198
  year: 2011
  ident: pone.0244965.ref051
  article-title: Classification of Scattering Media within Benign and Malignant Breast Tumours based on Ultrasound Texture-feature based and Nakagami-parameter Images
  publication-title: Med. Phys
  doi: 10.1118/1.3566064
– volume: 201
  start-page: 586
  year: 2005
  ident: pone.0244965.ref004
  article-title: Image-Detected Breast Cancer: State-of-the-Art Diagnosis and Treatmnet
  publication-title: Journal of the American College of Surgeons
  doi: 10.1016/j.jamcollsurg.2005.05.032
– volume: 121
  start-page: 3786
  year: 2011
  ident: pone.0244965.ref040
  article-title: Heterogeneity in Breast Cancer
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI60534
– ident: pone.0244965.ref072
– volume: 7
  start-page: 1602
  year: 1998
  ident: pone.0244965.ref057
  article-title: Texture Information in Run-length Matrices
  publication-title: IEEE Trans on Image Processing
  doi: 10.1109/83.725367
– volume: 286
  start-page: 800
  year: 2018
  ident: pone.0244965.ref068
  article-title: Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 196
  start-page: 123
  year: 1995
  ident: pone.0244965.ref010
  article-title: Solid Breast Nodules: Use of Sonography to Distinguish between Benign and Malignant Lesions
  publication-title: Radiology
  doi: 10.1148/radiology.196.1.7784555
– volume: 13
  start-page: 100827
  year: 2020
  ident: pone.0244965.ref009
  article-title: Breast Lesion Characterization using Quantitative Ultrasound (QUS) and Derivative Texture Methods
  publication-title: Translational Oncology
  doi: 10.1016/j.tranon.2020.100827
– volume: 38
  start-page: 89
  year: 2013
  ident: pone.0244965.ref044
  article-title: Texture Analysis in Assessment and Prediction of Chemotherapy Response in Breast Cancer
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23971
– volume: 4
  start-page: 172
  year: 1975
  ident: pone.0244965.ref056
  article-title: Texture Analysis using Gray Level Run Lengths
  publication-title: Computer Graphics and Image Processing
  doi: 10.1016/S0146-664X(75)80008-6
– volume: 12
  start-page: 172
  year: 1991
  ident: pone.0244965.ref059
  article-title: Image Characterizations Based on Joint Gray Level Run-length Distributions
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(91)80014-2
– volume: 23
  start-page: 764
  year: 2004
  ident: pone.0244965.ref021
  article-title: Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.826953
– volume: 19
  start-page: 2163
  year: 2013
  ident: pone.0244965.ref025
  article-title: Quantitative Ultrasound Evaluation of Tumour Cell Death Response in Locally-advanced Breast Cancer Patients Receiving Chemotherapy
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-12-2965
– volume: 15
  start-page: 267
  year: 1993
  ident: pone.0244965.ref052
  article-title: Improving the Distinction between Benign and Malignant Breast Lesions: The Value of Sonographic Texture Analysis
  publication-title: Ultrasonic Imaging
  doi: 10.1177/016173469301500401
– volume: 3
  start-page: 573
  year: 2012
  ident: pone.0244965.ref043
  article-title: Assessment of Tumour Heterogeneity: An Emerging Imaging Tool for Clinical Practice?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 33
  start-page: 319
  year: 1986
  ident: pone.0244965.ref019
  article-title: Relationship of ultrasonic spectral parameters to features of tissue microstructure
  publication-title: IEEE Trans Ultrason, Ferroelect, Freq Contr
– volume: 34
  start-page: 379
  year: 2007
  ident: pone.0244965.ref053
  article-title: Complexity Curve and Grey Level Co-occurrence Matrix in the Texture Evaluation of Breast Tumour on Ultrasound Images
  publication-title: Med. Phys
  doi: 10.1118/1.2401039
– volume: 70
  start-page: 13
  year: 1990
  ident: pone.0244965.ref034
  article-title: Ultrasonic Tissue Characterization of Blood Clots
  publication-title: Surg. Clin. North Am
  doi: 10.1016/S0039-6109(16)45030-9
– ident: pone.0244965.ref071
– volume: 12
  start-page: 58
  year: 1990
  ident: pone.0244965.ref015
  article-title: Backscatter Coefficient Measurements using A Reference Phantom to Extract Depth-dependent Instrumentation Factors
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173469001200105
– volume: 32
  start-page: 1639
  year: 2006
  ident: pone.0244965.ref022
  article-title: Examination of cancer in mouse models using high-frequency quantitative ultrasound
  publication-title: Ultrasound Med. Biol
  doi: 10.1016/j.ultrasmedbio.2006.05.006
– volume: 27
  start-page: 1
  year: 2013
  ident: pone.0244965.ref061
  article-title: Shape and Textural Indexes Application to Cell Nuclei Classification
  publication-title: Int. Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001413570024
– volume: 46
  start-page: 436
  year: 2020
  ident: pone.0244965.ref074
  article-title: Added Value of Quantitative Ultrasound and Machine Learning in BI-RADS 4–5 Assessment of Solid Breast Lesions
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2019.10.024
– ident: pone.0244965.ref060
– volume: 62
  start-page: 7714
  year: 2017
  ident: pone.0244965.ref013
  article-title: A Deep Learning Framework for Supporting the Classification of Breast Lesions in Ultrasound Images
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/1361-6560/aa82ec
– volume: 261
  start-page: 165
  year: 2011
  ident: pone.0244965.ref048
  article-title: Assessment of Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT Texture as a Predictive Biomarker
  publication-title: Radiology
  doi: 10.1148/radiol.11110264
– volume: 23
  start-page: 1292
  year: 2004
  ident: pone.0244965.ref011
  article-title: Computer-aided Diagnosis of Solid Breast Nodules: Use of An Artificial Neural Network Based on Multiple Sonographic Features
  publication-title: IEEE Trans. On Med. Imaging
  doi: 10.1109/TMI.2004.834617
– volume: 7
  start-page: 45733
  year: 2017
  ident: pone.0244965.ref062
  article-title: A Priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound
  publication-title: Nature Scientific Reports
  doi: 10.1038/srep45733
– volume-title: Quantitative ultrasound in soft tissues
  year: 2013
  ident: pone.0244965.ref016
  doi: 10.1007/978-94-007-6952-6
– volume: 37
  start-page: 345
  year: 2011
  ident: pone.0244965.ref037
  article-title: Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes
  publication-title: Ultrasound Med. Biol
  doi: 10.1016/j.ultrasmedbio.2010.11.020
– volume: 51
  start-page: 34
  year: 2011
  ident: pone.0244965.ref066
  article-title: Estimate of the Attenuation Coefficient using a Clinical Array Transducer for the Detection of Cervical Ripening in Human Pregnancy
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2010.05.005
– volume: 23
  start-page: 1371
  year: 1997
  ident: pone.0244965.ref017
  article-title: Statistical framework for ultrasonic spectral parameter imaging
  publication-title: Ultrasound Med Biol
  doi: 10.1016/S0301-5629(97)00200-7
– volume: 4
  start-page: 133
  year: 2000
  ident: pone.0244965.ref028
  article-title: Three-dimensional Ultrasound Analyses of the Prostate
  publication-title: Mol. Urol
– volume: 41
  start-page: 129031
  year: 2014
  ident: pone.0244965.ref038
  article-title: Quantitative Ultrasound Characterization of Locally-advanced Breast Cancer by Estimation of its Scatterer Properties
  publication-title: Med. Phys
  doi: 10.1118/1.4852875
– volume: 21
  start-page: 249
  year: 2015
  ident: pone.0244965.ref039
  article-title: Imaging intratumour heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-14-0990
– volume: 31
  start-page: 1889
  year: 2012
  ident: pone.0244965.ref054
  article-title: Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2206398
– volume: 226
  start-page: 504
  year: 2003
  ident: pone.0244965.ref012
  article-title: Breast Lesions on Sonograms: Computer-aided Diagnosis with Nearly Setting Independent Features and Artificial Neural Networks
  publication-title: Radiology
  doi: 10.1148/radiol.2262011843
– volume: 15
  start-page: 1
  year: 2016
  ident: pone.0244965.ref042
  article-title: Imaging Metabolic Heterogeneity in Cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-015-0481-3
– volume: 66
  start-page: 7
  year: 2016
  ident: pone.0244965.ref001
  article-title: Cancer Statistics
  publication-title: CA Cancer J. Clin
– volume: 44
  start-page: 935
  year: 1997
  ident: pone.0244965.ref018
  article-title: Statistics of ultrasonic spectral parameters for prostate and liver examinations
  publication-title: IEEE Trans Ultrason, Ferroelec, Freq Contr
  doi: 10.1109/58.655209
SSID ssj0053866
Score 2.4583232
Snippet Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall prognosis by...
Purpose Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall...
PurposeAccurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall...
Purpose Accurate and timely diagnosis of breast carcinoma is very crucial because of its high incidence and high morbidity. Screening can improve overall...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0244965
SubjectTerms Acoustics
Algorithms
Artificial neural networks
Biology and Life Sciences
Biophysics
Biopsy
Breast - diagnostic imaging
Breast cancer
Breast carcinoma
Breast Neoplasms - diagnostic imaging
Cancer therapies
Cell adhesion & migration
Classification
Classifiers
Computer and Information Sciences
Diagnosis
Diagnosis, Ultrasonic
Diagnostic systems
Discriminant analysis
Feature extraction
Female
Health sciences
Humans
Image classification
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Imaging techniques
Information processing
Lesions
Magnetic resonance imaging
Malignancy
Mammography
Mathematical models
Matrices (mathematics)
Medical diagnosis
Medical imaging
Medical prognosis
Medicine and Health Sciences
Methods
Morbidity
Neural networks
Oncology
Parameter sensitivity
Performance evaluation
Physical Sciences
Prognosis
Prostate cancer
Radial basis function
Research and Analysis Methods
Spectra
Spectroscopy
Spectrum analysis
Statistical analysis
Support vector machines
Texture
Tumors
Ultrasonography - methods
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXOCCaHk00MKCkICD0_Vj1-tjqagKEiAoQb1Z-yyREieqEyH-PTPejVWLSu2Ba2Z2I89rZ-zZbwh5raxjTkqX5M6KpEgLlSiTicQyK0vt86zqQJI-fxGn0-LTOT-_MuoLe8ICPHAQ3GHlbJYZlhluXSG5lF5xrYzUecVh0w7nk8lqW0yFGAxeLES8KJeX6WHUy2S1bNwETiUESR8cRB1efx-VR6v5sr0u5fy3c_LuplmpP7_VfH7lWDp5QO7HfJIehefYIXdcs0t2ose29G2ElX73kCyO-5GDdOlpGB3dUkhaKXZ_bC4dVRGhBOnfpmcUccEXOHLL0NkCAk9LZw2FjJGaHuY53OLEBRrb29d07vD9W_uITE8-_Dg-TeKwhcSIKlsn3papy4VR2mfGWa95AfoyUCALk9vUOM2sNtamSsuKMa-181A7eS0dKzzz-WMyakC8e4R6bSrGVcWUg2zLciVAg2gLEv6qcGJM8q3kaxORyHEgxrzuPq-VUJEE4dWorzrqa0ySftUqIHHcwP8eldrzIo529wNYVx2tq77JusbkBZpEHS6l9tGgPhJwqPMSsskxedVxIJZGg-q6UJu2rT9-_XkLprPvA6Y3kckvQRxGxQsS8EyI0TXg3B9wQkQwA_IeGvBWKm2dFSVU_VVWprBya9TXk1_2ZNwUG_Aat9wEHo5fuUEkT4IP9JLN81wiiNKYlAPvGIh-SGlmvzoo87KEjJXDnpPej26l3Kf_Q7nPyL0M3550sJ37ZLS-3LgDSDHX-nkXTf4Cutx_MQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9ACXquXV0AILQgIOTm2vH-sDQm3VqiARoCWoN2ufJVJihzgR4t8zY68NFhX0mp2143nt7O7MN4S8ENr4hnPjMaMTLwoi4QkVJp72NU-lZWFWgyR9GCdnk-j9ZXy5QcZtLQymVbY-sXbUulR4Rn4QRinsXLIwDd4uvnvYNQpvV9sWGsK1VtBvaoixW2QzRGSsAdk8Ohl_Om99M1h3krgCOpYGB05eo0VZmBGsVgie3lugahz_zlsPFrOyui4U_Tuj8va6WIifP8Rs9sdydbpNtlycSQ8bxdghG6a4S3acJVf0lYObfn2PzI-7VoS0tLRpKV1RCGYpZoWsl4YKh1yC458nFxTxwufYikvR6RwcUkWnBYVIkqoO_rmp7sQJEtPeV3Rm8Fyuuk8mpydfjs8814TBU8DtlWd1GhiWKCFtqIy2Mo5Ajgo2zoliOlBG-loqrQMheeb7VkpjYU9lJTd-ZH3LHpBBAezdJdRKlfmxyHxhIArTsUjCUKGOcHhVZJIhYS3nc-UQyrFRxiyvr91S2Kk0zMtRXrmT15B43axFg9DxH_ojFGpHi_ja9Q_l8ip35ppnRsN_80MVaxPxmHMrYikUlyyLQZXZkDxFlcibYtXOS-SHCSz2cQpR5pA8rykQY6NAcV2JdVXl7z5-vQHRxXmP6KUjsiWwQwlXOAHfhNhdPcr9HiV4CtUb3kUFbrlS5b9tCma2Sn398LNuGB-KiXmFKdcNTYy338CSh40NdJxljHEEVxqStGcdPdb3R4rptxriPE0hko3hmaPOjm4k3Ef__o49cifE85IaqHOfDFbLtXkMQeVKPnGe4hcf5Hy2
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQNInjPI6loipIlEdZ1B5Q5Ces2M2umkQIDvx2ZhJvRKCIcuC2isfe5JvxePyYz4Q8ENoEJsuMx4xOvDiMhSdUlHg60FkqLYvyliTp5UGyP4lfHPGjNfJhlQvjEIQ54mxRtTv5-GNRmm2H5DbyFXW7p37I0nBVw1-CkA8jDhKgP2wZh3BlrMYEpHNkPeEQqo_I-uTg9c5xt9MceUkUMJdO96eWBsNVy-rf--4Rvtlpgenv5yvPN-VSfP0iZrOfBq-9S-T76rO7Myuf_aaWvvr2CyPkf8PlMrnowl6607WyQdZMeYVsOMdS0ceO_frJVTLf7W9GpAtLuxuuKwqxNcVDKs2JocIRqWD5m8khRfryOd4Mpuh0Dv6xotOSQmBLVc9G3SWbYgWJp_BrOjO4TFhdI5O9Z-929z13J4SnkjyqPavT0LBECWkjZbSVPAazUjCPTxTToTIy0FJpHQqZ5UFgpTQWpnhWZiaIbWDZdTIqAZFNQq1UecBFHggDQaHmIokihSabwV_FJhkTtlJ9oRxhOt7bMSvaXcAUJk4deAVCXDiIx8Tray07wpC_yD9Fq-plke67fQA6Lpxui9xoeLcgUlybOONZZgWXQmWS5Rx6FhuTu2iTRZc72zutYieB2IOnEPSOyf1WAik_SlTXR9FUVfH81fszCB2-HQg9ckJ2AXAo4fI44JvQBAeSWwNJcFxqULyJNrxCpSqiOI1j0HIaQs1Vrzq9-F5fjI3iOcHSLJpOhuNmPEByo-uEPbKMsQy5nsYkHXTPAfTDknL6qWVcT1MIrDm06fcd-UzKvfmvFW6RCxEu6LRMoltkVJ805jZEvbW843zXD8BntfQ
  priority: 102
  providerName: Unpaywall
Title Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions
URI https://www.ncbi.nlm.nih.gov/pubmed/33382837
https://www.proquest.com/docview/2474469271
https://www.proquest.com/docview/2474501303
https://pubmed.ncbi.nlm.nih.gov/PMC7775053
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244965&type=printable
https://doaj.org/article/9ed22c02c5de48588fa5bac8b395c263
http://dx.doi.org/10.1371/journal.pone.0244965
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF616QO8IMrVQAkLQhwPjnwfDwilUUNBaigtqcKTtWeJ5NhpnAj675mxNxYWBfriB8_sJp5jZ_b6hpCXTCpbxbGyPCVDy3d8ZjHhhpa0ZRxx7blJBZJ0PA6PJv6naTDdIpuNdiPA8tqpHdaTmiyz_s_Lq_fg8O-qqg2Rs2nUXxS56kPMQQj0V4tLC0tL4RasqbOxTXYgfCVY3-HYb7YawOHD0Nyp-1tnrZhVQfs3A3hnkRXlddnpn4csb63zBbv6wbLstwg2ukvumNSTDmpb2SVbKr9Hdo1zl_SNQaB-e5_Mh011QlpoWleZLinktxQPiqyXijIDZoL0L5MzihDic6zOJehsDmNUSWc5heSSigYRur7wiQ04noRf0UzhUl35gExGh1-HR5apy2CJMHFXlpaRo7xQMK5doaTmgQ-qFTCXDoUnHaG4LbmQ0mE8Tmxbc640TLM0j5Xta1t7D0knB_HuEaq5SOyAJTZTkJjJgIWuK9BsYvgpX4Vd4m0knwoDWo61M7K02omLYPJSCy9FfaVGX11iNa0WNWjHf_gPUKkNL0JuVy-K5UVqPDhNlIT_ZrsikMqPgzjWLOBMxNxLArBur0ueoUmk9f3VZuBIByHE_yCCxLNLXlQcCLuRo7ou2Los04-fz2_AdHbaYnptmHQB4hDM3KWAb0I4rxbnfosTBg_RIu-hAW-kUqauH_k-aDlyoOXGqK8nP2_I2Cme1ctVsa55AtwQB5E8qn2gkazneTHiLXVJ1PKOlujblHz2vUI9jyJIbgPos9_40Y2U-_jf3_GE3HZxCaXC7twnndVyrZ5CnrniPbIdTSN4xkMHn6MPPbJzcDg-Oe1VKze9ahyBd5PxyeDbL7tsimQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBqe3184BQKVQNfSBoU-Vm9lkiJXaIE1X9U_xGZuyNwaKCXnr1zq7tee3MPr4h5AVX2tVJoh2mVeQEXsAdLv3IUa5KYmGYn1YgSYdH0d4g-DQMhyvk5_IuDB6rXPrEylGrQuIa-ZYfxJC5pH7svZv-cLBqFO6uLkto1Gqxry_OIWUr3_Y_gHxf-v7ux5OdPcdWFXAkdJ87RsWeZpHkwvhSKyPCAD5MQiYYSaY8qYWrhFTK4yJJXdcIoQ0kCUYk2g2MaxiMe4PcDBj4ErCfeNgkeOA7oshez2Oxt2W1oTctct2DuRCh2VvTX1UloJkLOtNxUV4W6P59XnN1kU_5xTkfj_-YDHfvkNs2iqXbtdqtkRWd3yVr1k-U9LUFs35zj0x2mkKHtDC0LlhdUgiVKZ45Wcw05RYXBdu_DI4popFPsNCXpKMJuLuSjnIKcSqVDbh0fXcUOwg8VD-nY42rfuV9MrgWYTwgnRzYu06oETJ1Q566XEOMp0Ie-b5EDUzgVYGOuoQtOZ9Ji3-OZTjGWbWpF0MeVDMvQ3llVl5d4jS9pjX-x3_o36NQG1pE764eFLOzzDqDLNUKvs31Zah0kIRJYngouEwES0MwFNYlm6gSWX0VtvFB2XYEoUQYQwzbJc8rCkTwyFFcZ3xRlln_8-kViI6_toheWSJTADskt9cy4J8QGaxFudGiBD8kW83rqMBLrpTZb4uFnkulvrz5WdOMg-Kxv1wXi5omxL11YMnD2gYazjLGEoRu6pK4ZR0t1rdb8tH3CkA9jiFODmHMXmNHVxLuo3__xyZZ3Ts5PMgO-kf7j8ktH1dmKkjQDdKZzxb6CYSvc_G08hmUfLtuJ_ULb3a3lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBDujTO5wNCY6NaGYyPUdS34M9RqU1K02rav8Zfx13iBCIm2Mte67Pr3J3Pd_b5d4Q84Uq7Oo61w7QKHb_vc4dLL3SUq-JIGOYlJUjS-8Nwf-S_HQfjNfKzfguDaZW1TSwNtcolnpFve34EkUviRf1tY9MiPu4NXs1_OFhBCm9a63IalYoc6NMTCN-Kl8M9kPVTzxu8-bK779gKA46EoZaOUVFfs1ByYTyplRGBD5OUEBWGkqm-1MJVQirV5yJOXNcIoQ0EDEbE2vWNaxiMe4lcjhhLMJ0wGjfBHtiRMLRP9RjM2WpGb55nugf7IsK0t7bCsmJAsy905tO8OMvp_Tt38-oqm_PTEz6d_rExDm6Q69ajpTuVCq6TNZ3dJOvWZhT0uQW2fnGLzHabooc0N7QqXl1QcJspMnq10JRbjBRs_zQ6oohMPsOiX5JOZmD6CjrJKPisVDZA09U7UuwgMMF-SacaTwCL22R0IcK4QzoZsHeDUCNk4gY8cbkGf08FPPQ8idoYw1_5OuwSVnM-lRYLHUtyTNPygi-CmKhiXorySq28usRpes0rLJD_0L9GoTa0iORd_pAvjlNrGNJEK5ib68lAaT8O4tjwQHAZC1ApWDSsS7ZQJdLqWWxjj9KdENyKIAJ_tkselxSI5pGhuI75qijS4Yev5yA6-twiemaJTA7skNw-0YBvQpSwFuVmixJskmw1b6AC11wp0t-rF3rWSn1286OmGQfFFMBM56uKJsB7dmDJ3WoNNJxljMUI49QlUWt1tFjfbskm30sw9SgCnzmAMXvNOjqXcO_9-zu2yBUwT-m74eHBfXLNw0OaEh10k3SWi5V-AJ7sUjwsTQYl3y7aRv0C5Oq72g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQNInjPI6loipIlEdZ1B5Q5Ces2M2umkQIDvx2ZhJvRKCIcuC2isfe5JvxePyYz4Q8ENoEJsuMx4xOvDiMhSdUlHg60FkqLYvyliTp5UGyP4lfHPGjNfJhlQvjEIQ54mxRtTv5-GNRmm2H5DbyFXW7p37I0nBVw1-CkA8jDhKgP2wZh3BlrMYEpHNkPeEQqo_I-uTg9c5xt9MceUkUMJdO96eWBsNVy-rf--4Rvtlpgenv5yvPN-VSfP0iZrOfBq-9S-T76rO7Myuf_aaWvvr2CyPkf8PlMrnowl6607WyQdZMeYVsOMdS0ceO_frJVTLf7W9GpAtLuxuuKwqxNcVDKs2JocIRqWD5m8khRfryOd4Mpuh0Dv6xotOSQmBLVc9G3SWbYgWJp_BrOjO4TFhdI5O9Z-929z13J4SnkjyqPavT0LBECWkjZbSVPAazUjCPTxTToTIy0FJpHQqZ5UFgpTQWpnhWZiaIbWDZdTIqAZFNQq1UecBFHggDQaHmIokihSabwV_FJhkTtlJ9oRxhOt7bMSvaXcAUJk4deAVCXDiIx8Tray07wpC_yD9Fq-plke67fQA6Lpxui9xoeLcgUlybOONZZgWXQmWS5Rx6FhuTu2iTRZc72zutYieB2IOnEPSOyf1WAik_SlTXR9FUVfH81fszCB2-HQg9ckJ2AXAo4fI44JvQBAeSWwNJcFxqULyJNrxCpSqiOI1j0HIaQs1Vrzq9-F5fjI3iOcHSLJpOhuNmPEByo-uEPbKMsQy5nsYkHXTPAfTDknL6qWVcT1MIrDm06fcd-UzKvfmvFW6RCxEu6LRMoltkVJ805jZEvbW843zXD8BntfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+methods+for+texture+analysis+of+QUS+parametric+images+in+the+characterization+of+breast+lesions&rft.jtitle=PloS+one&rft.au=Osapoetra%2C+Laurentius+O&rft.au=Chan%2C+William&rft.au=Tran%2C+William&rft.au=Kolios%2C+Michael+C&rft.date=2020-12-31&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0244965&rft_id=info:doi/10.1371%2Fjournal.pone.0244965&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon