Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoo...
Saved in:
| Published in | PloS one Vol. 13; no. 4; p. e0195875 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
19.04.2018
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0195875 |
Cover
| Abstract | We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules. |
|---|---|
| AbstractList | We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules. We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules. |
| Audience | Academic |
| Author | Kojima, Ryosuke Yakami, Masahiro Sugiyama, Osamu Togashi, Kaori Kuroda, Tomohiro Nishio, Mizuho Nishizawa, Mitsuo |
| AuthorAffiliation | 3 Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan 4 Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Kyoto, Japan Janssen Research and Development, UNITED STATES 2 Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan 1 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan 5 Division of Medical Information Technology and Administrative Plannnig, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan |
| AuthorAffiliation_xml | – name: 4 Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Kyoto, Japan – name: 2 Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan – name: 5 Division of Medical Information Technology and Administrative Plannnig, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan – name: 1 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan – name: 3 Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan – name: Janssen Research and Development, UNITED STATES |
| Author_xml | – sequence: 1 givenname: Mizuho orcidid: 0000-0002-6037-2338 surname: Nishio fullname: Nishio, Mizuho – sequence: 2 givenname: Mitsuo surname: Nishizawa fullname: Nishizawa, Mitsuo – sequence: 3 givenname: Osamu surname: Sugiyama fullname: Sugiyama, Osamu – sequence: 4 givenname: Ryosuke surname: Kojima fullname: Kojima, Ryosuke – sequence: 5 givenname: Masahiro surname: Yakami fullname: Yakami, Masahiro – sequence: 6 givenname: Tomohiro surname: Kuroda fullname: Kuroda, Tomohiro – sequence: 7 givenname: Kaori surname: Togashi fullname: Togashi, Kaori |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29672639$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkluL1DAUx4usuBf9BqIFQfRhxrRpksYHYR28DCwseHs0pMlpJ0MmmW1Sdfz0Zi67zCyLLH1oc_o7_3PO_-Q0O3LeQZY9LdC4wKx4M_dD76QdL1N4jApOakYeZCcFx-WIlggf7X0fZ6chzBEiuKb0UXZccspKivlJ9nPiF8shQj-SRoPOtZGd88GE3Le5HVyXO68HC_kQTDp0vdQGXMxjD5A33oe4Dkun8_dyBcFIl_tlNAvzV0bj3ePsYSttgCe791n2_eOHb5PPo4vLT9PJ-cVIUV7GETBQtUIMQ6MB8RYjySpFEcZ12RBgBdRYK0ZlVUvW8LJqi4LwtqW8RgiQxmfZ863u0vogdtYEUaKSUVwRghIx3RLay7lY9mYh-5Xw0ohNwPedkH00yoLQqpGMEKwY55VCqV6NMGto1RSp0ZYmLbLVGtxSrn5La28ECyTW27luQay3I3bbSXnvdl0OzQK0Skb20h40c_jHmZno_C9BOKpLXCaBVzuB3l8NEKJYmKDAWunAD5t561QKUZ7QF7fQu13ZUZ1MgxvX-lRXrUXFOcEEY0aq9bzjO6j0aFgYlSZsTYofJLw-SEhMhD-xk0MIYvr1y_3Zyx-H7Ms9dgbSxlnwdlhftXAIPtt3-sbi64ufgGoLqN6H0EN73w2-vZWmTNzc9OSIsf9P_gcaWCuj |
| CitedBy_id | crossref_primary_10_1371_journal_pgph_0000495 crossref_primary_10_1007_s10439_020_02662_2 crossref_primary_10_1038_s41598_020_60202_3 crossref_primary_10_1007_s41870_023_01260_4 crossref_primary_10_1016_j_bspc_2024_107022 crossref_primary_10_1038_s41598_022_14006_2 crossref_primary_10_2196_10212 crossref_primary_10_1016_j_enbuild_2019_109564 crossref_primary_10_3390_en18061432 crossref_primary_10_1371_journal_pone_0207661 crossref_primary_10_1042_BSR20212416 crossref_primary_10_1142_S179396232243005X crossref_primary_10_2196_19739 crossref_primary_10_1007_s00432_019_03098_5 crossref_primary_10_21015_vtse_v11i2_1500 crossref_primary_10_3389_fonc_2021_665929 crossref_primary_10_1007_s11831_021_09648_w crossref_primary_10_3390_sym16121643 crossref_primary_10_1007_s42979_024_03251_z crossref_primary_10_1002_ima_22841 crossref_primary_10_1016_j_heliyon_2022_e09311 crossref_primary_10_1007_s10479_022_04964_1 crossref_primary_10_1371_journal_pone_0273319 crossref_primary_10_1002_ima_22528 crossref_primary_10_1007_s12149_019_01414_0 crossref_primary_10_3389_fenvs_2022_803368 crossref_primary_10_1109_TCBB_2021_3071022 crossref_primary_10_3390_jimaging6020006 crossref_primary_10_2174_1386207323666200714002459 crossref_primary_10_1109_ACCESS_2021_3054735 crossref_primary_10_1016_j_mri_2021_10_024 crossref_primary_10_1007_s10916_019_1327_0 crossref_primary_10_1007_s12471_019_1285_7 crossref_primary_10_3389_fradi_2023_1181190 crossref_primary_10_2214_AJR_19_22594 crossref_primary_10_1016_j_ejro_2024_100551 crossref_primary_10_1088_2057_1976_ad9154 crossref_primary_10_3390_info10120367 crossref_primary_10_3233_XST_200660 crossref_primary_10_3389_fonc_2024_1408199 crossref_primary_10_12677_mos_2024_134387 crossref_primary_10_1136_bmjopen_2020_039676 crossref_primary_10_1007_s12553_022_00679_2 crossref_primary_10_32604_cmc_2022_026855 crossref_primary_10_1109_JIOT_2023_3303429 crossref_primary_10_1109_ACCESS_2020_3026080 crossref_primary_10_1061_JWRMD5_WRENG_6334 crossref_primary_10_1109_TSC_2020_3004627 crossref_primary_10_1055_a_1752_0839 crossref_primary_10_1055_a_2159_6949 crossref_primary_10_1186_s12859_020_03949_w crossref_primary_10_1007_s12303_024_0041_1 crossref_primary_10_1007_s13246_022_01150_2 crossref_primary_10_1111_bju_15122 crossref_primary_10_1007_s11356_022_23132_3 crossref_primary_10_1038_s41598_024_65397_3 crossref_primary_10_3390_app11073273 crossref_primary_10_1007_s42979_024_02662_2 crossref_primary_10_1080_24725579_2021_1995536 crossref_primary_10_1136_bmjopen_2021_056685 crossref_primary_10_1177_10225536241249591 crossref_primary_10_1038_s41598_019_48769_y crossref_primary_10_1080_17512433_2023_2142561 crossref_primary_10_1007_s11831_025_10239_2 crossref_primary_10_1038_s41598_020_76389_4 crossref_primary_10_1016_j_acra_2019_07_030 crossref_primary_10_3390_app12147253 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Nishio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Nishio et al 2018 Nishio et al |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Nishio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Nishio et al 2018 Nishio et al |
| DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0195875 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | CADx of lung nodule using gradient tree boosting and Bayesian optimization |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2027634550 oai_doaj_org_article_dcba7553c7994c0b928037b64b1e7ef6 10.1371/journal.pone.0195875 PMC5908232 A535337546 29672639 10_1371_journal_pone_0195875 |
| Genre | Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ACCTH ADTOC AFFHD BBTPI UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c692t-e7ec8c073ebde09f30a74c603382b5e71e83dc76a48a7b924f1159ff69800e0d3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 02 11:04:09 EDT 2023 Tue Oct 14 19:00:45 EDT 2025 Wed Oct 29 11:52:38 EDT 2025 Tue Sep 30 16:56:39 EDT 2025 Mon Sep 08 05:56:37 EDT 2025 Tue Oct 07 07:55:58 EDT 2025 Mon Oct 20 22:06:44 EDT 2025 Mon Oct 20 16:29:24 EDT 2025 Thu Oct 16 15:09:52 EDT 2025 Thu Oct 16 14:46:06 EDT 2025 Thu May 22 21:21:15 EDT 2025 Thu Apr 03 07:01:43 EDT 2025 Wed Oct 01 04:04:09 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-e7ec8c073ebde09f30a74c603382b5e71e83dc76a48a7b924f1159ff69800e0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-6037-2338 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0195875 |
| PMID | 29672639 |
| PQID | 2027634550 |
| PQPubID | 1436336 |
| PageCount | e0195875 |
| ParticipantIDs | plos_journals_2027634550 doaj_primary_oai_doaj_org_article_dcba7553c7994c0b928037b64b1e7ef6 unpaywall_primary_10_1371_journal_pone_0195875 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5908232 proquest_miscellaneous_2028958069 proquest_journals_2027634550 gale_infotracmisc_A535337546 gale_infotracacademiconefile_A535337546 gale_incontextgauss_ISR_A535337546 gale_incontextgauss_IOV_A535337546 gale_healthsolutions_A535337546 pubmed_primary_29672639 crossref_primary_10_1371_journal_pone_0195875 crossref_citationtrail_10_1371_journal_pone_0195875 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-19 |
| PublicationDateYYYYMMDD | 2018-04-19 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | K Arai (ref18) 2012; 3 K Doi (ref13) 2007; 31 ref36 M Kawagishi (ref8) 2017; 12 H Chen (ref19) 2010; 17 T Way (ref17) 2010; 17 Sandy Napel (ref35) K Suzuki (ref4) 2012; 2 T Ojala (ref30) 2002; 24 P Cao (ref12) 2017; 64 C-C Chang (ref24) 2011; 2 O Gevaert (ref33) 2012; 264 SLA Lee (ref5) 2012; 23 A El-Baz (ref6) 2013; 2013 D lin (ref7) 2016; 216 K Clark (ref32) 2013; 26 K Suzuki (ref15) 2017 G Zhao (ref31) 2007; 29 AO de Carvalho Filho (ref10) 2017 H Mahersia (ref16) 2015; 4 F Ciompi (ref22) 2017; 7 L Torlay (ref38) 2017 T Schubert (ref42); 2016 Y Liu (ref37) 2017 ref26 RL Siegel (ref1) 2016; 66 M Liang (ref23) 2016; 281 ref43 T Chen (ref25) 2016 J Bergstra (ref28) 2012; 13 J Benzakoun (ref9) 2016; 85 ref27 SG 3rd Armato (ref20) 2015; 2 M Nishio (ref11) 2017; 24 S Matsumoto (ref14) 2006; 10 T Ojala (ref29) 1996; 29 R Lorenz (ref41); 2016 B Wei (ref39) 2013; 58 (ref2) 2011; 365 DR Aberle (ref3) 2013; 31 ref40 SG Armato III (ref34) SG 3rd Armato (ref21) 2016; 3 28526968 - J Digit Imaging. 2017 Dec;30(6):812-822 27019363 - Radiology. 2016 Oct;281(1):279-88 28110797 - Acad Radiol. 2017 Mar;24(3):328-336 20152726 - Acad Radiol. 2010 Mar;17 (3):323-32 26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 16542867 - Med Image Anal. 2006 Jun;10 (3):343-52 22723499 - Radiology. 2012 Aug;264(2):387-96 28434153 - Brain Inform. 2017 Sep;4(3):159-169 23431282 - Int J Biomed Imaging. 2013;2013:942353 28018939 - J Med Imaging (Bellingham). 2016 Oct;3(4):044506 28422152 - Sci Rep. 2017 Apr 19;7:46479 28545836 - J Biomed Inform. 2017 Nov;75S:S105-S111 23256078 - Quant Imaging Med Surg. 2012 Sep;2(3):163-76 21714641 - N Engl J Med. 2011 Aug 4;365(5):395-409 27666609 - Eur J Radiol. 2016 Oct;85(10 ):1728-1734 23884657 - J Digit Imaging. 2013 Dec;26(6):1045-57 20167513 - Acad Radiol. 2010 May;17 (5):595-602 23401434 - J Clin Oncol. 2013 Mar 10;31(8):1002-8 17349778 - Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211 26158094 - J Med Imaging (Bellingham). 2015 Apr;2(2):020103 17431293 - IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):915-28 28285338 - Int J Comput Assist Radiol Surg. 2017 May;12 (5):767-776 |
| References_xml | – volume: 7 start-page: 46479 year: 2017 ident: ref22 article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning – start-page: 785 year: 2016 ident: ref25 article-title: XGBoost: A Scalable Tree Boosting System – volume: 264 start-page: 387 issue: 2 year: 2012 ident: ref33 article-title: Non–Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data—Methods and Preliminary Results – volume: 66 start-page: 7 issue: 1 year: 2016 ident: ref1 article-title: Cancer statistics, 2016 – volume: 85 start-page: 1728 issue: 10 year: 2016 ident: ref9 article-title: Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system – volume: 13 start-page: 281 year: 2012 ident: ref28 article-title: Random Search for Hyper-Parameter Optimization – ident: ref34 article-title: SPIE-AAPM-NCI Lung Nodule Classification Challenge Dataset publication-title: The Cancer Imaging Archive – start-page: 1 year: 2017 ident: ref10 article-title: Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM – volume: 29 start-page: 51 issue: 1 year: 1996 ident: ref29 article-title: A comparative study of texture measures with classification based on featured distributions – ident: ref43 – volume: 23 start-page: 151 issue: 1 year: 2012 ident: ref5 article-title: Automated detection of lung nodules in computed tomography images: a review – start-page: 9 year: 2017 ident: ref15 article-title: Image-Based Computer-Assisted Radiation Therapy – volume: 24 start-page: 328 issue: 3 year: 2017 ident: ref11 article-title: Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity – volume: 3 start-page: 89 issue: 4 year: 2012 ident: ref18 article-title: Comparison of 2D and 3D Local Binary Pattern in Lung Cancer Diagnosis – volume: 2016 start-page: 5548 ident: ref42 article-title: Automatic bone parameter estimation for skeleton tracking in optical motion capture – volume: 58 start-page: 2828 issue: 23 year: 2013 ident: ref39 article-title: Bayesian optimization algorithm-based methods searching for risk/protective factors – ident: ref27 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: ref24 article-title: LIBSVM: a library for support vector machines publication-title: LIBSVM: a library for support vector machines – volume: 17 start-page: 323 issue: 3 year: 2010 ident: ref17 article-title: Computer-Aided Diagnosis of Lung Nodules on CT Scans: ROC Study of Its Effect on Radiologists’ Performance – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: ref32 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository – start-page: 1 year: 2017 ident: ref38 article-title: Machine learning—XGBoost analysis of language networks to classify patients with epilepsy – volume: 31 start-page: 1002 issue: 8 year: 2013 ident: ref3 article-title: Computed tomography screening for lung cancer: has it finally arrived? Implications of the national lung screening trial – volume: 12 start-page: 767 issue: 5 year: 2017 ident: ref8 article-title: A study of computer-aided diagnosis for pulmonary nodule: comparison between classification accuracies using calculated image features and imaging findings annotated by radiologists – volume: 17 start-page: 595 issue: 5 year: 2010 ident: ref19 article-title: Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images – volume: 281 start-page: 279 issue: 1 year: 2016 ident: ref23 article-title: Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers – volume: 365 start-page: 395 issue: 5 year: 2011 ident: ref2 article-title: Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening – ident: ref36 – volume: 2 start-page: 163 issue: 3 year: 2012 ident: ref4 article-title: A review of computer-aided diagnosis in thoracic and colonic imaging – volume: 4 start-page: 38 issue: 4 year: 2015 ident: ref16 article-title: Lung Cancer Detection on CT Scan Images: A Review on the Analysis Techniques – year: 2017 ident: ref37 article-title: Symptom severity classification with gradient tree boosting – volume: 2 start-page: 20103 issue: 2 year: 2015 ident: ref20 article-title: LUNGx Challenge for computerized lung nodule classification: reflections and lessons learned – volume: 2016 start-page: 1 ident: ref41 article-title: Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization – volume: 2013 start-page: 942353 year: 2013 ident: ref6 article-title: Computer-aided diagnosis systems for lung cancer: challenges and methodologies – volume: 31 start-page: 198 issue: 4–5 year: 2007 ident: ref13 article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential – volume: 10 start-page: 343 issue: 3 year: 2006 ident: ref14 article-title: Pulmonary nodule detection in CT images with quantized convergence index filter – volume: 24 start-page: 971 issue: 7 year: 2002 ident: ref30 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns – ident: ref40 – volume: 3 start-page: 44506 issue: 4 year: 2016 ident: ref21 article-title: LUNGx Challenge for computerized lung nodule classification – volume: 29 start-page: 915 issue: 6 year: 2007 ident: ref31 article-title: Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions – ident: ref26 – volume: 64 start-page: 327 year: 2017 ident: ref12 article-title: A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules – volume: 216 start-page: 700 year: 2016 ident: ref7 article-title: Neural networks for computer-aided diagnosis in medicine: A review – ident: ref35 article-title: NSCLC Radiogenomics: Initial Stanford Study of 26 Cases publication-title: The Cancer Imaging Archive. – reference: 23256078 - Quant Imaging Med Surg. 2012 Sep;2(3):163-76 – reference: 27019363 - Radiology. 2016 Oct;281(1):279-88 – reference: 28110797 - Acad Radiol. 2017 Mar;24(3):328-336 – reference: 17431293 - IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):915-28 – reference: 20152726 - Acad Radiol. 2010 Mar;17 (3):323-32 – reference: 28545836 - J Biomed Inform. 2017 Nov;75S:S105-S111 – reference: 28434153 - Brain Inform. 2017 Sep;4(3):159-169 – reference: 21714641 - N Engl J Med. 2011 Aug 4;365(5):395-409 – reference: 28526968 - J Digit Imaging. 2017 Dec;30(6):812-822 – reference: 27666609 - Eur J Radiol. 2016 Oct;85(10 ):1728-1734 – reference: 20167513 - Acad Radiol. 2010 May;17 (5):595-602 – reference: 26158094 - J Med Imaging (Bellingham). 2015 Apr;2(2):020103 – reference: 26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 – reference: 28018939 - J Med Imaging (Bellingham). 2016 Oct;3(4):044506 – reference: 23431282 - Int J Biomed Imaging. 2013;2013:942353 – reference: 22723499 - Radiology. 2012 Aug;264(2):387-96 – reference: 23884657 - J Digit Imaging. 2013 Dec;26(6):1045-57 – reference: 16542867 - Med Image Anal. 2006 Jun;10 (3):343-52 – reference: 28422152 - Sci Rep. 2017 Apr 19;7:46479 – reference: 28285338 - Int J Comput Assist Radiol Surg. 2017 May;12 (5):767-776 – reference: 17349778 - Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211 – reference: 23401434 - J Clin Oncol. 2013 Mar 10;31(8):1002-8 |
| SSID | ssj0053866 |
| Score | 2.573862 |
| Snippet | We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0195875 |
| SubjectTerms | Algorithms Archives & records Artificial intelligence Bayesian analysis Biology and Life Sciences Care and treatment Classification Computed tomography Computer and Information Sciences Data search Diagnosis Diagnostic systems Drug dosages Gene expression Hospitals Information processing Learning algorithms Lifestyles Lung cancer Lung nodules Machine learning Mathematical analysis Medical diagnosis Medical imaging Medical imaging equipment Medical screening Medicine and Health Sciences Methods Nodules Nuclear medicine Optimization Parameter estimation Parameters People and Places Physical Sciences Research and Analysis Methods Support vector machines University graduates |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBBzSeuPEj2OLqAoHkICinoj8ylIpJKtmV6j_npnEG21EpfbAdf0lUr6Zscfrmc-EvBZKV0Irk2besjTPpE2tVCENRgTriwrTCKy2-CxOTvNPZ8XZ1lVfWBM2yAMPxB14Z40sCu6k1rljVuN1StKK3M6DDFUvts2U3mymhjkYoliI2CjH5fwg2mV_2TZhH1vk-rrCrYWo1-sfZ-XZsm67q1LOfysnb6-bpbn8Y-p6a1k6vkfuxnySHg7fsUNuheY-2YkR29G3UVb63QPyc3OBQ4qqkJ76ocjuvKNtRWuIedq0fl0HiqXwC7q46IvBVhSPrSnk4h0WSFPTeHpkLgP2XtIW5pvfsZHzITk9_vD9_Ukab1dIndDZKgX2nHIQ4WCTwHTFmZG5Ewz2rJktgpwHxb2TwuTKSKA9ryB51BValrHAPH9EZg3wuUtoHjxXFSusz3guM2Y5rPq2mjvnAJmrhPAN1aWL0uN4A0Zd9udpErYgA1slGqiMBkpIOj61HKQ3rsEfoRVHLApn9z-AO5XRncrr3CkhL9AHyqELdQz_8rDgkBjLIgfEqx6B4hkNVucszLrryo9fftwA9O3rBPQmgqoW6HAmdkTAN6Eo1wS5N0HCFOAmw7vosRtWuhL_0RIcG9bhyY0XXz38chzGl2LFXRPadY9RQCsTOiGPB6cfmc20kBmktgmRk3CYUD8dac5_9drlhcaj3Swh-2Pg3Mi4T_6HcZ-SO5DvKjwMnOs9MltdrMMzyClX9nk_ffwFNmd2ow priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHk1UGBBSMDBYeO1d-0DQg1qVTgEVCjqCWtfDpWMHeJEqP-eGXttalFBr9nPlnZmZzybmfmGkOciSXORJioIrWZBFEodaJm4wCnhtI1zDCOw2mIujk6iD6fx6RaZd70wWFbZ-cTGUdvK4H_kzSVdcOzBfbv8GeDUKMyudiM0lB-tYN80FGPXyHaIzFgjsj07mH867nwzWLcQvoGOy-lrr6_JsirdBFvnmnrDCx-ohse_99ajZVHVl4Wif1dUXt-US3X-SxXFhc_V4S1y08eZdL89GDtky5W3yY635Jq-9HTTr-6Qb91ghwDZIi21bfHdWU2rnBbgC2hZ2U3hKJbIL-hi1RSJrSmmsynE6DUWTlNVWjpT5w57MmkFfuiHb_C8S04OD768Owr81IXAiDRcB046kxiwfNCVY2nOmZKREQzusqGOnZy6hFsjhYoSJTVc33IIKtMcNc6YY5bfI6MS5LlLaOQsT3IWaxvySIZMc4gGdD41xgAySsaEd6LOjKckx8kYRdbk2SRcTVppZaigzCtoTIL-qWVLyfEf_Ay12GORULv5oVotMm-fmTVayTjmRqZpZBjsK2FcahHpKQgkF2PyBM9A1nan9m4h2485BMwyjgDxrEEgqUaJVTsLtanr7P3Hr1cAfT4egF54UF6BOIzynRKwJyTrGiD3BkhwDWawvIsntpNKnf0xIniyO8WXLz_tl_GlWIlXumrTYBIQKxPpmNxvD30v2TAVMoSQd0zkwBwGoh-ulGffG07zOMWUbzgmk95wrqTcB__ex0NyAyLcBNN_03SPjNarjXsEUeRaP_au4Te9YXRo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFI6o0TOzluEVXhUBBQVA4QxY6zVIRk1SRC5cBvZyZxIgJFlAO3VfzZWn8eT8aZhwl5IKI4F3GUun6mmBv4UrlKRsY1qTAqC3M0IzDaYl_sHQQvDsPDNfJhyIWxDMIZsajqzpOPP6rSbFsmt7FeUe899eZczoce3gpAHqa_gQX-sKs4hF_GGkxAOkfWRQim-oysH-y_WrzvPc2-K3zGbTrdn0aavK66qv6j7p7hPzvNMP09vvJ8W67Sk69pUfz08tq9RL4P0-5jVj57baM8_e2XipD_jZfL5KI1e-miH2WDrJnyCtmwiqWmj2316ydXycfhngkXi1dmNOtjAY9qWuW0ANVEyyprC0MxYn9Jl8ddzFpD0btO4chQYxw3TcuM7qQnBlNEaQVq8YvNN71GDnafvX2659pLIFwtYr9xjTQ60qCIQHQMi3POUhloweBo7avQyLmJeKalSIMolQpOkznYuHGOAsiYYRm_TmYlULBJaGAyHuUsVJnPA-kzxcE4Uflcaw3IIHIIH9Y60bZCOl7UUSSd20_CSalnK0FOE8upQ9yx16qvEPIX_A6K0YjF-t7dA1jUxC5mkmmVyjDkWsZxoBnMK2JcKhGoORCSC4fcRSFM-mTZUUsli5CD_S7DABD3OwTW-CgxiGiZtnWdPH_57gygN68noEcWlFdAh05t4gbMCWVugtyaIEFT6UnzJgrtwEqd4Ic3wTGvHnoO2-j05ntjMw6KgYGlqdoOEwGtTMQOudHvupFZPxbSBwvcIXKyHyfUT1vKo09difUwRg-07xBv3LlnWtyb_9rhFrkAJniE_sl5vEVmzXFrboOZ26g7Vln9ACC9rc0 priority: 102 providerName: Unpaywall |
| Title | Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29672639 https://www.proquest.com/docview/2027634550 https://www.proquest.com/docview/2028958069 https://pubmed.ncbi.nlm.nih.gov/PMC5908232 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195875&type=printable https://doaj.org/article/dcba7553c7994c0b928037b64b1e7ef6 http://dx.doi.org/10.1371/journal.pone.0195875 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUjlfdvKAUDutDCTKNCgqL0S245RJISlNK-h_z12aRER0Yi95iH-O5Dvf-Zz7IuQ5D6OUR6G03UQx23eFspUIjW0kNyoJUjQjMNpiws-m_vtZMNsjTc_WmoDlzqsd9pOaLrPB75-bNyDwr6uuDcJpJg0WRW4GmAAHNvg-OYCzKsJmDh_81q8A0s15nUB31czOAVXV8W-1dW-RFeUuU_TfiMob63whN79klv11XI1vk1u1nUmH241xSPZMfocc1pJc0pd1uelXd8m3prGDjdUiE5psg-8uS1qkNANdQPMiWWeGYoj8nM6XVZDYiqI7m4KNXmLgNJV5QkdyYzAnkxagh37UCZ73yHR8-vnkzK67LtiaR-7KNsLoUIPkA68Mi1KPSeFrzuAu66rACMeEXqIFl34ohYLrWwpGZZQixxkzLPHuk14O9Dwi1DeJF6YsUInr-cJlygNrQKWO1hqQfmgRryF1rOuS5NgZI4srP5uAq8mWWjEyKK4ZZBG7nbXYluT4D36EXGyxWFC7elEs53Etn3GilRRB4GkRRb5msK6QeUJxXzlAkJRb5AnugXibndqqhXgYeGAwi8AHxLMKgUU1cozamct1WcbvPn65BujTRQf0ogalBZBDyzpTAtaExbo6yOMOElSD7gwf4Y5tqFLG-KeLe5jIDjObXbx7-Gk7jB_FSLzcFOsKEwJZGY8s8mC76VvKuhEXLpi8FhEdceiQvjuSX36vapoHEbp8XYsMWsG5FnMfXr3ER-QmWLchuv6c6Jj0Vsu1eQwW5Er1yb6YCXiGJw4-x2_75GB0Ojm_6Ff_ZPqV0oB308n58Osf3z141Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHnVUOiCQMDBwfHau_YBoRaoElqKBC3KCeN9OFQKdogTVflT_EZm7LWpRQW99Jr9bGVnZ7-d8c6DkCc8ijMeR6nra-m5gS-kK0VkXJNyI3WYoRmB0RaHfHgcvB-H4zXyq8mFwbDKhhMrotaFwm_klZPOGebgvp79dLFrFN6uNi00arXYN6tTcNnKV6O3sL5PfX_v3dGboWu7CriKx_7CNcKoSIFmw38xXpwxLxWB4h74ar4MjRiYiGkleBpEqZDgnmRgNMUZzsjzjKcZvPcKuRow4BLYP2LcOnjAHZzb9DwmBi-tNvRnRW76mJhXRTOeOf6qLgHtWdCbTYvyPEP373jN9WU-S1en6XR65jDcu0GuWyuW7tRqt0HWTH6TbFieKOlzW8z6xS3ytWkb4WItSk11Hdp3UtIio1NgGpoXejk1FAPwJ3Qyr0LQFhQvyyl4ACWGZdM013Q3XRnM-KQFsNwPmz56mxxfivTvkF4O8twkNDCaRZkXSu2zQPieZGBryGyglAJkEDmENaJOlC14jn03pkl1iyfA8amlleACJXaBHOK2T83qgh__we_iKrZYLNdd_VDMJ4nd_YlWMhVhyJSI40B5MK_IY0LyQA5AIBl3yDbqQFLnvrakk-yEDMxxEQaAeFwhsGRHjjFBk3RZlsno45cLgD5_6oCeWVBWgDhUavMwYE5YCqyD3OoggXhUZ3gTNbaRSpn82aLwZKPF5w8_aofxpRjnl5tiWWEiEKvHY4fcrZW-lawfc-GDQe0Q0dkOHdF3R_KT71XF9DDGC2XfIf1241xoce_9ex7bZH149OEgORgd7t8n18CWjvCicRBvkd5ivjQPwF5dyIcVSVDy7bJZ6TdwJKqd |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGAGgYCHlDRO7OQBoY1RrQwNBBvqEyF2nDKpJKVpNfVf46_jznHCIibYy17rS1Sfz5_v4u_uCHnCozjncZS6fiY9N_CFdKWItKtTrmUW5uhGINvigO8dBe_G4XiN_GpyYZBW2WCiAeqsVPiN3ATpnJmq2rmlRXzcHb6e_XSxgxTetDbtNGoT2derEwjfqlejXVjrp74_fHv4Zs-1HQZcxWN_4WqhVaTAyuF_aS_OmZeKQHEP4jZfhloMdMQyJXgaRKmQEKrk4EDFOc7O87SXMXjvJXJZMBYjnVCM22APcIRzm6rHxOCltYz-rCx0H5P0DLPx1FFoOga050JvNi2rs5zev7mbV5fFLF2dpNPpqYNxeINctx4t3a5NcJ2s6eImWbeYUdHntrD1i1vka9NCwsW6lBnNaprfcUXLnE4BdWhRZsuppkjGn9DJ3NDRFhQvzilEAxVStGlaZHQnXWnM_qQlIN4Pm0p6mxxdiPbvkF4B-twgNNAZi3IvlJnPAuF7koHfIfOBUgokg8ghrFF1omzxc-zBMU3MjZ6AIKjWVoILlNgFcojbPjWri3_8R34HV7GVxdLd5odyPkksEiSZkqkIQ6ZEHAfKg3lFHhOSB3IACsm5Q7bQBpI6D7YFoGQ7ZOCaizAAicdGAst3FLgRJumyqpLRhy_nEPr8qSP0zArlJahDpTYnA-aEZcE6kpsdSQAh1RneQItttFIlf7YrPNlY8dnDj9phfCly_gpdLo1MBGr1eOyQu7XRt5r1Yy58cK4dIjrboaP67khx_N1UTw9jvFz2HdJvN865Fvfev-exRa4AHiXvRwf798k1cKsjvHMcxJukt5gv9QNwXRfyocEISr5dNCj9BqhxruA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFI6o0TOzluEVXhUBBQVA4QxY6zVIRk1SRC5cBvZyZxIgJFlAO3VfzZWn8eT8aZhwl5IKI4F3GUun6mmBv4UrlKRsY1qTAqC3M0IzDaYl_sHQQvDsPDNfJhyIWxDMIZsajqzpOPP6rSbFsmt7FeUe899eZczoce3gpAHqa_gQX-sKs4hF_GGkxAOkfWRQim-oysH-y_WrzvPc2-K3zGbTrdn0aavK66qv6j7p7hPzvNMP09vvJ8W67Sk69pUfz08tq9RL4P0-5jVj57baM8_e2XipD_jZfL5KI1e-miH2WDrJnyCtmwiqWmj2316ydXycfhngkXi1dmNOtjAY9qWuW0ANVEyyprC0MxYn9Jl8ddzFpD0btO4chQYxw3TcuM7qQnBlNEaQVq8YvNN71GDnafvX2659pLIFwtYr9xjTQ60qCIQHQMi3POUhloweBo7avQyLmJeKalSIMolQpOkznYuHGOAsiYYRm_TmYlULBJaGAyHuUsVJnPA-kzxcE4Uflcaw3IIHIIH9Y60bZCOl7UUSSd20_CSalnK0FOE8upQ9yx16qvEPIX_A6K0YjF-t7dA1jUxC5mkmmVyjDkWsZxoBnMK2JcKhGoORCSC4fcRSFM-mTZUUsli5CD_S7DABD3OwTW-CgxiGiZtnWdPH_57gygN68noEcWlFdAh05t4gbMCWVugtyaIEFT6UnzJgrtwEqd4Ic3wTGvHnoO2-j05ntjMw6KgYGlqdoOEwGtTMQOudHvupFZPxbSBwvcIXKyHyfUT1vKo09difUwRg-07xBv3LlnWtyb_9rhFrkAJniE_sl5vEVmzXFrboOZ26g7Vln9ACC9rc0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+lung+nodule+using+gradient+tree+boosting+and+Bayesian+optimization&rft.jtitle=PloS+one&rft.au=Nishio%2C+Mizuho&rft.au=Nishizawa%2C+Mitsuo&rft.au=Sugiyama%2C+Osamu&rft.au=Kojima%2C+Ryosuke&rft.date=2018-04-19&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0195875&rft.externalDocID=2027634550 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |