Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 4; p. e0195875
Main Authors Nishio, Mizuho, Nishizawa, Mitsuo, Sugiyama, Osamu, Kojima, Ryosuke, Yakami, Masahiro, Kuroda, Tomohiro, Togashi, Kaori
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.04.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0195875

Cover

Abstract We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
AbstractList We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
Audience Academic
Author Kojima, Ryosuke
Yakami, Masahiro
Sugiyama, Osamu
Togashi, Kaori
Kuroda, Tomohiro
Nishio, Mizuho
Nishizawa, Mitsuo
AuthorAffiliation 3 Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan
4 Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Kyoto, Japan
Janssen Research and Development, UNITED STATES
2 Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
1 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
5 Division of Medical Information Technology and Administrative Plannnig, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
AuthorAffiliation_xml – name: 4 Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Kyoto, Japan
– name: 2 Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
– name: 5 Division of Medical Information Technology and Administrative Plannnig, Kyoto University Hospital, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
– name: 1 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Kyoto, Japan
– name: 3 Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan
– name: Janssen Research and Development, UNITED STATES
Author_xml – sequence: 1
  givenname: Mizuho
  orcidid: 0000-0002-6037-2338
  surname: Nishio
  fullname: Nishio, Mizuho
– sequence: 2
  givenname: Mitsuo
  surname: Nishizawa
  fullname: Nishizawa, Mitsuo
– sequence: 3
  givenname: Osamu
  surname: Sugiyama
  fullname: Sugiyama, Osamu
– sequence: 4
  givenname: Ryosuke
  surname: Kojima
  fullname: Kojima, Ryosuke
– sequence: 5
  givenname: Masahiro
  surname: Yakami
  fullname: Yakami, Masahiro
– sequence: 6
  givenname: Tomohiro
  surname: Kuroda
  fullname: Kuroda, Tomohiro
– sequence: 7
  givenname: Kaori
  surname: Togashi
  fullname: Togashi, Kaori
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29672639$$D View this record in MEDLINE/PubMed
BookMark eNqNkluL1DAUx4usuBf9BqIFQfRhxrRpksYHYR28DCwseHs0pMlpJ0MmmW1Sdfz0Zi67zCyLLH1oc_o7_3PO_-Q0O3LeQZY9LdC4wKx4M_dD76QdL1N4jApOakYeZCcFx-WIlggf7X0fZ6chzBEiuKb0UXZccspKivlJ9nPiF8shQj-SRoPOtZGd88GE3Le5HVyXO68HC_kQTDp0vdQGXMxjD5A33oe4Dkun8_dyBcFIl_tlNAvzV0bj3ePsYSttgCe791n2_eOHb5PPo4vLT9PJ-cVIUV7GETBQtUIMQ6MB8RYjySpFEcZ12RBgBdRYK0ZlVUvW8LJqi4LwtqW8RgiQxmfZ863u0vogdtYEUaKSUVwRghIx3RLay7lY9mYh-5Xw0ohNwPedkH00yoLQqpGMEKwY55VCqV6NMGto1RSp0ZYmLbLVGtxSrn5La28ECyTW27luQay3I3bbSXnvdl0OzQK0Skb20h40c_jHmZno_C9BOKpLXCaBVzuB3l8NEKJYmKDAWunAD5t561QKUZ7QF7fQu13ZUZ1MgxvX-lRXrUXFOcEEY0aq9bzjO6j0aFgYlSZsTYofJLw-SEhMhD-xk0MIYvr1y_3Zyx-H7Ms9dgbSxlnwdlhftXAIPtt3-sbi64ufgGoLqN6H0EN73w2-vZWmTNzc9OSIsf9P_gcaWCuj
CitedBy_id crossref_primary_10_1371_journal_pgph_0000495
crossref_primary_10_1007_s10439_020_02662_2
crossref_primary_10_1038_s41598_020_60202_3
crossref_primary_10_1007_s41870_023_01260_4
crossref_primary_10_1016_j_bspc_2024_107022
crossref_primary_10_1038_s41598_022_14006_2
crossref_primary_10_2196_10212
crossref_primary_10_1016_j_enbuild_2019_109564
crossref_primary_10_3390_en18061432
crossref_primary_10_1371_journal_pone_0207661
crossref_primary_10_1042_BSR20212416
crossref_primary_10_1142_S179396232243005X
crossref_primary_10_2196_19739
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_21015_vtse_v11i2_1500
crossref_primary_10_3389_fonc_2021_665929
crossref_primary_10_1007_s11831_021_09648_w
crossref_primary_10_3390_sym16121643
crossref_primary_10_1007_s42979_024_03251_z
crossref_primary_10_1002_ima_22841
crossref_primary_10_1016_j_heliyon_2022_e09311
crossref_primary_10_1007_s10479_022_04964_1
crossref_primary_10_1371_journal_pone_0273319
crossref_primary_10_1002_ima_22528
crossref_primary_10_1007_s12149_019_01414_0
crossref_primary_10_3389_fenvs_2022_803368
crossref_primary_10_1109_TCBB_2021_3071022
crossref_primary_10_3390_jimaging6020006
crossref_primary_10_2174_1386207323666200714002459
crossref_primary_10_1109_ACCESS_2021_3054735
crossref_primary_10_1016_j_mri_2021_10_024
crossref_primary_10_1007_s10916_019_1327_0
crossref_primary_10_1007_s12471_019_1285_7
crossref_primary_10_3389_fradi_2023_1181190
crossref_primary_10_2214_AJR_19_22594
crossref_primary_10_1016_j_ejro_2024_100551
crossref_primary_10_1088_2057_1976_ad9154
crossref_primary_10_3390_info10120367
crossref_primary_10_3233_XST_200660
crossref_primary_10_3389_fonc_2024_1408199
crossref_primary_10_12677_mos_2024_134387
crossref_primary_10_1136_bmjopen_2020_039676
crossref_primary_10_1007_s12553_022_00679_2
crossref_primary_10_32604_cmc_2022_026855
crossref_primary_10_1109_JIOT_2023_3303429
crossref_primary_10_1109_ACCESS_2020_3026080
crossref_primary_10_1061_JWRMD5_WRENG_6334
crossref_primary_10_1109_TSC_2020_3004627
crossref_primary_10_1055_a_1752_0839
crossref_primary_10_1055_a_2159_6949
crossref_primary_10_1186_s12859_020_03949_w
crossref_primary_10_1007_s12303_024_0041_1
crossref_primary_10_1007_s13246_022_01150_2
crossref_primary_10_1111_bju_15122
crossref_primary_10_1007_s11356_022_23132_3
crossref_primary_10_1038_s41598_024_65397_3
crossref_primary_10_3390_app11073273
crossref_primary_10_1007_s42979_024_02662_2
crossref_primary_10_1080_24725579_2021_1995536
crossref_primary_10_1136_bmjopen_2021_056685
crossref_primary_10_1177_10225536241249591
crossref_primary_10_1038_s41598_019_48769_y
crossref_primary_10_1080_17512433_2023_2142561
crossref_primary_10_1007_s11831_025_10239_2
crossref_primary_10_1038_s41598_020_76389_4
crossref_primary_10_1016_j_acra_2019_07_030
crossref_primary_10_3390_app12147253
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Nishio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Nishio et al 2018 Nishio et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Nishio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Nishio et al 2018 Nishio et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0195875
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
Agricultural Science Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate CADx of lung nodule using gradient tree boosting and Bayesian optimization
EISSN 1932-6203
ExternalDocumentID 2027634550
oai_doaj_org_article_dcba7553c7994c0b928037b64b1e7ef6
10.1371/journal.pone.0195875
PMC5908232
A535337546
29672639
10_1371_journal_pone_0195875
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-e7ec8c073ebde09f30a74c603382b5e71e83dc76a48a7b924f1159ff69800e0d3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:09 EDT 2023
Tue Oct 14 19:00:45 EDT 2025
Wed Oct 29 11:52:38 EDT 2025
Tue Sep 30 16:56:39 EDT 2025
Mon Sep 08 05:56:37 EDT 2025
Tue Oct 07 07:55:58 EDT 2025
Mon Oct 20 22:06:44 EDT 2025
Mon Oct 20 16:29:24 EDT 2025
Thu Oct 16 15:09:52 EDT 2025
Thu Oct 16 14:46:06 EDT 2025
Thu May 22 21:21:15 EDT 2025
Thu Apr 03 07:01:43 EDT 2025
Wed Oct 01 04:04:09 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-e7ec8c073ebde09f30a74c603382b5e71e83dc76a48a7b924f1159ff69800e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6037-2338
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0195875
PMID 29672639
PQID 2027634550
PQPubID 1436336
PageCount e0195875
ParticipantIDs plos_journals_2027634550
doaj_primary_oai_doaj_org_article_dcba7553c7994c0b928037b64b1e7ef6
unpaywall_primary_10_1371_journal_pone_0195875
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5908232
proquest_miscellaneous_2028958069
proquest_journals_2027634550
gale_infotracmisc_A535337546
gale_infotracacademiconefile_A535337546
gale_incontextgauss_ISR_A535337546
gale_incontextgauss_IOV_A535337546
gale_healthsolutions_A535337546
pubmed_primary_29672639
crossref_primary_10_1371_journal_pone_0195875
crossref_citationtrail_10_1371_journal_pone_0195875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-19
PublicationDateYYYYMMDD 2018-04-19
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References K Arai (ref18) 2012; 3
K Doi (ref13) 2007; 31
ref36
M Kawagishi (ref8) 2017; 12
H Chen (ref19) 2010; 17
T Way (ref17) 2010; 17
Sandy Napel (ref35)
K Suzuki (ref4) 2012; 2
T Ojala (ref30) 2002; 24
P Cao (ref12) 2017; 64
C-C Chang (ref24) 2011; 2
O Gevaert (ref33) 2012; 264
SLA Lee (ref5) 2012; 23
A El-Baz (ref6) 2013; 2013
D lin (ref7) 2016; 216
K Clark (ref32) 2013; 26
K Suzuki (ref15) 2017
G Zhao (ref31) 2007; 29
AO de Carvalho Filho (ref10) 2017
H Mahersia (ref16) 2015; 4
F Ciompi (ref22) 2017; 7
L Torlay (ref38) 2017
T Schubert (ref42); 2016
Y Liu (ref37) 2017
ref26
RL Siegel (ref1) 2016; 66
M Liang (ref23) 2016; 281
ref43
T Chen (ref25) 2016
J Bergstra (ref28) 2012; 13
J Benzakoun (ref9) 2016; 85
ref27
SG 3rd Armato (ref20) 2015; 2
M Nishio (ref11) 2017; 24
S Matsumoto (ref14) 2006; 10
T Ojala (ref29) 1996; 29
R Lorenz (ref41); 2016
B Wei (ref39) 2013; 58
(ref2) 2011; 365
DR Aberle (ref3) 2013; 31
ref40
SG Armato III (ref34)
SG 3rd Armato (ref21) 2016; 3
28526968 - J Digit Imaging. 2017 Dec;30(6):812-822
27019363 - Radiology. 2016 Oct;281(1):279-88
28110797 - Acad Radiol. 2017 Mar;24(3):328-336
20152726 - Acad Radiol. 2010 Mar;17 (3):323-32
26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
16542867 - Med Image Anal. 2006 Jun;10 (3):343-52
22723499 - Radiology. 2012 Aug;264(2):387-96
28434153 - Brain Inform. 2017 Sep;4(3):159-169
23431282 - Int J Biomed Imaging. 2013;2013:942353
28018939 - J Med Imaging (Bellingham). 2016 Oct;3(4):044506
28422152 - Sci Rep. 2017 Apr 19;7:46479
28545836 - J Biomed Inform. 2017 Nov;75S:S105-S111
23256078 - Quant Imaging Med Surg. 2012 Sep;2(3):163-76
21714641 - N Engl J Med. 2011 Aug 4;365(5):395-409
27666609 - Eur J Radiol. 2016 Oct;85(10 ):1728-1734
23884657 - J Digit Imaging. 2013 Dec;26(6):1045-57
20167513 - Acad Radiol. 2010 May;17 (5):595-602
23401434 - J Clin Oncol. 2013 Mar 10;31(8):1002-8
17349778 - Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211
26158094 - J Med Imaging (Bellingham). 2015 Apr;2(2):020103
17431293 - IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):915-28
28285338 - Int J Comput Assist Radiol Surg. 2017 May;12 (5):767-776
References_xml – volume: 7
  start-page: 46479
  year: 2017
  ident: ref22
  article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning
– start-page: 785
  year: 2016
  ident: ref25
  article-title: XGBoost: A Scalable Tree Boosting System
– volume: 264
  start-page: 387
  issue: 2
  year: 2012
  ident: ref33
  article-title: Non–Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data—Methods and Preliminary Results
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: ref1
  article-title: Cancer statistics, 2016
– volume: 85
  start-page: 1728
  issue: 10
  year: 2016
  ident: ref9
  article-title: Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system
– volume: 13
  start-page: 281
  year: 2012
  ident: ref28
  article-title: Random Search for Hyper-Parameter Optimization
– ident: ref34
  article-title: SPIE-AAPM-NCI Lung Nodule Classification Challenge Dataset
  publication-title: The Cancer Imaging Archive
– start-page: 1
  year: 2017
  ident: ref10
  article-title: Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: ref29
  article-title: A comparative study of texture measures with classification based on featured distributions
– ident: ref43
– volume: 23
  start-page: 151
  issue: 1
  year: 2012
  ident: ref5
  article-title: Automated detection of lung nodules in computed tomography images: a review
– start-page: 9
  year: 2017
  ident: ref15
  article-title: Image-Based Computer-Assisted Radiation Therapy
– volume: 24
  start-page: 328
  issue: 3
  year: 2017
  ident: ref11
  article-title: Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity
– volume: 3
  start-page: 89
  issue: 4
  year: 2012
  ident: ref18
  article-title: Comparison of 2D and 3D Local Binary Pattern in Lung Cancer Diagnosis
– volume: 2016
  start-page: 5548
  ident: ref42
  article-title: Automatic bone parameter estimation for skeleton tracking in optical motion capture
– volume: 58
  start-page: 2828
  issue: 23
  year: 2013
  ident: ref39
  article-title: Bayesian optimization algorithm-based methods searching for risk/protective factors
– ident: ref27
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: ref24
  article-title: LIBSVM: a library for support vector machines
  publication-title: LIBSVM: a library for support vector machines
– volume: 17
  start-page: 323
  issue: 3
  year: 2010
  ident: ref17
  article-title: Computer-Aided Diagnosis of Lung Nodules on CT Scans: ROC Study of Its Effect on Radiologists’ Performance
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: ref32
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
– start-page: 1
  year: 2017
  ident: ref38
  article-title: Machine learning—XGBoost analysis of language networks to classify patients with epilepsy
– volume: 31
  start-page: 1002
  issue: 8
  year: 2013
  ident: ref3
  article-title: Computed tomography screening for lung cancer: has it finally arrived? Implications of the national lung screening trial
– volume: 12
  start-page: 767
  issue: 5
  year: 2017
  ident: ref8
  article-title: A study of computer-aided diagnosis for pulmonary nodule: comparison between classification accuracies using calculated image features and imaging findings annotated by radiologists
– volume: 17
  start-page: 595
  issue: 5
  year: 2010
  ident: ref19
  article-title: Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images
– volume: 281
  start-page: 279
  issue: 1
  year: 2016
  ident: ref23
  article-title: Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers
– volume: 365
  start-page: 395
  issue: 5
  year: 2011
  ident: ref2
  article-title: Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
– ident: ref36
– volume: 2
  start-page: 163
  issue: 3
  year: 2012
  ident: ref4
  article-title: A review of computer-aided diagnosis in thoracic and colonic imaging
– volume: 4
  start-page: 38
  issue: 4
  year: 2015
  ident: ref16
  article-title: Lung Cancer Detection on CT Scan Images: A Review on the Analysis Techniques
– year: 2017
  ident: ref37
  article-title: Symptom severity classification with gradient tree boosting
– volume: 2
  start-page: 20103
  issue: 2
  year: 2015
  ident: ref20
  article-title: LUNGx Challenge for computerized lung nodule classification: reflections and lessons learned
– volume: 2016
  start-page: 1
  ident: ref41
  article-title: Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization
– volume: 2013
  start-page: 942353
  year: 2013
  ident: ref6
  article-title: Computer-aided diagnosis systems for lung cancer: challenges and methodologies
– volume: 31
  start-page: 198
  issue: 4–5
  year: 2007
  ident: ref13
  article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
– volume: 10
  start-page: 343
  issue: 3
  year: 2006
  ident: ref14
  article-title: Pulmonary nodule detection in CT images with quantized convergence index filter
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: ref30
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
– ident: ref40
– volume: 3
  start-page: 44506
  issue: 4
  year: 2016
  ident: ref21
  article-title: LUNGx Challenge for computerized lung nodule classification
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  ident: ref31
  article-title: Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions
– ident: ref26
– volume: 64
  start-page: 327
  year: 2017
  ident: ref12
  article-title: A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules
– volume: 216
  start-page: 700
  year: 2016
  ident: ref7
  article-title: Neural networks for computer-aided diagnosis in medicine: A review
– ident: ref35
  article-title: NSCLC Radiogenomics: Initial Stanford Study of 26 Cases
  publication-title: The Cancer Imaging Archive.
– reference: 23256078 - Quant Imaging Med Surg. 2012 Sep;2(3):163-76
– reference: 27019363 - Radiology. 2016 Oct;281(1):279-88
– reference: 28110797 - Acad Radiol. 2017 Mar;24(3):328-336
– reference: 17431293 - IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):915-28
– reference: 20152726 - Acad Radiol. 2010 Mar;17 (3):323-32
– reference: 28545836 - J Biomed Inform. 2017 Nov;75S:S105-S111
– reference: 28434153 - Brain Inform. 2017 Sep;4(3):159-169
– reference: 21714641 - N Engl J Med. 2011 Aug 4;365(5):395-409
– reference: 28526968 - J Digit Imaging. 2017 Dec;30(6):812-822
– reference: 27666609 - Eur J Radiol. 2016 Oct;85(10 ):1728-1734
– reference: 20167513 - Acad Radiol. 2010 May;17 (5):595-602
– reference: 26158094 - J Med Imaging (Bellingham). 2015 Apr;2(2):020103
– reference: 26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
– reference: 28018939 - J Med Imaging (Bellingham). 2016 Oct;3(4):044506
– reference: 23431282 - Int J Biomed Imaging. 2013;2013:942353
– reference: 22723499 - Radiology. 2012 Aug;264(2):387-96
– reference: 23884657 - J Digit Imaging. 2013 Dec;26(6):1045-57
– reference: 16542867 - Med Image Anal. 2006 Jun;10 (3):343-52
– reference: 28422152 - Sci Rep. 2017 Apr 19;7:46479
– reference: 28285338 - Int J Comput Assist Radiol Surg. 2017 May;12 (5):767-776
– reference: 17349778 - Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211
– reference: 23401434 - J Clin Oncol. 2013 Mar 10;31(8):1002-8
SSID ssj0053866
Score 2.573862
Snippet We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0195875
SubjectTerms Algorithms
Archives & records
Artificial intelligence
Bayesian analysis
Biology and Life Sciences
Care and treatment
Classification
Computed tomography
Computer and Information Sciences
Data search
Diagnosis
Diagnostic systems
Drug dosages
Gene expression
Hospitals
Information processing
Learning algorithms
Lifestyles
Lung cancer
Lung nodules
Machine learning
Mathematical analysis
Medical diagnosis
Medical imaging
Medical imaging equipment
Medical screening
Medicine and Health Sciences
Methods
Nodules
Nuclear medicine
Optimization
Parameter estimation
Parameters
People and Places
Physical Sciences
Research and Analysis Methods
Support vector machines
University graduates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBBzSeuPEj2OLqAoHkICinoj8ylIpJKtmV6j_npnEG21EpfbAdf0lUr6Zscfrmc-EvBZKV0Irk2besjTPpE2tVCENRgTriwrTCKy2-CxOTvNPZ8XZ1lVfWBM2yAMPxB14Z40sCu6k1rljVuN1StKK3M6DDFUvts2U3mymhjkYoliI2CjH5fwg2mV_2TZhH1vk-rrCrYWo1-sfZ-XZsm67q1LOfysnb6-bpbn8Y-p6a1k6vkfuxnySHg7fsUNuheY-2YkR29G3UVb63QPyc3OBQ4qqkJ76ocjuvKNtRWuIedq0fl0HiqXwC7q46IvBVhSPrSnk4h0WSFPTeHpkLgP2XtIW5pvfsZHzITk9_vD9_Ukab1dIndDZKgX2nHIQ4WCTwHTFmZG5Ewz2rJktgpwHxb2TwuTKSKA9ryB51BValrHAPH9EZg3wuUtoHjxXFSusz3guM2Y5rPq2mjvnAJmrhPAN1aWL0uN4A0Zd9udpErYgA1slGqiMBkpIOj61HKQ3rsEfoRVHLApn9z-AO5XRncrr3CkhL9AHyqELdQz_8rDgkBjLIgfEqx6B4hkNVucszLrryo9fftwA9O3rBPQmgqoW6HAmdkTAN6Eo1wS5N0HCFOAmw7vosRtWuhL_0RIcG9bhyY0XXz38chzGl2LFXRPadY9RQCsTOiGPB6cfmc20kBmktgmRk3CYUD8dac5_9drlhcaj3Swh-2Pg3Mi4T_6HcZ-SO5DvKjwMnOs9MltdrMMzyClX9nk_ffwFNmd2ow
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHk1UGBBSMDBYeO1d-0DQg1qVTgEVCjqCWtfDpWMHeJEqP-eGXttalFBr9nPlnZmZzybmfmGkOciSXORJioIrWZBFEodaJm4wCnhtI1zDCOw2mIujk6iD6fx6RaZd70wWFbZ-cTGUdvK4H_kzSVdcOzBfbv8GeDUKMyudiM0lB-tYN80FGPXyHaIzFgjsj07mH867nwzWLcQvoGOy-lrr6_JsirdBFvnmnrDCx-ohse_99ajZVHVl4Wif1dUXt-US3X-SxXFhc_V4S1y08eZdL89GDtky5W3yY635Jq-9HTTr-6Qb91ghwDZIi21bfHdWU2rnBbgC2hZ2U3hKJbIL-hi1RSJrSmmsynE6DUWTlNVWjpT5w57MmkFfuiHb_C8S04OD768Owr81IXAiDRcB046kxiwfNCVY2nOmZKREQzusqGOnZy6hFsjhYoSJTVc33IIKtMcNc6YY5bfI6MS5LlLaOQsT3IWaxvySIZMc4gGdD41xgAySsaEd6LOjKckx8kYRdbk2SRcTVppZaigzCtoTIL-qWVLyfEf_Ay12GORULv5oVotMm-fmTVayTjmRqZpZBjsK2FcahHpKQgkF2PyBM9A1nan9m4h2485BMwyjgDxrEEgqUaJVTsLtanr7P3Hr1cAfT4egF54UF6BOIzynRKwJyTrGiD3BkhwDWawvIsntpNKnf0xIniyO8WXLz_tl_GlWIlXumrTYBIQKxPpmNxvD30v2TAVMoSQd0zkwBwGoh-ulGffG07zOMWUbzgmk95wrqTcB__ex0NyAyLcBNN_03SPjNarjXsEUeRaP_au4Te9YXRo
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFI6o0TOzluEVXhUBBQVA4QxY6zVIRk1SRC5cBvZyZxIgJFlAO3VfzZWn8eT8aZhwl5IKI4F3GUun6mmBv4UrlKRsY1qTAqC3M0IzDaYl_sHQQvDsPDNfJhyIWxDMIZsajqzpOPP6rSbFsmt7FeUe899eZczoce3gpAHqa_gQX-sKs4hF_GGkxAOkfWRQim-oysH-y_WrzvPc2-K3zGbTrdn0aavK66qv6j7p7hPzvNMP09vvJ8W67Sk69pUfz08tq9RL4P0-5jVj57baM8_e2XipD_jZfL5KI1e-miH2WDrJnyCtmwiqWmj2316ydXycfhngkXi1dmNOtjAY9qWuW0ANVEyyprC0MxYn9Jl8ddzFpD0btO4chQYxw3TcuM7qQnBlNEaQVq8YvNN71GDnafvX2659pLIFwtYr9xjTQ60qCIQHQMi3POUhloweBo7avQyLmJeKalSIMolQpOkznYuHGOAsiYYRm_TmYlULBJaGAyHuUsVJnPA-kzxcE4Uflcaw3IIHIIH9Y60bZCOl7UUSSd20_CSalnK0FOE8upQ9yx16qvEPIX_A6K0YjF-t7dA1jUxC5mkmmVyjDkWsZxoBnMK2JcKhGoORCSC4fcRSFM-mTZUUsli5CD_S7DABD3OwTW-CgxiGiZtnWdPH_57gygN68noEcWlFdAh05t4gbMCWVugtyaIEFT6UnzJgrtwEqd4Ic3wTGvHnoO2-j05ntjMw6KgYGlqdoOEwGtTMQOudHvupFZPxbSBwvcIXKyHyfUT1vKo09difUwRg-07xBv3LlnWtyb_9rhFrkAJniE_sl5vEVmzXFrboOZ26g7Vln9ACC9rc0
  priority: 102
  providerName: Unpaywall
Title Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/29672639
https://www.proquest.com/docview/2027634550
https://www.proquest.com/docview/2028958069
https://pubmed.ncbi.nlm.nih.gov/PMC5908232
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195875&type=printable
https://doaj.org/article/dcba7553c7994c0b928037b64b1e7ef6
http://dx.doi.org/10.1371/journal.pone.0195875
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUjlfdvKAUDutDCTKNCgqL0S245RJISlNK-h_z12aRER0Yi95iH-O5Dvf-Zz7IuQ5D6OUR6G03UQx23eFspUIjW0kNyoJUjQjMNpiws-m_vtZMNsjTc_WmoDlzqsd9pOaLrPB75-bNyDwr6uuDcJpJg0WRW4GmAAHNvg-OYCzKsJmDh_81q8A0s15nUB31czOAVXV8W-1dW-RFeUuU_TfiMob63whN79klv11XI1vk1u1nUmH241xSPZMfocc1pJc0pd1uelXd8m3prGDjdUiE5psg-8uS1qkNANdQPMiWWeGYoj8nM6XVZDYiqI7m4KNXmLgNJV5QkdyYzAnkxagh37UCZ73yHR8-vnkzK67LtiaR-7KNsLoUIPkA68Mi1KPSeFrzuAu66rACMeEXqIFl34ohYLrWwpGZZQixxkzLPHuk14O9Dwi1DeJF6YsUInr-cJlygNrQKWO1hqQfmgRryF1rOuS5NgZI4srP5uAq8mWWjEyKK4ZZBG7nbXYluT4D36EXGyxWFC7elEs53Etn3GilRRB4GkRRb5msK6QeUJxXzlAkJRb5AnugXibndqqhXgYeGAwi8AHxLMKgUU1cozamct1WcbvPn65BujTRQf0ogalBZBDyzpTAtaExbo6yOMOElSD7gwf4Y5tqFLG-KeLe5jIDjObXbx7-Gk7jB_FSLzcFOsKEwJZGY8s8mC76VvKuhEXLpi8FhEdceiQvjuSX36vapoHEbp8XYsMWsG5FnMfXr3ER-QmWLchuv6c6Jj0Vsu1eQwW5Er1yb6YCXiGJw4-x2_75GB0Ojm_6Ff_ZPqV0oB308n58Osf3z141Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHnVUOiCQMDBwfHau_YBoRaoElqKBC3KCeN9OFQKdogTVflT_EZm7LWpRQW99Jr9bGVnZ7-d8c6DkCc8ijMeR6nra-m5gS-kK0VkXJNyI3WYoRmB0RaHfHgcvB-H4zXyq8mFwbDKhhMrotaFwm_klZPOGebgvp79dLFrFN6uNi00arXYN6tTcNnKV6O3sL5PfX_v3dGboWu7CriKx_7CNcKoSIFmw38xXpwxLxWB4h74ar4MjRiYiGkleBpEqZDgnmRgNMUZzsjzjKcZvPcKuRow4BLYP2LcOnjAHZzb9DwmBi-tNvRnRW76mJhXRTOeOf6qLgHtWdCbTYvyPEP373jN9WU-S1en6XR65jDcu0GuWyuW7tRqt0HWTH6TbFieKOlzW8z6xS3ytWkb4WItSk11Hdp3UtIio1NgGpoXejk1FAPwJ3Qyr0LQFhQvyyl4ACWGZdM013Q3XRnM-KQFsNwPmz56mxxfivTvkF4O8twkNDCaRZkXSu2zQPieZGBryGyglAJkEDmENaJOlC14jn03pkl1iyfA8amlleACJXaBHOK2T83qgh__we_iKrZYLNdd_VDMJ4nd_YlWMhVhyJSI40B5MK_IY0LyQA5AIBl3yDbqQFLnvrakk-yEDMxxEQaAeFwhsGRHjjFBk3RZlsno45cLgD5_6oCeWVBWgDhUavMwYE5YCqyD3OoggXhUZ3gTNbaRSpn82aLwZKPF5w8_aofxpRjnl5tiWWEiEKvHY4fcrZW-lawfc-GDQe0Q0dkOHdF3R_KT71XF9DDGC2XfIf1241xoce_9ex7bZH149OEgORgd7t8n18CWjvCicRBvkd5ivjQPwF5dyIcVSVDy7bJZ6TdwJKqd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGAGgYCHlDRO7OQBoY1RrQwNBBvqEyF2nDKpJKVpNfVf46_jznHCIibYy17rS1Sfz5_v4u_uCHnCozjncZS6fiY9N_CFdKWItKtTrmUW5uhGINvigO8dBe_G4XiN_GpyYZBW2WCiAeqsVPiN3ATpnJmq2rmlRXzcHb6e_XSxgxTetDbtNGoT2derEwjfqlejXVjrp74_fHv4Zs-1HQZcxWN_4WqhVaTAyuF_aS_OmZeKQHEP4jZfhloMdMQyJXgaRKmQEKrk4EDFOc7O87SXMXjvJXJZMBYjnVCM22APcIRzm6rHxOCltYz-rCx0H5P0DLPx1FFoOga050JvNi2rs5zev7mbV5fFLF2dpNPpqYNxeINctx4t3a5NcJ2s6eImWbeYUdHntrD1i1vka9NCwsW6lBnNaprfcUXLnE4BdWhRZsuppkjGn9DJ3NDRFhQvzilEAxVStGlaZHQnXWnM_qQlIN4Pm0p6mxxdiPbvkF4B-twgNNAZi3IvlJnPAuF7koHfIfOBUgokg8ghrFF1omzxc-zBMU3MjZ6AIKjWVoILlNgFcojbPjWri3_8R34HV7GVxdLd5odyPkksEiSZkqkIQ6ZEHAfKg3lFHhOSB3IACsm5Q7bQBpI6D7YFoGQ7ZOCaizAAicdGAst3FLgRJumyqpLRhy_nEPr8qSP0zArlJahDpTYnA-aEZcE6kpsdSQAh1RneQItttFIlf7YrPNlY8dnDj9phfCly_gpdLo1MBGr1eOyQu7XRt5r1Yy58cK4dIjrboaP67khx_N1UTw9jvFz2HdJvN865Fvfev-exRa4AHiXvRwf798k1cKsjvHMcxJukt5gv9QNwXRfyocEISr5dNCj9BqhxruA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFI6o0TOzluEVXhUBBQVA4QxY6zVIRk1SRC5cBvZyZxIgJFlAO3VfzZWn8eT8aZhwl5IKI4F3GUun6mmBv4UrlKRsY1qTAqC3M0IzDaYl_sHQQvDsPDNfJhyIWxDMIZsajqzpOPP6rSbFsmt7FeUe899eZczoce3gpAHqa_gQX-sKs4hF_GGkxAOkfWRQim-oysH-y_WrzvPc2-K3zGbTrdn0aavK66qv6j7p7hPzvNMP09vvJ8W67Sk69pUfz08tq9RL4P0-5jVj57baM8_e2XipD_jZfL5KI1e-miH2WDrJnyCtmwiqWmj2316ydXycfhngkXi1dmNOtjAY9qWuW0ANVEyyprC0MxYn9Jl8ddzFpD0btO4chQYxw3TcuM7qQnBlNEaQVq8YvNN71GDnafvX2659pLIFwtYr9xjTQ60qCIQHQMi3POUhloweBo7avQyLmJeKalSIMolQpOkznYuHGOAsiYYRm_TmYlULBJaGAyHuUsVJnPA-kzxcE4Uflcaw3IIHIIH9Y60bZCOl7UUSSd20_CSalnK0FOE8upQ9yx16qvEPIX_A6K0YjF-t7dA1jUxC5mkmmVyjDkWsZxoBnMK2JcKhGoORCSC4fcRSFM-mTZUUsli5CD_S7DABD3OwTW-CgxiGiZtnWdPH_57gygN68noEcWlFdAh05t4gbMCWVugtyaIEFT6UnzJgrtwEqd4Ic3wTGvHnoO2-j05ntjMw6KgYGlqdoOEwGtTMQOudHvupFZPxbSBwvcIXKyHyfUT1vKo09difUwRg-07xBv3LlnWtyb_9rhFrkAJniE_sl5vEVmzXFrboOZ26g7Vln9ACC9rc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+lung+nodule+using+gradient+tree+boosting+and+Bayesian+optimization&rft.jtitle=PloS+one&rft.au=Nishio%2C+Mizuho&rft.au=Nishizawa%2C+Mitsuo&rft.au=Sugiyama%2C+Osamu&rft.au=Kojima%2C+Ryosuke&rft.date=2018-04-19&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0195875&rft.externalDocID=2027634550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon