Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples thro...
Saved in:
| Published in | PloS one Vol. 17; no. 11; p. e0277431 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
30.11.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0277431 |
Cover
| Abstract | Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C
4
H
8
O
2
, C
13
H
22
O, C
11
H
22
O, C
2
H
4
O
2
, C
7
H
14
O, C
6
H
12
O, and C
5
H
8
O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. |
|---|---|
| AbstractList | Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C.sub.4 H.sub.8 O.sub.2, C.sub.13 H.sub.22 O, C.sub.11 H.sub.22 O, C.sub.2 H.sub.4 O.sub.2, C.sub.7 H.sub.14 O, C.sub.6 H.sub.12 O, and C.sub.5 H.sub.8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C 4 H 8 O 2 , C 13 H 22 O, C 11 H 22 O, C 2 H 4 O 2 , C 7 H 14 O, C 6 H 12 O, and C 5 H 8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C 4 H 8 O 2 , C 13 H 22 O, C 11 H 22 O, C 2 H 4 O 2 , C 7 H 14 O, C 6 H 12 O, and C 5 H 8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection. |
| Audience | Academic |
| Author | Rai, Shesh N. Pan, Jianmin Das, Samarendra Fu, Xiao-An Mishra, Dwijesh C. |
| AuthorAffiliation | 2 School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America 4 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America 5 Biostatistics and Informatics Facility, Center for Integrative Environmental Research Sciences, University of Louisville, Louisville, KY, United States of America 1 Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America 7 ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India Cranfield University, UNITED KINGDOM 9 ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India 6 Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America 10 Department of Chemical Engineering, University of Louisville, Louisville, KY, United States of America 3 Hepatobiology and Toxicology Center, University of Louisvil |
| AuthorAffiliation_xml | – name: 6 Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America – name: 1 Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America – name: 7 ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India – name: 2 School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America – name: 3 Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States of America – name: 5 Biostatistics and Informatics Facility, Center for Integrative Environmental Research Sciences, University of Louisville, Louisville, KY, United States of America – name: 9 ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India – name: Cranfield University, UNITED KINGDOM – name: 4 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America – name: 8 International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India – name: 10 Department of Chemical Engineering, University of Louisville, Louisville, KY, United States of America |
| Author_xml | – sequence: 1 givenname: Shesh N. orcidid: 0000-0002-8377-353X surname: Rai fullname: Rai, Shesh N. – sequence: 2 givenname: Samarendra surname: Das fullname: Das, Samarendra – sequence: 3 givenname: Jianmin surname: Pan fullname: Pan, Jianmin – sequence: 4 givenname: Dwijesh C. surname: Mishra fullname: Mishra, Dwijesh C. – sequence: 5 givenname: Xiao-An surname: Fu fullname: Fu, Xiao-An |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36449484$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaZJt36C0hkJpL3brg2TZvSiE0MNCSqCnWzGWZa8WreTosG1eoM9dedcJ6xBK8IWE9M0_mn_Gp9GR0opH0fM0WaQ5Sd-ttTcK5KIPx4skIwTl6aPoJK3ybF5kSX50sD-OTq1dJwnOy6J4Eh3nBUIVKtFJ9Perl050Rvs-7g1vBHNCq1ioWHrVxQwU4ybuwQmunI1BNTHTmx5MONnysFfOaGljb0XAregUOG94rNt4q2WAZNibDpRgu0DtVWMH-dpwcKvYwqaX3D6NHrcgLX82rrPo56ePP86_zC8uPy_Pzy7mrKgyN-cI5azApOIIqjKtm6LMATBjNeAa2gqjcFlzUhHSNqyumqRtWYazGvESVwXks-jlXreX2tLRQkuzYF5eJjhYNYuWe6LRsKa9ERsw11SDoLuDUAsF4wSTnAbTWcFxU-K6RmlaQwp5TYqsakqGyS4b3mt51cP1b5DyVjBN6NDFmyfQoYt07GKI-zC-0tcb3rBgvQE5ecz0RokV7fSWViRNSIGCwJtRwOgrz62jG2EZlxIU135fL04wyklAX91B73dlpDoIhQvV6pCXDaL0jGRlqKRAZaAW91Dha_hGhFHhbRiHacDbScAwTvyP68BbS5ffvz2cvfw1ZV8fsCsO0q2sln6YbTsFXxw6fWvxzQ8SALQHmNHWGt4-tIPv74Qx4WBIHxwR8v_B_wATGzwU |
| CitedBy_id | crossref_primary_10_1038_s41598_024_61735_7 crossref_primary_10_1016_j_saa_2023_123266 crossref_primary_10_1183_16000617_0125_2023 crossref_primary_10_2174_0115748936278851231213110653 crossref_primary_10_1016_j_jpba_2025_116787 crossref_primary_10_1038_d44151_022_00132_3 crossref_primary_10_3389_fonc_2023_1204435 crossref_primary_10_3390_cancers16111980 crossref_primary_10_1093_bfgp_elaf001 crossref_primary_10_1080_10408363_2024_2387038 crossref_primary_10_1186_s12890_024_03374_2 crossref_primary_10_1016_j_microc_2024_110051 crossref_primary_10_1016_j_biologicals_2024_101785 |
| Cites_doi | 10.3390/e22040427 10.1371/journal.pone.0169605 10.1016/j.jtcvs.2015.08.092 10.1039/c1an15618g 10.1016/j.snb.2017.08.057 10.1371/journal.pone.0064929 10.1007/978-1-4899-4541-9 10.1002/cam4.162 10.1021/ac2021757 10.1073/pnas.68.10.2374 10.1001/jamainternmed.2013.12738 10.1016/j.snb.2012.07.034 10.1016/S0378-4347(99)00127-9 10.1016/j.lungcan.2015.07.005 10.1016/j.jtcvs.2014.06.006 10.1111/1467-9469.00072 |
| ContentType | Journal Article |
| Copyright | Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. COPYRIGHT 2022 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. – notice: COPYRIGHT 2022 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0277431 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database (ProQuest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Multigroup prediction in lung cancer patients using volatile organic compounds in breath samples |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2743380520 oai_doaj_org_article_027c6e5d85bb411ba1a3b7629d8c576a 10.1371/journal.pone.0277431 PMC9710764 A728371648 36449484 10_1371_journal_pone_0277431 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM135004 – fundername: NHLBI NIH HHS grantid: U54 HL120163 – fundername: NIEHS NIH HHS grantid: R35 ES028373 – fundername: NCI NIH HHS grantid: R21 CA229057 – fundername: NIEHS NIH HHS grantid: P30 ES030283 – fundername: NIEHS NIH HHS grantid: R01 ES029846 – fundername: NIGMS NIH HHS grantid: P20 GM113226 – fundername: NIGMS NIH HHS grantid: P20 GM125504 – fundername: NIGMS NIH HHS grantid: P30 GM127607 – fundername: NIEHS NIH HHS grantid: P42 ES023716 – fundername: ; grantid: 5P20GM113226, PI: McClain; 1P42ES023716, PI: Srivastava; 5P30GM127607-02, PI: Jones; 1P20GM125504-01, PI: Lamont; 2U54HL120163, PI: Bhatnagar/Robertson; 1P20GM135004, PI: Yan; 1R35ES0238373-01, PI: Cave; 1R01ES029846, PI: Bhatnagar; 1R01ES027778-01A1, PI: States – fundername: ; grantid: Wendell Cherry Chair in Clinical Trial Research Fund – fundername: ; grantid: 18(02)/2016-EQR/Edn. – fundername: ; grantid: 1R21CA229057 – fundername: ; grantid: PON2 415 1900002934, PI: Chesney |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c692t-e443c6579e4a981bd683aa5ccba5baf954657be7977fdcb9d0ffc252b4e8596a3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 02 11:03:49 EDT 2023 Tue Oct 14 19:03:14 EDT 2025 Sun Oct 26 02:55:36 EDT 2025 Tue Sep 30 17:17:54 EDT 2025 Mon Sep 08 14:27:18 EDT 2025 Tue Oct 07 07:56:52 EDT 2025 Mon Oct 20 22:27:20 EDT 2025 Mon Oct 20 16:34:33 EDT 2025 Thu Oct 16 14:22:18 EDT 2025 Thu Oct 16 14:27:57 EDT 2025 Thu May 22 21:09:02 EDT 2025 Mon Jul 21 05:54:44 EDT 2025 Wed Oct 01 04:21:17 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. cc-by Creative Commons CC0 public domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-e443c6579e4a981bd683aa5ccba5baf954657be7977fdcb9d0ffc252b4e8596a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8377-353X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277431 |
| PMID | 36449484 |
| PQID | 2743380520 |
| PQPubID | 1436336 |
| PageCount | e0277431 |
| ParticipantIDs | plos_journals_2743380520 doaj_primary_oai_doaj_org_article_027c6e5d85bb411ba1a3b7629d8c576a unpaywall_primary_10_1371_journal_pone_0277431 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710764 proquest_miscellaneous_2743505437 proquest_journals_2743380520 gale_infotracmisc_A728371648 gale_infotracacademiconefile_A728371648 gale_incontextgauss_ISR_A728371648 gale_incontextgauss_IOV_A728371648 gale_healthsolutions_A728371648 pubmed_primary_36449484 crossref_primary_10_1371_journal_pone_0277431 crossref_citationtrail_10_1371_journal_pone_0277431 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-30 |
| PublicationDateYYYYMMDD | 2022-11-30 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | S Das (pone.0277431.ref019) 2017; 12 KB Duan (pone.0277431.ref014) 2005 M Li (pone.0277431.ref004) 2015; 90 X-A Fu (pone.0277431.ref007) 2014; 3 Y Benjamini (pone.0277431.ref022) 1997; 24 I. Guyon (pone.0277431.ref015) 1998 X-A Fu (pone.0277431.ref010) 2011; 136 M Phillips (pone.0277431.ref006) 1999; 729 M Li (pone.0277431.ref012) 2013; 180 S Das (pone.0277431.ref016) 2020; 22 L Pauling (pone.0277431.ref005) 1971; 68 EM Schumer (pone.0277431.ref008) 2015; 150 J Wang (pone.0277431.ref018) 2013; 8 I Guyon (pone.0277431.ref017) 2002 S Das (pone.0277431.ref013) 2018; 655 M Bousamra (pone.0277431.ref009) 2014; 148 pone.0277431.ref001 S Das (pone.0277431.ref020) 2020; 22 B Efron (pone.0277431.ref021) 1993 JE Chang (pone.0277431.ref002) 2018; 255 EF Patz (pone.0277431.ref003) 2014; 174 M Li (pone.0277431.ref011) 2012; 84 |
| References_xml | – year: 2002 ident: pone.0277431.ref017 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn – volume: 22 start-page: 427 year: 2020 ident: pone.0277431.ref020 article-title: Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges publication-title: Entropy doi: 10.3390/e22040427 – volume: 12 start-page: e0169605 year: 2017 ident: pone.0277431.ref019 article-title: Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.) publication-title: PLoS One doi: 10.1371/journal.pone.0169605 – volume: 150 start-page: 1517 year: 2015 ident: pone.0277431.ref008 article-title: High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2015.08.092 – ident: pone.0277431.ref001 – volume: 136 start-page: 4662 year: 2011 ident: pone.0277431.ref010 article-title: A novel microreactor approach for analysis of ketones and aldehydes in breath publication-title: Analyst doi: 10.1039/c1an15618g – year: 2005 ident: pone.0277431.ref014 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans Nanobioscience – volume: 22 year: 2020 ident: pone.0277431.ref016 article-title: Statistical approach for biologically relevant gene selection from high-throughput gene expression data publication-title: Entropy – volume: 255 start-page: 800 year: 2018 ident: pone.0277431.ref002 article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2017.08.057 – year: 1998 ident: pone.0277431.ref015 article-title: Gene Selection for Cancer Classification using Support Vector Machines publication-title: Mach Learn – volume: 8 start-page: e64929 year: 2013 ident: pone.0277431.ref018 article-title: A Computational Systems Biology Study for Understanding Salt Tolerance Mechanism in Rice publication-title: PLoS One doi: 10.1371/journal.pone.0064929 – volume-title: An Introduction to the Bootstrap year: 1993 ident: pone.0277431.ref021 doi: 10.1007/978-1-4899-4541-9 – volume: 3 start-page: 174 year: 2014 ident: pone.0277431.ref007 article-title: Noninvasive detection of lung cancer using exhaled breath publication-title: Cancer Med doi: 10.1002/cam4.162 – volume: 84 start-page: 1288 year: 2012 ident: pone.0277431.ref011 article-title: Preconcentration and Analysis of Trace Volatile Carbonyl Compounds publication-title: Anal Chem doi: 10.1021/ac2021757 – volume: 68 start-page: 2374 year: 1971 ident: pone.0277431.ref005 article-title: Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.68.10.2374 – volume: 174 start-page: 269 year: 2014 ident: pone.0277431.ref003 article-title: Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2013.12738 – volume: 180 start-page: 130 year: 2013 ident: pone.0277431.ref012 article-title: A microfabricated preconcentration device for breath analysis publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2012.07.034 – volume: 729 start-page: 75 year: 1999 ident: pone.0277431.ref006 article-title: Variation in volatile organic compounds in the breath of normal humans publication-title: J Chromatogr B Biomed Sci Appl doi: 10.1016/S0378-4347(99)00127-9 – volume: 90 start-page: 92 year: 2015 ident: pone.0277431.ref004 article-title: Breath carbonyl compounds as biomarkers of lung cancer publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.07.005 – volume: 148 start-page: 1074 year: 2014 ident: pone.0277431.ref009 article-title: Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2014.06.006 – volume: 655 year: 2018 ident: pone.0277431.ref013 article-title: Statistical approach for selection of biologically informative genes publication-title: Gene – volume: 24 start-page: 407 year: 1997 ident: pone.0277431.ref022 article-title: Multiple Hypotheses Testing with Weights publication-title: Scand J Stat doi: 10.1111/1467-9469.00072 |
| SSID | ssj0053866 |
| Score | 2.503595 |
| Snippet | Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0277431 |
| SubjectTerms | Algorithms Biology and Life Sciences Body Fluids Breath tests Cancer research Carbonyl compounds Carbonyls Classification Computer and Information Sciences COVID-19 Diagnosis Fatalities Health aspects Humans Identification and classification Learning algorithms Low income groups Lung cancer Lung diseases Lung Neoplasms - diagnosis Lung nodules Machine learning Medical diagnosis Medicine and Health Sciences Metabolism Microreactors Multiple Pulmonary Nodules Nodules Organic chemicals Organic compounds Patients Physical Sciences Samples Silicon Smoking Standard error Statistical analysis Survival Tomography VOCs Volatile Organic Compounds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF8NFDAICThkm8R2Eh8LoipIgAQU9WbZjtNWipJosyvEH-B3M-N4QyMqtQduUTyOlBnP-FmeeUPIS9jDeSVqQG5p6mLOKhuXtXFxYupUGIAgosBq5E-f86Nj_vFEnFxo9YU5YSM98Ki4fTg22dyJqhTG8DQ1OtXMgAfLqrSAlT00Skq5PUyNMRi8OM9DoRwr0v1gl2XftW6Jt5acpbONyPP1T1F50TfdcBnk_Ddz8uam7fWvn7ppLmxLh3fI7YAn6cH4Hzvkhmvvkp3gsQN9HWil39wjv32tra_ioP0K72fQJvS8pQ04PLVo_hUNPKsD1W1F7V9qcBpy2geKmfKnFPM-PCco7WoKIQ6EGnj2lZ3WT8R-TQN-3iAuPaODRiLi4T45Pnz__d1RHLowxDaX2Tp2nDObi0I6riWA3CovmdbCWqOF0bXEbuqFcQUAybqyRlZJXdtMZIa7Ushcswdk0YLedwkFKGMSo8vcWMNF6iTyA9jaSa0TwyoXEbY1ibKBohw7ZTTK37sVcFQZtarQkCoYMiLxNKsfKTqukH-L1p5kkWDbvwAdqbDs1FXLLiLPcK2osVp1ChPqoEA6ITiDlhF54SWQZKPFLJ5TvRkG9eHLj2sIffs6E3oVhOoO1GF1qJyAf0Lyrpnk3kwSQoWdDe_iyt5qZVAZ6INhU4sEZm5X--XDz6dh_Chm5rWu24wygKI5KyLycHSOSbMMwLbkJY9IMXObmernI-35mec4l4B8ixxmLicHu5ZxH_0P4z4mtzKscvEMn3tksV5t3BPAnmvz1IeZP83Jhys priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoIBBSMAh283GTuIDQi1qVZAoqFDUW-RX2kpREja7QvwBfjczjpMSUUFvq_U4UmY848_xzDeEvIA9nBleAHKLIhuy2OgwK5QNZ6qIuAIIwlOsRv54lByesA-n_HSNHPW1MJhW2cdEF6hNrfEb-Q6cnuA0hVkbb5vvIXaNwtvVvoWG9K0VzBtHMXaDrM-RGWtC1vf2jz4f97EZvDtJfAFdnEY73l7Tpq7sFG8zWRyNNijH4z9E60lT1u1VUPTvjMqbq6qRP3_Isvxjuzq4TTY8zqS73cLYJGu2ukM2vSe39JWnm359l_xyNbiuuoM2C7y3QVvRi4qWEAioxmWxoJ5_taWyMlRfUoZTn-veUsygP6OYD-K4QmldUAh9IFTCb1fxqd1E7OPU4uMV4tVz2kokKG7vkZOD_a_vDkPfnSHUiZgvQ8tYrBOeCsukAPBrkiyWkmutJFeyENhlPVU2BYBZGK2EmRWFnvO5YjbjIpHxfTKpQO9bhALEUTMls0RpxXhkBfIG6MIKKWcqNjYgcW-SXHvqcuygUebuPi6FI0yn1RwNmXtDBiQcZjUddcd_5PfQ2oMsEm-7P0BHufdjlNWJ5SbjSrEoUjKSsYINRZhMw9FNBuQprpW8q2Idwke-myLNEJxNs4A8dxJIvlFhds-ZXLVt_v7Tt2sIfTkeCb30QkUN6tDSV1TAOyGp10hyeyQJIUSPhrdwZfdaafNLZ4OZ_Wq_evjZMIwPxYy9ytarTgbQNYvTgDzonGPQbAwgXLCMBSQduc1I9eOR6uLccZ8LQMRpAjOng4Ndy7gP__0ej8itOda1OE7PbTJZLlb2MaDNpXriQ8hv41OFEg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsR2HscFURUkCgKKygFFtuO0FVF2tdkVggNHfjczjhMIFFEO3FbrGWvzZTwe78x8JuQe7OG8FBVEblFkfM5K7WeVMn6oqkgoCEFEit3IL_aS3X3-_EAcrJEPfS-MQxDOiPWstZl8_DBrzLZDchv5irrsaRCxNOo1gjkIBZiRhC3xvmUcwn_GltiAdIasJwJC9QlZ3997NX3fZZpjP4lD5trp_jTTaLuyrP6D757gLzspMP29vvLsqpnLz59kXf-0ee1cIF_7x-5qVj4Gq6UK9JdfGCH_Gy4XyXkX9tJpN8sGWTPNJbLhHEtLHzr260eXyTfbEmybTeh8gWkkNB163NAa_BLVaKUL6uhgWyqbkuofDObUld63FAv6DymWp1jqUjqrKHhiEKrhs21A1VYRr5VqcXqF4fMRbSXyJbdXyP7O07dPdn13WYSvkzxe-oZzphOR5obLHGLxMsmYlEJrJYWSVY6XvqfKpBDvVqVWeRlWlY5FrLjJwDYku0omDUC1SShEXCpUMkuUVlxEJkcaA12ZXMpQsdJ4hPU2UWjHpI4XetSFTQ-mcKLqUC0Q-8Jh7xF_0Jp3TCJ_kX-M5jbIIg-4_QIwKtxLR1mdGFFmQikeRUpGkinY3_Iy03CSlB65jcZadE21gzcrpimyHsFROfPIXSuBXCANFhsdylXbFs9evjuF0JvXI6EHTqiaARxaugYPeCa0zZHk1kgSPJoeDW-icfeotEUMeDC8eyMEzX65nTx8ZxjGSbGAsDGzVScDwT5nqUeudatzQJbBmSDnGfdIOlq3I-jHI83xkaVizyFATxPQDIYVfqqXe_1fFW6QczE23ljS0S0yWS5W5iaEw0t1yzm178atvlY priority: 102 providerName: Unpaywall |
| Title | Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36449484 https://www.proquest.com/docview/2743380520 https://www.proquest.com/docview/2743505437 https://pubmed.ncbi.nlm.nih.gov/PMC9710764 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277431&type=printable https://doaj.org/article/027c6e5d85bb411ba1a3b7629d8c576a http://dx.doi.org/10.1371/journal.pone.0277431 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdG9wAviPFvgVEMQgIeUjWNHScPCHXTykBamQZF3VNkO842KUpL0wr2Bfjc3DluIKKIiZcoiu9S5c53Ptd3vyPkBazhLOM5RG5BYHwWZtqPc2X8vsoDriAE4QKrkY_H0dGEfZjy6RZZ92x1Aqw2bu2wn9RkUfS-f716Cwb_xnZtEMGaqTeflaaHZ5IMC6u3Ya1KsJnDMWvOFcC6o8gV0P2Ns7VAWRz_xlt35sWs2hSK_plReXNVzuXVN1kUvy1Xozvktosz6bCeGDtky5R3yY6z5Iq-cnDTr--RH7YG11Z30PkCz21QV_SypAU4AqpxWiyow1-tqCwzqn9BhlOX615RzKA_p5gPYrFC6Syn4PqAqIB7W_GpLSP2carw9Qrj1QtaSQQoru6Tyejw88GR77oz-DpKBkvfMBbqiIvEMJlA8JtFcSgl11pJrmSeYJd1oYyAADPPtEqyfp7rAR8oZmKeRDJ8QDolyH2XUAhxVF_JOFJaMR6YBHEDdG4SKfsqzIxHwrVKUu2gy7GDRpHa8zgBW5haqikqMnWK9IjfcM1r6I5_0O-jthtaBN62D0BGqbNjpNWR4VnMlWJBoGQgQwULSpLFGrZu0iNPca6kdRVr4z7SoUCYIdibxh55bikQfKPE7J5zuaqq9P3HL9cg-nTaInrpiPIZiENLV1EB34SgXi3KvRYluBDdGt7Fmb2WSpUOQB4hNrvoA-d6tm8eftYM40sxY680s1VNA9E1C4VHHtbG0Ug2hCA8YTHziGiZTUv07ZHy8sJinycQEYsIOHuNgV1LuY_--6cek1sDLHmxcJ97pLNcrMwTCESXqktuiKmAa3wQ4HX0rku29w_HJ6dd-9dO1_oeeDYZnwzPfgL_OZbn |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCQ7Sax8zggVB5Vlz6QoK32FmzHaStFSdjsquof4OfwG5lxvCkRFfTSWxSPLWVmPJ6JZ74h5AWc4SzjOXhunqddFmTKjXOp3ZHMPS7BBeERViPv7Yfbh-zzhE-WyK9FLQymVS5sojHUWaXwH_kGRE8QTWHWxrv6h4tdo_B2ddFCo1WLHX1-BiFb83b8EeT70ve3Ph182HZtVwFXhYk_czVjgQp5lGgmEnDasjAOhOBKScGlyBPsDh5JHYFjlGdKJtkoz5XPfcl0zJNQBLDuDXKTBWBLYP9Eky7AA9sRhrY8L4i8DasNw7oq9RDvSlng9Y4_0yWgOwsGdVE1lzm6f-drLs_LWpyfiaL44zDcukNuWy-WbrZqt0KWdHmXrFg70dDXFsz6zT3y01T4mtoRWk_xVgg1gZ6WtAAzQxUq3ZRadNeGijKj6gKQnNpM-oZifv4xxWwTg0RKq5yCYQWiAp5NPakyE7FLVIPLS_SGT2gjEP64uU8Or0VKD8igBL6vEgoOlBxJEYdSScY9nSAqgcp1IsRIBpl2SLAQSaosMDr25yhSc9sXQYDUcjVFQaZWkA5xu1l1CwzyH_r3KO2OFmG9zQvgUWqtBNKqUPMs5lIyz5PCE4GE4yrJYgWBoXDIOupK2tbIdsYp3YwQxAgi39ghzw0FQnuUmDt0LOZNk46_HF2B6NvXHtErS5RXwA4lbL0GfBNChvUo13qUYKBUb3gVNXvBlSa92Mowc6Htlw8_64ZxUcwHLHU1b2nAd2dB5JCH7eboOBuAi5-wmDkk6m2bHuv7I-XpiUFWT8DfjkKYOew22JWE--jf37FOlrcP9nbT3fH-zmNyy8cKGoMeukYGs-lcPwG_diafGmNCyffrtl6_AatBvO8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIgEXRPlroFCDQMAhu5vY-TsgVCirLoWCgKK9Bdtx2kpREppdVX0BHoqnY8bxpkRU0EtvUTy2lJnxeCae-YaQJ3CG8yzIwXPzPO1ylik3zqV2xzL3AgkuSBBhNfKH3XB7j7-bBbMV8mtZC4NplUubaAx1Vin8Rz6C6AmiKczaGOU2LeLT1uRV_cPFDlJ407psp9GqyI4-OYbwrXk53QJZP_X9yduvb7Zd22HAVWHiz13NOVNhECWaiwQcuCyMmRCBUlIEUuQJdgqPpI7AScozJZNsnOfKD3zJdRwkoWCw7iVyOWIswXTCaNYFe2BHwtCW6rHIG1nNGNZVqYd4b8qZ1zsKTceA7lwY1EXVnOX0_p27eXVR1uLkWBTFHwfj5Aa5bj1autmq4CpZ0eVNsmptRkOfW2DrF7fIT1Pta-pIaH2EN0SoFfSwpAWYHKpQAY-oRXptqCgzqk7ByanNqm8o5urvU8w8MaiktMopGFkgKuDZ1JYqMxE7RjW4vETP-IA2AqGQm9tk70KkdIcMSuD7GqHgTMmxFHEoleSBpxNEKFC5ToQYS5Zph7ClSFJlQdKxV0eRmpu_CIKllqspCjK1gnSI282qW5CQ_9C_Rml3tAjxbV4Aj1JrMZBWhTrI4kBK7nlSeIJJOLqSLFYQJAqHbKCupG29bGeo0s0IAY0gCo4d8thQIMxHiRtmXyyaJp1-_HYOoi-fe0TPLFFeATuUsLUb8E0IH9ajXO9RgrFSveE11OwlV5r0dFvDzKW2nz38qBvGRTE3sNTVoqUBP56zyCF3283RcZaBu5_wmDsk6m2bHuv7I-XhgUFZT8D3jkKYOew22LmEe-_f37FBroDdSt9Pd3fuk2s-FtMYINF1MpgfLfQDcHHn8qGxJZR8v2jj9RuHZcEy |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsR2HscFURUkCgKKygFFtuO0FVF2tdkVggNHfjczjhMIFFEO3FbrGWvzZTwe78x8JuQe7OG8FBVEblFkfM5K7WeVMn6oqkgoCEFEit3IL_aS3X3-_EAcrJEPfS-MQxDOiPWstZl8_DBrzLZDchv5irrsaRCxNOo1gjkIBZiRhC3xvmUcwn_GltiAdIasJwJC9QlZ3997NX3fZZpjP4lD5trp_jTTaLuyrP6D757gLzspMP29vvLsqpnLz59kXf-0ee1cIF_7x-5qVj4Gq6UK9JdfGCH_Gy4XyXkX9tJpN8sGWTPNJbLhHEtLHzr260eXyTfbEmybTeh8gWkkNB163NAa_BLVaKUL6uhgWyqbkuofDObUld63FAv6DymWp1jqUjqrKHhiEKrhs21A1VYRr5VqcXqF4fMRbSXyJbdXyP7O07dPdn13WYSvkzxe-oZzphOR5obLHGLxMsmYlEJrJYWSVY6XvqfKpBDvVqVWeRlWlY5FrLjJwDYku0omDUC1SShEXCpUMkuUVlxEJkcaA12ZXMpQsdJ4hPU2UWjHpI4XetSFTQ-mcKLqUC0Q-8Jh7xF_0Jp3TCJ_kX-M5jbIIg-4_QIwKtxLR1mdGFFmQikeRUpGkinY3_Iy03CSlB65jcZadE21gzcrpimyHsFROfPIXSuBXCANFhsdylXbFs9evjuF0JvXI6EHTqiaARxaugYPeCa0zZHk1kgSPJoeDW-icfeotEUMeDC8eyMEzX65nTx8ZxjGSbGAsDGzVScDwT5nqUeudatzQJbBmSDnGfdIOlq3I-jHI83xkaVizyFATxPQDIYVfqqXe_1fFW6QczE23ljS0S0yWS5W5iaEw0t1yzm178atvlY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigroup+prediction+in+lung+cancer+patients+and+comparative+controls+using+signature+of+volatile+organic+compounds+in+breath+samples&rft.jtitle=PloS+one&rft.au=Rai%2C+Shesh+N.&rft.au=Das%2C+Samarendra&rft.au=Pan%2C+Jianmin&rft.au=Mishra%2C+Dwijesh+C.&rft.date=2022-11-30&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277431&rft.externalDocID=PMC9710764 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |