Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples

Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples thro...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 11; p. e0277431
Main Authors Rai, Shesh N., Das, Samarendra, Pan, Jianmin, Mishra, Dwijesh C., Fu, Xiao-An
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.11.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0277431

Cover

Abstract Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C 4 H 8 O 2 , C 13 H 22 O, C 11 H 22 O, C 2 H 4 O 2 , C 7 H 14 O, C 6 H 12 O, and C 5 H 8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
AbstractList Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C.sub.4 H.sub.8 O.sub.2, C.sub.13 H.sub.22 O, C.sub.11 H.sub.22 O, C.sub.2 H.sub.4 O.sub.2, C.sub.7 H.sub.14 O, C.sub.6 H.sub.12 O, and C.sub.5 H.sub.8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C 4 H 8 O 2 , C 13 H 22 O, C 11 H 22 O, C 2 H 4 O 2 , C 7 H 14 O, C 6 H 12 O, and C 5 H 8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C 4 H 8 O 2 , C 13 H 22 O, C 11 H 22 O, C 2 H 4 O 2 , C 7 H 14 O, C 6 H 12 O, and C 5 H 8 O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.
Audience Academic
Author Rai, Shesh N.
Pan, Jianmin
Das, Samarendra
Fu, Xiao-An
Mishra, Dwijesh C.
AuthorAffiliation 2 School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America
4 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
5 Biostatistics and Informatics Facility, Center for Integrative Environmental Research Sciences, University of Louisville, Louisville, KY, United States of America
1 Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
7 ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India
Cranfield University, UNITED KINGDOM
9 ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
6 Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
10 Department of Chemical Engineering, University of Louisville, Louisville, KY, United States of America
3 Hepatobiology and Toxicology Center, University of Louisvil
AuthorAffiliation_xml – name: 6 Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
– name: 1 Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
– name: 7 ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India
– name: 2 School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, United States of America
– name: 3 Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States of America
– name: 5 Biostatistics and Informatics Facility, Center for Integrative Environmental Research Sciences, University of Louisville, Louisville, KY, United States of America
– name: 9 ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
– name: Cranfield University, UNITED KINGDOM
– name: 4 Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, United States of America
– name: 8 International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha, India
– name: 10 Department of Chemical Engineering, University of Louisville, Louisville, KY, United States of America
Author_xml – sequence: 1
  givenname: Shesh N.
  orcidid: 0000-0002-8377-353X
  surname: Rai
  fullname: Rai, Shesh N.
– sequence: 2
  givenname: Samarendra
  surname: Das
  fullname: Das, Samarendra
– sequence: 3
  givenname: Jianmin
  surname: Pan
  fullname: Pan, Jianmin
– sequence: 4
  givenname: Dwijesh C.
  surname: Mishra
  fullname: Mishra, Dwijesh C.
– sequence: 5
  givenname: Xiao-An
  surname: Fu
  fullname: Fu, Xiao-An
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36449484$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaZJt36C0hkJpL3brg2TZvSiE0MNCSqCnWzGWZa8WreTosG1eoM9dedcJ6xBK8IWE9M0_mn_Gp9GR0opH0fM0WaQ5Sd-ttTcK5KIPx4skIwTl6aPoJK3ybF5kSX50sD-OTq1dJwnOy6J4Eh3nBUIVKtFJ9Perl050Rvs-7g1vBHNCq1ioWHrVxQwU4ybuwQmunI1BNTHTmx5MONnysFfOaGljb0XAregUOG94rNt4q2WAZNibDpRgu0DtVWMH-dpwcKvYwqaX3D6NHrcgLX82rrPo56ePP86_zC8uPy_Pzy7mrKgyN-cI5azApOIIqjKtm6LMATBjNeAa2gqjcFlzUhHSNqyumqRtWYazGvESVwXks-jlXreX2tLRQkuzYF5eJjhYNYuWe6LRsKa9ERsw11SDoLuDUAsF4wSTnAbTWcFxU-K6RmlaQwp5TYqsakqGyS4b3mt51cP1b5DyVjBN6NDFmyfQoYt07GKI-zC-0tcb3rBgvQE5ecz0RokV7fSWViRNSIGCwJtRwOgrz62jG2EZlxIU135fL04wyklAX91B73dlpDoIhQvV6pCXDaL0jGRlqKRAZaAW91Dha_hGhFHhbRiHacDbScAwTvyP68BbS5ffvz2cvfw1ZV8fsCsO0q2sln6YbTsFXxw6fWvxzQ8SALQHmNHWGt4-tIPv74Qx4WBIHxwR8v_B_wATGzwU
CitedBy_id crossref_primary_10_1038_s41598_024_61735_7
crossref_primary_10_1016_j_saa_2023_123266
crossref_primary_10_1183_16000617_0125_2023
crossref_primary_10_2174_0115748936278851231213110653
crossref_primary_10_1016_j_jpba_2025_116787
crossref_primary_10_1038_d44151_022_00132_3
crossref_primary_10_3389_fonc_2023_1204435
crossref_primary_10_3390_cancers16111980
crossref_primary_10_1093_bfgp_elaf001
crossref_primary_10_1080_10408363_2024_2387038
crossref_primary_10_1186_s12890_024_03374_2
crossref_primary_10_1016_j_microc_2024_110051
crossref_primary_10_1016_j_biologicals_2024_101785
Cites_doi 10.3390/e22040427
10.1371/journal.pone.0169605
10.1016/j.jtcvs.2015.08.092
10.1039/c1an15618g
10.1016/j.snb.2017.08.057
10.1371/journal.pone.0064929
10.1007/978-1-4899-4541-9
10.1002/cam4.162
10.1021/ac2021757
10.1073/pnas.68.10.2374
10.1001/jamainternmed.2013.12738
10.1016/j.snb.2012.07.034
10.1016/S0378-4347(99)00127-9
10.1016/j.lungcan.2015.07.005
10.1016/j.jtcvs.2014.06.006
10.1111/1467-9469.00072
ContentType Journal Article
Copyright Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
COPYRIGHT 2022 Public Library of Science
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
– notice: COPYRIGHT 2022 Public Library of Science
– notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0277431
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database (ProQuest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Multigroup prediction in lung cancer patients using volatile organic compounds in breath samples
EISSN 1932-6203
ExternalDocumentID 2743380520
oai_doaj_org_article_027c6e5d85bb411ba1a3b7629d8c576a
10.1371/journal.pone.0277431
PMC9710764
A728371648
36449484
10_1371_journal_pone_0277431
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM135004
– fundername: NHLBI NIH HHS
  grantid: U54 HL120163
– fundername: NIEHS NIH HHS
  grantid: R35 ES028373
– fundername: NCI NIH HHS
  grantid: R21 CA229057
– fundername: NIEHS NIH HHS
  grantid: P30 ES030283
– fundername: NIEHS NIH HHS
  grantid: R01 ES029846
– fundername: NIGMS NIH HHS
  grantid: P20 GM113226
– fundername: NIGMS NIH HHS
  grantid: P20 GM125504
– fundername: NIGMS NIH HHS
  grantid: P30 GM127607
– fundername: NIEHS NIH HHS
  grantid: P42 ES023716
– fundername: ;
  grantid: 5P20GM113226, PI: McClain; 1P42ES023716, PI: Srivastava; 5P30GM127607-02, PI: Jones; 1P20GM125504-01, PI: Lamont; 2U54HL120163, PI: Bhatnagar/Robertson; 1P20GM135004, PI: Yan; 1R35ES0238373-01, PI: Cave; 1R01ES029846, PI: Bhatnagar; 1R01ES027778-01A1, PI: States
– fundername: ;
  grantid: Wendell Cherry Chair in Clinical Trial Research Fund
– fundername: ;
  grantid: 18(02)/2016-EQR/Edn.
– fundername: ;
  grantid: 1R21CA229057
– fundername: ;
  grantid: PON2 415 1900002934, PI: Chesney
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-e443c6579e4a981bd683aa5ccba5baf954657be7977fdcb9d0ffc252b4e8596a3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:03:49 EDT 2023
Tue Oct 14 19:03:14 EDT 2025
Sun Oct 26 02:55:36 EDT 2025
Tue Sep 30 17:17:54 EDT 2025
Mon Sep 08 14:27:18 EDT 2025
Tue Oct 07 07:56:52 EDT 2025
Mon Oct 20 22:27:20 EDT 2025
Mon Oct 20 16:34:33 EDT 2025
Thu Oct 16 14:22:18 EDT 2025
Thu Oct 16 14:27:57 EDT 2025
Thu May 22 21:09:02 EDT 2025
Mon Jul 21 05:54:44 EDT 2025
Wed Oct 01 04:21:17 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
cc-by
Creative Commons CC0 public domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-e443c6579e4a981bd683aa5ccba5baf954657be7977fdcb9d0ffc252b4e8596a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8377-353X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277431
PMID 36449484
PQID 2743380520
PQPubID 1436336
PageCount e0277431
ParticipantIDs plos_journals_2743380520
doaj_primary_oai_doaj_org_article_027c6e5d85bb411ba1a3b7629d8c576a
unpaywall_primary_10_1371_journal_pone_0277431
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710764
proquest_miscellaneous_2743505437
proquest_journals_2743380520
gale_infotracmisc_A728371648
gale_infotracacademiconefile_A728371648
gale_incontextgauss_ISR_A728371648
gale_incontextgauss_IOV_A728371648
gale_healthsolutions_A728371648
pubmed_primary_36449484
crossref_primary_10_1371_journal_pone_0277431
crossref_citationtrail_10_1371_journal_pone_0277431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-30
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Das (pone.0277431.ref019) 2017; 12
KB Duan (pone.0277431.ref014) 2005
M Li (pone.0277431.ref004) 2015; 90
X-A Fu (pone.0277431.ref007) 2014; 3
Y Benjamini (pone.0277431.ref022) 1997; 24
I. Guyon (pone.0277431.ref015) 1998
X-A Fu (pone.0277431.ref010) 2011; 136
M Phillips (pone.0277431.ref006) 1999; 729
M Li (pone.0277431.ref012) 2013; 180
S Das (pone.0277431.ref016) 2020; 22
L Pauling (pone.0277431.ref005) 1971; 68
EM Schumer (pone.0277431.ref008) 2015; 150
J Wang (pone.0277431.ref018) 2013; 8
I Guyon (pone.0277431.ref017) 2002
S Das (pone.0277431.ref013) 2018; 655
M Bousamra (pone.0277431.ref009) 2014; 148
pone.0277431.ref001
S Das (pone.0277431.ref020) 2020; 22
B Efron (pone.0277431.ref021) 1993
JE Chang (pone.0277431.ref002) 2018; 255
EF Patz (pone.0277431.ref003) 2014; 174
M Li (pone.0277431.ref011) 2012; 84
References_xml – year: 2002
  ident: pone.0277431.ref017
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
– volume: 22
  start-page: 427
  year: 2020
  ident: pone.0277431.ref020
  article-title: Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges
  publication-title: Entropy
  doi: 10.3390/e22040427
– volume: 12
  start-page: e0169605
  year: 2017
  ident: pone.0277431.ref019
  article-title: Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169605
– volume: 150
  start-page: 1517
  year: 2015
  ident: pone.0277431.ref008
  article-title: High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2015.08.092
– ident: pone.0277431.ref001
– volume: 136
  start-page: 4662
  year: 2011
  ident: pone.0277431.ref010
  article-title: A novel microreactor approach for analysis of ketones and aldehydes in breath
  publication-title: Analyst
  doi: 10.1039/c1an15618g
– year: 2005
  ident: pone.0277431.ref014
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans Nanobioscience
– volume: 22
  year: 2020
  ident: pone.0277431.ref016
  article-title: Statistical approach for biologically relevant gene selection from high-throughput gene expression data
  publication-title: Entropy
– volume: 255
  start-page: 800
  year: 2018
  ident: pone.0277431.ref002
  article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2017.08.057
– year: 1998
  ident: pone.0277431.ref015
  article-title: Gene Selection for Cancer Classification using Support Vector Machines
  publication-title: Mach Learn
– volume: 8
  start-page: e64929
  year: 2013
  ident: pone.0277431.ref018
  article-title: A Computational Systems Biology Study for Understanding Salt Tolerance Mechanism in Rice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064929
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: pone.0277431.ref021
  doi: 10.1007/978-1-4899-4541-9
– volume: 3
  start-page: 174
  year: 2014
  ident: pone.0277431.ref007
  article-title: Noninvasive detection of lung cancer using exhaled breath
  publication-title: Cancer Med
  doi: 10.1002/cam4.162
– volume: 84
  start-page: 1288
  year: 2012
  ident: pone.0277431.ref011
  article-title: Preconcentration and Analysis of Trace Volatile Carbonyl Compounds
  publication-title: Anal Chem
  doi: 10.1021/ac2021757
– volume: 68
  start-page: 2374
  year: 1971
  ident: pone.0277431.ref005
  article-title: Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.68.10.2374
– volume: 174
  start-page: 269
  year: 2014
  ident: pone.0277431.ref003
  article-title: Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.12738
– volume: 180
  start-page: 130
  year: 2013
  ident: pone.0277431.ref012
  article-title: A microfabricated preconcentration device for breath analysis
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2012.07.034
– volume: 729
  start-page: 75
  year: 1999
  ident: pone.0277431.ref006
  article-title: Variation in volatile organic compounds in the breath of normal humans
  publication-title: J Chromatogr B Biomed Sci Appl
  doi: 10.1016/S0378-4347(99)00127-9
– volume: 90
  start-page: 92
  year: 2015
  ident: pone.0277431.ref004
  article-title: Breath carbonyl compounds as biomarkers of lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.07.005
– volume: 148
  start-page: 1074
  year: 2014
  ident: pone.0277431.ref009
  article-title: Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2014.06.006
– volume: 655
  year: 2018
  ident: pone.0277431.ref013
  article-title: Statistical approach for selection of biologically informative genes
  publication-title: Gene
– volume: 24
  start-page: 407
  year: 1997
  ident: pone.0277431.ref022
  article-title: Multiple Hypotheses Testing with Weights
  publication-title: Scand J Stat
  doi: 10.1111/1467-9469.00072
SSID ssj0053866
Score 2.503595
Snippet Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0277431
SubjectTerms Algorithms
Biology and Life Sciences
Body Fluids
Breath tests
Cancer research
Carbonyl compounds
Carbonyls
Classification
Computer and Information Sciences
COVID-19
Diagnosis
Fatalities
Health aspects
Humans
Identification and classification
Learning algorithms
Low income groups
Lung cancer
Lung diseases
Lung Neoplasms - diagnosis
Lung nodules
Machine learning
Medical diagnosis
Medicine and Health Sciences
Metabolism
Microreactors
Multiple Pulmonary Nodules
Nodules
Organic chemicals
Organic compounds
Patients
Physical Sciences
Samples
Silicon
Smoking
Standard error
Statistical analysis
Survival
Tomography
VOCs
Volatile Organic Compounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF8NFDAICThkm8R2Eh8LoipIgAQU9WbZjtNWipJosyvEH-B3M-N4QyMqtQduUTyOlBnP-FmeeUPIS9jDeSVqQG5p6mLOKhuXtXFxYupUGIAgosBq5E-f86Nj_vFEnFxo9YU5YSM98Ki4fTg22dyJqhTG8DQ1OtXMgAfLqrSAlT00Skq5PUyNMRi8OM9DoRwr0v1gl2XftW6Jt5acpbONyPP1T1F50TfdcBnk_Ddz8uam7fWvn7ppLmxLh3fI7YAn6cH4Hzvkhmvvkp3gsQN9HWil39wjv32tra_ioP0K72fQJvS8pQ04PLVo_hUNPKsD1W1F7V9qcBpy2geKmfKnFPM-PCco7WoKIQ6EGnj2lZ3WT8R-TQN-3iAuPaODRiLi4T45Pnz__d1RHLowxDaX2Tp2nDObi0I6riWA3CovmdbCWqOF0bXEbuqFcQUAybqyRlZJXdtMZIa7Ushcswdk0YLedwkFKGMSo8vcWMNF6iTyA9jaSa0TwyoXEbY1ibKBohw7ZTTK37sVcFQZtarQkCoYMiLxNKsfKTqukH-L1p5kkWDbvwAdqbDs1FXLLiLPcK2osVp1ChPqoEA6ITiDlhF54SWQZKPFLJ5TvRkG9eHLj2sIffs6E3oVhOoO1GF1qJyAf0Lyrpnk3kwSQoWdDe_iyt5qZVAZ6INhU4sEZm5X--XDz6dh_Chm5rWu24wygKI5KyLycHSOSbMMwLbkJY9IMXObmernI-35mec4l4B8ixxmLicHu5ZxH_0P4z4mtzKscvEMn3tksV5t3BPAnmvz1IeZP83Jhys
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoIBBSMAh283GTuIDQi1qVZAoqFDUW-RX2kpREja7QvwBfjczjpMSUUFvq_U4UmY848_xzDeEvIA9nBleAHKLIhuy2OgwK5QNZ6qIuAIIwlOsRv54lByesA-n_HSNHPW1MJhW2cdEF6hNrfEb-Q6cnuA0hVkbb5vvIXaNwtvVvoWG9K0VzBtHMXaDrM-RGWtC1vf2jz4f97EZvDtJfAFdnEY73l7Tpq7sFG8zWRyNNijH4z9E60lT1u1VUPTvjMqbq6qRP3_Isvxjuzq4TTY8zqS73cLYJGu2ukM2vSe39JWnm359l_xyNbiuuoM2C7y3QVvRi4qWEAioxmWxoJ5_taWyMlRfUoZTn-veUsygP6OYD-K4QmldUAh9IFTCb1fxqd1E7OPU4uMV4tVz2kokKG7vkZOD_a_vDkPfnSHUiZgvQ8tYrBOeCsukAPBrkiyWkmutJFeyENhlPVU2BYBZGK2EmRWFnvO5YjbjIpHxfTKpQO9bhALEUTMls0RpxXhkBfIG6MIKKWcqNjYgcW-SXHvqcuygUebuPi6FI0yn1RwNmXtDBiQcZjUddcd_5PfQ2oMsEm-7P0BHufdjlNWJ5SbjSrEoUjKSsYINRZhMw9FNBuQprpW8q2Idwke-myLNEJxNs4A8dxJIvlFhds-ZXLVt_v7Tt2sIfTkeCb30QkUN6tDSV1TAOyGp10hyeyQJIUSPhrdwZfdaafNLZ4OZ_Wq_evjZMIwPxYy9ytarTgbQNYvTgDzonGPQbAwgXLCMBSQduc1I9eOR6uLccZ8LQMRpAjOng4Ndy7gP__0ej8itOda1OE7PbTJZLlb2MaDNpXriQ8hv41OFEg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsR2HscFURUkCgKKygFFtuO0FVF2tdkVggNHfjczjhMIFFEO3FbrGWvzZTwe78x8JuQe7OG8FBVEblFkfM5K7WeVMn6oqkgoCEFEit3IL_aS3X3-_EAcrJEPfS-MQxDOiPWstZl8_DBrzLZDchv5irrsaRCxNOo1gjkIBZiRhC3xvmUcwn_GltiAdIasJwJC9QlZ3997NX3fZZpjP4lD5trp_jTTaLuyrP6D757gLzspMP29vvLsqpnLz59kXf-0ee1cIF_7x-5qVj4Gq6UK9JdfGCH_Gy4XyXkX9tJpN8sGWTPNJbLhHEtLHzr260eXyTfbEmybTeh8gWkkNB163NAa_BLVaKUL6uhgWyqbkuofDObUld63FAv6DymWp1jqUjqrKHhiEKrhs21A1VYRr5VqcXqF4fMRbSXyJbdXyP7O07dPdn13WYSvkzxe-oZzphOR5obLHGLxMsmYlEJrJYWSVY6XvqfKpBDvVqVWeRlWlY5FrLjJwDYku0omDUC1SShEXCpUMkuUVlxEJkcaA12ZXMpQsdJ4hPU2UWjHpI4XetSFTQ-mcKLqUC0Q-8Jh7xF_0Jp3TCJ_kX-M5jbIIg-4_QIwKtxLR1mdGFFmQikeRUpGkinY3_Iy03CSlB65jcZadE21gzcrpimyHsFROfPIXSuBXCANFhsdylXbFs9evjuF0JvXI6EHTqiaARxaugYPeCa0zZHk1kgSPJoeDW-icfeotEUMeDC8eyMEzX65nTx8ZxjGSbGAsDGzVScDwT5nqUeudatzQJbBmSDnGfdIOlq3I-jHI83xkaVizyFATxPQDIYVfqqXe_1fFW6QczE23ljS0S0yWS5W5iaEw0t1yzm178atvlY
  priority: 102
  providerName: Unpaywall
Title Multigroup prediction in lung cancer patients and comparative controls using signature of volatile organic compounds in breath samples
URI https://www.ncbi.nlm.nih.gov/pubmed/36449484
https://www.proquest.com/docview/2743380520
https://www.proquest.com/docview/2743505437
https://pubmed.ncbi.nlm.nih.gov/PMC9710764
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277431&type=printable
https://doaj.org/article/027c6e5d85bb411ba1a3b7629d8c576a
http://dx.doi.org/10.1371/journal.pone.0277431
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdG9wAviPFvgVEMQgIeUjWNHScPCHXTykBamQZF3VNkO842KUpL0wr2Bfjc3DluIKKIiZcoiu9S5c53Ptd3vyPkBazhLOM5RG5BYHwWZtqPc2X8vsoDriAE4QKrkY_H0dGEfZjy6RZZ92x1Aqw2bu2wn9RkUfS-f716Cwb_xnZtEMGaqTeflaaHZ5IMC6u3Ya1KsJnDMWvOFcC6o8gV0P2Ns7VAWRz_xlt35sWs2hSK_plReXNVzuXVN1kUvy1Xozvktosz6bCeGDtky5R3yY6z5Iq-cnDTr--RH7YG11Z30PkCz21QV_SypAU4AqpxWiyow1-tqCwzqn9BhlOX615RzKA_p5gPYrFC6Syn4PqAqIB7W_GpLSP2carw9Qrj1QtaSQQoru6Tyejw88GR77oz-DpKBkvfMBbqiIvEMJlA8JtFcSgl11pJrmSeYJd1oYyAADPPtEqyfp7rAR8oZmKeRDJ8QDolyH2XUAhxVF_JOFJaMR6YBHEDdG4SKfsqzIxHwrVKUu2gy7GDRpHa8zgBW5haqikqMnWK9IjfcM1r6I5_0O-jthtaBN62D0BGqbNjpNWR4VnMlWJBoGQgQwULSpLFGrZu0iNPca6kdRVr4z7SoUCYIdibxh55bikQfKPE7J5zuaqq9P3HL9cg-nTaInrpiPIZiENLV1EB34SgXi3KvRYluBDdGt7Fmb2WSpUOQB4hNrvoA-d6tm8eftYM40sxY680s1VNA9E1C4VHHtbG0Ug2hCA8YTHziGiZTUv07ZHy8sJinycQEYsIOHuNgV1LuY_--6cek1sDLHmxcJ97pLNcrMwTCESXqktuiKmAa3wQ4HX0rku29w_HJ6dd-9dO1_oeeDYZnwzPfgL_OZbn
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCQ7Sax8zggVB5Vlz6QoK32FmzHaStFSdjsquof4OfwG5lxvCkRFfTSWxSPLWVmPJ6JZ74h5AWc4SzjOXhunqddFmTKjXOp3ZHMPS7BBeERViPv7Yfbh-zzhE-WyK9FLQymVS5sojHUWaXwH_kGRE8QTWHWxrv6h4tdo_B2ddFCo1WLHX1-BiFb83b8EeT70ve3Ph182HZtVwFXhYk_czVjgQp5lGgmEnDasjAOhOBKScGlyBPsDh5JHYFjlGdKJtkoz5XPfcl0zJNQBLDuDXKTBWBLYP9Eky7AA9sRhrY8L4i8DasNw7oq9RDvSlng9Y4_0yWgOwsGdVE1lzm6f-drLs_LWpyfiaL44zDcukNuWy-WbrZqt0KWdHmXrFg70dDXFsz6zT3y01T4mtoRWk_xVgg1gZ6WtAAzQxUq3ZRadNeGijKj6gKQnNpM-oZifv4xxWwTg0RKq5yCYQWiAp5NPakyE7FLVIPLS_SGT2gjEP64uU8Or0VKD8igBL6vEgoOlBxJEYdSScY9nSAqgcp1IsRIBpl2SLAQSaosMDr25yhSc9sXQYDUcjVFQaZWkA5xu1l1CwzyH_r3KO2OFmG9zQvgUWqtBNKqUPMs5lIyz5PCE4GE4yrJYgWBoXDIOupK2tbIdsYp3YwQxAgi39ghzw0FQnuUmDt0LOZNk46_HF2B6NvXHtErS5RXwA4lbL0GfBNChvUo13qUYKBUb3gVNXvBlSa92Mowc6Htlw8_64ZxUcwHLHU1b2nAd2dB5JCH7eboOBuAi5-wmDkk6m2bHuv7I-XpiUFWT8DfjkKYOew22JWE--jf37FOlrcP9nbT3fH-zmNyy8cKGoMeukYGs-lcPwG_diafGmNCyffrtl6_AatBvO8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIgEXRPlroFCDQMAhu5vY-TsgVCirLoWCgKK9Bdtx2kpREppdVX0BHoqnY8bxpkRU0EtvUTy2lJnxeCae-YaQJ3CG8yzIwXPzPO1ylik3zqV2xzL3AgkuSBBhNfKH3XB7j7-bBbMV8mtZC4NplUubaAx1Vin8Rz6C6AmiKczaGOU2LeLT1uRV_cPFDlJ407psp9GqyI4-OYbwrXk53QJZP_X9yduvb7Zd22HAVWHiz13NOVNhECWaiwQcuCyMmRCBUlIEUuQJdgqPpI7AScozJZNsnOfKD3zJdRwkoWCw7iVyOWIswXTCaNYFe2BHwtCW6rHIG1nNGNZVqYd4b8qZ1zsKTceA7lwY1EXVnOX0_p27eXVR1uLkWBTFHwfj5Aa5bj1autmq4CpZ0eVNsmptRkOfW2DrF7fIT1Pta-pIaH2EN0SoFfSwpAWYHKpQAY-oRXptqCgzqk7ByanNqm8o5urvU8w8MaiktMopGFkgKuDZ1JYqMxE7RjW4vETP-IA2AqGQm9tk70KkdIcMSuD7GqHgTMmxFHEoleSBpxNEKFC5ToQYS5Zph7ClSFJlQdKxV0eRmpu_CIKllqspCjK1gnSI282qW5CQ_9C_Rml3tAjxbV4Aj1JrMZBWhTrI4kBK7nlSeIJJOLqSLFYQJAqHbKCupG29bGeo0s0IAY0gCo4d8thQIMxHiRtmXyyaJp1-_HYOoi-fe0TPLFFeATuUsLUb8E0IH9ajXO9RgrFSveE11OwlV5r0dFvDzKW2nz38qBvGRTE3sNTVoqUBP56zyCF3283RcZaBu5_wmDsk6m2bHuv7I-XhgUFZT8D3jkKYOew22LmEe-_f37FBroDdSt9Pd3fuk2s-FtMYINF1MpgfLfQDcHHn8qGxJZR8v2jj9RuHZcEy
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsR2HscFURUkCgKKygFFtuO0FVF2tdkVggNHfjczjhMIFFEO3FbrGWvzZTwe78x8JuQe7OG8FBVEblFkfM5K7WeVMn6oqkgoCEFEit3IL_aS3X3-_EAcrJEPfS-MQxDOiPWstZl8_DBrzLZDchv5irrsaRCxNOo1gjkIBZiRhC3xvmUcwn_GltiAdIasJwJC9QlZ3997NX3fZZpjP4lD5trp_jTTaLuyrP6D757gLzspMP29vvLsqpnLz59kXf-0ee1cIF_7x-5qVj4Gq6UK9JdfGCH_Gy4XyXkX9tJpN8sGWTPNJbLhHEtLHzr260eXyTfbEmybTeh8gWkkNB163NAa_BLVaKUL6uhgWyqbkuofDObUld63FAv6DymWp1jqUjqrKHhiEKrhs21A1VYRr5VqcXqF4fMRbSXyJbdXyP7O07dPdn13WYSvkzxe-oZzphOR5obLHGLxMsmYlEJrJYWSVY6XvqfKpBDvVqVWeRlWlY5FrLjJwDYku0omDUC1SShEXCpUMkuUVlxEJkcaA12ZXMpQsdJ4hPU2UWjHpI4XetSFTQ-mcKLqUC0Q-8Jh7xF_0Jp3TCJ_kX-M5jbIIg-4_QIwKtxLR1mdGFFmQikeRUpGkinY3_Iy03CSlB65jcZadE21gzcrpimyHsFROfPIXSuBXCANFhsdylXbFs9evjuF0JvXI6EHTqiaARxaugYPeCa0zZHk1kgSPJoeDW-icfeotEUMeDC8eyMEzX65nTx8ZxjGSbGAsDGzVScDwT5nqUeudatzQJbBmSDnGfdIOlq3I-jHI83xkaVizyFATxPQDIYVfqqXe_1fFW6QczE23ljS0S0yWS5W5iaEw0t1yzm178atvlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigroup+prediction+in+lung+cancer+patients+and+comparative+controls+using+signature+of+volatile+organic+compounds+in+breath+samples&rft.jtitle=PloS+one&rft.au=Rai%2C+Shesh+N.&rft.au=Das%2C+Samarendra&rft.au=Pan%2C+Jianmin&rft.au=Mishra%2C+Dwijesh+C.&rft.date=2022-11-30&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277431&rft.externalDocID=PMC9710764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon