A model-based framework for chronic hepatitis C prevalence estimation

Chronic hepatitis C (CHC) continues to be a highly burdensome disease worldwide. The often-asymptomatic nature of early-stage CHC means that the disease often remains undiagnosed, leaving its prevalence highly uncertain. This generates significant uncertainty in the planning of hepatitis C eradicati...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 11; p. e0225366
Main Authors Hamadeh, Abdullah, Feng, Zeny, Krahn, Murray, Wong, William W. L.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.11.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0225366

Cover

More Information
Summary:Chronic hepatitis C (CHC) continues to be a highly burdensome disease worldwide. The often-asymptomatic nature of early-stage CHC means that the disease often remains undiagnosed, leaving its prevalence highly uncertain. This generates significant uncertainty in the planning of hepatitis C eradication programs to meet WHO targets. The aim of this work is to establish a mathematical framework for the estimation of a geographic locale's CHC prevalence and the proportion of its CHC population that remains undiagnosed. A Bayesian MCMC approach is taken to infer these populations from the observed occurrence of CHC-related events using a recently published natural history model of the disease. Using the Canadian context as a specific example, this study estimates that in 2013, the CHC prevalence rate in Canada was 0.63% (95% CI: 0.53% - 0.72%), with 27.1% (95% CI: 19.3% - 36.1%) of the infected population undiagnosed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0225366