Normalization enhances brain network features that predict individual intelligence in children with epilepsy

Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalizat...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 3; p. e0212901
Main Authors Paldino, Michael J., Golriz, Farahnaz, Zhang, Wei, Chu, Zili D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.03.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0212901

Cover

Abstract Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
AbstractList Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Materials and methods Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Results Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Conclusion Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.BACKGROUND AND PURPOSEArchitecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.MATERIALS AND METHODSPatients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.RESULTSTwenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.CONCLUSIONNormalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Materials and methods Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Results Twenty-seven patients (8–18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Conclusion Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.
Audience Academic
Author Chu, Zili D.
Golriz, Farahnaz
Paldino, Michael J.
Zhang, Wei
AuthorAffiliation Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
Indraprastha Institute of Information Technology, INDIA
AuthorAffiliation_xml – name: Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America
– name: Indraprastha Institute of Information Technology, INDIA
Author_xml – sequence: 1
  givenname: Michael J.
  orcidid: 0000-0002-3769-8508
  surname: Paldino
  fullname: Paldino, Michael J.
– sequence: 2
  givenname: Farahnaz
  surname: Golriz
  fullname: Golriz, Farahnaz
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 4
  givenname: Zili D.
  surname: Chu
  fullname: Chu, Zili D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30835738$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tv1DAQhSNURGnhHyCIhITgYRdfcuUBqaq4VKqoBBWv1sQZb1y8drCdlvLr8Xa3VbeqRJWHOM43JzPnxHvZjnUWs-wFJXPKa_r-zE3egpmPaXtOGGUtoY-yp7TlbFYxwndurXezvRDOCCl5U1VPsl1OGl7WvHmamW_OL8HovxC1sznaAazEkHcetM0txgvnf-UKIU4-bccBYj567LWMuba9Ptf9BCYtIxqjF5iK00MuB216jza_0HHIcdQGx3D5LHuswAR8vrnvZ6efP50efp0dn3w5Ojw4nsmqZXGGhPfYKSjqjpdQFbSqO8XaQrIaJK2hYo2sC95RIFw2TPZdX6m2AKYUTSDfz16tZUfjgtj4FASjTcOLVFwn4mhN9A7OxOj1EvylcKDF1YbzCwE-amlQqGS2pEm-U7KogbVcNVgoAqSkBFmRtMq11mRHuLwAY24EKRGrqK5bEKuoxCaqVPdx0-XULbGXaKMHs9XM9hurB7Fw56IqCCl4lQTebgS8-z1hiGKpg0wxgEU3rectm5bRVY-v76D3u7KhFpAG11a59F25EhUHZV1TTsty5e78HipdPS61TBOqFPZ2wbutgsRE_BMXMIUgjn58fzh78nObfXOLHRBMHIIz0-pHDtvgy9tO31h8fQoS8GENSO9C8KiE1PHqQKTRtPlfjsWd4gfF_w_2lTGY
CitedBy_id crossref_primary_10_3389_fphys_2022_1015838
crossref_primary_10_1002_hbm_25462
crossref_primary_10_1016_j_neuroimage_2019_116345
crossref_primary_10_1002_hbm_26258
crossref_primary_10_1016_j_nicl_2021_102739
crossref_primary_10_1186_s40708_020_00114_0
crossref_primary_10_1109_ACCESS_2021_3113611
crossref_primary_10_1016_j_bspc_2020_102129
crossref_primary_10_3389_fnins_2021_684825
crossref_primary_10_1177_15357597211068600
crossref_primary_10_1186_s12874_022_01544_6
Cites_doi 10.1111/j.1528-1167.2005.00340.x
10.1038/nrneurol.2009.198
10.1109/42.906426
10.1016/j.neuroimage.2010.06.010
10.1016/j.nbd.2012.10.007
10.1016/j.neuroimage.2009.12.027
10.1023/A:1010933404324
10.1016/j.neuroimage.2009.10.003
10.1038/nature21369
10.1016/j.tics.2013.09.012
10.1111/j.1528-1167.2012.03493.x
10.1016/S0079-6123(02)35040-4
10.1016/j.neuroimage.2015.09.012
10.1371/journal.pcbi.0020022
10.1177/1073858411422754
10.1212/WNL.55.3.423
10.1016/j.neuroimage.2011.03.069
10.1111/j.1528-1167.2010.02522.x
10.3174/ajnr.A4975
10.1126/science.1194144
10.1259/bjr.20160656
10.1006/nimg.2002.1040
10.1016/j.neuroimage.2004.07.016
10.3389/fnhum.2015.00061
10.1371/journal.pone.0008525
10.1016/j.braindev.2008.08.011
10.1016/j.braindev.2015.10.008
10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
10.1016/j.neuroimage.2004.07.051
10.1089/brain.2014.0292
10.1523/JNEUROSCI.1443-09.2009
10.1016/j.celrep.2013.10.001
10.1016/S0165-0173(96)00015-X
10.1006/nimg.2002.1200
10.1016/j.neuroimage.2010.07.066
10.1016/S1361-8415(01)00036-6
10.1093/bioinformatics/btl344
10.1016/j.nicl.2016.12.005
10.1016/j.neuroimage.2013.04.087
10.1212/01.wnl.0000334365.22854.d3
10.1371/journal.pcbi.1000395
10.3389/fnhum.2014.00409
10.1073/pnas.87.24.9868
10.1016/j.neurobiolaging.2013.10.081
10.1371/journal.pbio.0060159
10.1016/S1474-4422(04)00906-8
10.1016/j.neuroimage.2010.07.033
10.1016/j.neuroimage.2015.01.013
10.3389/fnins.2014.00419
10.1053/seiz.2000.0503
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Paldino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Paldino et al 2019 Paldino et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Paldino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Paldino et al 2019 Paldino et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0212901
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



Agricultural Science Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Brain network features and individual intelligence
EISSN 1932-6203
ExternalDocumentID 2188346287
oai_doaj_org_article_f137c1f94bfc47a293f8e4f0a0510e24
10.1371/journal.pone.0212901
PMC6400436
A577131552
30835738
10_1371_journal_pone_0212901
Genre Journal Article
GeographicLocations United States--US
Texas
GeographicLocations_xml – name: Texas
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-e03debfa47b35a64167bf294c27ac17a628c743b1a03c82cdbd6f94a2ff1bf23
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:40 EST 2021
Fri Oct 03 12:36:08 EDT 2025
Sun Oct 26 04:06:26 EDT 2025
Tue Sep 30 16:11:24 EDT 2025
Sun Sep 28 04:46:16 EDT 2025
Tue Oct 07 07:53:08 EDT 2025
Mon Oct 20 22:12:50 EDT 2025
Mon Oct 20 16:20:15 EDT 2025
Thu Oct 16 15:13:39 EDT 2025
Thu Oct 16 14:52:52 EDT 2025
Thu May 22 21:21:07 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Thu Apr 24 23:01:23 EDT 2025
Wed Oct 01 02:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-e03debfa47b35a64167bf294c27ac17a628c743b1a03c82cdbd6f94a2ff1bf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-3769-8508
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212901&type=printable
PMID 30835738
PQID 2188346287
PQPubID 1436336
PageCount e0212901
ParticipantIDs plos_journals_2188346287
doaj_primary_oai_doaj_org_article_f137c1f94bfc47a293f8e4f0a0510e24
unpaywall_primary_10_1371_journal_pone_0212901
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6400436
proquest_miscellaneous_2188589214
proquest_journals_2188346287
gale_infotracmisc_A577131552
gale_infotracacademiconefile_A577131552
gale_incontextgauss_ISR_A577131552
gale_incontextgauss_IOV_A577131552
gale_healthsolutions_A577131552
pubmed_primary_30835738
crossref_citationtrail_10_1371_journal_pone_0212901
crossref_primary_10_1371_journal_pone_0212901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-05
PublicationDateYYYYMMDD 2019-03-05
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DS Grayson (ref19) 2017
MJ Paldino (ref17) 2017; 38
MA Kramer (ref2) 2012; 18
S Koh (ref54) 2005; 46
SM Smith (ref31) 2004; 23
M Rubinov (ref13) 2010; 52
IM McDonough (ref8) 2014; 8
NU Dosenbach (ref46) 2010; 329
SJ Harrison (ref45) 2015; 109
A Zalesky (ref25) 2010; 50
V Fonov (ref39) 2011; 54
E Galicia (ref53) 2009; 31
MJ Paldino (ref48) 2017; 90
J Czochanska (ref5) 1994; 36
Y Li (ref15) 2009; 5
MJ Paldino (ref23) 2016
B Fischl (ref34) 2004; 23
M Duchowny (ref1) 2000; 55
P Hagmann (ref12) 2008; 6
K Supekar (ref21) 2013; 5
MR Brier (ref20) 2014; 35
BB Biswal (ref11) 1997; 10
H Pang (ref41) 2006; 22
CC Hilgetag (ref47) 2006; 2
MP van den Heuvel (ref26) 2013; 17
M Jenkinson (ref37) 2001; 5
W Liao (ref49) 2010; 5
DJ Kim (ref44) 2016; 124
A Fornito (ref35) 2013; 80
BP Hermann (ref4) 2002; 135
M Rubinov (ref29) 2011; 56
D-J Kim (ref14) 2016; 124
MP van den Heuvel (ref16) 2009; 29
HC Hazlett (ref24) 2017; 542
H Bjornaes (ref6) 2001; 10
AE Hernan (ref52) 2013; 50
P Krsek (ref7) 2009; 72
MJ Paldino (ref18) 2017; 13
CG Thomas (ref36) 2002; 17
R Magalhaes (ref28) 2015; 5
C Destrieux (ref32) 2010; 53
S Chaudhury (ref50) 2016; 38
D Zhang (ref10) 2010; 6
EM Sherman (ref42) 2012; 53
CE Elger (ref3) 2004; 3
SM Smith (ref38) 2002; 17
S Ogawa (ref9) 1990; 87
CL Dansereau (ref22) 2014; 8
L Breiman (ref40) 2001; 45
L Tian (ref27) 2011; 54
AT Berg (ref30) 2010; 51
B Fischl (ref33) 2001; 20
GS Pamplona (ref43) 2015; 9
SJ Cruikshank (ref51) 1996; 22
References_xml – volume: 46
  start-page: 1950
  year: 2005
  ident: ref54
  article-title: Status epilepticus and frequent seizures: incidence and clinical characteristics in pediatric epilepsy surgery patients
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2005.00340.x
– volume: 6
  start-page: 15
  year: 2010
  ident: ref10
  article-title: Disease and the brain's dark energy
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.198
– volume: 20
  start-page: 70
  year: 2001
  ident: ref33
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906426
– volume: 53
  start-page: 1
  year: 2010
  ident: ref32
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 50
  start-page: 120
  year: 2013
  ident: ref52
  article-title: Altered short-term plasticity in the prefrontal cortex after early life seizures
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2012.10.007
– year: 2017
  ident: ref19
  article-title: Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature
  publication-title: Neuroimage
– volume: 50
  start-page: 970
  year: 2010
  ident: ref25
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 45
  start-page: 5
  year: 2001
  ident: ref40
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 52
  start-page: 1059
  year: 2010
  ident: ref13
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 542
  start-page: 348
  year: 2017
  ident: ref24
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
  doi: 10.1038/nature21369
– volume: 17
  start-page: 683
  year: 2013
  ident: ref26
  article-title: Network hubs in the human brain
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.012
– volume: 53
  start-page: 1060
  year: 2012
  ident: ref42
  article-title: Detecting epilepsy-related cognitive problems in clinically referred children with epilepsy: is the WISC-IV a useful tool?
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03493.x
– volume: 135
  start-page: 429
  year: 2002
  ident: ref4
  article-title: The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(02)35040-4
– volume: 124
  start-page: 550
  year: 2016
  ident: ref14
  article-title: Children's intellectual ability is associated with structural network integrity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.012
– volume: 2
  start-page: e22
  year: 2006
  ident: ref47
  article-title: Role of mechanical factors in the morphology of the primate cerebral cortex
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020022
– volume: 18
  start-page: 360
  year: 2012
  ident: ref2
  article-title: Epilepsy as a disorder of cortical network organization
  publication-title: Neuroscientist
  doi: 10.1177/1073858411422754
– volume: 55
  start-page: 423
  year: 2000
  ident: ref1
  article-title: Aberrant neural circuits in malformations of cortical development and focal epilepsy
  publication-title: Neurology
  doi: 10.1212/WNL.55.3.423
– volume: 56
  start-page: 2068
  year: 2011
  ident: ref29
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.069
– volume: 51
  start-page: 676
  year: 2010
  ident: ref30
  article-title: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2010.02522.x
– volume: 38
  start-page: 349
  year: 2017
  ident: ref17
  article-title: Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4975
– volume: 329
  start-page: 1358
  year: 2010
  ident: ref46
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 90
  start-page: 20160656
  year: 2017
  ident: ref48
  article-title: Repeatability of graph theoretical metrics derived from resting-state functional networks in paediatric epilepsy patients
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160656
– volume: 17
  start-page: 479
  year: 2002
  ident: ref38
  article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1040
– volume: 23
  start-page: S69
  issue: Suppl 1
  year: 2004
  ident: ref34
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.016
– volume: 9
  start-page: 61
  year: 2015
  ident: ref43
  article-title: Analyzing the association between functional connectivity of the brain and intellectual performance
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00061
– volume: 5
  start-page: e8525
  year: 2010
  ident: ref49
  article-title: Altered functional connectivity and small-world in mesial temporal lobe epilepsy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008525
– volume: 31
  start-page: 569
  year: 2009
  ident: ref53
  article-title: Changing ictal-onset EEG patterns in children with cortical dysplasia
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2008.08.011
– volume: 38
  start-page: 355
  year: 2016
  ident: ref50
  article-title: Activity-dependent synaptic plasticity modulates the critical phase of brain development
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2015.10.008
– volume: 10
  start-page: 165
  year: 1997
  ident: ref11
  article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps
  publication-title: NMR Biomed
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  ident: ref31
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 5
  start-page: 166
  year: 2015
  ident: ref28
  article-title: The impact of normalization and segmentation on resting-state brain networks
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0292
– volume: 29
  start-page: 7619
  year: 2009
  ident: ref16
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1443-09.2009
– volume: 5
  start-page: 738
  year: 2013
  ident: ref21
  article-title: Brain hyperconnectivity in children with autism and its links to social deficits
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.10.001
– volume: 22
  start-page: 191
  year: 1996
  ident: ref51
  article-title: Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review
  publication-title: Brain Res Brain Res Rev
  doi: 10.1016/S0165-0173(96)00015-X
– volume: 17
  start-page: 1521
  year: 2002
  ident: ref36
  article-title: Noise reduction in BOLD-based fMRI using component analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1200
– volume: 54
  start-page: 191
  year: 2011
  ident: ref27
  article-title: Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.066
– volume: 5
  start-page: 143
  year: 2001
  ident: ref37
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 22
  start-page: 2028
  year: 2006
  ident: ref41
  article-title: Pathway analysis using random forests classification and regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl344
– volume: 13
  start-page: 201
  year: 2017
  ident: ref18
  article-title: Metrics of brain network architecture capture the impact of disease in children with epilepsy
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2016.12.005
– volume: 80
  start-page: 426
  year: 2013
  ident: ref35
  article-title: Graph analysis of the human connectome: promise, progress, and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.087
– volume: 72
  start-page: 217
  year: 2009
  ident: ref7
  article-title: Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000334365.22854.d3
– volume: 5
  start-page: e1000395
  year: 2009
  ident: ref15
  article-title: Brain anatomical network and intelligence
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000395
– volume: 8
  start-page: 409
  year: 2014
  ident: ref8
  article-title: Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00409
– volume: 87
  start-page: 9868
  year: 1990
  ident: ref9
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.87.24.9868
– volume: 35
  start-page: 757
  year: 2014
  ident: ref20
  article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.10.081
– volume: 6
  start-page: e159
  year: 2008
  ident: ref12
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060159
– volume: 3
  start-page: 663
  year: 2004
  ident: ref3
  article-title: Chronic epilepsy and cognition
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(04)00906-8
– year: 2016
  ident: ref23
  article-title: Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy
  publication-title: AJNR Am J Neuroradiol
– volume: 54
  start-page: 313
  year: 2011
  ident: ref39
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: 109
  start-page: 217
  year: 2015
  ident: ref45
  article-title: Large-scale probabilistic functional modes from resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.013
– volume: 36
  start-page: 345
  year: 1994
  ident: ref5
  article-title: Children who develop epilepsy in the first year of life: a prospective study
  publication-title: Dev Med Child Neurol
– volume: 8
  start-page: 419
  year: 2014
  ident: ref22
  article-title: Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00419
– volume: 124
  start-page: 550
  year: 2016
  ident: ref44
  article-title: Children's intellectual ability is associated with structural network integrity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.012
– volume: 10
  start-page: 250
  year: 2001
  ident: ref6
  article-title: The effects of refractory epilepsy on intellectual functioning in children and adults. A longitudinal study
  publication-title: Seizure
  doi: 10.1053/seiz.2000.0503
SSID ssj0053866
Score 2.3518074
Snippet Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial...
Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on...
BACKGROUND AND PURPOSE:Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on...
Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0212901
SubjectTerms Adolescent
Algorithms
Artificial intelligence
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain architecture
Brain mapping
Brain research
Cerebral cortex
Child
Children
Clustering
Cognitive ability
Cognitive development
Computer and Information Sciences
Computer architecture
Computing time
Convulsions & seizures
Data mining
Epilepsy
Epilepsy - diagnostic imaging
Epilepsy - physiopathology
Female
Functional magnetic resonance imaging
Graphs
Heterogeneity
Humans
Identification methods
Image Processing, Computer-Assisted - methods
Intelligence (Psychology)
Intelligence - physiology
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Male
Medical research
Medicine and Health Sciences
Modularity
Morphology
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
Neural circuitry
Neurological diseases
Nodes
Patients
Pediatric epilepsy
Pediatrics
Physical Sciences
Psychological aspects
Registration
Research and Analysis Methods
Retrospective Studies
Transformation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTWIndo4FURUkigQF9RY5jt1dKcpGTVao_54Zx4k2olJ74LjrzytlXh5vZr4h5K2wprLMqjC3QoU8FnEolYlCq7nkUlUqd1WV306zk1_863l6vjPqC2vCBnrgQXCHNmZCxzbnJWwXCk4nKw23kUJrMoljAo1kPl6mhhgMXpxlvlGOifjQ62XZbhqzRFLz3A-BGQ8ix9c_ReVFW2-661LOfysn726bVl39UXW9cywdPyD3fT5Jj4bn2CN3TPOQ7HmP7eh7Tyv94RGpTzE9rX3fJTXNSjlIiUMiaDOUg1NrHNNnR_uV6ml7ie9xerqe2rboeofDEz7QsRuc4j-61LQQZdru6jE5O_589ukk9LMWQp3lSR-aiFWmtIqLkqUqgzRNlDbJuU6E0rFQWSI1JBtlrCKmZaKrsspAKSqxNgYge0IWDQh3n9C4rJCELFcyAn1XGazylGsVxaVMFZMBYaPcC-15yHEcRl24l2sC7iOD6ArUVuG1FZBw2tUOPBw34D-iSicssmi7L8C2Cm9bxU22FZBXaBDF0JI6xYLiKBVwt0fyuoC8cQhk0miwVOdCbbuu-PL99y1AP3_MQO88yG5AHFr59gh4JmTomiEPZkiIB3q2vI_mO0qlKyCJkwxbkAXsHE36-uXX0zL-KJbfNWazHTCpzJMYRPJ08IBJsgyTeIF6FTPfmIl-vtKsV47IPONuAkJAlpMX3Uq5z_6Hcp-Te5D85q6eMD0gi_5ya15AgtmXL10s-QsDPHzA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXquXVpQUMQgIO2ebhxMkBoRa1KkgsqBTUW-Q4dnelKAmbrFD_PTOOExpRQY-bGa_keXkSz3xDyCuuVa4DLZxEc-Ewj3tOLJTraMliFotcJKaq8vM8Ov3OPl2EFxtk3vfCYFllHxNNoM4rid_ID-AoigNspOTv658OTo3C29V-hIawoxXydwZi7A7Z9BEZa0I2j47nX8_62AzeHUW2gS7g3oHV16yuSjVDsPPEDofpDyiD4z9E60ldVM1NqejfFZV312Utrn6Jorh2XJ1sky2bZ9LDzjB2yIYq75Md68kNfWPhpt8-IMUc09bC9mNSVS6EYclweAQtuzJxqpVBAG1ouxAtrVd4v9PS5dDORZfXsD3hB-27xCl-6aWqhuhTN1cPyfnJ8fmHU8fOYHBklPito9wgV5kWjGdBKCJI33im_YRJnwvpcQEKkZCEZJ5wAxn7Ms_ySCdM-Fp7wBg8IpMShLtLqJflCE6WiNgFO8gjoLKQSeF6WRyKIJ6SoJd7Ki0-OY7JKFJz6cbhPaUTXYraSq22psQZVtUdPsd_-I9QpQMvomubB9XqMrXOmmpYLj3YRgYmywVkRDpWTLsCI5jy2ZQ8R4NIu1bVIUakhyGHd34EtZuSl4YDETZKLOG5FOumST9--XELpm9nI6bXlklXIA4pbNsE7AmRu0ac-yNOiBNyRN5F8-2l0qR_PApW9iZ9M_nFQMY_xbK8UlXrjieME98DkTzuPGCQbIDJPUe98pFvjEQ_ppTLhQE4j5iZjDAls8GLbqXcJ__exx65B-luYioIw30yaVdr9RRSyjZ7ZuPEb8CzesM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1oYBBiI9D0iR24uS4IKqCxIKgReWAIsex2RVRNmqyQuXAb2cmcaIGiigHbrvr52j9bI_H8cwzIY-E0blhRjqJEdLhvvCdWGrPMYrHPJa5TNqoyjfzaP-Qvz4KjzbI5z4XxjIIe8RiVbcn-fhhVepdy-Qu6hV1p6euz4Tf13ArALkoWA4r3ONWcQjfjDWYgHSBbEYhuOoTsnk4fzf71J00B04UeMym0_3pSaPlqlX1H2z3BP_ZWY7p7_GVF9dlJU--yaI4tXjtXSE_-mZ3MStf3XWTuer7L4qQ_42Xq-SydXvprHvKFtnQ5TWyZQ1LTZ9a9etn10kxRy-6sOmhVJcL2UIyvMuCll3UOjW6FSStabOQDa2O8bipocshu4wuT0mNwhfaJ61TfPFMdQXNqOqTG-Rg7-XBi33HXgnhqCgJGkd7LNeZkVxkLJQReJMiM0HCVSCk8oWMgliBT5T50mMqDlSe5ZFJuAyM8QHIbpJJCXxsE-pnOWqlJTL2YFjmEZTykCvp-VkcShZPCes7PlVWLh1v7SjS9gxQwLapoy5FglNL8JQ4Q62qkwv5C_45jqkBi2Lf7Q_Qw6nt2dRAdeVDMzKYQUKCg2ZizY0n0aDqgE_JfRyRaZc5O5isdBYK4TPU2JuShy0CBT9KjCj6Itd1nb56-_EcoA_vR6AnFmRWQIeSNosD2oQDcITcGSHBbKlR8TaO4J6VOgVfM2aYKS2gZj-nzi5-MBTjQzFKsNSrdYcJ4yTwgZJb3RQcmGW41xDYr2I0OUfUj0vK5aLVW494e1HDlLjDND5X597-1wp3yCXwx5M2xDHcIZPmeK3vgs_bZPes5foJY4mzzg
  priority: 102
  providerName: Unpaywall
Title Normalization enhances brain network features that predict individual intelligence in children with epilepsy
URI https://www.ncbi.nlm.nih.gov/pubmed/30835738
https://www.proquest.com/docview/2188346287
https://www.proquest.com/docview/2188589214
https://pubmed.ncbi.nlm.nih.gov/PMC6400436
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212901&type=printable
https://doaj.org/article/f137c1f94bfc47a293f8e4f0a0510e24
http://dx.doi.org/10.1371/journal.pone.0212901
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wigGIQEPqfLhxM4DQt20MpBWprGi8RQ5ib1WitLQtIL-99w5H1pEEX2JlNw5Us5353N89ztC3nCtUu1paYWaS4s53LGEVLalEyaYkKkMTVbl-SQ4m7Iv1_71Hml6ttYCLLdu7bCf1HSZDX__3HwEg_9gujZwpxk0LBa5GiJkeYgFXfuwVoXYzOGctecKYN3m9BKjFitwba8upvvXWzqLlcH0bz13r8gW5baw9O_syrvrvJCbXzLLbi1d4wfkfh1z0lGlJAdkT-UPyUFt1SV9V0NPv39EsgmGsFldm0lVPpOGJcZGEjSvUsapVgYNtKSrmVzRYolnPSs6b0u76PwWzifc0KZinOJfX6oK8ERFuXlMrsanVydnVt2PwUqC0F1ZyvZSFWvJeOz5MoBQjsfaDVnicpk4XAauSCAgiR1pe4lwkzROAx0y6WrtAKP3hPRyEO4hoU6cIlBZKIUNOpEGQGU-S6TtxMKXnugTr5F7lNRY5dgyI4vMARyHPUslughnK6pnq0-sdlRRYXX8h_8Yp7TlRaRt82CxvIlqw400DE8c-IwY1JdLiI60UEzbEr2ZclmfvESFiKqy1dZfRCOfw_4fAe765LXhQLSNHNN5buS6LKPPX7_vwPTtssP0tmbSCxBHIusSCvgmRPHqcB51OMFnJB3yIapvI5UygkBPeFimzGFko9Lbya9aMr4UU_RytVhXPL4IXQdE8rSygFayHgb6HOeVd2yjI_ouJZ_PDNh5wEyXhD4Ztla00-Q-21lWz8k9iIJDk1joH5HearlWLyDSXMUDcodfc7iKEwev408Dsn98Orm4HJh_NwPjXODZdHIx-vEH1SyGwg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYTCDQMBDuiZx4uQBoXGZWrYVCQrqW-Q49lopSkOTauqP4j9yTuKERUywlz02Pk7lc_l8HJ8LIS-4Vol2tbBCzYXFbG5bgVBDS0sWsEAkIqyiKk8n_ug7-zzzZlvkV5MLg2GVDSZWQJ0sJX4jP4CtKHAxkZK_y39a2DUKb1ebFhq1WhyrzTkc2Yq3448g35eOc_Rp-mFkma4ClvRDp7TU0E1UrAXjsesJHxwSHmsnZNLhQtpcwF9I2FZjWwxdGTgyiRNfh0w4WttA6MJrb5CbzAUoAfPhs_Z8B9Dh-yY7z-X2gVGGQb7M1AArqYem80yz-1VNAtqtoJeny-IyP_fvcM3tdZaLzblI0wt74dEdcts4sfSw1rodsqWyu2THwERBX5ta1m_ukXSCPnFqkj2pyuaiIomxMwXN6hh0qlVVXrSg5VyUNF_h5VFJF22uGF1cKBwKP2iTgk7xMzJVOUBbXmzuk-l1iOIB6WXA3F1C7TjBymehCIagZIkPo8xjUgztOPCEG_SJ2_A9kqb4OfbgSKPqRo_DIahmXYTSioy0-sRqZ-V18Y__0L9Hkba0WLq7erBcnUUGCSIN06UNy4jBHrgAd0sHiumhQHhUDuuTfVSIqM6DbQEoOvQ4t12smNcnzysKLN-RYXzQmVgXRTT-8uMKRN--doheGSK9BHZIYXIyYE1YFqxDudehBBCSneFdVN-GK0X0x1xhZqPSlw8_a4fxpRjzl6nluqbxgtCxgSUPawtoOeviyYGjXHnHNjqs745ki3lVPd1nVduFPhm0VnQl4T769zr2yfZoenoSnYwnx4_JLfCrwypU0dsjvXK1Vk_Ady3jpxViUBJdM0L9BrPEsdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBD2iRO4uQBocGoVgYFwUB9ixzHXitFaWhaTf3T-O-4S5ywiAn2ssfG51S-L5_ju98R8oxrlWqmhRVpLizP4Y4VCmVbWnqhF4pURFVW5adJcPjd-zD1p1vkV1MLg2mVjU-sHHW6kPiNfAhbUciwkJIPtUmL-HIwelP8tLCDFN60Nu00ahU5UptTOL6Vr8cHIOvnrjt6f_zu0DIdBiwZRO7KUjZLVaKFxxPmiwCCE55oN_Kky4V0uIC_k7DFJo6wmQxdmSZpoCNPuFo7QMjgtVfIVc5YhNmEfNqe9cCNBIGp1GPcGRrFGBSLXA0QVT0yXWianbBqGNBuC70iW5Tnxbx_p25eX-eF2JyKLDuzL45ukZsmoKX7tQZuky2V3ybbxmWU9KXBtX51h2QTjI8zU_hJVT4TFUmCXSpoXuejU60qqNGSrmZiRYslXiSt6LytG6PzMyCi8IM25egUPylTVYCbK8rNXXJ8GaK4R3o5MHeHUCdJEQUtEqENCpcGMOr5nhS2k4S-YGGfsIbvsTRA6NiPI4ur2z0OB6KadTFKKzbS6hOrnVXUQCD_oX-LIm1pEca7erBYnsTGK8QapksHlpGAbXABoZcOladtga5SuV6f7KFCxHVNbOuM4n2fc4chel6fPK0oEMojR6M4EeuyjMeff1yA6NvXDtELQ6QXwA4pTH0GrAkhwjqUux1KcEiyM7yD6ttwpYz_mC7MbFT6_OEn7TC-FPP_crVY1zR-GLkOsOR-bQEtZxmeIjjKlXdso8P67kg-n1VI6oFXtWDok0FrRRcS7oN_r2OPXAPfFH8cT44ekhsQYkdV1qK_S3qr5Vo9gjB2lTyuHAYl8SU7qN8eN7YT
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1oYBBiI9D0iR24uS4IKqCxIKgReWAIsex2RVRNmqyQuXAb2cmcaIGiigHbrvr52j9bI_H8cwzIY-E0blhRjqJEdLhvvCdWGrPMYrHPJa5TNqoyjfzaP-Qvz4KjzbI5z4XxjIIe8RiVbcn-fhhVepdy-Qu6hV1p6euz4Tf13ArALkoWA4r3ONWcQjfjDWYgHSBbEYhuOoTsnk4fzf71J00B04UeMym0_3pSaPlqlX1H2z3BP_ZWY7p7_GVF9dlJU--yaI4tXjtXSE_-mZ3MStf3XWTuer7L4qQ_42Xq-SydXvprHvKFtnQ5TWyZQ1LTZ9a9etn10kxRy-6sOmhVJcL2UIyvMuCll3UOjW6FSStabOQDa2O8bipocshu4wuT0mNwhfaJ61TfPFMdQXNqOqTG-Rg7-XBi33HXgnhqCgJGkd7LNeZkVxkLJQReJMiM0HCVSCk8oWMgliBT5T50mMqDlSe5ZFJuAyM8QHIbpJJCXxsE-pnOWqlJTL2YFjmEZTykCvp-VkcShZPCes7PlVWLh1v7SjS9gxQwLapoy5FglNL8JQ4Q62qkwv5C_45jqkBi2Lf7Q_Qw6nt2dRAdeVDMzKYQUKCg2ZizY0n0aDqgE_JfRyRaZc5O5isdBYK4TPU2JuShy0CBT9KjCj6Itd1nb56-_EcoA_vR6AnFmRWQIeSNosD2oQDcITcGSHBbKlR8TaO4J6VOgVfM2aYKS2gZj-nzi5-MBTjQzFKsNSrdYcJ4yTwgZJb3RQcmGW41xDYr2I0OUfUj0vK5aLVW494e1HDlLjDND5X597-1wp3yCXwx5M2xDHcIZPmeK3vgs_bZPes5foJY4mzzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalization+enhances+brain+network+features+that+predict+individual+intelligence+in+children+with+epilepsy&rft.jtitle=PloS+one&rft.au=Paldino%2C+Michael+J&rft.au=Golriz%2C+Farahnaz&rft.au=Zhang%2C+Wei&rft.au=Chu%2C+Zili+D&rft.date=2019-03-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0212901&rft_id=info:doi/10.1371%2Fjournal.pone.0212901&rft.externalDocID=A577131552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon