Normalization enhances brain network features that predict individual intelligence in children with epilepsy
Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalizat...
Saved in:
| Published in | PloS one Vol. 14; no. 3; p. e0212901 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
05.03.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0212901 |
Cover
| Abstract | Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.
Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.
Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.
Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. |
|---|---|
| AbstractList | Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Materials and methods Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Results Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Conclusion Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.BACKGROUND AND PURPOSEArchitecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.MATERIALS AND METHODSPatients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.RESULTSTwenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.CONCLUSIONNormalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Materials and methods Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Results Twenty-seven patients (8–18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Conclusion Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function. Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics. Twenty-seven patients (8-18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics. Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders. |
| Audience | Academic |
| Author | Chu, Zili D. Golriz, Farahnaz Paldino, Michael J. Zhang, Wei |
| AuthorAffiliation | Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America Indraprastha Institute of Information Technology, INDIA |
| AuthorAffiliation_xml | – name: Department of Radiology, Texas Children’s Hospital, Houston, TX, United States of America – name: Indraprastha Institute of Information Technology, INDIA |
| Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0002-3769-8508 surname: Paldino fullname: Paldino, Michael J. – sequence: 2 givenname: Farahnaz surname: Golriz fullname: Golriz, Farahnaz – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 4 givenname: Zili D. surname: Chu fullname: Chu, Zili D. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30835738$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tv1DAQhSNURGnhHyCIhITgYRdfcuUBqaq4VKqoBBWv1sQZb1y8drCdlvLr8Xa3VbeqRJWHOM43JzPnxHvZjnUWs-wFJXPKa_r-zE3egpmPaXtOGGUtoY-yp7TlbFYxwndurXezvRDOCCl5U1VPsl1OGl7WvHmamW_OL8HovxC1sznaAazEkHcetM0txgvnf-UKIU4-bccBYj567LWMuba9Ptf9BCYtIxqjF5iK00MuB216jza_0HHIcdQGx3D5LHuswAR8vrnvZ6efP50efp0dn3w5Ojw4nsmqZXGGhPfYKSjqjpdQFbSqO8XaQrIaJK2hYo2sC95RIFw2TPZdX6m2AKYUTSDfz16tZUfjgtj4FASjTcOLVFwn4mhN9A7OxOj1EvylcKDF1YbzCwE-amlQqGS2pEm-U7KogbVcNVgoAqSkBFmRtMq11mRHuLwAY24EKRGrqK5bEKuoxCaqVPdx0-XULbGXaKMHs9XM9hurB7Fw56IqCCl4lQTebgS8-z1hiGKpg0wxgEU3rectm5bRVY-v76D3u7KhFpAG11a59F25EhUHZV1TTsty5e78HipdPS61TBOqFPZ2wbutgsRE_BMXMIUgjn58fzh78nObfXOLHRBMHIIz0-pHDtvgy9tO31h8fQoS8GENSO9C8KiE1PHqQKTRtPlfjsWd4gfF_w_2lTGY |
| CitedBy_id | crossref_primary_10_3389_fphys_2022_1015838 crossref_primary_10_1002_hbm_25462 crossref_primary_10_1016_j_neuroimage_2019_116345 crossref_primary_10_1002_hbm_26258 crossref_primary_10_1016_j_nicl_2021_102739 crossref_primary_10_1186_s40708_020_00114_0 crossref_primary_10_1109_ACCESS_2021_3113611 crossref_primary_10_1016_j_bspc_2020_102129 crossref_primary_10_3389_fnins_2021_684825 crossref_primary_10_1177_15357597211068600 crossref_primary_10_1186_s12874_022_01544_6 |
| Cites_doi | 10.1111/j.1528-1167.2005.00340.x 10.1038/nrneurol.2009.198 10.1109/42.906426 10.1016/j.neuroimage.2010.06.010 10.1016/j.nbd.2012.10.007 10.1016/j.neuroimage.2009.12.027 10.1023/A:1010933404324 10.1016/j.neuroimage.2009.10.003 10.1038/nature21369 10.1016/j.tics.2013.09.012 10.1111/j.1528-1167.2012.03493.x 10.1016/S0079-6123(02)35040-4 10.1016/j.neuroimage.2015.09.012 10.1371/journal.pcbi.0020022 10.1177/1073858411422754 10.1212/WNL.55.3.423 10.1016/j.neuroimage.2011.03.069 10.1111/j.1528-1167.2010.02522.x 10.3174/ajnr.A4975 10.1126/science.1194144 10.1259/bjr.20160656 10.1006/nimg.2002.1040 10.1016/j.neuroimage.2004.07.016 10.3389/fnhum.2015.00061 10.1371/journal.pone.0008525 10.1016/j.braindev.2008.08.011 10.1016/j.braindev.2015.10.008 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 10.1016/j.neuroimage.2004.07.051 10.1089/brain.2014.0292 10.1523/JNEUROSCI.1443-09.2009 10.1016/j.celrep.2013.10.001 10.1016/S0165-0173(96)00015-X 10.1006/nimg.2002.1200 10.1016/j.neuroimage.2010.07.066 10.1016/S1361-8415(01)00036-6 10.1093/bioinformatics/btl344 10.1016/j.nicl.2016.12.005 10.1016/j.neuroimage.2013.04.087 10.1212/01.wnl.0000334365.22854.d3 10.1371/journal.pcbi.1000395 10.3389/fnhum.2014.00409 10.1073/pnas.87.24.9868 10.1016/j.neurobiolaging.2013.10.081 10.1371/journal.pbio.0060159 10.1016/S1474-4422(04)00906-8 10.1016/j.neuroimage.2010.07.033 10.1016/j.neuroimage.2015.01.013 10.3389/fnins.2014.00419 10.1053/seiz.2000.0503 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Paldino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Paldino et al 2019 Paldino et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Paldino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Paldino et al 2019 Paldino et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0212901 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Brain network features and individual intelligence |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2188346287 oai_doaj_org_article_f137c1f94bfc47a293f8e4f0a0510e24 10.1371/journal.pone.0212901 PMC6400436 A577131552 30835738 10_1371_journal_pone_0212901 |
| Genre | Journal Article |
| GeographicLocations | United States--US Texas |
| GeographicLocations_xml | – name: Texas – name: United States--US |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-e03debfa47b35a64167bf294c27ac17a628c743b1a03c82cdbd6f94a2ff1bf23 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:40 EST 2021 Fri Oct 03 12:36:08 EDT 2025 Sun Oct 26 04:06:26 EDT 2025 Tue Sep 30 16:11:24 EDT 2025 Sun Sep 28 04:46:16 EDT 2025 Tue Oct 07 07:53:08 EDT 2025 Mon Oct 20 22:12:50 EDT 2025 Mon Oct 20 16:20:15 EDT 2025 Thu Oct 16 15:13:39 EDT 2025 Thu Oct 16 14:52:52 EDT 2025 Thu May 22 21:21:07 EDT 2025 Wed Feb 19 02:31:07 EST 2025 Thu Apr 24 23:01:23 EDT 2025 Wed Oct 01 02:24:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-e03debfa47b35a64167bf294c27ac17a628c743b1a03c82cdbd6f94a2ff1bf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-3769-8508 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212901&type=printable |
| PMID | 30835738 |
| PQID | 2188346287 |
| PQPubID | 1436336 |
| PageCount | e0212901 |
| ParticipantIDs | plos_journals_2188346287 doaj_primary_oai_doaj_org_article_f137c1f94bfc47a293f8e4f0a0510e24 unpaywall_primary_10_1371_journal_pone_0212901 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6400436 proquest_miscellaneous_2188589214 proquest_journals_2188346287 gale_infotracmisc_A577131552 gale_infotracacademiconefile_A577131552 gale_incontextgauss_ISR_A577131552 gale_incontextgauss_IOV_A577131552 gale_healthsolutions_A577131552 pubmed_primary_30835738 crossref_citationtrail_10_1371_journal_pone_0212901 crossref_primary_10_1371_journal_pone_0212901 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-05 |
| PublicationDateYYYYMMDD | 2019-03-05 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | DS Grayson (ref19) 2017 MJ Paldino (ref17) 2017; 38 MA Kramer (ref2) 2012; 18 S Koh (ref54) 2005; 46 SM Smith (ref31) 2004; 23 M Rubinov (ref13) 2010; 52 IM McDonough (ref8) 2014; 8 NU Dosenbach (ref46) 2010; 329 SJ Harrison (ref45) 2015; 109 A Zalesky (ref25) 2010; 50 V Fonov (ref39) 2011; 54 E Galicia (ref53) 2009; 31 MJ Paldino (ref48) 2017; 90 J Czochanska (ref5) 1994; 36 Y Li (ref15) 2009; 5 MJ Paldino (ref23) 2016 B Fischl (ref34) 2004; 23 M Duchowny (ref1) 2000; 55 P Hagmann (ref12) 2008; 6 K Supekar (ref21) 2013; 5 MR Brier (ref20) 2014; 35 BB Biswal (ref11) 1997; 10 H Pang (ref41) 2006; 22 CC Hilgetag (ref47) 2006; 2 MP van den Heuvel (ref26) 2013; 17 M Jenkinson (ref37) 2001; 5 W Liao (ref49) 2010; 5 DJ Kim (ref44) 2016; 124 A Fornito (ref35) 2013; 80 BP Hermann (ref4) 2002; 135 M Rubinov (ref29) 2011; 56 D-J Kim (ref14) 2016; 124 MP van den Heuvel (ref16) 2009; 29 HC Hazlett (ref24) 2017; 542 H Bjornaes (ref6) 2001; 10 AE Hernan (ref52) 2013; 50 P Krsek (ref7) 2009; 72 MJ Paldino (ref18) 2017; 13 CG Thomas (ref36) 2002; 17 R Magalhaes (ref28) 2015; 5 C Destrieux (ref32) 2010; 53 S Chaudhury (ref50) 2016; 38 D Zhang (ref10) 2010; 6 EM Sherman (ref42) 2012; 53 CE Elger (ref3) 2004; 3 SM Smith (ref38) 2002; 17 S Ogawa (ref9) 1990; 87 CL Dansereau (ref22) 2014; 8 L Breiman (ref40) 2001; 45 L Tian (ref27) 2011; 54 AT Berg (ref30) 2010; 51 B Fischl (ref33) 2001; 20 GS Pamplona (ref43) 2015; 9 SJ Cruikshank (ref51) 1996; 22 |
| References_xml | – volume: 46 start-page: 1950 year: 2005 ident: ref54 article-title: Status epilepticus and frequent seizures: incidence and clinical characteristics in pediatric epilepsy surgery patients publication-title: Epilepsia doi: 10.1111/j.1528-1167.2005.00340.x – volume: 6 start-page: 15 year: 2010 ident: ref10 article-title: Disease and the brain's dark energy publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.198 – volume: 20 start-page: 70 year: 2001 ident: ref33 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906426 – volume: 53 start-page: 1 year: 2010 ident: ref32 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 50 start-page: 120 year: 2013 ident: ref52 article-title: Altered short-term plasticity in the prefrontal cortex after early life seizures publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2012.10.007 – year: 2017 ident: ref19 article-title: Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature publication-title: Neuroimage – volume: 50 start-page: 970 year: 2010 ident: ref25 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 45 start-page: 5 year: 2001 ident: ref40 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 52 start-page: 1059 year: 2010 ident: ref13 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 542 start-page: 348 year: 2017 ident: ref24 article-title: Early brain development in infants at high risk for autism spectrum disorder publication-title: Nature doi: 10.1038/nature21369 – volume: 17 start-page: 683 year: 2013 ident: ref26 article-title: Network hubs in the human brain publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.012 – volume: 53 start-page: 1060 year: 2012 ident: ref42 article-title: Detecting epilepsy-related cognitive problems in clinically referred children with epilepsy: is the WISC-IV a useful tool? publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03493.x – volume: 135 start-page: 429 year: 2002 ident: ref4 article-title: The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects publication-title: Prog Brain Res doi: 10.1016/S0079-6123(02)35040-4 – volume: 124 start-page: 550 year: 2016 ident: ref14 article-title: Children's intellectual ability is associated with structural network integrity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.012 – volume: 2 start-page: e22 year: 2006 ident: ref47 article-title: Role of mechanical factors in the morphology of the primate cerebral cortex publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020022 – volume: 18 start-page: 360 year: 2012 ident: ref2 article-title: Epilepsy as a disorder of cortical network organization publication-title: Neuroscientist doi: 10.1177/1073858411422754 – volume: 55 start-page: 423 year: 2000 ident: ref1 article-title: Aberrant neural circuits in malformations of cortical development and focal epilepsy publication-title: Neurology doi: 10.1212/WNL.55.3.423 – volume: 56 start-page: 2068 year: 2011 ident: ref29 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.069 – volume: 51 start-page: 676 year: 2010 ident: ref30 article-title: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009 publication-title: Epilepsia doi: 10.1111/j.1528-1167.2010.02522.x – volume: 38 start-page: 349 year: 2017 ident: ref17 article-title: Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4975 – volume: 329 start-page: 1358 year: 2010 ident: ref46 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 90 start-page: 20160656 year: 2017 ident: ref48 article-title: Repeatability of graph theoretical metrics derived from resting-state functional networks in paediatric epilepsy patients publication-title: Br J Radiol doi: 10.1259/bjr.20160656 – volume: 17 start-page: 479 year: 2002 ident: ref38 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1040 – volume: 23 start-page: S69 issue: Suppl 1 year: 2004 ident: ref34 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 9 start-page: 61 year: 2015 ident: ref43 article-title: Analyzing the association between functional connectivity of the brain and intellectual performance publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00061 – volume: 5 start-page: e8525 year: 2010 ident: ref49 article-title: Altered functional connectivity and small-world in mesial temporal lobe epilepsy publication-title: PLoS One doi: 10.1371/journal.pone.0008525 – volume: 31 start-page: 569 year: 2009 ident: ref53 article-title: Changing ictal-onset EEG patterns in children with cortical dysplasia publication-title: Brain Dev doi: 10.1016/j.braindev.2008.08.011 – volume: 38 start-page: 355 year: 2016 ident: ref50 article-title: Activity-dependent synaptic plasticity modulates the critical phase of brain development publication-title: Brain Dev doi: 10.1016/j.braindev.2015.10.008 – volume: 10 start-page: 165 year: 1997 ident: ref11 article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps publication-title: NMR Biomed doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 ident: ref31 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 5 start-page: 166 year: 2015 ident: ref28 article-title: The impact of normalization and segmentation on resting-state brain networks publication-title: Brain Connect doi: 10.1089/brain.2014.0292 – volume: 29 start-page: 7619 year: 2009 ident: ref16 article-title: Efficiency of functional brain networks and intellectual performance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1443-09.2009 – volume: 5 start-page: 738 year: 2013 ident: ref21 article-title: Brain hyperconnectivity in children with autism and its links to social deficits publication-title: Cell Rep doi: 10.1016/j.celrep.2013.10.001 – volume: 22 start-page: 191 year: 1996 ident: ref51 article-title: Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review publication-title: Brain Res Brain Res Rev doi: 10.1016/S0165-0173(96)00015-X – volume: 17 start-page: 1521 year: 2002 ident: ref36 article-title: Noise reduction in BOLD-based fMRI using component analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1200 – volume: 54 start-page: 191 year: 2011 ident: ref27 article-title: Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.066 – volume: 5 start-page: 143 year: 2001 ident: ref37 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med Image Anal doi: 10.1016/S1361-8415(01)00036-6 – volume: 22 start-page: 2028 year: 2006 ident: ref41 article-title: Pathway analysis using random forests classification and regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl344 – volume: 13 start-page: 201 year: 2017 ident: ref18 article-title: Metrics of brain network architecture capture the impact of disease in children with epilepsy publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2016.12.005 – volume: 80 start-page: 426 year: 2013 ident: ref35 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.087 – volume: 72 start-page: 217 year: 2009 ident: ref7 article-title: Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome publication-title: Neurology doi: 10.1212/01.wnl.0000334365.22854.d3 – volume: 5 start-page: e1000395 year: 2009 ident: ref15 article-title: Brain anatomical network and intelligence publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000395 – volume: 8 start-page: 409 year: 2014 ident: ref8 article-title: Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00409 – volume: 87 start-page: 9868 year: 1990 ident: ref9 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.87.24.9868 – volume: 35 start-page: 757 year: 2014 ident: ref20 article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.10.081 – volume: 6 start-page: e159 year: 2008 ident: ref12 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060159 – volume: 3 start-page: 663 year: 2004 ident: ref3 article-title: Chronic epilepsy and cognition publication-title: Lancet Neurol doi: 10.1016/S1474-4422(04)00906-8 – year: 2016 ident: ref23 article-title: Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy publication-title: AJNR Am J Neuroradiol – volume: 54 start-page: 313 year: 2011 ident: ref39 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.033 – volume: 109 start-page: 217 year: 2015 ident: ref45 article-title: Large-scale probabilistic functional modes from resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.013 – volume: 36 start-page: 345 year: 1994 ident: ref5 article-title: Children who develop epilepsy in the first year of life: a prospective study publication-title: Dev Med Child Neurol – volume: 8 start-page: 419 year: 2014 ident: ref22 article-title: Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment publication-title: Front Neurosci doi: 10.3389/fnins.2014.00419 – volume: 124 start-page: 550 year: 2016 ident: ref44 article-title: Children's intellectual ability is associated with structural network integrity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.012 – volume: 10 start-page: 250 year: 2001 ident: ref6 article-title: The effects of refractory epilepsy on intellectual functioning in children and adults. A longitudinal study publication-title: Seizure doi: 10.1053/seiz.2000.0503 |
| SSID | ssj0053866 |
| Score | 2.3518074 |
| Snippet | Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial... Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on... BACKGROUND AND PURPOSE:Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on... Background and purpose Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0212901 |
| SubjectTerms | Adolescent Algorithms Artificial intelligence Biology and Life Sciences Brain Brain - diagnostic imaging Brain - physiopathology Brain architecture Brain mapping Brain research Cerebral cortex Child Children Clustering Cognitive ability Cognitive development Computer and Information Sciences Computer architecture Computing time Convulsions & seizures Data mining Epilepsy Epilepsy - diagnostic imaging Epilepsy - physiopathology Female Functional magnetic resonance imaging Graphs Heterogeneity Humans Identification methods Image Processing, Computer-Assisted - methods Intelligence (Psychology) Intelligence - physiology Learning algorithms Machine Learning Magnetic Resonance Imaging Male Medical research Medicine and Health Sciences Modularity Morphology Nerve Net - diagnostic imaging Nerve Net - physiopathology Neural circuitry Neurological diseases Nodes Patients Pediatric epilepsy Pediatrics Physical Sciences Psychological aspects Registration Research and Analysis Methods Retrospective Studies Transformation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTWIndo4FURUkigQF9RY5jt1dKcpGTVao_54Zx4k2olJ74LjrzytlXh5vZr4h5K2wprLMqjC3QoU8FnEolYlCq7nkUlUqd1WV306zk1_863l6vjPqC2vCBnrgQXCHNmZCxzbnJWwXCk4nKw23kUJrMoljAo1kPl6mhhgMXpxlvlGOifjQ62XZbhqzRFLz3A-BGQ8ix9c_ReVFW2-661LOfysn726bVl39UXW9cywdPyD3fT5Jj4bn2CN3TPOQ7HmP7eh7Tyv94RGpTzE9rX3fJTXNSjlIiUMiaDOUg1NrHNNnR_uV6ml7ie9xerqe2rboeofDEz7QsRuc4j-61LQQZdru6jE5O_589ukk9LMWQp3lSR-aiFWmtIqLkqUqgzRNlDbJuU6E0rFQWSI1JBtlrCKmZaKrsspAKSqxNgYge0IWDQh3n9C4rJCELFcyAn1XGazylGsVxaVMFZMBYaPcC-15yHEcRl24l2sC7iOD6ArUVuG1FZBw2tUOPBw34D-iSicssmi7L8C2Cm9bxU22FZBXaBDF0JI6xYLiKBVwt0fyuoC8cQhk0miwVOdCbbuu-PL99y1AP3_MQO88yG5AHFr59gh4JmTomiEPZkiIB3q2vI_mO0qlKyCJkwxbkAXsHE36-uXX0zL-KJbfNWazHTCpzJMYRPJ08IBJsgyTeIF6FTPfmIl-vtKsV47IPONuAkJAlpMX3Uq5z_6Hcp-Te5D85q6eMD0gi_5ya15AgtmXL10s-QsDPHzA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXquXVpQUMQgIO2ebhxMkBoRa1KkgsqBTUW-Q4dnelKAmbrFD_PTOOExpRQY-bGa_keXkSz3xDyCuuVa4DLZxEc-Ewj3tOLJTraMliFotcJKaq8vM8Ov3OPl2EFxtk3vfCYFllHxNNoM4rid_ID-AoigNspOTv658OTo3C29V-hIawoxXydwZi7A7Z9BEZa0I2j47nX8_62AzeHUW2gS7g3oHV16yuSjVDsPPEDofpDyiD4z9E60ldVM1NqejfFZV312Utrn6Jorh2XJ1sky2bZ9LDzjB2yIYq75Md68kNfWPhpt8-IMUc09bC9mNSVS6EYclweAQtuzJxqpVBAG1ouxAtrVd4v9PS5dDORZfXsD3hB-27xCl-6aWqhuhTN1cPyfnJ8fmHU8fOYHBklPito9wgV5kWjGdBKCJI33im_YRJnwvpcQEKkZCEZJ5wAxn7Ms_ySCdM-Fp7wBg8IpMShLtLqJflCE6WiNgFO8gjoLKQSeF6WRyKIJ6SoJd7Ki0-OY7JKFJz6cbhPaUTXYraSq22psQZVtUdPsd_-I9QpQMvomubB9XqMrXOmmpYLj3YRgYmywVkRDpWTLsCI5jy2ZQ8R4NIu1bVIUakhyGHd34EtZuSl4YDETZKLOG5FOumST9--XELpm9nI6bXlklXIA4pbNsE7AmRu0ac-yNOiBNyRN5F8-2l0qR_PApW9iZ9M_nFQMY_xbK8UlXrjieME98DkTzuPGCQbIDJPUe98pFvjEQ_ppTLhQE4j5iZjDAls8GLbqXcJ__exx65B-luYioIw30yaVdr9RRSyjZ7ZuPEb8CzesM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1oYBBiI9D0iR24uS4IKqCxIKgReWAIsex2RVRNmqyQuXAb2cmcaIGiigHbrvr52j9bI_H8cwzIY-E0blhRjqJEdLhvvCdWGrPMYrHPJa5TNqoyjfzaP-Qvz4KjzbI5z4XxjIIe8RiVbcn-fhhVepdy-Qu6hV1p6euz4Tf13ArALkoWA4r3ONWcQjfjDWYgHSBbEYhuOoTsnk4fzf71J00B04UeMym0_3pSaPlqlX1H2z3BP_ZWY7p7_GVF9dlJU--yaI4tXjtXSE_-mZ3MStf3XWTuer7L4qQ_42Xq-SydXvprHvKFtnQ5TWyZQ1LTZ9a9etn10kxRy-6sOmhVJcL2UIyvMuCll3UOjW6FSStabOQDa2O8bipocshu4wuT0mNwhfaJ61TfPFMdQXNqOqTG-Rg7-XBi33HXgnhqCgJGkd7LNeZkVxkLJQReJMiM0HCVSCk8oWMgliBT5T50mMqDlSe5ZFJuAyM8QHIbpJJCXxsE-pnOWqlJTL2YFjmEZTykCvp-VkcShZPCes7PlVWLh1v7SjS9gxQwLapoy5FglNL8JQ4Q62qkwv5C_45jqkBi2Lf7Q_Qw6nt2dRAdeVDMzKYQUKCg2ZizY0n0aDqgE_JfRyRaZc5O5isdBYK4TPU2JuShy0CBT9KjCj6Itd1nb56-_EcoA_vR6AnFmRWQIeSNosD2oQDcITcGSHBbKlR8TaO4J6VOgVfM2aYKS2gZj-nzi5-MBTjQzFKsNSrdYcJ4yTwgZJb3RQcmGW41xDYr2I0OUfUj0vK5aLVW494e1HDlLjDND5X597-1wp3yCXwx5M2xDHcIZPmeK3vgs_bZPes5foJY4mzzg priority: 102 providerName: Unpaywall |
| Title | Normalization enhances brain network features that predict individual intelligence in children with epilepsy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30835738 https://www.proquest.com/docview/2188346287 https://www.proquest.com/docview/2188589214 https://pubmed.ncbi.nlm.nih.gov/PMC6400436 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212901&type=printable https://doaj.org/article/f137c1f94bfc47a293f8e4f0a0510e24 http://dx.doi.org/10.1371/journal.pone.0212901 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wigGIQEPqfLhxM4DQt20MpBWprGi8RQ5ib1WitLQtIL-99w5H1pEEX2JlNw5Us5353N89ztC3nCtUu1paYWaS4s53LGEVLalEyaYkKkMTVbl-SQ4m7Iv1_71Hml6ttYCLLdu7bCf1HSZDX__3HwEg_9gujZwpxk0LBa5GiJkeYgFXfuwVoXYzOGctecKYN3m9BKjFitwba8upvvXWzqLlcH0bz13r8gW5baw9O_syrvrvJCbXzLLbi1d4wfkfh1z0lGlJAdkT-UPyUFt1SV9V0NPv39EsgmGsFldm0lVPpOGJcZGEjSvUsapVgYNtKSrmVzRYolnPSs6b0u76PwWzifc0KZinOJfX6oK8ERFuXlMrsanVydnVt2PwUqC0F1ZyvZSFWvJeOz5MoBQjsfaDVnicpk4XAauSCAgiR1pe4lwkzROAx0y6WrtAKP3hPRyEO4hoU6cIlBZKIUNOpEGQGU-S6TtxMKXnugTr5F7lNRY5dgyI4vMARyHPUslughnK6pnq0-sdlRRYXX8h_8Yp7TlRaRt82CxvIlqw400DE8c-IwY1JdLiI60UEzbEr2ZclmfvESFiKqy1dZfRCOfw_4fAe765LXhQLSNHNN5buS6LKPPX7_vwPTtssP0tmbSCxBHIusSCvgmRPHqcB51OMFnJB3yIapvI5UygkBPeFimzGFko9Lbya9aMr4UU_RytVhXPL4IXQdE8rSygFayHgb6HOeVd2yjI_ouJZ_PDNh5wEyXhD4Ztla00-Q-21lWz8k9iIJDk1joH5HearlWLyDSXMUDcodfc7iKEwev408Dsn98Orm4HJh_NwPjXODZdHIx-vEH1SyGwg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYTCDQMBDuiZx4uQBoXGZWrYVCQrqW-Q49lopSkOTauqP4j9yTuKERUywlz02Pk7lc_l8HJ8LIS-4Vol2tbBCzYXFbG5bgVBDS0sWsEAkIqyiKk8n_ug7-zzzZlvkV5MLg2GVDSZWQJ0sJX4jP4CtKHAxkZK_y39a2DUKb1ebFhq1WhyrzTkc2Yq3448g35eOc_Rp-mFkma4ClvRDp7TU0E1UrAXjsesJHxwSHmsnZNLhQtpcwF9I2FZjWwxdGTgyiRNfh0w4WttA6MJrb5CbzAUoAfPhs_Z8B9Dh-yY7z-X2gVGGQb7M1AArqYem80yz-1VNAtqtoJeny-IyP_fvcM3tdZaLzblI0wt74dEdcts4sfSw1rodsqWyu2THwERBX5ta1m_ukXSCPnFqkj2pyuaiIomxMwXN6hh0qlVVXrSg5VyUNF_h5VFJF22uGF1cKBwKP2iTgk7xMzJVOUBbXmzuk-l1iOIB6WXA3F1C7TjBymehCIagZIkPo8xjUgztOPCEG_SJ2_A9kqb4OfbgSKPqRo_DIahmXYTSioy0-sRqZ-V18Y__0L9Hkba0WLq7erBcnUUGCSIN06UNy4jBHrgAd0sHiumhQHhUDuuTfVSIqM6DbQEoOvQ4t12smNcnzysKLN-RYXzQmVgXRTT-8uMKRN--doheGSK9BHZIYXIyYE1YFqxDudehBBCSneFdVN-GK0X0x1xhZqPSlw8_a4fxpRjzl6nluqbxgtCxgSUPawtoOeviyYGjXHnHNjqs745ki3lVPd1nVduFPhm0VnQl4T769zr2yfZoenoSnYwnx4_JLfCrwypU0dsjvXK1Vk_Ady3jpxViUBJdM0L9BrPEsdA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBD2iRO4uQBocGoVgYFwUB9ixzHXitFaWhaTf3T-O-4S5ywiAn2ssfG51S-L5_ju98R8oxrlWqmhRVpLizP4Y4VCmVbWnqhF4pURFVW5adJcPjd-zD1p1vkV1MLg2mVjU-sHHW6kPiNfAhbUciwkJIPtUmL-HIwelP8tLCDFN60Nu00ahU5UptTOL6Vr8cHIOvnrjt6f_zu0DIdBiwZRO7KUjZLVaKFxxPmiwCCE55oN_Kky4V0uIC_k7DFJo6wmQxdmSZpoCNPuFo7QMjgtVfIVc5YhNmEfNqe9cCNBIGp1GPcGRrFGBSLXA0QVT0yXWianbBqGNBuC70iW5Tnxbx_p25eX-eF2JyKLDuzL45ukZsmoKX7tQZuky2V3ybbxmWU9KXBtX51h2QTjI8zU_hJVT4TFUmCXSpoXuejU60qqNGSrmZiRYslXiSt6LytG6PzMyCi8IM25egUPylTVYCbK8rNXXJ8GaK4R3o5MHeHUCdJEQUtEqENCpcGMOr5nhS2k4S-YGGfsIbvsTRA6NiPI4ur2z0OB6KadTFKKzbS6hOrnVXUQCD_oX-LIm1pEca7erBYnsTGK8QapksHlpGAbXABoZcOladtga5SuV6f7KFCxHVNbOuM4n2fc4chel6fPK0oEMojR6M4EeuyjMeff1yA6NvXDtELQ6QXwA4pTH0GrAkhwjqUux1KcEiyM7yD6ttwpYz_mC7MbFT6_OEn7TC-FPP_crVY1zR-GLkOsOR-bQEtZxmeIjjKlXdso8P67kg-n1VI6oFXtWDok0FrRRcS7oN_r2OPXAPfFH8cT44ekhsQYkdV1qK_S3qr5Vo9gjB2lTyuHAYl8SU7qN8eN7YT |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1oYBBiI9D0iR24uS4IKqCxIKgReWAIsex2RVRNmqyQuXAb2cmcaIGiigHbrvr52j9bI_H8cwzIY-E0blhRjqJEdLhvvCdWGrPMYrHPJa5TNqoyjfzaP-Qvz4KjzbI5z4XxjIIe8RiVbcn-fhhVepdy-Qu6hV1p6euz4Tf13ArALkoWA4r3ONWcQjfjDWYgHSBbEYhuOoTsnk4fzf71J00B04UeMym0_3pSaPlqlX1H2z3BP_ZWY7p7_GVF9dlJU--yaI4tXjtXSE_-mZ3MStf3XWTuer7L4qQ_42Xq-SydXvprHvKFtnQ5TWyZQ1LTZ9a9etn10kxRy-6sOmhVJcL2UIyvMuCll3UOjW6FSStabOQDa2O8bipocshu4wuT0mNwhfaJ61TfPFMdQXNqOqTG-Rg7-XBi33HXgnhqCgJGkd7LNeZkVxkLJQReJMiM0HCVSCk8oWMgliBT5T50mMqDlSe5ZFJuAyM8QHIbpJJCXxsE-pnOWqlJTL2YFjmEZTykCvp-VkcShZPCes7PlVWLh1v7SjS9gxQwLapoy5FglNL8JQ4Q62qkwv5C_45jqkBi2Lf7Q_Qw6nt2dRAdeVDMzKYQUKCg2ZizY0n0aDqgE_JfRyRaZc5O5isdBYK4TPU2JuShy0CBT9KjCj6Itd1nb56-_EcoA_vR6AnFmRWQIeSNosD2oQDcITcGSHBbKlR8TaO4J6VOgVfM2aYKS2gZj-nzi5-MBTjQzFKsNSrdYcJ4yTwgZJb3RQcmGW41xDYr2I0OUfUj0vK5aLVW494e1HDlLjDND5X597-1wp3yCXwx5M2xDHcIZPmeK3vgs_bZPes5foJY4mzzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalization+enhances+brain+network+features+that+predict+individual+intelligence+in+children+with+epilepsy&rft.jtitle=PloS+one&rft.au=Paldino%2C+Michael+J&rft.au=Golriz%2C+Farahnaz&rft.au=Zhang%2C+Wei&rft.au=Chu%2C+Zili+D&rft.date=2019-03-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0212901&rft_id=info:doi/10.1371%2Fjournal.pone.0212901&rft.externalDocID=A577131552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |