EEG microstate features for schizophrenia classification

Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. Howev...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 5; p. e0251842
Main Authors Kim, Kyungwon, Duc, Nguyen Thanh, Choi, Min, Lee, Boreom
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.05.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0251842

Cover

Abstract Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
AbstractList Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
[...]it is suitable for studying complex cognitive functions. [...]EEG can provide unique information that is otherwise difficult to obtain using imaging modalities. The features based on those microstates show differences between patients with schizophrenia and other groups and allow interpretation from a neuroscience perspective. [...]four archetype microstates were used not only in schizophrenia [24, 37–39, 46] but also in general medical conditions, such as physical exercise [54], insomnia [55], hearing loss [56]. With multivariate analysis, we can simultaneously analyze multiple dependent and independent variables to improve reliability and validity. [...]multivariate analysis can utilize all microstate-feature information and identify new patterns to improve understanding [58, 59]. Machine-learning techniques (e.g., classification using kernel method) accomplish multivariate analyses that catalog distinct observations and allocate new observations to previously defined groups [60]. [...]by applying machine-learning-based algorithms to microstate features, we can distinguish between EEG recordings of patients diagnosed with schizophrenia and those of healthy (control) subjects and present a practical application.
Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
[...]it is suitable for studying complex cognitive functions. [...]EEG can provide unique information that is otherwise difficult to obtain using imaging modalities. The features based on those microstates show differences between patients with schizophrenia and other groups and allow interpretation from a neuroscience perspective. [...]four archetype microstates were used not only in schizophrenia [24, 37–39, 46] but also in general medical conditions, such as physical exercise [54], insomnia [55], hearing loss [56]. With multivariate analysis, we can simultaneously analyze multiple dependent and independent variables to improve reliability and validity. [...]multivariate analysis can utilize all microstate-feature information and identify new patterns to improve understanding [58, 59]. Machine-learning techniques (e.g., classification using kernel method) accomplish multivariate analyses that catalog distinct observations and allocate new observations to previously defined groups [60]. [...]by applying machine-learning-based algorithms to microstate features, we can distinguish between EEG recordings of patients diagnosed with schizophrenia and those of healthy (control) subjects and present a practical application.
Audience Academic
Author Choi, Min
Duc, Nguyen Thanh
Kim, Kyungwon
Lee, Boreom
AuthorAffiliation 1 Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
3 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
4 McConnel Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
2 Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
5 Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
McLean Hospital, UNITED STATES
AuthorAffiliation_xml – name: 4 McConnel Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
– name: 5 Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
– name: 3 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
– name: McLean Hospital, UNITED STATES
– name: 2 Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
– name: 1 Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
Author_xml – sequence: 1
  givenname: Kyungwon
  surname: Kim
  fullname: Kim, Kyungwon
– sequence: 2
  givenname: Nguyen Thanh
  surname: Duc
  fullname: Duc, Nguyen Thanh
– sequence: 3
  givenname: Min
  surname: Choi
  fullname: Choi, Min
– sequence: 4
  givenname: Boreom
  orcidid: 0000-0002-7233-5833
  surname: Lee
  fullname: Lee, Boreom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33989352$$D View this record in MEDLINE/PubMed
BookMark eNqNkmtr2zAUhsXoWNts_2BsgcHYPiTTzbd9GJSSdYFCYbev4liWEgXFSiV5W_frJydpiUsZxQaL4-d9fc7rc4qOWtcqhF4SPCWsIB9WrvMt2OkmlaeYZqTk9Ak6IRWjk5xidnRwPkanIawwzliZ58_QMWNVWbGMnqByNrsYr430LkSIaqwVxM6rMNbOj4Ncmr9us_SqNTCWFkIw2kiIxrXP0VMNNqgX--cI_fg8-37-ZXJ5dTE_P7ucyLyicdJIWmAJPMM5h0rSkvKyqKsaV5CBzhXkTOmGAG14KWvNacMUqSvFGKa85oyN0Oud78a6IPZDB0EzWmQJYlUi5juicbASG2_W4G-EAyO2BecXAnw00ipBNZeFrpuSVTUvigYIQMoNY8K1zJveK9t5de0Gbn6DtXeGBIs-99sWRJ-72OeedJ_2XXb1WjVStdGDHTQzfNOapVi4X6IklLB0j9C7vYF3150KUaxNkMpaaJXrtvOWpKQsDT1Cb-6hD6eypxaQBjetdum7sjcVZ3merLJ8S00foNLVqLQUaUJtUn0geD8QJCaqP3EBXQhi_u3r49mrn0P27QG7VGDjMjjb9asWhuCrw6TvIr5d6QTwHdDvdPBKP_YPfrwnkyZuNz0lYuz_xf8AP_sdnA
CitedBy_id crossref_primary_10_1093_braincomms_fcad270
crossref_primary_10_1093_cercor_bhae035
crossref_primary_10_1007_s11571_022_09817_y
crossref_primary_10_3389_fpsyg_2022_1065196
crossref_primary_10_1162_imag_a_00109
crossref_primary_10_1088_1741_2552_ac88f6
crossref_primary_10_3389_fpsyt_2022_907802
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_1017_S0033291724001132
crossref_primary_10_1007_s40998_024_00738_6
crossref_primary_10_1016_j_bspc_2025_107717
crossref_primary_10_3389_fnhum_2024_1372985
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1109_TNSRE_2023_3283708
crossref_primary_10_1007_s10548_024_01093_9
crossref_primary_10_3390_brainsci12121731
crossref_primary_10_1016_j_jpsychires_2025_01_005
crossref_primary_10_1186_s12916_024_03481_1
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_3389_fpsyt_2021_745458
crossref_primary_10_7717_peerj_cs_2170
crossref_primary_10_9758_cpn_2023_21_2_279
crossref_primary_10_3389_fnhum_2024_1347082
crossref_primary_10_1371_journal_pone_0311958
crossref_primary_10_1016_j_sleep_2025_01_027
crossref_primary_10_3389_fnint_2023_1234471
crossref_primary_10_3389_fpsyt_2024_1513793
crossref_primary_10_1038_s41598_024_58886_y
crossref_primary_10_1063_5_0172712
crossref_primary_10_3390_brainsci14100985
crossref_primary_10_3390_jcm13175108
crossref_primary_10_1038_s41597_024_03241_z
crossref_primary_10_32604_cmc_2024_050528
crossref_primary_10_1109_ACCESS_2024_3354711
crossref_primary_10_3390_s24206508
crossref_primary_10_3390_biomedinformatics5010008
crossref_primary_10_3390_brainsci12111497
crossref_primary_10_1007_s10548_023_01004_4
crossref_primary_10_1016_j_bspc_2023_105206
crossref_primary_10_1016_j_medengphy_2023_103949
crossref_primary_10_3390_healthcare10040643
crossref_primary_10_1016_j_compbiomed_2022_105570
crossref_primary_10_3389_fnins_2023_1254423
crossref_primary_10_1007_s10548_024_01082_y
crossref_primary_10_1088_1741_2552_ac5266
crossref_primary_10_1109_TCDS_2023_3314639
Cites_doi 10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.neuroimage.2005.09.062
10.1155/2011/156869
10.4103/psychiatry.IndianJPsychiatry_91_20
10.1371/journal.pone.0114163
10.1016/j.schres.2005.01.004
10.3389/fpsyt.2018.00259
10.1038/tp.2017.59
10.1016/j.yebeh.2014.01.011
10.1016/j.neuroimage.2013.04.041
10.3389/fnhum.2013.00268
10.1093/schbul/sbr151
10.1007/7854_2018_41
10.1007/BF00994018
10.3389/fpsyt.2018.00395
10.1371/journal.pone.0212582
10.3389/fnins.2016.00047
10.3389/fnhum.2019.00173
10.1007/s13534-018-0058-3
10.1016/j.tics.2011.11.015
10.1176/ajp.141.2.196
10.1186/s12991-017-0157-z
10.1016/j.pscychresns.2004.05.007
10.1016/j.neuroimage.2008.11.007
10.1016/j.seizure.2018.07.007
10.1016/j.neuroimage.2012.02.031
10.1371/journal.pone.0022912
10.1016/j.neubiorev.2014.12.010
10.1016/j.neuroimage.2016.10.002
10.3389/fnhum.2018.00521
10.1016/S0168-5597(98)00021-5
10.1088/1741-2552/ab0169
10.1007/s13534-017-0051-2
10.1006/nimg.2002.1070
10.1016/j.neuroimage.2019.01.067
10.1038/s41398-020-00963-7
10.1186/s40810-016-0017-0
10.1016/j.clinph.2013.01.005
10.1016/j.neuroimage.2017.08.058
10.1186/s13195-015-0163-9
10.1007/s11682-018-9838-8
10.1007/BF01271480
10.1177/0269881114562093
10.1109/TAFFC.2014.2339834
10.1111/1469-8986.3820343
10.1088/1741-2552/aa8063
10.1016/j.eswa.2010.07.145
10.1016/j.jad.2018.04.069
10.1007/s10548-008-0054-5
10.1016/j.jpsychires.2013.09.009
10.3389/fnins.2018.00460
10.3389/fnins.2019.00443
10.3389/fpsyt.2020.600606
10.1016/j.jneumeth.2003.10.009
10.1016/j.tics.2004.03.008
10.3389/fnins.2018.00162
10.1016/j.artmed.2009.03.003
10.1007/s13534-018-0082-3
10.3389/fnhum.2016.00132
10.1155/2011/938925
10.3934/Neuroscience.2018.4.221
10.1016/j.neulet.2014.12.064
10.1016/j.bspc.2007.03.003
10.1016/j.schres.2013.12.017
10.1016/j.neuroimage.2010.02.052
10.1038/nrn2774
10.1016/j.schres.2013.12.008
10.1109/ACCESS.2018.2854555
10.1109/10.391164
10.3389/fnins.2019.00563
10.1016/j.schres.2007.07.012
10.1162/jocn_a_01068
10.1016/S1388-2457(03)00211-6
10.1007/s10548-008-0053-6
10.1023/A:1010933404324
10.1016/0013-4694(87)90025-3
10.1016/j.psychres.2017.12.021
10.1016/j.clinph.2010.10.042
10.1001/archpsyc.1987.01800180024003
10.1016/j.scog.2015.04.005
10.3389/fpsyt.2016.00022
10.1016/j.patcog.2006.12.019
10.1016/j.neuroimage.2017.11.062
10.1016/j.neuroimage.2015.08.023
10.1016/S0167-8760(97)00098-6
10.3389/fnsys.2020.00049
10.1016/j.neuroimage.2012.05.060
10.1038/s41467-020-16914-1
10.1016/j.clinph.2016.01.025
10.1176/appi.ajp.161.2.286
10.1177/155005940904000206
10.1016/j.pscychresns.2017.03.012
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Kim et al 2021 Kim et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Kim et al 2021 Kim et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0251842
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate EEG microstate features for schizophrenia classification
EISSN 1932-6203
ExternalDocumentID 2527533039
oai_doaj_org_article_2f4c7fbd839b477da1aa1840014fc6d9
10.1371/journal.pone.0251842
PMC8121321
A661825639
33989352
10_1371_journal_pone_0251842
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Canada
Montreal Quebec Canada
South Korea
GeographicLocations_xml – name: United States
– name: South Korea
– name: Canada
– name: Montreal Quebec Canada
GrantInformation_xml – fundername: ;
  grantid: 2020R1A2B5B01002297
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c692t-dc270ca45064a9c282487b9b09a5af6ea63efd1a2d48cbf42d3e1b9e33024b433
IEDL.DBID M48
ISSN 1932-6203
IngestDate Mon Dec 05 23:08:16 EST 2022
Fri Oct 03 12:50:56 EDT 2025
Sun Oct 26 03:06:17 EDT 2025
Tue Sep 30 16:49:28 EDT 2025
Mon Sep 08 04:17:04 EDT 2025
Tue Oct 07 07:40:52 EDT 2025
Mon Oct 20 22:21:04 EDT 2025
Mon Oct 20 16:34:04 EDT 2025
Thu Oct 16 15:12:48 EDT 2025
Thu Oct 16 14:44:40 EDT 2025
Thu May 22 20:58:25 EDT 2025
Mon Jul 21 06:00:29 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Wed Oct 01 03:22:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-dc270ca45064a9c282487b9b09a5af6ea63efd1a2d48cbf42d3e1b9e33024b433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-7233-5833
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251842&type=printable
PMID 33989352
PQID 2527533039
PQPubID 1436336
PageCount e0251842
ParticipantIDs plos_journals_2527533039
doaj_primary_oai_doaj_org_article_2f4c7fbd839b477da1aa1840014fc6d9
unpaywall_primary_10_1371_journal_pone_0251842
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8121321
proquest_miscellaneous_2528182375
proquest_journals_2527533039
gale_infotracmisc_A661825639
gale_infotracacademiconefile_A661825639
gale_incontextgauss_ISR_A661825639
gale_incontextgauss_IOV_A661825639
gale_healthsolutions_A661825639
pubmed_primary_33989352
crossref_primary_10_1371_journal_pone_0251842
crossref_citationtrail_10_1371_journal_pone_0251842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-14
PublicationDateYYYYMMDD 2021-05-14
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JR da Cruz (pone.0251842.ref041) 2020; 11
T Koenig (pone.0251842.ref083) 2011; 2011
RD Pascual-Marqui (pone.0251842.ref052) 1995; 42
WL Chu (pone.0251842.ref097) 2017; 16
M Sabeti (pone.0251842.ref101) 2007; 2
V Strelets (pone.0251842.ref038) 2003; 114
C Andreou (pone.0251842.ref043) 2014; 152
JW Kim (pone.0251842.ref098) 2015; 589
I. Rish (pone.0251842.ref077) 2001; 3
GV Portnova (pone.0251842.ref017) 2018; 5
WK Strik (pone.0251842.ref084) 1998; 108
MA Taylor (pone.0251842.ref004) 1984; 141
BG Tabachnick (pone.0251842.ref057) 2013
F Pereira (pone.0251842.ref059) 2009; 45
F Zappasodi (pone.0251842.ref026) 2019; 189
G Pourtois (pone.0251842.ref066) 2008; 20
E. Bleuler (pone.0251842.ref002) 1950
E Kraepelin (pone.0251842.ref001) 1919
S Kuhn (pone.0251842.ref094) 2013; 39
CM Michel (pone.0251842.ref045) 2018; 180
K Hugdahl (pone.0251842.ref091) 2004; 161
J Kindler (pone.0251842.ref039) 2011; 122
Y Wei (pone.0251842.ref055) 2018; 9
P Milz (pone.0251842.ref030) 2016; 125
JN Spring (pone.0251842.ref054) 2018; 12
R de Bock (pone.0251842.ref049) 2020; 10
F Tahernezhad-Javazm (pone.0251842.ref072) 2018; 15
H Yuan (pone.0251842.ref029) 2012; 60
S Ranlund (pone.0251842.ref048) 2014; 153
Y Wei (pone.0251842.ref095) 2018; 236
M Sabeti (pone.0251842.ref015) 2009; 47
X Li (pone.0251842.ref019) 2018; 12
VK Raj (pone.0251842.ref103) 2018; 61
WK Strik (pone.0251842.ref033) 1995; 99
C Cortes (pone.0251842.ref075) 1995; 20
JJ Newson (pone.0251842.ref011) 2018; 12
JW Kam (pone.0251842.ref010) 2013; 47
R Oostenveld (pone.0251842.ref062) 2011; 2011
J Penner (pone.0251842.ref090) 2016; 10
S Makeig (pone.0251842.ref068) 2004; 8
M Grieder (pone.0251842.ref064) 2016; 127
MI Tomescu (pone.0251842.ref040) 2015; 2
Diagnostic and statistical manual of mental disorders: DSM-5 (pone.0251842.ref085) 2013
K Nishida (pone.0251842.ref036) 2013; 124
M Kikuchi (pone.0251842.ref032) 2011; 6
DM Lydon-Staley (pone.0251842.ref089) 2018; 40
KG Phillips (pone.0251842.ref005) 2015; 29
FS Racz (pone.0251842.ref018) 2020; 14
K Sueyoshi (pone.0251842.ref008) 2018; 9
C Park (pone.0251842.ref073) 2018; 8
NT Duc (pone.0251842.ref071) 2019; 16
SI Goncalves (pone.0251842.ref104) 2006; 30
CN Karson (pone.0251842.ref007) 1987; 44
pone.0251842.ref081
E Olejarczyk (pone.0251842.ref061) 2017
PJ Uhlhaas (pone.0251842.ref006) 2010; 11
DM Barch (pone.0251842.ref003) 2012; 16
D Lehmann (pone.0251842.ref022) 1987; 67
A Khanna (pone.0251842.ref050) 2014; 9
DT Nguyen (pone.0251842.ref080) 2019; 14
T Koenig (pone.0251842.ref053) 2002; 16
BA Seitzman (pone.0251842.ref025) 2017; 146
L. Breiman (pone.0251842.ref078) 2001; 45
J Britz (pone.0251842.ref027) 2010; 52
T Grootswagers (pone.0251842.ref058) 2017; 29
M Lucia (pone.0251842.ref069) 2007; 9
R Upthegrove (pone.0251842.ref086) 2017; 43
XJ Wu (pone.0251842.ref088) 2017; 263
J Shao (pone.0251842.ref092) 2018; 12
D Lehmann (pone.0251842.ref024) 2005; 138
C Babiloni (pone.0251842.ref102) 2016; 10
NT Duc (pone.0251842.ref082) 2019
RA Fisher (pone.0251842.ref076) 1936; 7
AC Grant (pone.0251842.ref021) 2014; 32
ML Zhang (pone.0251842.ref079) 2007; 40
S Yuan (pone.0251842.ref096) 2018; 8
KM Spencer (pone.0251842.ref067) 2001; 38
N Bak (pone.0251842.ref100) 2017; 7
SK Tikka (pone.0251842.ref014) 2020; 62
K Rieger (pone.0251842.ref046) 2016; 7
V Brodbeck (pone.0251842.ref031) 2012; 62
F Alimardani (pone.0251842.ref013) 2018; 6
T Koenig (pone.0251842.ref037) 1999; 249
R Jenke (pone.0251842.ref020) 2014; 5
S Lahmiri (pone.0251842.ref074) 2018; 8
H Hafner (pone.0251842.ref093) 2005; 77
M Sabeti (pone.0251842.ref016) 2011; 38
A Delorme (pone.0251842.ref063) 2004; 134
RA Johnson (pone.0251842.ref060) 2007
MM Murray (pone.0251842.ref065) 2008; 20
S Galderisi (pone.0251842.ref009) 2009; 40
JK Johannesen (pone.0251842.ref012) 2016; 2
D Lehmann (pone.0251842.ref023) 1998; 29
GH Won (pone.0251842.ref099) 2018; 260
F Hatz (pone.0251842.ref034) 2015; 7
DF D’Croz-Baron (pone.0251842.ref105) 2019; 13
A Poulsen (pone.0251842.ref051) 2018
CS Musaeus (pone.0251842.ref035) 2019; 13
VI Muller (pone.0251842.ref087) 2013; 7
A Hadriche (pone.0251842.ref070) 2013; 78
P Milz (pone.0251842.ref028) 2017; 162
AJ Mackintosh (pone.0251842.ref042) 2020; 11
A Khanna (pone.0251842.ref047) 2015; 49
M Kikuch (pone.0251842.ref044) 2007; 97
Y Cai (pone.0251842.ref056) 2019; 13
References_xml – volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: pone.0251842.ref076
  article-title: THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS
  publication-title: Annals of Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 30
  start-page: 203
  issue: 1
  year: 2006
  ident: pone.0251842.ref104
  article-title: Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2005.09.062
– volume: 2011
  start-page: 156869
  year: 2011
  ident: pone.0251842.ref062
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/156869
– volume-title: American Psychiatric A
  year: 2013
  ident: pone.0251842.ref085
– volume: 3
  year: 2001
  ident: pone.0251842.ref077
  article-title: An Empirical Study of the Naïve Bayes Classifier
  publication-title: IJCAI 2001 Work Empir Methods Artif Intell
– volume: 62
  start-page: 273
  issue: 3
  year: 2020
  ident: pone.0251842.ref014
  article-title: Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study
  publication-title: Indian J Psychiatry
  doi: 10.4103/psychiatry.IndianJPsychiatry_91_20
– volume: 9
  start-page: e114163
  issue: 12
  year: 2014
  ident: pone.0251842.ref050
  article-title: Reliability of resting-state microstate features in electroencephalography
  publication-title: PloS one
  doi: 10.1371/journal.pone.0114163
– volume: 77
  start-page: 11
  issue: 1
  year: 2005
  ident: pone.0251842.ref093
  article-title: Schizophrenia and depression: challenging the paradigm of two separate diseases—a controlled study of schizophrenia, depression and healthy controls
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2005.01.004
– volume: 9
  start-page: 259
  year: 2018
  ident: pone.0251842.ref008
  article-title: Electrophysiological Evidence in Schizophrenia in Relation to Treatment Response
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2018.00259
– volume: 7
  start-page: e1087
  issue: 4
  year: 2017
  ident: pone.0251842.ref100
  article-title: Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2017.59
– volume: 32
  start-page: 102
  year: 2014
  ident: pone.0251842.ref021
  article-title: EEG interpretation reliability and interpreter confidence: A large single-center study
  publication-title: Epilepsy & Behavior
  doi: 10.1016/j.yebeh.2014.01.011
– volume: 78
  start-page: 448
  year: 2013
  ident: pone.0251842.ref070
  article-title: Mapping the dynamic repertoire of the resting brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.041
– volume: 7
  start-page: 268
  year: 2013
  ident: pone.0251842.ref087
  article-title: Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00268
– volume: 39
  start-page: 358
  issue: 2
  year: 2013
  ident: pone.0251842.ref094
  article-title: Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbr151
– volume: 249
  start-page: 205
  issue: 4
  year: 1999
  ident: pone.0251842.ref037
  article-title: A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest
– start-page: l
  volume-title: Dementia præcox and paraphrenia
  year: 1919
  ident: pone.0251842.ref001
– volume: 9
  start-page: 168
  year: 2007
  ident: pone.0251842.ref069
  article-title: Single-subject EEG analysis based on topographic information
  publication-title: International Journal of Bioelectromagnetism
– volume: 40
  start-page: 79
  year: 2018
  ident: pone.0251842.ref089
  article-title: Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry
  publication-title: Curr Top Behav Neurosci
  doi: 10.1007/7854_2018_41
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: pone.0251842.ref075
  article-title: Support-Vector Networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 9
  start-page: 395
  year: 2018
  ident: pone.0251842.ref055
  article-title: EEG Microstates Indicate Heightened Somatic Awareness in Insomnia: Toward Objective Assessment of Subjective Mental Content
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2018.00395
– volume: 14
  start-page: e0212582
  issue: 2
  year: 2019
  ident: pone.0251842.ref080
  article-title: Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer’s dementia diagnosis using multi-measure rs-fMRI spatial patterns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212582
– volume: 10
  start-page: 47
  year: 2016
  ident: pone.0251842.ref102
  article-title: Classification of Single Normal and Alzheimer’s Disease Individuals from Cortical Sources of Resting State EEG Rhythms
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00047
– volume: 13
  start-page: 173
  year: 2019
  ident: pone.0251842.ref105
  article-title: EEG Microstates Analysis in Young Adults With Autism Spectrum Disorder During Resting-State
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2019.00173
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0251842.ref073
  article-title: Machine learning in biomedical engineering
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-018-0058-3
– volume: 16
  start-page: 27
  issue: 1
  year: 2012
  ident: pone.0251842.ref003
  article-title: Cognition in schizophrenia: core psychological and neural mechanisms
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2011.11.015
– year: 2017
  ident: pone.0251842.ref061
  article-title: EEG in schizophrenia
  publication-title: RepOD
– volume: 141
  start-page: 196
  issue: 2
  year: 1984
  ident: pone.0251842.ref004
  article-title: Cognitive impairment in schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.141.2.196
– volume: 16
  start-page: 34
  year: 2017
  ident: pone.0251842.ref097
  article-title: Analysis of EEG entropy during visual evocation of emotion in schizophrenia
  publication-title: Ann Gen Psychiatry
  doi: 10.1186/s12991-017-0157-z
– volume: 138
  start-page: 141
  issue: 2
  year: 2005
  ident: pone.0251842.ref024
  article-title: EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2004.05.007
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  ident: pone.0251842.ref059
  article-title: Machine learning classifiers and fMRI: A tutorial overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 61
  start-page: 8
  year: 2018
  ident: pone.0251842.ref103
  article-title: Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy
  publication-title: Seizure-Eur J Epilep
  doi: 10.1016/j.seizure.2018.07.007
– volume: 60
  start-page: 2062
  issue: 4
  year: 2012
  ident: pone.0251842.ref029
  article-title: Spatiotemporal dynamics of the brain at rest—exploring EEG microstates as electrophysiological signatures of BOLD resting state networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.031
– volume: 6
  start-page: e22912
  issue: 7
  year: 2011
  ident: pone.0251842.ref032
  article-title: EEG microstate analysis in drug-naive patients with panic disorder
  publication-title: PloS one
  doi: 10.1371/journal.pone.0022912
– volume: 49
  start-page: 105
  year: 2015
  ident: pone.0251842.ref047
  article-title: Microstates in resting-state EEG: current status and future directions
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2014.12.010
– volume: 146
  start-page: 533
  year: 2017
  ident: pone.0251842.ref025
  article-title: Cognitive manipulation of brain electric microstates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.002
– volume: 12
  start-page: 521
  year: 2018
  ident: pone.0251842.ref011
  article-title: EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies
  publication-title: Front Hum Neurosci.
  doi: 10.3389/fnhum.2018.00521
– volume: 108
  start-page: 406
  issue: 4
  year: 1998
  ident: pone.0251842.ref084
  article-title: Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation.
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0168-5597(98)00021-5
– volume: 16
  start-page: 026033
  issue: 2
  year: 2019
  ident: pone.0251842.ref071
  article-title: Microstate functional connectivity in EEG cognitive tasks revealed by a multivariate Gaussian hidden Markov model with phase locking value
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab0169
– year: 2018
  ident: pone.0251842.ref051
  publication-title: Microstate EEGlab toolbox: An introductory guide
– volume: 8
  start-page: 29
  issue: 1
  year: 2018
  ident: pone.0251842.ref074
  article-title: Performance of machine learning methods in diagnosing Parkinson’s disease based on dysphonia measures
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0051-2
– volume: 16
  start-page: 41
  issue: 1
  year: 2002
  ident: pone.0251842.ref053
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
– volume: 189
  start-page: 560
  year: 2019
  ident: pone.0251842.ref026
  article-title: EEG microstates distinguish between cognitive components of fluid reasoning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.067
– volume: 10
  start-page: 300
  issue: 1
  year: 2020
  ident: pone.0251842.ref049
  article-title: EEG microstates as biomarker for psychosis in ultra-high-risk patients
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-020-00963-7
– volume: 2
  start-page: 3
  year: 2016
  ident: pone.0251842.ref012
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr Electrophysiol.
  doi: 10.1186/s40810-016-0017-0
– volume: 124
  start-page: 1106
  issue: 6
  year: 2013
  ident: pone.0251842.ref036
  article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.01.005
– ident: pone.0251842.ref081
– volume: 162
  start-page: 353
  year: 2017
  ident: pone.0251842.ref028
  article-title: The EEG microstate topography is predominantly determined by intracortical sources in the alpha band
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.058
– volume: 7
  start-page: 78
  year: 2015
  ident: pone.0251842.ref034
  article-title: Microstate connectivity alterations in patients with early Alzheimer’s disease
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-015-0163-9
– volume: 12
  start-page: 1708
  issue: 6
  year: 2018
  ident: pone.0251842.ref092
  article-title: Common and distinct changes of default mode and salience network in schizophrenia and major depression
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-018-9838-8
– volume: 99
  start-page: 213
  issue: 1–3
  year: 1995
  ident: pone.0251842.ref033
  article-title: Larger topographical variance and decreased duration of brain electric microstates in depression
  publication-title: J Neural Transm Gen Sect
  doi: 10.1007/BF01271480
– volume: 29
  start-page: 155
  issue: 2
  year: 2015
  ident: pone.0251842.ref005
  article-title: Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges
  publication-title: J Psychopharmacol.
  doi: 10.1177/0269881114562093
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: pone.0251842.ref020
  article-title: Feature Extraction and Selection for Emotion Recognition from EEG
  publication-title: Ieee T Affect Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 38
  start-page: 343
  issue: 2
  year: 2001
  ident: pone.0251842.ref067
  article-title: Spatiotemporal analysis of the late ERP responses to deviant stimuli
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3820343
– volume-title: Dementia praecox
  year: 1950
  ident: pone.0251842.ref002
– volume: 15
  start-page: 021007
  issue: 2
  year: 2018
  ident: pone.0251842.ref072
  article-title: A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa8063
– volume: 38
  start-page: 2063
  issue: 3
  year: 2011
  ident: pone.0251842.ref016
  article-title: A new approach for EEG signal classification of schizophrenic and control participants
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.145
– volume: 236
  start-page: 266
  year: 2018
  ident: pone.0251842.ref095
  article-title: Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2018.04.069
– volume: 20
  start-page: 249
  issue: 4
  year: 2008
  ident: pone.0251842.ref065
  article-title: Topographic ERP analyses: a step-by-step tutorial review
  publication-title: Brain Topogr
  doi: 10.1007/s10548-008-0054-5
– volume: 47
  start-page: 1893
  issue: 12
  year: 2013
  ident: pone.0251842.ref010
  article-title: Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2013.09.009
– year: 2019
  ident: pone.0251842.ref082
  article-title: 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI
  publication-title: Neuroinformatics
– volume: 12
  start-page: 460
  year: 2018
  ident: pone.0251842.ref054
  article-title: Resting EEG Microstates and Autonomic Heart Rate Variability Do Not Return to Baseline One Hour After a Submaximal Exercise
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00460
– volume: 13
  start-page: 443
  year: 2019
  ident: pone.0251842.ref056
  article-title: Altered Resting-State EEG Microstate in Idiopathic Sudden Sensorineural Hearing Loss Patients With Tinnitus
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00443
– volume: 11
  start-page: 1320
  year: 2020
  ident: pone.0251842.ref042
  article-title: EEG Microstate Differences in Medicated vs. Medication-Naïve First-Episode Psychosis Patients
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2020.600606
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: pone.0251842.ref063
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 8
  start-page: 204
  issue: 5
  year: 2004
  ident: pone.0251842.ref068
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2004.03.008
– volume: 12
  start-page: 162
  year: 2018
  ident: pone.0251842.ref019
  article-title: Exploring EEG Features in Cross-Subject Emotion Recognition
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00162
– volume: 47
  start-page: 263
  issue: 3
  year: 2009
  ident: pone.0251842.ref015
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.03.003
– volume: 8
  start-page: 373
  issue: 4
  year: 2018
  ident: pone.0251842.ref096
  article-title: The earth mover’s distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-018-0082-3
– volume: 10
  start-page: 132
  year: 2016
  ident: pone.0251842.ref090
  article-title: Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00132
– volume: 2011
  start-page: 938925
  year: 2011
  ident: pone.0251842.ref083
  article-title: Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/938925
– volume: 5
  start-page: 221
  issue: 4
  year: 2018
  ident: pone.0251842.ref017
  article-title: Nonlinear EEG parameters of emotional perception in patients with moderate traumatic brain injury, coma, stroke and schizophrenia
  publication-title: AIMS Neurosci.
  doi: 10.3934/Neuroscience.2018.4.221
– volume: 589
  start-page: 126
  year: 2015
  ident: pone.0251842.ref098
  article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2014.12.064
– volume: 2
  start-page: 122
  issue: 2
  year: 2007
  ident: pone.0251842.ref101
  article-title: Selection of relevant features for EEG signal classification of schizophrenic patients
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.03.003
– volume: 153
  start-page: 96
  issue: 1–3
  year: 2014
  ident: pone.0251842.ref048
  article-title: Resting EEG in psychosis and at-risk populations—a possible endophenotype?
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.12.017
– volume: 52
  start-page: 1162
  issue: 4
  year: 2010
  ident: pone.0251842.ref027
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.052
– volume: 11
  start-page: 100
  issue: 2
  year: 2010
  ident: pone.0251842.ref006
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2774
– volume: 152
  start-page: 513
  issue: 2–3
  year: 2014
  ident: pone.0251842.ref043
  article-title: Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2013.12.008
– volume: 6
  start-page: 40379
  year: 2018
  ident: pone.0251842.ref013
  article-title: Classification of Bipolar Disorder and Schizophrenia Using Steady-State Visual Evoked Potential Based Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854555
– volume: 42
  start-page: 658
  issue: 7
  year: 1995
  ident: pone.0251842.ref052
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.391164
– volume: 13
  start-page: 563
  year: 2019
  ident: pone.0251842.ref035
  article-title: Microstates as Disease and Progression Markers in Patients With Mild Cognitive Impairment
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2019.00563
– volume-title: Applied multivariate statistical analysis
  year: 2007
  ident: pone.0251842.ref060
– volume: 97
  start-page: 163
  issue: 1–3
  year: 2007
  ident: pone.0251842.ref044
  article-title: Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: Time and frequency domain approaches
  publication-title: Schizophrenia Research
  doi: 10.1016/j.schres.2007.07.012
– volume: 29
  start-page: 677
  issue: 4
  year: 2017
  ident: pone.0251842.ref058
  article-title: Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_01068
– volume: 114
  start-page: 2043
  issue: 11
  year: 2003
  ident: pone.0251842.ref038
  article-title: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00211-6
– volume: 20
  start-page: 265
  issue: 4
  year: 2008
  ident: pone.0251842.ref066
  article-title: Beyond conventional event-related brain potential (ERP): exploring the time-course of visual emotion processing using topographic and principal component analyses
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0053-6
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: pone.0251842.ref078
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 67
  start-page: 271
  issue: 3
  year: 1987
  ident: pone.0251842.ref022
  article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(87)90025-3
– volume: 260
  start-page: 406
  year: 2018
  ident: pone.0251842.ref099
  article-title: Theta-phase gamma-amplitude coupling as a neurophysiological marker in neuroleptic-naive schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2017.12.021
– volume: 122
  start-page: 1179
  issue: 6
  year: 2011
  ident: pone.0251842.ref039
  article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates
  publication-title: Clin Neurophysiol.
  doi: 10.1016/j.clinph.2010.10.042
– volume: 44
  start-page: 514
  issue: 6
  year: 1987
  ident: pone.0251842.ref007
  article-title: Computed electroencephalographic activity mapping in schizophrenia. The resting state reconsidered
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1987.01800180024003
– volume: 2
  start-page: 159
  issue: 3
  year: 2015
  ident: pone.0251842.ref040
  article-title: Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: A candidate endophenotype of schizophrenia
  publication-title: Schizophr Res Cogn
  doi: 10.1016/j.scog.2015.04.005
– volume: 7
  start-page: 22
  year: 2016
  ident: pone.0251842.ref046
  article-title: 15 Years of Microstate Research in Schizophrenia—Where Are We? A Meta-Analysis
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2016.00022
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: pone.0251842.ref079
  article-title: ML-KNN: A lazy learning approach to multi-label leaming
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.12.019
– volume: 180
  start-page: 577
  year: 2018
  ident: pone.0251842.ref045
  article-title: EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.062
– volume: 43
  start-page: 240
  issue: 2
  year: 2017
  ident: pone.0251842.ref086
  article-title: Depression and Schizophrenia: Cause, Consequence, or Trans-diagnostic Issue?
  publication-title: Schizophr Bull.
– volume: 125
  start-page: 643
  year: 2016
  ident: pone.0251842.ref030
  article-title: The functional significance of EEG microstates-Associations with modalities of thinking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.023
– volume: 29
  start-page: 1
  issue: 1
  year: 1998
  ident: pone.0251842.ref023
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/S0167-8760(97)00098-6
– volume: 14
  start-page: 49
  year: 2020
  ident: pone.0251842.ref018
  article-title: Multifractal and Entropy-Based Analysis of Delta Band Neural Activity Reveals Altered Functional Connectivity Dynamics in Schizophrenia
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2020.00049
– volume: 62
  start-page: 2129
  issue: 3
  year: 2012
  ident: pone.0251842.ref031
  article-title: EEG microstates of wakefulness and NREM sleep
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.060
– start-page: 983
  volume-title: Using multivariate statistics
  year: 2013
  ident: pone.0251842.ref057
– volume: 11
  start-page: 3089
  issue: 1
  year: 2020
  ident: pone.0251842.ref041
  article-title: EEG microstates are a candidate endophenotype for schizophrenia
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16914-1
– volume: 127
  start-page: 2175
  issue: 5
  year: 2016
  ident: pone.0251842.ref064
  article-title: Discovering EEG resting state alterations of semantic dementia
  publication-title: Clin Neurophysiol.
  doi: 10.1016/j.clinph.2016.01.025
– volume: 161
  start-page: 286
  issue: 2
  year: 2004
  ident: pone.0251842.ref091
  article-title: Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.161.2.286
– volume: 40
  start-page: 62
  issue: 2
  year: 2009
  ident: pone.0251842.ref009
  article-title: Evidence-based medicine and electrophysiology in schizophrenia
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940904000206
– volume: 263
  start-page: 113
  year: 2017
  ident: pone.0251842.ref088
  article-title: Functional network connectivity alterations in schizophrenia and depression
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2017.03.012
SSID ssj0053866
Score 2.582917
Snippet Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states....
[...]it is suitable for studying complex cognitive functions. [...]EEG can provide unique information that is otherwise difficult to obtain using imaging...
[...]it is suitable for studying complex cognitive functions. [...]EEG can provide unique information that is otherwise difficult to obtain using imaging...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0251842
SubjectTerms Adult
Algorithms
Analysis
Biology and Life Sciences
Brain - diagnostic imaging
Brain - physiopathology
Brain Mapping - methods
Brain research
Classification
Cognitive ability
Datasets
Dependent variables
Diagnosis
EEG
Electroencephalography
Engineering
Evaluation
Female
Hearing loss
Humans
Illnesses
Independent variables
Information processing
Insomnia
Learning algorithms
Machine Learning
Male
Medicine and Health Sciences
Mental disorders
Multivariate Analysis
Nervous system
Neuroimaging
Neurosciences
Physical exercise
Physical Sciences
Reliability analysis
Research and Analysis Methods
Schizophrenia
Schizophrenia - classification
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Signal Processing, Computer-Assisted
Sleep disorders
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX4tMCAgJOAhXWI7cfw4po6BBEjA0N4s27EHUkkr0grtv9-d40aNNml74KUP9aVSvruzv1PvPhPymmnKNZzsGaq9wYdhmSlzmxnnqRSUelrh7PDnL9XxCf90Wp5uXfWFPWG9PHAP3D713ApvGjjIDRei0YXWWJUAtfe2asLoXl7LTTHV78GQxVUVB-WYKPajX6bLReumyKprTkcHUdDrH3blyXK-6K6inJc7J2-v26U-_6fn861j6egeuRv5ZHrQv8cOueXa-2QnZmyXvo2y0u8ekHo2-5D-wf67MESUehc0PbsUaGvabffepRYpNfYQBbc9JCdHsx-Hx1m8NyGzlaSrrLFU5FZz1KLT0kJRBVWJkSaXutS-crpizjeFpg2vrfGcNswVRjrG4MA2nLFHZNICUrskrcu8AMvceqq5aayEwGtyIZ3kpmDcJ4RtQFQ2iorj3RZzFf4pE1Bc9DgohF5F6BOSDU8te1GNa-zfo38GW5TEDl9AoKgYKOq6QEnIC_Su6udLh8RWB8BQoEwGppaQV8ECZTFa7Ls50-uuUx-__ryB0fdvI6M30cgvAA6r46wDvBPKbY0s90aWkNx2tLyLsbhBpVO0pAIbgsOTm_i8evnlsIw_ir10rVusgw2wNMpEmZDHfTgPyDImgcCWgLgYBfoI-vFK-_tXUCWvURyQFgmZDilxI-c--R_OfUruUGw2Qlldvkcmq79r9wzY4so8DxvDBWTraMU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAcEC2PGgoYhAQcnNq7azt7QKhFKQWJgApFvVn7LEjBNnUixL9nxlmbWFTQiw_ZsSXPa7-JZ74l5CmTlEvY2SNke4OLYpFKYx0p66jIKXU0w9nh97Ps6IS_O01PN8ism4XBtsouJ7aJ2lQa_yPfoynNsROSiVf1jwhPjcKvq90RGtIfrWBethRjV8gmRWasEdk8mM4-Hne5GaI7y_wAHcuTPW-vcV2Vdoxoe8LpYINqefz7bD2q51VzERT9u6Py6rKs5a-fcj5f264Ob5IbHmeG-yvH2CIbttwm19fYB7fJlo_rJnzuyadf3CKT6fRN-B279NpRo9DZlvmzCQHchs16h16oEXhjp1Fr3Nvk5HD6-fVR5E9XiHQm6CIymuaxlhwZ66TQUHpB7aKEioVMpcuszJh1JpHU8IlWjlPDbKKEBRtQrjhjd8ioBL3tkHCSxglIxtpRyZXRAtzTxLmwgquEcRcQ1qm00J56HE_AmBft97QcSpCVVgo0ROENEZCov6teUW_8R_4ArdXLInF2-0N1flb4OCyo4zp3ygAuVDzPjUykxCIXKkWnMyMC8ghtXaymUPvwL_YBx0AxDXguIE9aCSTPKLE750wum6Z4--HLJYQ-HQ-EnnkhV4E6tPQTEfBOSMo1kNwdSEIK0IPlHfTMTitN8SdY4M7OWy9eftwv40Ox46601bKVASxHWZ4G5O7KuXvNMiYA5qag8Xzg9gPVD1fKb19b7vIJUgjSJCDjPkAuZdx7_36P--QaxWYjpNXlu2S0OF_aB4AWF-qhTwG_AafGatU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZBPbietjQV0WJBYEFC0HFNlODIiSVqQVggO_nRnHiTawiOXAparqz1Y8fn1Tz3wh5A5TlCs42SNUe4MPzSKdJSbSlaVSUGppjrnDzw7y_Rl_epgdbpB3XS6MtyD4iPNF427y8cuirna9JXdRr6i9PY1TJtKuRrwEUIyMeczpXac4hP-MrTAB6RTZzDOg6iOyOTt4MXnb3jTTKKcJ8-l0f2ppcFw5Vf9-7x7hkx1HTH-Przy9rpfq21c1nx85vPbOkR9dt9uYlU_xeqVj8_0XRcj_Zpfz5KynveGkbWWLbFT1BbLlN5YmvO_Vrx9cJOPp9HH4GcMEXa5TaCsnPdqEwK7D5miIYGiQ-WOok5tdl8hsb_r60X7kX-8QmVzSVVQaKhKjOErmKWnA9wPnSUudSJUpm1cqZ5UtU0VLPjbaclqyKtWyYgx4heaMXSajGjq3TcJxlqSATIyliuvSSFgfZSJkJblOGbcBYd0oFsZrn-MrOOaFu9AT4AO1dijQWoW3VkCivtay1f74C_4hTpAei8rd7gcYrsIPU0EtN8LqEoip5kKUKlUKvWxwVa3JSxmQmzi9ijYNtt9_igkQKfDmgVAG5LZDoHpHjeFB79W6aYonz9-cAPTq5QB0z4PsAsxhlE_JgD7hbBogdwZI2IPMoHgbp2NnlaagGRUYt-xqdgvk-OJbfTE2iiF_dbVYOwyQScpEFpAr7XrqLcuYBJ6dgcXFYKUNTD8sqT9-cOLpY9QwpGlA4n5Nnmhwr_5rhWvkDMX4J1T65TtktPqyrq4DgV3pG34b-gnBvp-A
  priority: 102
  providerName: Unpaywall
Title EEG microstate features for schizophrenia classification
URI https://www.ncbi.nlm.nih.gov/pubmed/33989352
https://www.proquest.com/docview/2527533039
https://www.proquest.com/docview/2528182375
https://pubmed.ncbi.nlm.nih.gov/PMC8121321
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251842&type=printable
https://doaj.org/article/2f4c7fbd839b477da1aa1840014fc6d9
http://dx.doi.org/10.1371/journal.pone.0251842
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZGd4ALYvxaYJSAkIBDqsR24viAUDe1G0gr06ConCLbiQdSSUvTCvbf856bRososEsO8XOkfn62v1c_f4-QF0xRrmBnD1DtDR6aBToOTaALS6Wg1NIE7w6fjpKTMX8_iSc7ZFOztQaw2hraYT2p8WLa-_Xj8i1M-DeuaoOINp1681lZ9JAzpxwW5V3YqyQWczjlzbkCzG53eomsJUhoyOrLdH_7Smuzcpr-zcrdmU9n1TZa-md25c1VOVeXP9V0emXrGt4ht2vO6ffXTrJHdoryLtmrZ3Xlv6qlp1_fI-lgcOx_xxw9d9HIt4XT_ax8oLZ-dTU_zzdIuzHPyA3tfTIeDj4dnQR1bYXAJJIug9xQERrFUa9OSQOBF0QuWupQqljZpFAJK2weKZrz1GjLac6KSMuCMdjUNWfsAemUgNQ-8dM4jMAyNJYqrnMjwTnzUMhCch0xbj3CNiBmphYex_oX08ydpgkIQNY4ZAh9VkPvkaDpNV8Lb_zH_hDHp7FF2Wz3Yra4yOpZmFHLjbA6B1aouRC5ipTCEBfiRGuSXHrkKY5utr6D2kz-rA8sBkJpYHMeee4sUDqjxNycC7Wqquzdh8_XMPp43jJ6WRvZGcBhVH0fAn4TSnK1LA9alrAAmFbzPvriBpUqozEVmDTsem78c3vzs6YZP4r5dmUxWzkbYHKUidgjD9fu3CDLmASSGwPiouXoLejbLeW3r065PEUBQRp5pNdMiWsN7qN_I_CY3KKYaoSiuvyAdJaLVfEEuOJSd8kNMRHwTI8ifA6Pu2T3cDA6O--6f1-6bnmAd-PRWf_Lbz6Sbgg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VA4IFoeNRRqEAg4OLV3197sAaECKQl9IEGLcjO763VBCnaoE1X9U_xGZvwiFhX00ksO2XEiz8zOfmPPfEPIU6YoV3Cye8j2Bh-aeTr0jadtSqWgNKUR9g4fHEajY_5hEk5WyK-mFwbLKpuYWAbqJDf4jHybhlRgJSSTr2c_PZwahW9XmxEalVvs2fMzSNmKV-N3YN9nlO4Oj96OvHqqgGciSedeYqjwjeLI1KakgZQDMLuW2pcqVGlkVcRsmgSKJnxgdMppwmygpYX_plxzfAAKIf8aZxBLYP-ISZvgQeyIoro9j4lgu_aG_izPbB-x_IDTzvFXTgloz4LebJoXFwHdv-s1VxfZTJ2fqel06TDcvUVu1ijW3ancbo2s2Gyd3FjiNlwna3XUKNwXNbX1y9tkMBy-d39gDWDZyOSmtuQVLVyAzm6xXP_nGoT1WMdUus4dcnwlWr5LehnobYO4g9APQNI3KVVcJ0aC8ye-kFZyHTCeOoQ1Ko1NTWyO8zWmcfm2TkCCU2klRkPEtSEc4rVXzSpij__Iv0FrtbJIy11-kZ-exPUuj2nKjUh1AqhTcyESFSiFKTTkoamJEumQLbR1XPW4tsEl3gGUBKk6oEWHPCklkJojw9qfE7Uoinj88cslhD5_6gg9r4XSHNRhVN1vAfeElF8dyc2OJAQY01neQM9stFLEf7YiXNl468XLj9tl_FGs58tsvihlAClSJkKH3Kucu9UsYxJAdAgaFx2376i-u5J9_1Yyow-QoJAGDum3G-RSxr3_7_vYIqujo4P9eH98uPeAXKdY1oQEvnyT9OanC_sQcOlcPyqDgUu-XnX0-Q2yGKGM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VReJxQLQ8aijUIBBwcGKv197sAaFCExoKBRWKcjO7692CFOxQJ6r61_h1zPhFLCropZccsuMonpmd_cae-YaQx6GkTMLJ7iHbG3yo0FORrz1lLBWcUktj7B1-vx_vHrK3k2iyQn41vTBYVtnExDJQp7nGZ-R9GlGOlZCh6Nu6LOLjzujl7KeHE6TwTWszTqNykT1zegLpW_FivAO2fkLpaPj59a5XTxjwdCzo3Es15b6WDFnbpNCQfgB-V0L5QkbSxkbGobFpIGnKBlpZRtPQBEoY-B-UKYYPQyH8X-JhKLCckE_aZA_iSBzXrXohD_q1Z_RmeWZ6iOsHjHaOwnJiQHsurM6meXEW6P27dvPKIpvJ0xM5nS4djKMb5HqNaN3tygXXyIrJ1sm1JZ7DdbJWR5DCfVbTXD-_SQbD4Rv3B9YDlk1NrjUlx2jhAox2i-VaQFcjxMeaptKNbpHDC9HybbKagd42iDuI_AAkfW2pZCrVAjZC6nNhBFNByKxDwkalia5JznHWxjQp39xxSHYqrSRoiKQ2hEO89qpZRfLxH_lXaK1WFim6yy_y46Ok3vEJtUxzq1JAoIpxnspASkynISe1Ok6FQ7bQ1knV79oGmmQbEBOk7YAcHfKolECajgwd_kguiiIZf_hyDqFPBx2hp7WQzUEdWta9F3BPSP_VkdzsSEKw0Z3lDfTMRitF8mdbwpWNt569_LBdxh_F2r7M5ItSBlAjDXnkkDuVc7eahY0FgDoCjfOO23dU313Jvn8rWdIHSFZIA4f02g1yLuPe_fd9bJHLEHeSd-P9vXvkKsUKJ-TyZZtkdX68MPcBos7VgzIWuOTrRQef33zlpc8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZBPbietjQV0WJBYEFC0HFNlODIiSVqQVggO_nRnHiTawiOXAparqz1Y8fn1Tz3wh5A5TlCs42SNUe4MPzSKdJSbSlaVSUGppjrnDzw7y_Rl_epgdbpB3XS6MtyD4iPNF427y8cuirna9JXdRr6i9PY1TJtKuRrwEUIyMeczpXac4hP-MrTAB6RTZzDOg6iOyOTt4MXnb3jTTKKcJ8-l0f2ppcFw5Vf9-7x7hkx1HTH-Przy9rpfq21c1nx85vPbOkR9dt9uYlU_xeqVj8_0XRcj_Zpfz5KynveGkbWWLbFT1BbLlN5YmvO_Vrx9cJOPp9HH4GcMEXa5TaCsnPdqEwK7D5miIYGiQ-WOok5tdl8hsb_r60X7kX-8QmVzSVVQaKhKjOErmKWnA9wPnSUudSJUpm1cqZ5UtU0VLPjbaclqyKtWyYgx4heaMXSajGjq3TcJxlqSATIyliuvSSFgfZSJkJblOGbcBYd0oFsZrn-MrOOaFu9AT4AO1dijQWoW3VkCivtay1f74C_4hTpAei8rd7gcYrsIPU0EtN8LqEoip5kKUKlUKvWxwVa3JSxmQmzi9ijYNtt9_igkQKfDmgVAG5LZDoHpHjeFB79W6aYonz9-cAPTq5QB0z4PsAsxhlE_JgD7hbBogdwZI2IPMoHgbp2NnlaagGRUYt-xqdgvk-OJbfTE2iiF_dbVYOwyQScpEFpAr7XrqLcuYBJ6dgcXFYKUNTD8sqT9-cOLpY9QwpGlA4n5Nnmhwr_5rhWvkDMX4J1T65TtktPqyrq4DgV3pG34b-gnBvp-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+microstate+features+for+schizophrenia+classification&rft.jtitle=PloS+one&rft.au=Kim%2C+Kyungwon&rft.au=Duc%2C+Nguyen+Thanh&rft.au=Choi%2C+Min&rft.au=Lee%2C+Boreom&rft.date=2021-05-14&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=5&rft.spage=e0251842&rft_id=info:doi/10.1371%2Fjournal.pone.0251842&rft.externalDocID=A661825639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon