Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium
The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledg...
Saved in:
| Published in | PloS one Vol. 17; no. 2; p. e0264040 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
14.02.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0264040 |
Cover
| Abstract | The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R
2
= 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method. |
|---|---|
| AbstractList | The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method. The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R.sup.2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method. The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R 2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method. The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method. |
| Audience | Academic |
| Author | Ramezanpour, Mahmoud Reza Farajpour, Mostafa |
| AuthorAffiliation | Kyonggi University, REPUBLIC OF KOREA 2 Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran 1 Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran |
| AuthorAffiliation_xml | – name: Kyonggi University, REPUBLIC OF KOREA – name: 2 Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran – name: 1 Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran |
| Author_xml | – sequence: 1 givenname: Mahmoud Reza surname: Ramezanpour fullname: Ramezanpour, Mahmoud Reza – sequence: 2 givenname: Mostafa orcidid: 0000-0003-4223-502X surname: Farajpour fullname: Farajpour, Mostafa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35157736$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5RWUCgtdLeyJWvlXhRC6CEQCPR0KyRZtpXKkiPJTbcv01etvLsJuyGUoAtZ429-z_xjHWZ71lmVZU9zOM_RIn974UZvuZkPKTyHBcEQwwfZQV6hYkYKiPa2nvezwxAuICwRJeRRto_KvFwsEDnI_h4Pg9GSR-0scA3gPupGS80NsGr0qy1eOf8zAG5r0Kp01BJw0zqvY9eD6MDgVa1lXAFuiLrXfxRovVK2c2NQQHCbFmj8qCNYamVqEDvvxrYDVkfvkugbMLjIQ9Bjv5LpeWvVdHqcPWy4CerJZj_Kvn_88O3k8-zs_NPpyfHZTJKqiLNalLJAvCBS1EUuhRRUYCmEKEshUE5zWVYqp3yhCFSyaCBVdU5VAYngoqwKdJQ9X-sOxgW28TawghS0rDAmMBGna6J2_IINXvfcL5njmq0CzrdsMk8axXCDa7nAVSolx80CUwGxqupG8BIVlDRJq1xrjXbgyytuzI1gDtk03usS2DRethlvynu_qXIUvaqlstFzs1PM7hurO9a6X4xSjHKEk8CrjYB3l6MKkfU6SGUMtyrNauq3giWFECX0xS30blc2VMtT49o2Ln1XTqLsmFQIY1pRkqj5HVRateq1TB02OsV3El7vJCQmqt-x5WMI7PTrl_uz5z922ZdbbKe4iV1wZpx-_7ALPtt2-sbi65uTALwGpHcheNXcd4LvbqVJHVe3Lzmizf-T_wGOzUXM |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0293754 crossref_primary_10_1186_s12870_024_04740_2 crossref_primary_10_31436_iiumej_v24i2_2700 crossref_primary_10_1186_s12870_023_04179_x crossref_primary_10_1371_journal_pone_0292359 crossref_primary_10_1016_j_ijgeop_2023_03_005 crossref_primary_10_1371_journal_pone_0292418 crossref_primary_10_1016_j_atech_2025_100831 crossref_primary_10_1134_S1021443723601350 crossref_primary_10_3390_ijms26041746 crossref_primary_10_1038_s41598_022_22554_w crossref_primary_10_1186_s12896_023_00796_4 crossref_primary_10_1007_s11042_023_17217_5 crossref_primary_10_1371_journal_pone_0285657 crossref_primary_10_1590_1519_6984_273386 crossref_primary_10_1016_j_jssas_2023_09_003 crossref_primary_10_3390_en17061463 crossref_primary_10_1186_s40538_023_00485_6 crossref_primary_10_1186_s12896_022_00764_4 crossref_primary_10_3390_horticulturae10010066 crossref_primary_10_1007_s11738_024_03754_5 crossref_primary_10_1016_j_indcrop_2022_114985 crossref_primary_10_3390_f13122020 crossref_primary_10_1134_S102144372360188X |
| Cites_doi | 10.1016/j.plantsci.2018.10.012 10.1109/ICACC.2009.153 10.1371/journal.pone.0240427 10.1016/j.scienta.2020.109862 10.1039/C9RA10349J 10.1080/00103624.2017.1373791 10.1007/s42729-020-00245-7 10.1007/978-3-030-45953-6_9 10.18801/jbar.260120.264 10.1016/j.jff.2017.11.006 10.1016/j.indcrop.2021.113753 10.1016/B978-0-12-819555-0.00012-1 10.21608/jpp.2021.70766.1026 10.1007/s10661-017-5821-x 10.3390/agriculture10100436 10.1080/01904160802660750 10.1002/fes3.295 10.1016/B978-0-12-818732-6.00044-7 10.1109/CSPA48992.2020.9068717 10.1186/s13007-021-00714-9 10.3390/app10155370 10.3390/agriculture11121191 10.1016/j.sjbs.2021.02.043 10.1371/journal.pone.0250665 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Public Library of Science 2022 Ramezanpour, Farajpour. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Ramezanpour, Farajpour 2022 Ramezanpour, Farajpour |
| Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Ramezanpour, Farajpour. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Ramezanpour, Farajpour 2022 Ramezanpour, Farajpour |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0264040 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Agriculture |
| DocumentTitleAlternate | Artificial neural networks and genetic algorithm to predict and optimize banana yield through N, K, and Mg |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2628594460 oai_doaj_org_article_4f4dc749d2114f748b04e9dfba53286f 10.1371/journal.pone.0264040 PMC8843134 A693448986 35157736 10_1371_journal_pone_0264040 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO B0M BBAFP KM |
| ID | FETCH-LOGICAL-c692t-db5c23a26cbd21cbcb8b4cbbb55bb3181c59e18a7e60ec2f08ed18e206bab5923 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 03 03:48:42 EDT 2022 Fri Oct 03 12:40:10 EDT 2025 Sun Oct 26 03:34:17 EDT 2025 Tue Sep 30 16:40:33 EDT 2025 Fri Sep 05 10:38:28 EDT 2025 Tue Oct 07 08:03:29 EDT 2025 Mon Oct 20 22:02:07 EDT 2025 Mon Oct 20 16:43:58 EDT 2025 Thu Oct 16 14:42:45 EDT 2025 Thu Oct 16 14:46:36 EDT 2025 Thu May 22 21:23:28 EDT 2025 Thu Apr 03 07:06:50 EDT 2025 Wed Oct 01 04:32:08 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-db5c23a26cbd21cbcb8b4cbbb55bb3181c59e18a7e60ec2f08ed18e206bab5923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-4223-502X |
| OpenAccessLink | https://doaj.org/article/4f4dc749d2114f748b04e9dfba53286f |
| PMID | 35157736 |
| PQID | 2628594460 |
| PQPubID | 1436336 |
| PageCount | e0264040 |
| ParticipantIDs | plos_journals_2628594460 doaj_primary_oai_doaj_org_article_4f4dc749d2114f748b04e9dfba53286f unpaywall_primary_10_1371_journal_pone_0264040 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8843134 proquest_miscellaneous_2629058003 proquest_journals_2628594460 gale_infotracmisc_A693448986 gale_infotracacademiconefile_A693448986 gale_incontextgauss_ISR_A693448986 gale_incontextgauss_IOV_A693448986 gale_healthsolutions_A693448986 pubmed_primary_35157736 crossref_primary_10_1371_journal_pone_0264040 crossref_citationtrail_10_1371_journal_pone_0264040 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-14 |
| PublicationDateYYYYMMDD | 2022-02-14 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Moreira (pone.0264040.ref031) 2009; 32 Nestor KK Marie-Laure TLTG (pone.0264040.ref032) 2021; 12 S Kraithong (pone.0264040.ref006) 2021 AC Buchelt (pone.0264040.ref014) 2020; 20 K Nyombi (pone.0264040.ref035) 2020 T Moriwaki (pone.0264040.ref011) 2019; 278 OB Scremin (pone.0264040.ref024) 2020; 8 REN Macabiog (pone.0264040.ref039) 2020 M Yousaf (pone.0264040.ref013) 2021; 28 J Xia (pone.0264040.ref029) 2016; 2016 KPS Kumar (pone.0264040.ref002) 2012; 1 F. Siva (pone.0264040.ref037) 2019 M Gallardo (pone.0264040.ref016) 2021; 279 M Hesami (pone.0264040.ref027) 2020; 10 M Hesami (pone.0264040.ref019) 2021 HT Vu (pone.0264040.ref005) 2018; 40 M Salehi (pone.0264040.ref026) 2021; 17 T Ye (pone.0264040.ref034) 2021; 10 M Hesami (pone.0264040.ref018) 2021; 170 AA Valiev (pone.0264040.ref023) 2020 JG Peerzada (pone.0264040.ref001) 2020 MMAN Ranjha (pone.0264040.ref003) 2020 A Mengstu (pone.0264040.ref004) 2021 M Niazian (pone.0264040.ref020) 2020; 10 GK Pandey (pone.0264040.ref010) 2020 M Jafari (pone.0264040.ref040) 2020; 15 PHS Silva (pone.0264040.ref015) 2021 FAO (pone.0264040.ref007) 2019 MMJ Fratoni (pone.0264040.ref009) 2017; 48 M Yoosefzadeh-Najafabadi (pone.0264040.ref021) 2021; 16 A Naderi (pone.0264040.ref025) 2017; 189 MA Islam (pone.0264040.ref033) 2020; 26 TD Wickens (pone.0264040.ref030) 2004 RM Kakhki (pone.0264040.ref028) 2020; 10 A Hartinee (pone.0264040.ref038) 2010; 14 FE-ZM Gouda (pone.0264040.ref008) 2021; 12 H He (pone.0264040.ref012) 2021 M Sabzi-Nojadeh (pone.0264040.ref022) 2021; 11 L Miao (pone.0264040.ref017) 2009 S Nadarajan (pone.0264040.ref036) 2021 |
| References_xml | – volume: 12 start-page: 783 year: 2021 ident: pone.0264040.ref032 article-title: Influence of Nitrogen-Potassium Fertilizers on the Growth and the Productivity Parameters of Plantain Banana PITA 3, FHIA 21 and CORNE 1. publication-title: Françoise KA.Agric Sci – volume: 278 start-page: 1 year: 2019 ident: pone.0264040.ref011 article-title: Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption publication-title: Plant Sci doi: 10.1016/j.plantsci.2018.10.012 – start-page: 425 volume-title: 2009 International Conference on Advanced Computer Control. year: 2009 ident: pone.0264040.ref017 doi: 10.1109/ICACC.2009.153 – start-page: 1 year: 2021 ident: pone.0264040.ref019 article-title: Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm publication-title: Appl Microbiol Biotechnol – volume-title: Smart fertilizer recommendation through NPK analysis using Artificial Neural Networks year: 2019 ident: pone.0264040.ref037 – year: 2020 ident: pone.0264040.ref023 article-title: Calculation of making doses of fertilizers under planned yield of spring wheat using an artificial neural network publication-title: BIO Web of Conferences. EDP Sciences – volume: 15 start-page: e0240427 year: 2020 ident: pone.0264040.ref040 article-title: The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress. publication-title: PLoS One doi: 10.1371/journal.pone.0240427 – volume: 279 start-page: 109862 year: 2021 ident: pone.0264040.ref016 article-title: Modelling nitrogen, phosphorus, potassium, calcium and magnesium uptake, and uptake concentration, of greenhouse tomato with the VegSyst model publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2020.109862 – volume: 10 start-page: 5951 year: 2020 ident: pone.0264040.ref028 article-title: The development of an artificial neural network–genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe 2 O 3 nanostructure surface. publication-title: RSC Adv. doi: 10.1039/C9RA10349J – year: 2021 ident: pone.0264040.ref006 article-title: A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. publication-title: J Saudi Soc Agric Sci – volume: 48 start-page: 1511 year: 2017 ident: pone.0264040.ref009 article-title: Effect of nitrogen and potassium fertilization on banana plants cultivated in the humid tropical Amazon. publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2017.1373791 – year: 2019 ident: pone.0264040.ref007 publication-title: Crop statistics – volume: 20 start-page: 1532 year: 2020 ident: pone.0264040.ref014 article-title: Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00245-7 – start-page: 69 volume-title: Role of Potassium in PlantsSpringer year: 2020 ident: pone.0264040.ref010 doi: 10.1007/978-3-030-45953-6_9 – volume: 26 start-page: 2159 year: 2020 ident: pone.0264040.ref033 article-title: Effect of nitrogen and potassium on growth parameters of banana publication-title: J Biosci Agric Res doi: 10.18801/jbar.260120.264 – volume: 40 start-page: 238 year: 2018 ident: pone.0264040.ref005 article-title: Phenolic compounds within banana peel and their potential uses: A review. publication-title: J Funct Foods doi: 10.1016/j.jff.2017.11.006 – volume: 170 start-page: 113753 year: 2021 ident: pone.0264040.ref018 article-title: Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2021.113753 – start-page: 195 volume-title: Controlled Release Fertilizers for Sustainable Agriculture. year: 2021 ident: pone.0264040.ref036 doi: 10.1016/B978-0-12-819555-0.00012-1 – start-page: 1 year: 2020 ident: pone.0264040.ref003 article-title: A comprehensive review on nutritional value, medicinal uses, and processing of banana. publication-title: Food Rev Int – volume: 12 start-page: 613 year: 2021 ident: pone.0264040.ref008 article-title: Influence of Different Nitrogen Fertilizer Sources on Growth and Productivity of Williams Banana Plants. publication-title: J Plant Prod doi: 10.21608/jpp.2021.70766.1026 – volume: 189 start-page: 214 year: 2017 ident: pone.0264040.ref025 article-title: Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery publication-title: Environ Monit Assess doi: 10.1007/s10661-017-5821-x – volume: 8 start-page: 610 year: 2020 ident: pone.0264040.ref024 article-title: Artificial Intelligence by Artificial Neural Networks to Simulate Oat (Avena sativa L.) Grain Yield Through the Growing Cycle. publication-title: J Agric Stud – volume: 10 start-page: 436 year: 2020 ident: pone.0264040.ref020 article-title: Machine learning for plant breeding and biotechnology publication-title: Agriculture doi: 10.3390/agriculture10100436 – start-page: 1 year: 2020 ident: pone.0264040.ref001 article-title: A Statistical Approach for Biogenic Synthesis of Nano-Silica from Different Agro-Wastes. publication-title: Silicon – volume: 32 start-page: 443 year: 2009 ident: pone.0264040.ref031 article-title: Yield, uptake, and retranslocation of nutrients in banana plants cultivated in upland soil of Central Amazonian publication-title: J Plant Nutr doi: 10.1080/01904160802660750 – volume-title: Design and analysis: A researcher’s handbook year: 2004 ident: pone.0264040.ref030 – year: 2021 ident: pone.0264040.ref015 article-title: Characterization of growth and visual symptoms of nitrogen, potassium and magnesium deficiencies in arugula. publication-title: Emirates J Food Agric – start-page: 339 volume-title: Health-Promoting Benefits, Value-Added Products, and Other Uses of Banana. Non-Timber Forest Products. year: 2021 ident: pone.0264040.ref004 – volume: 10 start-page: e295 year: 2021 ident: pone.0264040.ref034 article-title: Nitrogen/potassium interactions increase rice yield by improving canopy performance. publication-title: Food Energy Secur doi: 10.1002/fes3.295 – start-page: 651 volume-title: Fruit Crops. year: 2020 ident: pone.0264040.ref035 doi: 10.1016/B978-0-12-818732-6.00044-7 – volume: 14 start-page: 15 year: 2010 ident: pone.0264040.ref038 article-title: Model comparisons for assessment of NPK requirement of upland rice for maximum yield publication-title: Malaysian J Soil Sci – start-page: 141 volume-title: 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA). year: 2020 ident: pone.0264040.ref039 doi: 10.1109/CSPA48992.2020.9068717 – volume: 17 start-page: 1 year: 2021 ident: pone.0264040.ref026 article-title: A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture publication-title: Plant Methods doi: 10.1186/s13007-021-00714-9 – volume: 2016 start-page: 14.10.1 year: 2016 ident: pone.0264040.ref029 article-title: Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. publication-title: Curr Protoc Bioinforma – volume: 10 start-page: 5370 year: 2020 ident: pone.0264040.ref027 article-title: Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat. publication-title: Appl Sci. doi: 10.3390/app10155370 – volume: 11 start-page: 1191 year: 2021 ident: pone.0264040.ref022 article-title: Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods publication-title: Agriculture doi: 10.3390/agriculture11121191 – start-page: 1 year: 2021 ident: pone.0264040.ref012 article-title: Physiological Response to Short-Term Magnesium Deficiency in Banana Cultivars publication-title: J Soil Sci Plant Nutr – volume: 28 start-page: 3021 year: 2021 ident: pone.0264040.ref013 article-title: Role of nitrogen and magnesium for growth, yield and nutritional quality of radish publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2021.02.043 – volume: 16 start-page: e0250665 year: 2021 ident: pone.0264040.ref021 article-title: Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits. publication-title: PLoS One doi: 10.1371/journal.pone.0250665 – volume: 1 start-page: 51 year: 2012 ident: pone.0264040.ref002 article-title: Traditional and medicinal uses of banana. publication-title: J Pharmacogn Phytochem |
| SSID | ssj0053866 |
| Score | 2.5037014 |
| Snippet | The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0264040 |
| SubjectTerms | Agriculture Agrochemicals Algorithms Analysis of Variance Artificial neural networks Banana Bias Biology and Life Sciences Climate change Cluster analysis Computer and Information Sciences Crop yield Crop yields Environmental pollution Experiments Fertilizers Fertilizers - analysis Forecasts and trends Fruits Genetic algorithms Global warming Greenhouse Effect Greenhouses Iran Magnesium Magnesium - analysis Microorganisms Modelling Models, Genetic Multilayer perceptrons Musa - genetics Musa - growth & development Musa - metabolism Neural networks Neural Networks, Computer Nitrogen Nitrogen - analysis Optimization Orchards Physical Sciences Physiological aspects Potassium Potassium - analysis Quantitative Trait Loci Research and Analysis Methods Statistical analysis Variables Variance analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb7WUcAgJEAiWxI7TvJYENNAAiRgaG-R7dhtpTaJmkRo_DP8q9wlbljEpO0B9SFqfXHj-8qdfPczIS8Ubi4JpjxmVe7hTqCXpBHzlOY-N9bIqANJ-vRZnJzyj2fR2YWjvrAmrIcH7hl3xC3PdczTHDIVbmOeKJgjza2SEQsTYdH7-km6S6Z6HwxWLIRrlGNxcOTkcliVhTmErAOewx-9iDq8_sErT6p1WV8Wcv5bOXmzLSp5_lOu1xdeS8d3yG0XT9J5v449csMUd8mes9iavnKw0q_vkd_zv3vVtLQUl97DR1AEtewuXUl4TWWRU1As7G-kcr0ot6tmuaFNSast7us0HUEJzmaz-mXoAkt3lmVbG6pkAR9qt-2qoedYHEfdQUAUXMe2hEnf0KpsIGJftZtumo1cgLeFb_fJ6fH77-9OPHc8g6dFGjZeriIdMhkKrUA4WmmVKK6VUlGkFLiKQEepCRIZG-EbHVo_MXmQmNAXSqoIAssHZFKAQPYJ5b41gdQ8zJnmVmuIYWK4JWBK5UEa5VPCdrLKtMMuxyM01lm3IRdDDtOzO0MJZ07CU-INd1U9dscV9G9RDQZaRN7ufgB9zJw-Zlfp45Q8RSXK-jbWwX9kc5EySIXTREzJ844C0TcKLO9ZyLausw9fflyD6NvXEdFLR2RLYIeWrqUC1oSoXiPK2YgSfIgeDe-jyu-4UmchdtamnAtgymxnBpcPPxuGcVIs2SsMqBzSpH4E-Qibkoe91QycZRBFxzGD_41H9jRi_XikWC078PMkgZCX8Sk5HCzvWsI9-B_CfURuhdj-ggcC8RmZNNvWPIagtFFPOv_zB1dNkOw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IDY-VhhgEBIgkS6Jna8HhDq0aSAx0GBob5HtOG2lNgn5EBr_DP8qd6mTETHB1Ieq9cWpz3eXc-_ud4Q8lxhc8pm0WCoTCyOBVhh5zJKK21ynWngtSNLHY__olH848842yHFXC4NplZ1NbA11kiv8j3zPxVq_CA4v9tviu4VdozC62rXQEKa1QvKmhRi7RjZdRMYakc39g-PPJ51tBu32fVNAxwJnz-zXpMgzPYHTCPw-e_CAanH8e2s9KpZ5dZkr-ndG5fUmK8T5D7Fc_vG4OrxNbhk_k07XgrFFNnS2TW5OZ6XB2tDbZMvodUVfGvDpV3fIr-lFRJvmKUXJWoNMUIS-bN_axPGKiiyhIH5YBUnFcgbMqucrWue0KDH6U7cEOZik1eKnpjNM8JnnTaWpFBm8aFo2i5qeYwodNe2CKBiYModJX9Mir8GvXzSrdpqVmIFNhk93yenhwdd3R5Zp4mApP3JrK5GecplwfSUT11FSyVByJaX0PCnBoDjKi7QTikD7tlZuaoc6cULt2r4U0gP38x4ZZbA9O4RyO9WOUNxNmOKpUuDpBHCJw6RMnMhLxoR1Oxcrg3COjTaWcRu2C-Cks2Z-jPsdm_0eE6u_qlgjfPyHfh-FoqdFfO72i7ycxUbdY57yRAU8giU7PA14KEHyoySVwmNu6Kdj8gRFKl4Xu_ZWJp76EYMDcxT6Y_KspUCMjgyTgGaiqar4_advVyD6cjIgemGI0hzYoYQpvIA1IfbXgHJ3QAmWRg2Gd1ABOq5U8YVOwpWdUlw-_LQfxkkxsS_TIHJIE9kenFrYmNxf61DPWQa-dhAwuG8w0K4B64cj2WLeQqSHITjGjI_JpNfDK23ug3-v4yG54WL5CzYE4rtkVJeNfgROaS0fG0vzGxXFk2w priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELem7gFegPFvgQIGIQHSUhLbcZLHgpgG0gYCisZTZDtOW9EmVZMIbV-Gr8o5ccMCQxT1oWp9duTz3eVOd_czQk-lSS5xKl2aydQ1mUA3igPqSsU8pjMtggYk6fiEH03Yu9PgdAcdbHphLubvaei_tBwdrYpcjyBegBUgQN_lAXjeA7Q7Ofkw_tomjonLiUdtd9zfpvbePg1If2eKB6tFUV7mZ_5ZLnmlzlfi7LtYLC68iw6vo-PNLtoSlG-jupIjdf4bwOO227yBrlmnFI9bKdpDOzq_ifas2pf4ucWmfnEL_Rj_SnjjIsNG8FoMCmyQMZuvpq68xCJPMUinaZLEYjEt1vNqtsRVgVdrkxyqGoICLNZyfq7x1NT_zIq61FiKHD44W9fzCp-ZCjtsbxPCYH_WBSx6gFdFBW7_vF42yyzFFEw2_LqNJodvPr8-cu0dD67iMancVAaKUEG4kinxlVQykkxJKYNASrA3vgpi7Uci1NzTimRepFM_0sTjUsgAvNM7aJAD0_YRZl6mfaEYSalimVLgCIUwxadSpn4cpA6im7NPlAVAN_dwLJImqxdCINSyOzGnkNhTcJDbzVq1ACD_oH9lxKqjNfDdzR9w3Im1BgnLWKpCFsOWfZaFLJKgGHGaSRFQEvHMQY-MUCZtL2xnhJIxjynE03HEHfSkoTAQHrmpEZqKuiyTt--_bEH06WOP6JklygpghxK2LwP2ZKDBepTDHiUYItUb3jcqtOFKmRDTnhszxoEpw41aXT78uBs2i5q6v1yDyBma2AsgqKEOuttqYcdZCq54GFJ4btjTzx7r-yP5fNYgqEcR-M2UOWjUafJWh3vvfyfcR1eJ6ZcxNwixIRpU61o_AC-2kg-t8foJjwChGw priority: 102 providerName: Unpaywall |
| Title | Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35157736 https://www.proquest.com/docview/2628594460 https://www.proquest.com/docview/2629058003 https://pubmed.ncbi.nlm.nih.gov/PMC8843134 https://doi.org/10.1371/journal.pone.0264040 https://doaj.org/article/4f4dc749d2114f748b04e9dfba53286f http://dx.doi.org/10.1371/journal.pone.0264040 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0BrbA7wgxtcKoxiEBEikSmLn6wGhbtoYSBvToKg8RbbjtJXapCSpoPwZ_ip3bhqIKKKqlKrx2VHOd-e73hchzyQ6l3wmLZbKxEJPoBVGHrOk4jbXqRaeKZJ0fuGfDfj7oTfcIeuerTUCy42mHfaTGhTT3vevyzfA8K9N14bAWU_qzfNM98CmgKeAEb8HZ1WEzRzOeeNXAO423kvUWizftVmdTPevVVqHlanp30ju3fk0LzeppX9HV15fZHOx_Cam0z-OrtNb5Gatc9L-ikj2yY7ObpP9mqtL-qIuPf3yDvnZ_-3PpnlKka5WJSYoFr40XyZsvKQiSygQH-ZAUjEd5cWkGs9oldN5gb6fygDkIJBmkx-ajjC8Z5wvSk2lyOBD02IxqegSA-ho3SyIgngpclj0FZ3nFWj1k8XMLDMTI5DI8OsuGZyefDo-s-oWDpbyI7eyEukplwnXVzJxHSWVDCVXUkrPkxLEiaO8SDuhCLRva-WmdqgTJ9Su7UshPVA-75HdDDbkgFBup9oRirsJUzxVCvScAKY4TMrEibykQ9h6r2JV1zfHNhvT2DjtArBzVuiOcYfjeoc7xGpmzVf1Pf4Df4Rk0MBidW5zIy9Gcc3sMU95ogIewSs7PA14KIHuoySVwmNu6Kcd8hiJKF6lujYyJu77EQNzOQr9DnlqILBCR4YhQCOxKMv43YfPWwB9vGoBPa-B0hzQoUSddgHvhJW_WpCHLUiQM6o1fIAkv8ZKGbuYfRtx7gNSDtdssHn4STOMi2JYX6aB5BAmsj2wWViH3F9xTYNZBpp2EDB4btDipxbq2yPZZGwKpIchqMWMd0iv4bytNvfB1rh6SG64mAeDnYH4IdmtioV-BNppJbvkWjAM4BoeO3g9fdsle0cnF5dXXfN_T9cIJLg3uLjsf_kFTIma4g |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VA4IFoeDRS6IBAg4db2rl8HhMKjSukDCVrUm9ldr9NIiW1iR1X5M_wDfiMz9sbFooJeqhyiZMcb7c7MtzPZeRDyVOLlks-kxVKZWHgTaIWRxyypuM11qoVXF0naP_CHR_zjsXe8RH4tcmEwrHKBiTVQJ7nC_8i3XMz1i8B5sd8U3y3sGoW3q4sWGo1Y7OqzU3DZytc774G_z1x3-8Phu6FlugpYyo_cykqkp1wmXF_JxHWUVDKUXEkpPU9KkHBHeZF2QhFo39bKTe1QJ06oXduXQnoRFjoAyL_GGWAJ6E9w3Dp4gB2-b9LzWOBsGWnYLPJMb4KvA6u3O8df3SWgPQt6xSQvLzJ0_47XXJ5nhTg7FZPJH4fh9i1y01ixdNCI3QpZ0tkquTEYzUwlD71KVgxqlPSFKW398jb5OTi_L6d5SlFumxIWFAtr1m91WHpJRZZQEG7MsaRiMgJWVCdTWuW0mOHdUlUT5AB40_EPTUcYPnSSz0tNpcjgRdPZfFzRMwzQo6YZEQX4muUw6Sta5BV4DeP5tJ5mKkaA-PDpDjm6EmbeJb0M2LNGKLdT7QjF3YQpnioFdlQAjzhMysSJvKRP2IJzsTL107GNxySuLwUD8KOazY-R37Hhd59Y7VNFUz_kP_RvUShaWqz-XX-Rz0axAZOYpzxRAY9gyQ5PAx5K0KsoSaXwmBv6aZ9soEjFTSpti2HxwI8YuONR6PfJk5oCK4BkGGI0EvOyjHc-fb0E0ZfPHaLnhijNYTuUMGkdsCasLNahXO9QAo6pzvAaKsBiV8r4XOPhyYVSXDz8uB3GSTFsMNMgckgT2R74RKxP7jU61O4sA0s-CBj8btDRrs7Wd0ey8UldgD0MwexmvE82Wz28FHPv_3sdG2R5eLi_F-_tHOw-INddTLTB1kN8nfSq2Vw_BPO3ko9qzKHk21WD3G_N4cvl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIfHxgNj4WGEwg0CARNYkdr4eECqMaWMw0GBob8F2nLZSm4Qm1TT-Gf4P_jruEjcjYoK9TH2oWl9c2Xf38119H4Q8lni55DNpsVQmFt4EWmHkMUsqbnOdauHVRZI-7Ps7h_zdkXe0RH4tcmEwrHKBiTVQJ7nC_8j7Lub6ReC82P3UhEV82tp-VXy3sIMU3rQu2mk0IrKnT47BfStf7m4Br5-47vbbL292LNNhwFJ-5FZWIj3lMuH6Siauo6SSoeRKSul5UoK0O8qLtBOKQPu2Vm5qhzpxQu3avhTSi7DoAcD_pYCxCMMJg6PW2QMc8X2TqscCp28kY7PIM70Jfg_shN05CuuOAe25sFxM8vIso_fv2M0r86wQJ8diMvnjYNy-Qa4bi5YOGhFcIUs6WyXXBsOZqeqhV8mKQZCSPjNlrp_fJD8Hp3fnNE8pynBTzoJikc36rQ5RL6nIEgqCjvmWVEyGwIpqNKVVTosZ3jNVNUEO4Dcd_9B0iKFEo3xeaipFBi-azubjip5gsB41jYkoQNksh0lf0CKvwIMYz6f1NFMxBPSHT7fI4YUw8zZZzoA9a4RyO9WOUNxNmOKpUmBTBfCIw6RMnMhLeoQtOBcrU0sdW3pM4vqCMACfqtn8GPkdG373iNU-VTS1RP5D_xqFoqXFSuD1F_lsGBtgiXnKExXwCJbs8DTgoQQdi5JUCo-5oZ_2yAaKVNyk1bZ4Fg_8iIFrHoV-jzyqKbAaSIZ6NRTzsox3P349B9Hngw7RU0OU5rAdSpgUD1gTVhnrUK53KAHTVGd4DRVgsStlfKr98ORCKc4eftgO46QYQphpEDmkiWwP_CPWI3caHWp3loFVHwQMfjfoaFdn67sj2XhUF2MPQzDBGe-RzVYPz8Xcu_9exwa5DPAWv9_d37tHrrqYc4NdiPg6Wa5mc30fLOFKPqghh5JvF41xvwFOt9Ao |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELem7gFegPFvgQIGIQHSUhLbcZLHgpgG0gYCisZTZDtOW9EmVZMIbV-Gr8o5ccMCQxT1oWp9duTz3eVOd_czQk-lSS5xKl2aydQ1mUA3igPqSsU8pjMtggYk6fiEH03Yu9PgdAcdbHphLubvaei_tBwdrYpcjyBegBUgQN_lAXjeA7Q7Ofkw_tomjonLiUdtd9zfpvbePg1If2eKB6tFUV7mZ_5ZLnmlzlfi7LtYLC68iw6vo-PNLtoSlG-jupIjdf4bwOO227yBrlmnFI9bKdpDOzq_ifas2pf4ucWmfnEL_Rj_SnjjIsNG8FoMCmyQMZuvpq68xCJPMUinaZLEYjEt1vNqtsRVgVdrkxyqGoICLNZyfq7x1NT_zIq61FiKHD44W9fzCp-ZCjtsbxPCYH_WBSx6gFdFBW7_vF42yyzFFEw2_LqNJodvPr8-cu0dD67iMancVAaKUEG4kinxlVQykkxJKYNASrA3vgpi7Uci1NzTimRepFM_0sTjUsgAvNM7aJAD0_YRZl6mfaEYSalimVLgCIUwxadSpn4cpA6im7NPlAVAN_dwLJImqxdCINSyOzGnkNhTcJDbzVq1ACD_oH9lxKqjNfDdzR9w3Im1BgnLWKpCFsOWfZaFLJKgGHGaSRFQEvHMQY-MUCZtL2xnhJIxjynE03HEHfSkoTAQHrmpEZqKuiyTt--_bEH06WOP6JklygpghxK2LwP2ZKDBepTDHiUYItUb3jcqtOFKmRDTnhszxoEpw41aXT78uBs2i5q6v1yDyBma2AsgqKEOuttqYcdZCq54GFJ4btjTzx7r-yP5fNYgqEcR-M2UOWjUafJWh3vvfyfcR1eJ6ZcxNwixIRpU61o_AC-2kg-t8foJjwChGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+neural+networks+and+genetic+algorithm+to+predict+and+optimize+greenhouse+banana+fruit+yield+through+nitrogen%2C+potassium+and+magnesium&rft.jtitle=PloS+one&rft.au=Ramezanpour%2C+Mahmoud+Reza&rft.au=Farajpour%2C+Mostafa&rft.date=2022-02-14&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=2&rft.spage=e0264040&rft_id=info:doi/10.1371%2Fjournal.pone.0264040&rft.externalDocID=A693448986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |