Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium

The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledg...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 2; p. e0264040
Main Authors Ramezanpour, Mahmoud Reza, Farajpour, Mostafa
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.02.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0264040

Cover

Abstract The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R 2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.
AbstractList The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.
The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R.sup.2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.
The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R 2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.
The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66-0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.
Audience Academic
Author Ramezanpour, Mahmoud Reza
Farajpour, Mostafa
AuthorAffiliation Kyonggi University, REPUBLIC OF KOREA
2 Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
1 Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
AuthorAffiliation_xml – name: Kyonggi University, REPUBLIC OF KOREA
– name: 2 Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
– name: 1 Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
Author_xml – sequence: 1
  givenname: Mahmoud Reza
  surname: Ramezanpour
  fullname: Ramezanpour, Mahmoud Reza
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0003-4223-502X
  surname: Farajpour
  fullname: Farajpour, Mostafa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35157736$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5RWUCgtdLeyJWvlXhRC6CEQCPR0KyRZtpXKkiPJTbcv01etvLsJuyGUoAtZ429-z_xjHWZ71lmVZU9zOM_RIn974UZvuZkPKTyHBcEQwwfZQV6hYkYKiPa2nvezwxAuICwRJeRRto_KvFwsEDnI_h4Pg9GSR-0scA3gPupGS80NsGr0qy1eOf8zAG5r0Kp01BJw0zqvY9eD6MDgVa1lXAFuiLrXfxRovVK2c2NQQHCbFmj8qCNYamVqEDvvxrYDVkfvkugbMLjIQ9Bjv5LpeWvVdHqcPWy4CerJZj_Kvn_88O3k8-zs_NPpyfHZTJKqiLNalLJAvCBS1EUuhRRUYCmEKEshUE5zWVYqp3yhCFSyaCBVdU5VAYngoqwKdJQ9X-sOxgW28TawghS0rDAmMBGna6J2_IINXvfcL5njmq0CzrdsMk8axXCDa7nAVSolx80CUwGxqupG8BIVlDRJq1xrjXbgyytuzI1gDtk03usS2DRethlvynu_qXIUvaqlstFzs1PM7hurO9a6X4xSjHKEk8CrjYB3l6MKkfU6SGUMtyrNauq3giWFECX0xS30blc2VMtT49o2Ln1XTqLsmFQIY1pRkqj5HVRateq1TB02OsV3El7vJCQmqt-x5WMI7PTrl_uz5z922ZdbbKe4iV1wZpx-_7ALPtt2-sbi65uTALwGpHcheNXcd4LvbqVJHVe3Lzmizf-T_wGOzUXM
CitedBy_id crossref_primary_10_1371_journal_pone_0293754
crossref_primary_10_1186_s12870_024_04740_2
crossref_primary_10_31436_iiumej_v24i2_2700
crossref_primary_10_1186_s12870_023_04179_x
crossref_primary_10_1371_journal_pone_0292359
crossref_primary_10_1016_j_ijgeop_2023_03_005
crossref_primary_10_1371_journal_pone_0292418
crossref_primary_10_1016_j_atech_2025_100831
crossref_primary_10_1134_S1021443723601350
crossref_primary_10_3390_ijms26041746
crossref_primary_10_1038_s41598_022_22554_w
crossref_primary_10_1186_s12896_023_00796_4
crossref_primary_10_1007_s11042_023_17217_5
crossref_primary_10_1371_journal_pone_0285657
crossref_primary_10_1590_1519_6984_273386
crossref_primary_10_1016_j_jssas_2023_09_003
crossref_primary_10_3390_en17061463
crossref_primary_10_1186_s40538_023_00485_6
crossref_primary_10_1186_s12896_022_00764_4
crossref_primary_10_3390_horticulturae10010066
crossref_primary_10_1007_s11738_024_03754_5
crossref_primary_10_1016_j_indcrop_2022_114985
crossref_primary_10_3390_f13122020
crossref_primary_10_1134_S102144372360188X
Cites_doi 10.1016/j.plantsci.2018.10.012
10.1109/ICACC.2009.153
10.1371/journal.pone.0240427
10.1016/j.scienta.2020.109862
10.1039/C9RA10349J
10.1080/00103624.2017.1373791
10.1007/s42729-020-00245-7
10.1007/978-3-030-45953-6_9
10.18801/jbar.260120.264
10.1016/j.jff.2017.11.006
10.1016/j.indcrop.2021.113753
10.1016/B978-0-12-819555-0.00012-1
10.21608/jpp.2021.70766.1026
10.1007/s10661-017-5821-x
10.3390/agriculture10100436
10.1080/01904160802660750
10.1002/fes3.295
10.1016/B978-0-12-818732-6.00044-7
10.1109/CSPA48992.2020.9068717
10.1186/s13007-021-00714-9
10.3390/app10155370
10.3390/agriculture11121191
10.1016/j.sjbs.2021.02.043
10.1371/journal.pone.0250665
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Ramezanpour, Farajpour. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Ramezanpour, Farajpour 2022 Ramezanpour, Farajpour
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Ramezanpour, Farajpour. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Ramezanpour, Farajpour 2022 Ramezanpour, Farajpour
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0264040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef

MEDLINE - Academic

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
DocumentTitleAlternate Artificial neural networks and genetic algorithm to predict and optimize banana yield through N, K, and Mg
EISSN 1932-6203
ExternalDocumentID 2628594460
oai_doaj_org_article_4f4dc749d2114f748b04e9dfba53286f
10.1371/journal.pone.0264040
PMC8843134
A693448986
35157736
10_1371_journal_pone_0264040
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
B0M
BBAFP
KM
ID FETCH-LOGICAL-c692t-db5c23a26cbd21cbcb8b4cbbb55bb3181c59e18a7e60ec2f08ed18e206bab5923
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 03 03:48:42 EDT 2022
Fri Oct 03 12:40:10 EDT 2025
Sun Oct 26 03:34:17 EDT 2025
Tue Sep 30 16:40:33 EDT 2025
Fri Sep 05 10:38:28 EDT 2025
Tue Oct 07 08:03:29 EDT 2025
Mon Oct 20 22:02:07 EDT 2025
Mon Oct 20 16:43:58 EDT 2025
Thu Oct 16 14:42:45 EDT 2025
Thu Oct 16 14:46:36 EDT 2025
Thu May 22 21:23:28 EDT 2025
Thu Apr 03 07:06:50 EDT 2025
Wed Oct 01 04:32:08 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-db5c23a26cbd21cbcb8b4cbbb55bb3181c59e18a7e60ec2f08ed18e206bab5923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4223-502X
OpenAccessLink https://doaj.org/article/4f4dc749d2114f748b04e9dfba53286f
PMID 35157736
PQID 2628594460
PQPubID 1436336
PageCount e0264040
ParticipantIDs plos_journals_2628594460
doaj_primary_oai_doaj_org_article_4f4dc749d2114f748b04e9dfba53286f
unpaywall_primary_10_1371_journal_pone_0264040
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8843134
proquest_miscellaneous_2629058003
proquest_journals_2628594460
gale_infotracmisc_A693448986
gale_infotracacademiconefile_A693448986
gale_incontextgauss_ISR_A693448986
gale_incontextgauss_IOV_A693448986
gale_healthsolutions_A693448986
pubmed_primary_35157736
crossref_primary_10_1371_journal_pone_0264040
crossref_citationtrail_10_1371_journal_pone_0264040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-14
PublicationDateYYYYMMDD 2022-02-14
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Moreira (pone.0264040.ref031) 2009; 32
Nestor KK Marie-Laure TLTG (pone.0264040.ref032) 2021; 12
S Kraithong (pone.0264040.ref006) 2021
AC Buchelt (pone.0264040.ref014) 2020; 20
K Nyombi (pone.0264040.ref035) 2020
T Moriwaki (pone.0264040.ref011) 2019; 278
OB Scremin (pone.0264040.ref024) 2020; 8
REN Macabiog (pone.0264040.ref039) 2020
M Yousaf (pone.0264040.ref013) 2021; 28
J Xia (pone.0264040.ref029) 2016; 2016
KPS Kumar (pone.0264040.ref002) 2012; 1
F. Siva (pone.0264040.ref037) 2019
M Gallardo (pone.0264040.ref016) 2021; 279
M Hesami (pone.0264040.ref027) 2020; 10
M Hesami (pone.0264040.ref019) 2021
HT Vu (pone.0264040.ref005) 2018; 40
M Salehi (pone.0264040.ref026) 2021; 17
T Ye (pone.0264040.ref034) 2021; 10
M Hesami (pone.0264040.ref018) 2021; 170
AA Valiev (pone.0264040.ref023) 2020
JG Peerzada (pone.0264040.ref001) 2020
MMAN Ranjha (pone.0264040.ref003) 2020
A Mengstu (pone.0264040.ref004) 2021
M Niazian (pone.0264040.ref020) 2020; 10
GK Pandey (pone.0264040.ref010) 2020
M Jafari (pone.0264040.ref040) 2020; 15
PHS Silva (pone.0264040.ref015) 2021
FAO (pone.0264040.ref007) 2019
MMJ Fratoni (pone.0264040.ref009) 2017; 48
M Yoosefzadeh-Najafabadi (pone.0264040.ref021) 2021; 16
A Naderi (pone.0264040.ref025) 2017; 189
MA Islam (pone.0264040.ref033) 2020; 26
TD Wickens (pone.0264040.ref030) 2004
RM Kakhki (pone.0264040.ref028) 2020; 10
A Hartinee (pone.0264040.ref038) 2010; 14
FE-ZM Gouda (pone.0264040.ref008) 2021; 12
H He (pone.0264040.ref012) 2021
M Sabzi-Nojadeh (pone.0264040.ref022) 2021; 11
L Miao (pone.0264040.ref017) 2009
S Nadarajan (pone.0264040.ref036) 2021
References_xml – volume: 12
  start-page: 783
  year: 2021
  ident: pone.0264040.ref032
  article-title: Influence of Nitrogen-Potassium Fertilizers on the Growth and the Productivity Parameters of Plantain Banana PITA 3, FHIA 21 and CORNE 1.
  publication-title: Françoise KA.Agric Sci
– volume: 278
  start-page: 1
  year: 2019
  ident: pone.0264040.ref011
  article-title: Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2018.10.012
– start-page: 425
  volume-title: 2009 International Conference on Advanced Computer Control.
  year: 2009
  ident: pone.0264040.ref017
  doi: 10.1109/ICACC.2009.153
– start-page: 1
  year: 2021
  ident: pone.0264040.ref019
  article-title: Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm
  publication-title: Appl Microbiol Biotechnol
– volume-title: Smart fertilizer recommendation through NPK analysis using Artificial Neural Networks
  year: 2019
  ident: pone.0264040.ref037
– year: 2020
  ident: pone.0264040.ref023
  article-title: Calculation of making doses of fertilizers under planned yield of spring wheat using an artificial neural network
  publication-title: BIO Web of Conferences. EDP Sciences
– volume: 15
  start-page: e0240427
  year: 2020
  ident: pone.0264040.ref040
  article-title: The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0240427
– volume: 279
  start-page: 109862
  year: 2021
  ident: pone.0264040.ref016
  article-title: Modelling nitrogen, phosphorus, potassium, calcium and magnesium uptake, and uptake concentration, of greenhouse tomato with the VegSyst model
  publication-title: Sci Hortic (Amsterdam)
  doi: 10.1016/j.scienta.2020.109862
– volume: 10
  start-page: 5951
  year: 2020
  ident: pone.0264040.ref028
  article-title: The development of an artificial neural network–genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe 2 O 3 nanostructure surface.
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10349J
– year: 2021
  ident: pone.0264040.ref006
  article-title: A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability.
  publication-title: J Saudi Soc Agric Sci
– volume: 48
  start-page: 1511
  year: 2017
  ident: pone.0264040.ref009
  article-title: Effect of nitrogen and potassium fertilization on banana plants cultivated in the humid tropical Amazon.
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2017.1373791
– year: 2019
  ident: pone.0264040.ref007
  publication-title: Crop statistics
– volume: 20
  start-page: 1532
  year: 2020
  ident: pone.0264040.ref014
  article-title: Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00245-7
– start-page: 69
  volume-title: Role of Potassium in PlantsSpringer
  year: 2020
  ident: pone.0264040.ref010
  doi: 10.1007/978-3-030-45953-6_9
– volume: 26
  start-page: 2159
  year: 2020
  ident: pone.0264040.ref033
  article-title: Effect of nitrogen and potassium on growth parameters of banana
  publication-title: J Biosci Agric Res
  doi: 10.18801/jbar.260120.264
– volume: 40
  start-page: 238
  year: 2018
  ident: pone.0264040.ref005
  article-title: Phenolic compounds within banana peel and their potential uses: A review.
  publication-title: J Funct Foods
  doi: 10.1016/j.jff.2017.11.006
– volume: 170
  start-page: 113753
  year: 2021
  ident: pone.0264040.ref018
  article-title: Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.).
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2021.113753
– start-page: 195
  volume-title: Controlled Release Fertilizers for Sustainable Agriculture.
  year: 2021
  ident: pone.0264040.ref036
  doi: 10.1016/B978-0-12-819555-0.00012-1
– start-page: 1
  year: 2020
  ident: pone.0264040.ref003
  article-title: A comprehensive review on nutritional value, medicinal uses, and processing of banana.
  publication-title: Food Rev Int
– volume: 12
  start-page: 613
  year: 2021
  ident: pone.0264040.ref008
  article-title: Influence of Different Nitrogen Fertilizer Sources on Growth and Productivity of Williams Banana Plants.
  publication-title: J Plant Prod
  doi: 10.21608/jpp.2021.70766.1026
– volume: 189
  start-page: 214
  year: 2017
  ident: pone.0264040.ref025
  article-title: Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-017-5821-x
– volume: 8
  start-page: 610
  year: 2020
  ident: pone.0264040.ref024
  article-title: Artificial Intelligence by Artificial Neural Networks to Simulate Oat (Avena sativa L.) Grain Yield Through the Growing Cycle.
  publication-title: J Agric Stud
– volume: 10
  start-page: 436
  year: 2020
  ident: pone.0264040.ref020
  article-title: Machine learning for plant breeding and biotechnology
  publication-title: Agriculture
  doi: 10.3390/agriculture10100436
– start-page: 1
  year: 2020
  ident: pone.0264040.ref001
  article-title: A Statistical Approach for Biogenic Synthesis of Nano-Silica from Different Agro-Wastes.
  publication-title: Silicon
– volume: 32
  start-page: 443
  year: 2009
  ident: pone.0264040.ref031
  article-title: Yield, uptake, and retranslocation of nutrients in banana plants cultivated in upland soil of Central Amazonian
  publication-title: J Plant Nutr
  doi: 10.1080/01904160802660750
– volume-title: Design and analysis: A researcher’s handbook
  year: 2004
  ident: pone.0264040.ref030
– year: 2021
  ident: pone.0264040.ref015
  article-title: Characterization of growth and visual symptoms of nitrogen, potassium and magnesium deficiencies in arugula.
  publication-title: Emirates J Food Agric
– start-page: 339
  volume-title: Health-Promoting Benefits, Value-Added Products, and Other Uses of Banana. Non-Timber Forest Products.
  year: 2021
  ident: pone.0264040.ref004
– volume: 10
  start-page: e295
  year: 2021
  ident: pone.0264040.ref034
  article-title: Nitrogen/potassium interactions increase rice yield by improving canopy performance.
  publication-title: Food Energy Secur
  doi: 10.1002/fes3.295
– start-page: 651
  volume-title: Fruit Crops.
  year: 2020
  ident: pone.0264040.ref035
  doi: 10.1016/B978-0-12-818732-6.00044-7
– volume: 14
  start-page: 15
  year: 2010
  ident: pone.0264040.ref038
  article-title: Model comparisons for assessment of NPK requirement of upland rice for maximum yield
  publication-title: Malaysian J Soil Sci
– start-page: 141
  volume-title: 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA).
  year: 2020
  ident: pone.0264040.ref039
  doi: 10.1109/CSPA48992.2020.9068717
– volume: 17
  start-page: 1
  year: 2021
  ident: pone.0264040.ref026
  article-title: A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00714-9
– volume: 2016
  start-page: 14.10.1
  year: 2016
  ident: pone.0264040.ref029
  article-title: Using metaboanalyst 3.0 for comprehensive metabolomics data analysis.
  publication-title: Curr Protoc Bioinforma
– volume: 10
  start-page: 5370
  year: 2020
  ident: pone.0264040.ref027
  article-title: Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat.
  publication-title: Appl Sci.
  doi: 10.3390/app10155370
– volume: 11
  start-page: 1191
  year: 2021
  ident: pone.0264040.ref022
  article-title: Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods
  publication-title: Agriculture
  doi: 10.3390/agriculture11121191
– start-page: 1
  year: 2021
  ident: pone.0264040.ref012
  article-title: Physiological Response to Short-Term Magnesium Deficiency in Banana Cultivars
  publication-title: J Soil Sci Plant Nutr
– volume: 28
  start-page: 3021
  year: 2021
  ident: pone.0264040.ref013
  article-title: Role of nitrogen and magnesium for growth, yield and nutritional quality of radish
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2021.02.043
– volume: 16
  start-page: e0250665
  year: 2021
  ident: pone.0264040.ref021
  article-title: Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0250665
– volume: 1
  start-page: 51
  year: 2012
  ident: pone.0264040.ref002
  article-title: Traditional and medicinal uses of banana.
  publication-title: J Pharmacogn Phytochem
SSID ssj0053866
Score 2.5037014
Snippet The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0264040
SubjectTerms Agriculture
Agrochemicals
Algorithms
Analysis of Variance
Artificial neural networks
Banana
Bias
Biology and Life Sciences
Climate change
Cluster analysis
Computer and Information Sciences
Crop yield
Crop yields
Environmental pollution
Experiments
Fertilizers
Fertilizers - analysis
Forecasts and trends
Fruits
Genetic algorithms
Global warming
Greenhouse Effect
Greenhouses
Iran
Magnesium
Magnesium - analysis
Microorganisms
Modelling
Models, Genetic
Multilayer perceptrons
Musa - genetics
Musa - growth & development
Musa - metabolism
Neural networks
Neural Networks, Computer
Nitrogen
Nitrogen - analysis
Optimization
Orchards
Physical Sciences
Physiological aspects
Potassium
Potassium - analysis
Quantitative Trait Loci
Research and Analysis Methods
Statistical analysis
Variables
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb7WUcAgJEAiWxI7TvJYENNAAiRgaG-R7dhtpTaJmkRo_DP8q9wlbljEpO0B9SFqfXHj-8qdfPczIS8Ubi4JpjxmVe7hTqCXpBHzlOY-N9bIqANJ-vRZnJzyj2fR2YWjvrAmrIcH7hl3xC3PdczTHDIVbmOeKJgjza2SEQsTYdH7-km6S6Z6HwxWLIRrlGNxcOTkcliVhTmErAOewx-9iDq8_sErT6p1WV8Wcv5bOXmzLSp5_lOu1xdeS8d3yG0XT9J5v449csMUd8mes9iavnKw0q_vkd_zv3vVtLQUl97DR1AEtewuXUl4TWWRU1As7G-kcr0ot6tmuaFNSast7us0HUEJzmaz-mXoAkt3lmVbG6pkAR9qt-2qoedYHEfdQUAUXMe2hEnf0KpsIGJftZtumo1cgLeFb_fJ6fH77-9OPHc8g6dFGjZeriIdMhkKrUA4WmmVKK6VUlGkFLiKQEepCRIZG-EbHVo_MXmQmNAXSqoIAssHZFKAQPYJ5b41gdQ8zJnmVmuIYWK4JWBK5UEa5VPCdrLKtMMuxyM01lm3IRdDDtOzO0MJZ07CU-INd1U9dscV9G9RDQZaRN7ufgB9zJw-Zlfp45Q8RSXK-jbWwX9kc5EySIXTREzJ844C0TcKLO9ZyLausw9fflyD6NvXEdFLR2RLYIeWrqUC1oSoXiPK2YgSfIgeDe-jyu-4UmchdtamnAtgymxnBpcPPxuGcVIs2SsMqBzSpH4E-Qibkoe91QycZRBFxzGD_41H9jRi_XikWC078PMkgZCX8Sk5HCzvWsI9-B_CfURuhdj-ggcC8RmZNNvWPIagtFFPOv_zB1dNkOw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IDY-VhhgEBIgkS6Jna8HhDq0aSAx0GBob5HtOG2lNgn5EBr_DP8qd6mTETHB1Ieq9cWpz3eXc-_ud4Q8lxhc8pm0WCoTCyOBVhh5zJKK21ynWngtSNLHY__olH848842yHFXC4NplZ1NbA11kiv8j3zPxVq_CA4v9tviu4VdozC62rXQEKa1QvKmhRi7RjZdRMYakc39g-PPJ51tBu32fVNAxwJnz-zXpMgzPYHTCPw-e_CAanH8e2s9KpZ5dZkr-ndG5fUmK8T5D7Fc_vG4OrxNbhk_k07XgrFFNnS2TW5OZ6XB2tDbZMvodUVfGvDpV3fIr-lFRJvmKUXJWoNMUIS-bN_axPGKiiyhIH5YBUnFcgbMqucrWue0KDH6U7cEOZik1eKnpjNM8JnnTaWpFBm8aFo2i5qeYwodNe2CKBiYModJX9Mir8GvXzSrdpqVmIFNhk93yenhwdd3R5Zp4mApP3JrK5GecplwfSUT11FSyVByJaX0PCnBoDjKi7QTikD7tlZuaoc6cULt2r4U0gP38x4ZZbA9O4RyO9WOUNxNmOKpUuDpBHCJw6RMnMhLxoR1Oxcrg3COjTaWcRu2C-Cks2Z-jPsdm_0eE6u_qlgjfPyHfh-FoqdFfO72i7ycxUbdY57yRAU8giU7PA14KEHyoySVwmNu6Kdj8gRFKl4Xu_ZWJp76EYMDcxT6Y_KspUCMjgyTgGaiqar4_advVyD6cjIgemGI0hzYoYQpvIA1IfbXgHJ3QAmWRg2Gd1ABOq5U8YVOwpWdUlw-_LQfxkkxsS_TIHJIE9kenFrYmNxf61DPWQa-dhAwuG8w0K4B64cj2WLeQqSHITjGjI_JpNfDK23ug3-v4yG54WL5CzYE4rtkVJeNfgROaS0fG0vzGxXFk2w
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELem7gFegPFvgQIGIQHSUhLbcZLHgpgG0gYCisZTZDtOW9EmVZMIbV-Gr8o5ccMCQxT1oWp9duTz3eVOd_czQk-lSS5xKl2aydQ1mUA3igPqSsU8pjMtggYk6fiEH03Yu9PgdAcdbHphLubvaei_tBwdrYpcjyBegBUgQN_lAXjeA7Q7Ofkw_tomjonLiUdtd9zfpvbePg1If2eKB6tFUV7mZ_5ZLnmlzlfi7LtYLC68iw6vo-PNLtoSlG-jupIjdf4bwOO227yBrlmnFI9bKdpDOzq_ifas2pf4ucWmfnEL_Rj_SnjjIsNG8FoMCmyQMZuvpq68xCJPMUinaZLEYjEt1vNqtsRVgVdrkxyqGoICLNZyfq7x1NT_zIq61FiKHD44W9fzCp-ZCjtsbxPCYH_WBSx6gFdFBW7_vF42yyzFFEw2_LqNJodvPr8-cu0dD67iMancVAaKUEG4kinxlVQykkxJKYNASrA3vgpi7Uci1NzTimRepFM_0sTjUsgAvNM7aJAD0_YRZl6mfaEYSalimVLgCIUwxadSpn4cpA6im7NPlAVAN_dwLJImqxdCINSyOzGnkNhTcJDbzVq1ACD_oH9lxKqjNfDdzR9w3Im1BgnLWKpCFsOWfZaFLJKgGHGaSRFQEvHMQY-MUCZtL2xnhJIxjynE03HEHfSkoTAQHrmpEZqKuiyTt--_bEH06WOP6JklygpghxK2LwP2ZKDBepTDHiUYItUb3jcqtOFKmRDTnhszxoEpw41aXT78uBs2i5q6v1yDyBma2AsgqKEOuttqYcdZCq54GFJ4btjTzx7r-yP5fNYgqEcR-M2UOWjUafJWh3vvfyfcR1eJ6ZcxNwixIRpU61o_AC-2kg-t8foJjwChGw
  priority: 102
  providerName: Unpaywall
Title Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium
URI https://www.ncbi.nlm.nih.gov/pubmed/35157736
https://www.proquest.com/docview/2628594460
https://www.proquest.com/docview/2629058003
https://pubmed.ncbi.nlm.nih.gov/PMC8843134
https://doi.org/10.1371/journal.pone.0264040
https://doaj.org/article/4f4dc749d2114f748b04e9dfba53286f
http://dx.doi.org/10.1371/journal.pone.0264040
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0BrbA7wgxtcKoxiEBEikSmLn6wGhbtoYSBvToKg8RbbjtJXapCSpoPwZ_ip3bhqIKKKqlKrx2VHOd-e73hchzyQ6l3wmLZbKxEJPoBVGHrOk4jbXqRaeKZJ0fuGfDfj7oTfcIeuerTUCy42mHfaTGhTT3vevyzfA8K9N14bAWU_qzfNM98CmgKeAEb8HZ1WEzRzOeeNXAO423kvUWizftVmdTPevVVqHlanp30ju3fk0LzeppX9HV15fZHOx_Cam0z-OrtNb5Gatc9L-ikj2yY7ObpP9mqtL-qIuPf3yDvnZ_-3PpnlKka5WJSYoFr40XyZsvKQiSygQH-ZAUjEd5cWkGs9oldN5gb6fygDkIJBmkx-ajjC8Z5wvSk2lyOBD02IxqegSA-ho3SyIgngpclj0FZ3nFWj1k8XMLDMTI5DI8OsuGZyefDo-s-oWDpbyI7eyEukplwnXVzJxHSWVDCVXUkrPkxLEiaO8SDuhCLRva-WmdqgTJ9Su7UshPVA-75HdDDbkgFBup9oRirsJUzxVCvScAKY4TMrEibykQ9h6r2JV1zfHNhvT2DjtArBzVuiOcYfjeoc7xGpmzVf1Pf4Df4Rk0MBidW5zIy9Gcc3sMU95ogIewSs7PA14KIHuoySVwmNu6Kcd8hiJKF6lujYyJu77EQNzOQr9DnlqILBCR4YhQCOxKMv43YfPWwB9vGoBPa-B0hzQoUSddgHvhJW_WpCHLUiQM6o1fIAkv8ZKGbuYfRtx7gNSDtdssHn4STOMi2JYX6aB5BAmsj2wWViH3F9xTYNZBpp2EDB4btDipxbq2yPZZGwKpIchqMWMd0iv4bytNvfB1rh6SG64mAeDnYH4IdmtioV-BNppJbvkWjAM4BoeO3g9fdsle0cnF5dXXfN_T9cIJLg3uLjsf_kFTIma4g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VA4IFoeDRS6IBAg4db2rl8HhMKjSukDCVrUm9ldr9NIiW1iR1X5M_wDfiMz9sbFooJeqhyiZMcb7c7MtzPZeRDyVOLlks-kxVKZWHgTaIWRxyypuM11qoVXF0naP_CHR_zjsXe8RH4tcmEwrHKBiTVQJ7nC_8i3XMz1i8B5sd8U3y3sGoW3q4sWGo1Y7OqzU3DZytc774G_z1x3-8Phu6FlugpYyo_cykqkp1wmXF_JxHWUVDKUXEkpPU9KkHBHeZF2QhFo39bKTe1QJ06oXduXQnoRFjoAyL_GGWAJ6E9w3Dp4gB2-b9LzWOBsGWnYLPJMb4KvA6u3O8df3SWgPQt6xSQvLzJ0_47XXJ5nhTg7FZPJH4fh9i1y01ixdNCI3QpZ0tkquTEYzUwlD71KVgxqlPSFKW398jb5OTi_L6d5SlFumxIWFAtr1m91WHpJRZZQEG7MsaRiMgJWVCdTWuW0mOHdUlUT5AB40_EPTUcYPnSSz0tNpcjgRdPZfFzRMwzQo6YZEQX4muUw6Sta5BV4DeP5tJ5mKkaA-PDpDjm6EmbeJb0M2LNGKLdT7QjF3YQpnioFdlQAjzhMysSJvKRP2IJzsTL107GNxySuLwUD8KOazY-R37Hhd59Y7VNFUz_kP_RvUShaWqz-XX-Rz0axAZOYpzxRAY9gyQ5PAx5K0KsoSaXwmBv6aZ9soEjFTSpti2HxwI8YuONR6PfJk5oCK4BkGGI0EvOyjHc-fb0E0ZfPHaLnhijNYTuUMGkdsCasLNahXO9QAo6pzvAaKsBiV8r4XOPhyYVSXDz8uB3GSTFsMNMgckgT2R74RKxP7jU61O4sA0s-CBj8btDRrs7Wd0ey8UldgD0MwexmvE82Wz28FHPv_3sdG2R5eLi_F-_tHOw-INddTLTB1kN8nfSq2Vw_BPO3ko9qzKHk21WD3G_N4cvl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIfHxgNj4WGEwg0CARNYkdr4eECqMaWMw0GBob8F2nLZSm4Qm1TT-Gf4P_jruEjcjYoK9TH2oWl9c2Xf38119H4Q8lni55DNpsVQmFt4EWmHkMUsqbnOdauHVRZI-7Ps7h_zdkXe0RH4tcmEwrHKBiTVQJ7nC_8j7Lub6ReC82P3UhEV82tp-VXy3sIMU3rQu2mk0IrKnT47BfStf7m4Br5-47vbbL292LNNhwFJ-5FZWIj3lMuH6Siauo6SSoeRKSul5UoK0O8qLtBOKQPu2Vm5qhzpxQu3avhTSi7DoAcD_pYCxCMMJg6PW2QMc8X2TqscCp28kY7PIM70Jfg_shN05CuuOAe25sFxM8vIso_fv2M0r86wQJ8diMvnjYNy-Qa4bi5YOGhFcIUs6WyXXBsOZqeqhV8mKQZCSPjNlrp_fJD8Hp3fnNE8pynBTzoJikc36rQ5RL6nIEgqCjvmWVEyGwIpqNKVVTosZ3jNVNUEO4Dcd_9B0iKFEo3xeaipFBi-azubjip5gsB41jYkoQNksh0lf0CKvwIMYz6f1NFMxBPSHT7fI4YUw8zZZzoA9a4RyO9WOUNxNmOKpUmBTBfCIw6RMnMhLeoQtOBcrU0sdW3pM4vqCMACfqtn8GPkdG373iNU-VTS1RP5D_xqFoqXFSuD1F_lsGBtgiXnKExXwCJbs8DTgoQQdi5JUCo-5oZ_2yAaKVNyk1bZ4Fg_8iIFrHoV-jzyqKbAaSIZ6NRTzsox3P349B9Hngw7RU0OU5rAdSpgUD1gTVhnrUK53KAHTVGd4DRVgsStlfKr98ORCKc4eftgO46QYQphpEDmkiWwP_CPWI3caHWp3loFVHwQMfjfoaFdn67sj2XhUF2MPQzDBGe-RzVYPz8Xcu_9exwa5DPAWv9_d37tHrrqYc4NdiPg6Wa5mc30fLOFKPqghh5JvF41xvwFOt9Ao
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELem7gFegPFvgQIGIQHSUhLbcZLHgpgG0gYCisZTZDtOW9EmVZMIbV-Gr8o5ccMCQxT1oWp9duTz3eVOd_czQk-lSS5xKl2aydQ1mUA3igPqSsU8pjMtggYk6fiEH03Yu9PgdAcdbHphLubvaei_tBwdrYpcjyBegBUgQN_lAXjeA7Q7Ofkw_tomjonLiUdtd9zfpvbePg1If2eKB6tFUV7mZ_5ZLnmlzlfi7LtYLC68iw6vo-PNLtoSlG-jupIjdf4bwOO227yBrlmnFI9bKdpDOzq_ifas2pf4ucWmfnEL_Rj_SnjjIsNG8FoMCmyQMZuvpq68xCJPMUinaZLEYjEt1vNqtsRVgVdrkxyqGoICLNZyfq7x1NT_zIq61FiKHD44W9fzCp-ZCjtsbxPCYH_WBSx6gFdFBW7_vF42yyzFFEw2_LqNJodvPr8-cu0dD67iMancVAaKUEG4kinxlVQykkxJKYNASrA3vgpi7Uci1NzTimRepFM_0sTjUsgAvNM7aJAD0_YRZl6mfaEYSalimVLgCIUwxadSpn4cpA6im7NPlAVAN_dwLJImqxdCINSyOzGnkNhTcJDbzVq1ACD_oH9lxKqjNfDdzR9w3Im1BgnLWKpCFsOWfZaFLJKgGHGaSRFQEvHMQY-MUCZtL2xnhJIxjynE03HEHfSkoTAQHrmpEZqKuiyTt--_bEH06WOP6JklygpghxK2LwP2ZKDBepTDHiUYItUb3jcqtOFKmRDTnhszxoEpw41aXT78uBs2i5q6v1yDyBma2AsgqKEOuttqYcdZCq54GFJ4btjTzx7r-yP5fNYgqEcR-M2UOWjUafJWh3vvfyfcR1eJ6ZcxNwixIRpU61o_AC-2kg-t8foJjwChGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+neural+networks+and+genetic+algorithm+to+predict+and+optimize+greenhouse+banana+fruit+yield+through+nitrogen%2C+potassium+and+magnesium&rft.jtitle=PloS+one&rft.au=Ramezanpour%2C+Mahmoud+Reza&rft.au=Farajpour%2C+Mostafa&rft.date=2022-02-14&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=2&rft.spage=e0264040&rft_id=info:doi/10.1371%2Fjournal.pone.0264040&rft.externalDocID=A693448986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon