Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the...
Saved in:
| Published in | PloS one Vol. 15; no. 2; p. e0228459 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
06.02.2020
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0228459 |
Cover
| Abstract | Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates.
We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification.
Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features.
We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. |
|---|---|
| AbstractList | BACKGROUND:Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates. METHODS:We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification. RESULTS:Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features. CONCLUSIONS:We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates.BACKGROUNDCarbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates.We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification.METHODSWe developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification.Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features.RESULTSRandom forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features.We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future.CONCLUSIONSWe conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates. We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification. Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features. We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates. We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification. Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features. We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix‐assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI‐TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost‐effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates. Methods We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification. Results Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features. Conclusions We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future. |
| Audience | Academic |
| Author | Lee, Chia-Chien Chang, Fu-Chuen Huang, Tsi-Shu Lee, Susan Shin-Jung |
| AuthorAffiliation | 4 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 1 Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 3 Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Fisheries and Oceans Canada, CANADA |
| AuthorAffiliation_xml | – name: 1 Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan – name: 4 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan – name: 2 Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan – name: Fisheries and Oceans Canada, CANADA – name: 3 Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan |
| Author_xml | – sequence: 1 givenname: Tsi-Shu surname: Huang fullname: Huang, Tsi-Shu – sequence: 2 givenname: Susan Shin-Jung surname: Lee fullname: Lee, Susan Shin-Jung – sequence: 3 givenname: Chia-Chien surname: Lee fullname: Lee, Chia-Chien – sequence: 4 givenname: Fu-Chuen orcidid: 0000-0003-3463-5592 surname: Chang fullname: Chang, Fu-Chuen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32027671$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjthbeS5WMvCiE9LQ0EeroVY3m8qyBLriSn2T5en6zy7iZkQyjBGIvR9_-aGY8Ooz1tNEbRU0pmlJX0zbkZrQY1G0J4RtK0yvL6QXRAa5YmRUrY3o31fnTo3DkhOauK4lG0z1KSlkVJD6K_79Gj8NLo2HSxANvAgBr7xKKTzoP28ReFjZOoFMSDxrE3WgLGQeCXGDcQsEnag7fyMgE3ybCNFTi0cYvO2GFtH175B9ZLL3tMTJd0Si6WPkidi90Q0rCmR29XcbOKRyf1InbjgPZCumDYg1hKjbFCsHrag2GwJgQfRw87UA6fbL9H0Y-PH76ffE5Ozz7NT45PE1HUqU9EQ5qqE0UHNGsItBl0Fa1FWxJRFmGza0pkWAHLGkhpS7oCiropaI6EtgFhR9Hzje-gjOPb9juesjwlWc5oGYj5hmgNnPPByh7sihuQfB0wdsHBeikUctY0tIa6oeHgLORRYVsBFCTNIIe8y4NXvvEa9QCr36DUtSElfJqAqxT4NAF8OwFB926b5dj02ArU3oLaSWZ3R8slX5gLXhKSsXQq4tXWwJpfIzrPe-nE9Ps1mnFTb8HqupjQF7fQu7uypRYQCpe6M-FcMZny44IyRvOKpIGa3UGFp8VeilBhJ0N8R_B6RxAYj5d-AaNzfP7t6_3Zs5-77Msb7BJB-aUzapwm1-2Cz252-rrFV5crANkGENY4Z7G77x98e0smpF9fnNARqf4v_gdil1NB |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08333_2 crossref_primary_10_1016_j_engappai_2022_105644 crossref_primary_10_1080_10408363_2020_1828811 crossref_primary_10_1016_j_microb_2025_100246 crossref_primary_10_1093_clinchem_hvab239 crossref_primary_10_3389_fcimb_2022_761328 crossref_primary_10_3390_healthcare11060854 crossref_primary_10_1016_j_addr_2021_113922 crossref_primary_10_3390_pathogens11050586 crossref_primary_10_4103_MJBL_MJBL_520_23 crossref_primary_10_1002_VIW_20220042 crossref_primary_10_1128_spectrum_02409_21 crossref_primary_10_3389_fcimb_2020_621452 crossref_primary_10_1089_mdr_2020_0311 crossref_primary_10_2147_IDR_S367209 crossref_primary_10_1371_journal_pone_0284522 crossref_primary_10_15789_2220_7619_GAO_15645 crossref_primary_10_1007_s44196_025_00777_9 crossref_primary_10_3390_antibiotics10080982 crossref_primary_10_4108_eetiot_4484 crossref_primary_10_3390_ijms24020998 crossref_primary_10_3389_fmicb_2024_1361795 crossref_primary_10_1016_j_jmsacl_2022_09_001 crossref_primary_10_1186_s12929_023_00918_2 |
| Cites_doi | 10.1128/JCM.02428-15 10.1099/00207713-51-3-915 10.1023/A:1010933404324 10.1128/JCM.00287-11 10.1371/journal.pone.0031676 10.1111/lam.12203 10.1007/s00216-007-1558-7 10.1186/s12859-015-0752-4 10.1007/s00253-011-3783-4 10.1128/AAC.45.4.1151-1161.2001 10.1128/CMR.00058-12 10.1128/JCM.00984-11 10.1109/34.709601 10.1093/jac/dkp029 10.2147/IDR.S26613 10.1128/JCM.01000-12 10.1128/AAC.02409-16 10.1371/journal.pone.0192291 10.1016/S1473-3099(18)30605-4 10.1016/S1473-3099(09)70054-4 10.1016/S0893-6080(05)80023-1 10.1128/JCM.05737-11 10.1038/sj.jp.7210973 10.1093/nar/gkp575 10.1128/JCM.34.10.2448-2453.1996 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Huang et al 2020 Huang et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Huang et al 2020 Huang et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0228459 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine |
| DocumentTitleAlternate | Machine learning analysis to identify carbapenem-resistant Klebsiella pneumoniae |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2352045317 oai_doaj_org_article_3bb19a9b1b0f48198ed8aa6024a5a5f5 10.1371/journal.pone.0228459 PMC7004327 A613315802 32027671 10_1371_journal_pone_0228459 |
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
| GeographicLocations | United States--US Taiwan |
| GeographicLocations_xml | – name: Taiwan – name: United States--US |
| GrantInformation_xml | – fundername: ; grantid: VGHKS108-167 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-cb0b8fc6fa14b0ad4af819cd70c76cb0fb7e3e8a34ba21d0f6a69b615e01dc763 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:13:25 EST 2021 Tue Oct 14 14:51:20 EDT 2025 Sun Oct 26 02:44:16 EDT 2025 Tue Sep 30 15:21:46 EDT 2025 Wed Oct 01 14:20:30 EDT 2025 Tue Oct 07 07:48:52 EDT 2025 Mon Oct 20 21:42:59 EDT 2025 Mon Oct 20 16:30:26 EDT 2025 Thu Oct 16 15:07:25 EDT 2025 Thu Oct 16 15:02:30 EDT 2025 Thu May 22 21:20:04 EDT 2025 Wed Feb 19 02:31:08 EST 2025 Thu Apr 24 23:02:40 EDT 2025 Wed Oct 01 02:34:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-cb0b8fc6fa14b0ad4af819cd70c76cb0fb7e3e8a34ba21d0f6a69b615e01dc763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3463-5592 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0228459 |
| PMID | 32027671 |
| PQID | 2352045317 |
| PQPubID | 1436336 |
| PageCount | e0228459 |
| ParticipantIDs | plos_journals_2352045317 doaj_primary_oai_doaj_org_article_3bb19a9b1b0f48198ed8aa6024a5a5f5 unpaywall_primary_10_1371_journal_pone_0228459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004327 proquest_miscellaneous_2352639967 proquest_journals_2352045317 gale_infotracmisc_A613315802 gale_infotracacademiconefile_A613315802 gale_incontextgauss_ISR_A613315802 gale_incontextgauss_IOV_A613315802 gale_healthsolutions_A613315802 pubmed_primary_32027671 crossref_primary_10_1371_journal_pone_0228459 crossref_citationtrail_10_1371_journal_pone_0228459 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-06 |
| PublicationDateYYYYMMDD | 2020-02-06 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | J Hrabák (pone.0228459.ref018) 2011; 49 JE Camara (pone.0228459.ref022) 2007; 389 A Cassini (pone.0228459.ref012) 2019; 19 L Breiman (pone.0228459.ref031) 2001; 45 TS Huang (pone.0228459.ref014) 2018; 13 H Yigit (pone.0228459.ref005) 2001; 45 World Health Oraganisation. H (pone.0228459.ref001) 2017 CA Mather (pone.0228459.ref026) 2016; 54 A Gori (pone.0228459.ref030) 1996; 34 HS Sader (pone.0228459.ref010) 2017; 61 P Nordmann (pone.0228459.ref004) 2009; 9 pone.0228459.ref002 V Edwards-Jones (pone.0228459.ref023) 2000; 49 H López-Fernández (pone.0228459.ref029) 2015; 16 I Burckhardt (pone.0228459.ref017) 2011; 49 M Doumith (pone.0228459.ref003) 2009; 63 H Tin Kam (pone.0228459.ref035) 1998; 20 pone.0228459.ref028 K Sparbier (pone.0228459.ref021) 2012; 50 pone.0228459.ref027 PM Griffin (pone.0228459.ref025) 2012; 50 DH Wolpert (pone.0228459.ref034) 1992; 5 Centers for Disease Control and Prevention (pone.0228459.ref006) 2003 L Breiman (pone.0228459.ref033) 1996; 24 LF Chen (pone.0228459.ref009) 2012; 2012 A Gupta (pone.0228459.ref008) 2003; 23 J Hrabák (pone.0228459.ref015) 2013; 26 S Brisse (pone.0228459.ref007) 2001; 51 M Savic (pone.0228459.ref024) 2009; 37 M Kempf (pone.0228459.ref019) 2012; 7 pone.0228459.ref011 A Wieser (pone.0228459.ref013) 2012; 93 Y Hoyos-Mallecot (pone.0228459.ref020) 2014; 58 L Breiman (pone.0228459.ref032) 1984 K Markus (pone.0228459.ref016) 2013; 7 |
| References_xml | – volume: 24 start-page: 18 year: 1996 ident: pone.0228459.ref033 publication-title: Machine Learning – volume-title: Wadsworth Advanced Books and Software year: 1984 ident: pone.0228459.ref032 – ident: pone.0228459.ref002 – volume: 54 start-page: 883 issue: 4 year: 2016 ident: pone.0228459.ref026 article-title: Rapid detection of vancomycin-intermediate Staphylococcus aureus by Matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: J Clin Microbiol doi: 10.1128/JCM.02428-15 – volume: 51 start-page: 915 issue: Pt 3 year: 2001 ident: pone.0228459.ref007 article-title: Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-51-3-915 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: pone.0228459.ref031 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 7 start-page: 767 issue: 11–12 year: 2013 ident: pone.0228459.ref016 article-title: MALDI‐TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms publication-title: PROTEOM Clin Appl – volume: 49 start-page: 3321 issue: 9 year: 2011 ident: pone.0228459.ref017 article-title: Using Matrix-assisted laser desorption ionization-time of flight mass spectrometry To detect carbapenem resistance within 1 to 2.5 hours publication-title: J Clin Microbiol doi: 10.1128/JCM.00287-11 – volume: 7 start-page: e31676 issue: 2 year: 2012 ident: pone.0228459.ref019 article-title: Rapid detection of carbapenem resistance in Acinetobacter baumannii using Matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: PLOS ONE doi: 10.1371/journal.pone.0031676 – volume: 58 start-page: 325 issue: 4 year: 2014 ident: pone.0228459.ref020 article-title: MALDI-TOF MS, a useful instrument for differentiating metallo-β-lactamases in Enterobacteriaceae and Pseudomonas spp publication-title: Lett Appl Microbiol doi: 10.1111/lam.12203 – volume: 389 start-page: 1633 year: 2007 ident: pone.0228459.ref022 article-title: Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry publication-title: Anal Bioanal Chem doi: 10.1007/s00216-007-1558-7 – volume: 16 start-page: 318 issue: 1 year: 2015 ident: pone.0228459.ref029 article-title: Mass-Up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0752-4 – volume: 93 start-page: 965 issue: 3 year: 2012 ident: pone.0228459.ref013 article-title: MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review) publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3783-4 – volume: 45 start-page: 1151 issue: 4 year: 2001 ident: pone.0228459.ref005 article-title: Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.45.4.1151-1161.2001 – volume: 26 start-page: 103 issue: 1 year: 2013 ident: pone.0228459.ref015 article-title: Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00058-12 – volume: 49 start-page: 3222 issue: 9 year: 2011 ident: pone.0228459.ref018 article-title: Carbapenemase activity detection by Matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: J Clin Microbiol doi: 10.1128/JCM.00984-11 – ident: pone.0228459.ref028 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: pone.0228459.ref035 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – volume: 63 start-page: 659 issue: 4 year: 2009 ident: pone.0228459.ref003 article-title: Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkp029 – volume: 2012 start-page: 133 year: 2012 ident: pone.0228459.ref009 article-title: Overview of the epidemiology and the threat of Klebsiella pneumoniae carbapenemases (KPC) resistance publication-title: Infect Drug Resist doi: 10.2147/IDR.S26613 – volume-title: WHO publishes list of bacteria for which new antibiotics are urgently needed year: 2017 ident: pone.0228459.ref001 – volume: 50 start-page: 2918 issue: 9 year: 2012 ident: pone.0228459.ref025 article-title: Use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant Enterococci and investigate the epidemiology of an outbreak publication-title: J Clin Microbiol doi: 10.1128/JCM.01000-12 – volume: 61 start-page: e02409 issue: 4 year: 2017 ident: pone.0228459.ref010 article-title: Antimicrobial activity of high-proportion cefepime-tazobactam (WCK 4282) against a large number of Gram-negative isolates collected worldwide in 2014 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02409-16 – volume: 49 start-page: 295 issue: 3 year: 2000 ident: pone.0228459.ref023 article-title: Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry publication-title: J Clin Microbiol – volume: 13 start-page: e0192291 issue: 2 year: 2018 ident: pone.0228459.ref014 article-title: Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry publication-title: PloS one doi: 10.1371/journal.pone.0192291 – volume: 19 start-page: 56 issue: 1 year: 2019 ident: pone.0228459.ref012 article-title: Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis publication-title: The Lancet Infect Dis doi: 10.1016/S1473-3099(18)30605-4 – volume: 9 start-page: 228 issue: 4 year: 2009 ident: pone.0228459.ref004 article-title: The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria publication-title: The Lancet Infectious Diseases doi: 10.1016/S1473-3099(09)70054-4 – start-page: 31481 year: 2003 ident: pone.0228459.ref006 article-title: National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003 publication-title: Am J Infect Control – volume: 5 start-page: 241 issue: 2 year: 1992 ident: pone.0228459.ref034 article-title: Stacked generalization publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 – ident: pone.0228459.ref011 – volume: 50 start-page: 927 issue: 3 year: 2012 ident: pone.0228459.ref021 article-title: Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics publication-title: J Clin Microbiol doi: 10.1128/JCM.05737-11 – volume: 23 start-page: 439 year: 2003 ident: pone.0228459.ref008 article-title: Extended spectrum β lactamase-producing Klebsiella pneumoniae infections: a review of the literature publication-title: J Perinatol doi: 10.1038/sj.jp.7210973 – ident: pone.0228459.ref027 – volume: 37 start-page: 5420 issue: 16 year: 2009 ident: pone.0228459.ref024 article-title: Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially overlapping groups of aminoglycoside antibiotics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp575 – volume: 34 start-page: 2448 issue: 10 year: 1996 ident: pone.0228459.ref030 article-title: Comparison of pulsed-field gel electrophoresis and randomly amplified DNA polymorphism analysis for typing extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae publication-title: J Clin Microbiol doi: 10.1128/JCM.34.10.2448-2453.1996 |
| SSID | ssj0053866 |
| Score | 2.4582474 |
| Snippet | Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser... Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted... Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix‐assisted... BACKGROUND:Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted... Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix‐assisted... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0228459 |
| SubjectTerms | Algorithms Analysis Anti-Bacterial Agents - therapeutic use Antibiotics Antimicrobial agents Bacteria Biology and Life Sciences Carbapenem-Resistant Enterobacteriaceae - drug effects Carbapenem-Resistant Enterobacteriaceae - genetics Carbapenem-Resistant Enterobacteriaceae - isolation & purification Carbapenems - therapeutic use Classification Clinical microbiology Computer and Information Sciences Cross Infection - diagnosis Cross Infection - drug therapy Cross Infection - microbiology Data mining Desorption DNA, Bacterial - analysis DNA, Bacterial - isolation & purification Drug resistance Enzymes Health aspects Hospitals Humans Identification methods Imipenem Infection Ionization Ions Klebsiella Klebsiella Infections - diagnosis Klebsiella Infections - drug therapy Klebsiella Infections - microbiology Klebsiella pneumoniae Klebsiella pneumoniae - genetics Klebsiella pneumoniae - isolation & purification Lasers Learning algorithms Machine learning Mass spectrometry Mass spectroscopy Medical laboratories Medicine Medicine and Health Sciences Meropenem Methicillin Microbial Sensitivity Tests Microbiology Microorganisms Pathology Physical Sciences Pneumonia Predictive Value of Tests Random Amplified Polymorphic DNA Technique Research and Analysis Methods Ribosomal DNA Scientific imaging Sodium Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Spectroscopy Staphylococcus infections Supervised Machine Learning Support vector machines Teaching methods Time |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK9uKWAQEnBIG-fhJMfyqApIIAFFvUV-Litlk2iTCPbv8cuYcbLRRlRqD1wzY0vxPPzZHn8m5IUMfClDy7xMKetFobZeqlXiaQbwIgCAoLVj-_zMz86jjxfxxc5TX1gT1tMD9wN3HErJMpFJJn0bwfSVGp0KwWFqEbGIrWMv9dNsu5jqczBEMefDRbkwYceDXY7qqjRHyPgSITfpzkTk-PrHrDyri6q5DHL-Wzl5sytrsfklimJnWjq9Q24PeJKe9P-xR26Y8i7ZGyK2oa8GWunX98ifd6Z1dVclrSxVeM5Qg3DlwYIbQWTZ0k-Fkc0S66FoXZoOPHQpDIUGgBIpzHfLBpuukNX_tweoG11EU8DfZk21aaq1yz8Ut3j7250Un673KuvZAjcBoGnTUHe5E1kS2vWGyg3F0vsFbboa01YDHa5cgaehw4sWC7olPr9Pzk_ff3975g0vOHiKZ0HrKenL1CpuBYukL3QkLJhQ6cRXCQehlYkJTSrCSIqAad9ywTMJIMv4DDyGhw_IrASb7RPKlAEsm8SxVXEUWCZgLaa0FJnOhGAynpNwa85cDfTm-MpGkbszuwSWOb1FcnSCfHCCOfHGVnVP73GF_hv0lFEXybndB3DZfHDZ_CqXnZOn6Gd5f9N1TDH5CUCrkMWpH8zJc6eBBB0lVgAtRNc0-YcvP66h9O3rROnloGQrGA4lhlsX8E9I_DXRPJxoQppRE_E-RsV2VJo8AOgO6wHAn9ByGymXi5-NYuwUvbg0VdfrIELmoPOwD6xxZEPcleMJm5NkEnKToZ9KyuVPx4-eOJ5J6PNoDM5rGffgfxj3EbkV4JYMFvbzQzJr1515DLi1lU9civoLaN2fEw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwEviI2PFQYYhAQ8uIvz2TwgtMGmAWKgwdDeIn-WSm0Smlawf4-_jLvECYuYYK-9s1Xbd-df7PPvCHkqfU_KwHKWKmVZGGjLxlolTHOAFz4ABK1rts-j-PAkfHcana6Ro_YtDKZVtjGxDtS6UHhGvuMDUgD4Advdq_I7w6pReLvaltAQrrSCfllTjF0h6z4yYw3I-t7-0afjNjaDd8exe0AXJHzHrdeoLHIzQiaYEDlLz21QNY9_F60H5ayoLoKif2dUXlvlpTj7IWazc9vVwU1yw-FMutsYxgZZM_kmufrB3aRvkg3n1BV97pinX9wiv96YZZ2aldPCUoVXESUI5wy-yRFn5kv6fmZkNcWUKVrmZgWzMhWGQgMAkhS2xGmFTedI_P-TATBHK9IUILpZUG2qYlGHKIqnwM0DUIrV7VlhmZ3hOQE0rSpav_9EIoXl4ozKM4rZ-RNarUqMbBV0OK9zQA11RS8mtOVGv01ODva_vD5krsgDU3HqL5mSnhxbFVvBQ-kJHQoLIEXpxFNJDEIrExOYsQhCKXyuPRuLOJWAw4zHwaji4A4Z5LB8W4RyZQDuJlFkVRT6lgv4XFNailSnQnAZDUnQrmymHAM6FuKYZfW1XgJfQs3iZGgPmbOHIWFdq7JhAPmP_h4aTaeL_N31D8VikrlwkAVS8lSkksMAQxjv2OixEDEAJhGJyMJffYQmlzWPYbsolO0C-gp4NPb8IXlSayCHR45JQhOxqqrs7cevl1D6fNxTeuaUbAHToYR7mAFjQm6wnuZ2TxMikeqJt9BB2lmpsj8-Cy1bp7lY_LgTY6doxbkpVo0OgugYdO42PtbNbIAHd3HChyTpeV9v6vuSfPqtplBPaipK6HPU-emlFvfev8dxn1z38TwGs_rjbTJYLlbmAYDWpXzoItFv58mf0Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLy6UMAgJEDCS5zn5lgeVQFRENCqnCI_y4rdJNokgvLz-GXMJN6ogSLKdT1jrcfjyWd75jMhD6TvSRlYzlKlLAsDbdlUq4RpDvDCB4Cgdcv2uRfv7oevD6PDNfJkVQtz8v4-SPhTZ9FJWeRmglwtYZSeI-txBMh7RNb3995vf-4ujn0W-17gquP-pjr4-rQk_X0oHpXzojoNZ_6ZLnm-yUtx_E3M5ye-RTuXyNvVKLoUlK-TppYT9eM3gsezDvMyuehAKd3uvGiDrJn8Ctlwy76ijxw39eOr5OcLU7fJWzktLFV4WVFC44LBrh2RaF7TN3MjqxkmVdEyNw24-UwYCgoANSl8NGcVqi7waYDvDKA7-pmmAOLNkmpTFcs2iFE8J-5KRGk9WxhWWGbneJIAqlVF2wpRpFqol8dUHlPM3z-iVVNi7Kugw0WbJWqoexbjiK7Y06-R_Z2Xn57vMvcMBFNx6tdMSU9OrYqt4KH0hA6FBRijdOKpJIZGKxMTmKkIQil8rj0biziVgNSMx8Ht4uA6GeVg101CuTIAiJMosioKfcsFbOiUliLVqRBcRmMSrNwjU44jHZ_qmGftxV8Ce6VuRjKcqMxN1JiwXqvsOEL-If8MPa-XRYbv9gfwiMwFjCyQkqcilRwGGMJ4p0ZPhYgBUolIRBb-6l3026wrl-3jVLYN-Czg0dTzx-R-K4EsHzmmER2JpqqyV-8OziD08cNA6KETsgWYQwlXugFjQvawgeTWQBJilRo0b-IqW1mlynzA_7CpABALmquVd3rzvb4ZO0Uvzk3RdDIIs2OQudEt1N6yAR7txQkfk2SwhAemH7bksy8tyXrSklVCn5N-sZ9pcm_-r8ItcsHHMxysBIi3yKheNuY2AN1a3nHx7Re38a8y priority: 102 providerName: Unpaywall |
| Title | Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32027671 https://www.proquest.com/docview/2352045317 https://www.proquest.com/docview/2352639967 https://pubmed.ncbi.nlm.nih.gov/PMC7004327 https://doi.org/10.1371/journal.pone.0228459 https://doaj.org/article/3bb19a9b1b0f48198ed8aa6024a5a5f5 http://dx.doi.org/10.1371/journal.pone.0228459 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Food Science Source (EBSCO) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: Medline (PubMed) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJgEviI2PFUYxCPHxkCrOZ_OA0DY2BmhjGhSNp8h27FIpS7KmFeu_x1_GneNGRAzYSx_is1Wf784_-853hDwTniuEr5mTSKmdwM-0M8xk7GQM4IUHACHLTLbPo-hgFHw4DU9XyNLRbhlYX3q0w3pSo2k-uDhfvAGFf22qNsRs2WlQlYUaYD6XIEyeV-cOlpZCF6yts3GNrMH2lWB9h8OgdTWAwkeRfVP3t8E6e5ZJ7d8a8NUqL-vL0OmfQZY35kXFFz94nv-2g-3fJrcs9KTbjayskxVVbJDrh9a5vkHWrZ7X9KVNRv3qDvn5Vs1MtFZBS00leieAP-rMgWM6Qs9iRj_mStQTjKKiVaHmwIMJVxQ6ALaksEtOaux6hrUALhzA6ihYGQXUrqY0U3U5NVaL4sVw8yaUYsF7p9SOzvHqALrWNTVPQjG3wmy6oGJBMWB_TOt5hcauhgHPTFioorYOxpgu06XfJaP9vS-7B46t--DIKPFmjhSuGGoZac4C4fIs4Bpwi8xiV8YRNGoRK18NuR8I7rHM1RGPEgHQTLkM5Czy75HVApZvk1AmFSDgOAy1DANPMw4nOJkJnmQJ50yEPeIvVzaVNik61ubIU-Ppi-Fw1CxOivKQWnnoEaftVTVJQf5Dv4NC09JiSm_zoZyOU2shUl8IlvBEMJhgAPMdqmzIeQQYioc81PBXH6PIpc372NYwpdsAyHwWDl2vR54aCkzrUWDc0JjP6zp9_-nrFYg-n3SIXlgiXQI7JLdvNWBOmC6sQ7nVoQTjJDvNm6ggS67UqQeAH04RgFqh51JpLm9-0jbjoCjFhSrnDQ3i6gho7jc61nLWx7u8KGY9Ene0r8P6bksx-W6yqscmOyWMOWj19EqL--Df83hIbnp4RYOB_tEWWZ1N5-oR4NiZ6JNr8WkMv8Ndhr_77_pkbWfv6Pikb26G-sZOwbfR0fH2t1_VSa2N |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIlEuiJZHFwo1CAQc0uadzQGhQqlati0StKi34Oey0m4SNlmV_VP8CH4ZM4kTGlFBL72ux9HaHs98tme-IeQZd23OPe1YsRDa8j2prYEUkSUdgBcuAAQpK7bPo3DvxP9wGpwukZ9NLgyGVTY2sTLUMhN4R77lAlIA-AHu7k3-3cKqUfi62pTQqNViqBZncGQrXu_vwPo-d93d98fv9ixTVcASYeyWluA2H2gRaub43GbSZxq8opCRLaIQGjWPlKcGzPM5cx1p65CFMQfHr2wHRhF68N1r5LrvgS2B_ROdtgc8sB1haNLzvMjZMtqwmWep2kSeGR8ZUc-5v6pKQOsLevkkKy4Cun_Hay7P05wtzthkcs4Z7t4mtwyKpdu12q2QJZWukhuH5p1-lawYk1HQl4bX-tUd8mtHlVXgV0ozTQU-dOTQOLXgxI8oNi3pcKJ4McaALJqnag5zPmaKQgeAqRQc7rjArlMsK_DDAtiPOiopHADUjEpVZLPKAFK8Y67TS2k5nior05ae4C0EdC0KWmWXIk1DOVtQvqAY-z-ixTxHu1nAB6dVhKmipqTGiDbM63fJyZUs9j3SS2H51gh1hAIwHQWBFoHvaofBYVBIzmIZM-bwoE-8ZmUTYfjVsczHJKkeDSM4Z9WLk6A-JEYf-sRqe-U1v8h_5N-i0rSyyA5e_ZDNRokxNonHuROzmDswQB_GO1BywFgIcIwFLNDwVzdQ5ZI61ba1cck2YDvPCQa22ydPKwlkCEkxBGnE5kWR7H_8cgmhz586Qi-MkM5gOgQzaR8wJmQe60iudyTBzolO8xpukGZWiuSPRYCezaa5uPlJ24wfRS1OVTavZRCihyBzv95j7cx6eC0YRk6fRJ3d15n6bks6_lYRtEcV0SV8c7Pdp5da3Af_HscGWd47PjxIDvaPhg_JTRdvfjB_IFwnvXI2V48AHpf8cWWTKPl61UbwN7B92Fw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIBUuiJZHA4UuCAQc3Prt-IBQIVQthYKAotzMPkOkxDaxo5K_xpFfxoy9NrWooJdes7NWdnd29pvdmW8IecRdm3NPO1YshLZ8T2prIEVkSQfghQsAQcqK7fMo3D_234yC0Qr52eTCYFhlYxMrQy0zgXfkOy4gBYAfcNztaBMW8WG49yL_bmEFKXxpbcpp1CpyqJYn4L4Vzw-GsNaPXXfv9edX-5apMGCJMHZLS3CbD7QINXN8bjPpMw0npJCRLaIQGjWPlKcGzPM5cx1p65CFMQcQoGwHRhR68N1L5HLkeTGGE0aj1tkDOxKGJlXPi5wdoxnbeZaqbeSc8ZEd9dRRWFUMaM-FXj7NirNA79-xm1cWac6WJ2w6PXUw7l0n1wyipbu1Cq6RFZWuk9V35s1-nawZ81HQp4bj-tkN8muoyioILKWZpgIfPXJonFng_SOiTUt6OFW8mGBwFs1TtYA5nzBFoQNAVgqH76TArjMsMfDDAhcA9VVScAbUnEpVZPPKGFK8b65TTWk5mSkr05ae4o0EdC0KWmWaImVDOV9SvqSYBzCmxSJHG1rAB2dVtKmiprzGmDYs7DfJ8YUs9i3SS2H5Ngh1hAJgHQWBFoHvaoeBYygkZ7GMGXN40Cdes7KJMFzrWPJjmlQPiBH4XPXiJKgPidGHPrHaXnnNNfIf-ZeoNK0sMoVXP2TzcWIMT-Jx7sQs5g4M0IfxDpQcMBYCNGMBCzT81S1UuaROu23tXbILOM9zgoHt9snDSgLZQlLcd2O2KIrk4P2Xcwh9-tgRemKEdAbTIZhJAYExIQtZR3KzIwk2T3SaN3CDNLNSJH-sA_RsNs3ZzQ_aZvwoanGqskUtg3A9BJnb9R5rZ9bDK8Iwcvok6uy-ztR3W9LJt4qsPapIL-Gb2-0-Pdfi3vn3OLbIKpi_5O3B0eFdctXFSyBMJQg3Sa-cL9Q9QMolv1-ZJEq-XrQN_A2-WNyf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLy6UMAgJEDCS5zn5lgeVQFRENCqnCI_y4rdJNokgvLz-GXMJN6ogSLKdT1jrcfjyWd75jMhD6TvSRlYzlKlLAsDbdlUq4RpDvDCB4Cgdcv2uRfv7oevD6PDNfJkVQtz8v4-SPhTZ9FJWeRmglwtYZSeI-txBMh7RNb3995vf-4ujn0W-17gquP-pjr4-rQk_X0oHpXzojoNZ_6ZLnm-yUtx_E3M5ye-RTuXyNvVKLoUlK-TppYT9eM3gsezDvMyuehAKd3uvGiDrJn8Ctlwy76ijxw39eOr5OcLU7fJWzktLFV4WVFC44LBrh2RaF7TN3MjqxkmVdEyNw24-UwYCgoANSl8NGcVqi7waYDvDKA7-pmmAOLNkmpTFcs2iFE8J-5KRGk9WxhWWGbneJIAqlVF2wpRpFqol8dUHlPM3z-iVVNi7Kugw0WbJWqoexbjiK7Y06-R_Z2Xn57vMvcMBFNx6tdMSU9OrYqt4KH0hA6FBRijdOKpJIZGKxMTmKkIQil8rj0biziVgNSMx8Ht4uA6GeVg101CuTIAiJMosioKfcsFbOiUliLVqRBcRmMSrNwjU44jHZ_qmGftxV8Ce6VuRjKcqMxN1JiwXqvsOEL-If8MPa-XRYbv9gfwiMwFjCyQkqcilRwGGMJ4p0ZPhYgBUolIRBb-6l3026wrl-3jVLYN-Czg0dTzx-R-K4EsHzmmER2JpqqyV-8OziD08cNA6KETsgWYQwlXugFjQvawgeTWQBJilRo0b-IqW1mlynzA_7CpABALmquVd3rzvb4ZO0Uvzk3RdDIIs2OQudEt1N6yAR7txQkfk2SwhAemH7bksy8tyXrSklVCn5N-sZ9pcm_-r8ItcsHHMxysBIi3yKheNuY2AN1a3nHx7Re38a8y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+carbapenem-resistant+Klebsiella+pneumoniae+on+the+basis+of+matrix-assisted+laser+desorption+ionization+time-of-flight+mass+spectrometry+by+using+supervised+machine+learning+approach&rft.jtitle=PloS+one&rft.au=Huang%2C+Tsi-Shu&rft.au=Susan+Shin-Jung+Lee&rft.au=Chia-Chien%2C+Lee&rft.au=Fu-Chuen%2C+Chang&rft.date=2020-02-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=2&rft.spage=e0228459&rft_id=info:doi/10.1371%2Fjournal.pone.0228459&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |