A machine learning approach to predict pancreatic islet grafts rejection versus tolerance

The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medic...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 11; p. e0241925
Main Authors Ceballos, Gerardo A., Hernandez, Luis F., Paredes, Daniel, Betancourt, Luis R., Abdulreda, Midhat H.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.11.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0241925

Cover

Abstract The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.
AbstractList The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.
The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.
Audience Academic
Author Ceballos, Gerardo A.
Betancourt, Luis R.
Abdulreda, Midhat H.
Hernandez, Luis F.
Paredes, Daniel
AuthorAffiliation 2 Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
3 Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
5 Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
1 Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
Korea National University of Transportation, REPUBLIC OF KOREA
4 Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
AuthorAffiliation_xml – name: 1 Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
– name: Korea National University of Transportation, REPUBLIC OF KOREA
– name: 2 Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
– name: 4 Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
– name: 5 Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
– name: 3 Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
Author_xml – sequence: 1
  givenname: Gerardo A.
  surname: Ceballos
  fullname: Ceballos, Gerardo A.
– sequence: 2
  givenname: Luis F.
  surname: Hernandez
  fullname: Hernandez, Luis F.
– sequence: 3
  givenname: Daniel
  surname: Paredes
  fullname: Paredes, Daniel
– sequence: 4
  givenname: Luis R.
  orcidid: 0000-0002-0791-6113
  surname: Betancourt
  fullname: Betancourt, Luis R.
– sequence: 5
  givenname: Midhat H.
  orcidid: 0000-0002-0146-5876
  surname: Abdulreda
  fullname: Abdulreda, Midhat H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33152016$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr3DAQhU1JaS7tPyitoVDah93qZlnuQ2EJvSwEAr1Bn4QsS14tWsmV5LT599VmNyEOgQY_2Iy_OZozR8fFgfNOFcVzCOYQ1_Dd2o_BCTsfcnkOEIENqh4VR7DBaEYRwAe3vg-L4xjXAFSYUfqkOMQYVghAelT8WpQbIVfGqdIqEZxxfSmGIfhcLJMvh6A6I1M5CCeDEsnI0kSrUtkHoVMsg1ormYx35YUKcYy5x6qQYfW0eKyFjerZ_n1S_Pj08fvpl9nZ-efl6eJsJmmD0kwyTCrZMg3qTkHBVEVaJCkiErYV7CiqlKyaTuqGMUgFbJgAumYNwwg1umvxSfFypztYH_l-K5EjUtUNxaSmmVjuiM6LNR-C2Yhwyb0w_KrgQ89FyM6s4m0lAWGMMkAh0VXNQKsJ0RS3ROu2abJWtdMa3SAu_whrbwQh4Ntgrkfg22D4Ppjc92E_5dhuVCeVS0HYyTDTP86seO8veE0JAQhmgTd7geB_jyomvjFRKmuFU3688ssAJhhs0Vd30Pu3sqd6kY0bp30-V25F-YISUIMaEpSp-T1Ufjq1MTI71CbXJw1vJw2ZSepv6sUYI19--_pw9vznlH19i10pYdMqejtu716cgi9ub_pmxdd3PgPvd4AMPsagNJcmia1Otmbs_3Ikd5ofFP8_190o6A
CitedBy_id crossref_primary_10_3389_fendo_2021_652853
crossref_primary_10_3390_jpm13071071
crossref_primary_10_1111_cts_13208
crossref_primary_10_3389_fmed_2022_991807
crossref_primary_10_3390_ijms22168754
crossref_primary_10_3390_biom11030383
crossref_primary_10_1177_09636897211045320
Cites_doi 10.1073/pnas.1105002108
10.1084/jem.20130785
10.1016/0022-2836(81)90087-5
10.1038/s41591-018-0335-9
10.3390/metabo9100207
10.1126/science.aab3050
10.1016/j.jchromb.2011.11.016
10.3389/fendo.2018.00070
10.1016/0021-9673(93)83259-U
10.2337/diabetes.50.9.1983
10.1530/EJE-15-0094
10.1016/S2213-8587(18)30078-0
10.1038/nrendo.2016.178
10.1016/j.jchromb.2018.02.015
10.2337/db10-1114
10.2337/dc15-0349
10.1002/elps.200700831
10.1111/tri.13363
10.1016/0022-2836(82)90398-9
10.1007/s00125-019-4814-4
10.2337/dc15-1988
10.1038/nrendo.2012.237
10.1007/s00125-019-4879-0
10.1371/journal.pone.0179790
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Ceballos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Ceballos et al 2020 Ceballos et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Ceballos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Ceballos et al 2020 Ceballos et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0241925
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Agricultural Science Database

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
DocumentTitleAlternate Machine learning in islet transplant
EISSN 1932-6203
ExternalDocumentID 2457963476
oai_doaj_org_article_b5c0488680614f5780bf44f63b4ffb99
10.1371/journal.pone.0241925
PMC7644021
A640707142
33152016
10_1371_journal_pone_0241925
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Venezuela
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
– name: Venezuela
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: UC4 DK116241
– fundername: NIAID NIH HHS
  grantid: R56 AI130330
– fundername: NIDDK NIH HHS
  grantid: K01 DK097194
– fundername: ;
– fundername: ;
  grantid: PS00256278
– fundername: ;
  grantid: R56AI130330
– fundername: ;
  grantid: PS00289153
– fundername: ;
  grantid: UC4DK116241/K01DK097194
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-c8345cb8f07de1a8e54b2c624c1b51d625ec59dcf98816a198a0f78983229fdb3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun May 07 16:28:34 EDT 2023
Fri Oct 03 12:44:16 EDT 2025
Sun Oct 26 04:10:51 EDT 2025
Tue Sep 30 16:42:58 EDT 2025
Wed Oct 01 13:41:59 EDT 2025
Tue Oct 07 09:17:22 EDT 2025
Mon Oct 20 22:08:54 EDT 2025
Mon Oct 20 16:21:04 EDT 2025
Thu Oct 16 13:59:15 EDT 2025
Thu Oct 16 15:22:32 EDT 2025
Thu May 22 21:25:21 EDT 2025
Wed Aug 06 16:35:41 EDT 2025
Thu Apr 24 22:55:05 EDT 2025
Wed Oct 01 02:35:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-c8345cb8f07de1a8e54b2c624c1b51d625ec59dcf98816a198a0f78983229fdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Center of Biomedical Engineering and Telemedicine, Faculty of Engineering, University de Los Andes, Mérida, Venezuela
Current address: Department of Morphological Sciences, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela
Competing Interests: MHA is consultant for Biocrine, an unlisted biotech company that is using the anterior chamber of the eye technique as a research tool. This does not alter our adherence to PLOS ONE policies on sharing data and materials. All other authors declare no conflict of interest associated with their contribution to this manuscript.
ORCID 0000-0002-0791-6113
0000-0002-0146-5876
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241925&type=printable
PMID 33152016
PQID 2457963476
PQPubID 1436336
PageCount e0241925
ParticipantIDs plos_journals_2457963476
doaj_primary_oai_doaj_org_article_b5c0488680614f5780bf44f63b4ffb99
unpaywall_primary_10_1371_journal_pone_0241925
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7644021
proquest_miscellaneous_2458034301
proquest_journals_2457963476
gale_infotracmisc_A640707142
gale_infotracacademiconefile_A640707142
gale_incontextgauss_ISR_A640707142
gale_incontextgauss_IOV_A640707142
gale_healthsolutions_A640707142
pubmed_primary_33152016
crossref_citationtrail_10_1371_journal_pone_0241925
crossref_primary_10_1371_journal_pone_0241925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MH Abdulreda (pone.0241925.ref017) 2011; 108
M Khosravi-Maharlooei (pone.0241925.ref012) 2015; 173
GA Ceballos (pone.0241925.ref023) 2008; 29
MA Atkinson (pone.0241925.ref008) 2018
L Hernandez (pone.0241925.ref018) 1993; 652
(pone.0241925.ref014) 2020
NK Kanzelmeyer (pone.0241925.ref028) 2019; 32
JS Skyler (pone.0241925.ref007) 2015; 38
S Lablanche (pone.0241925.ref011) 2018; 6
O Gotoh (pone.0241925.ref025) 1982; 162
H Takahashi (pone.0241925.ref002) 2017; 12
MH Abdulreda (pone.0241925.ref016) 2013
LM Jacobsen (pone.0241925.ref004) 2018; 9
L Betancourt (pone.0241925.ref027) 2018; 1081–1082
BJ Hering (pone.0241925.ref009) 2016; 39
O Alcazar (pone.0241925.ref013) 2019; 9
L Betancourt (pone.0241925.ref026) 2012; 880
MH Abdulreda (pone.0241925.ref019) 2019; 62
BM Lake (pone.0241925.ref003) 2015; 350
AM Shapiro (pone.0241925.ref010) 2017; 13
JE Luis Hernandez (pone.0241925.ref022) 1991; 559
TF Smith (pone.0241925.ref024) 1981; 147
Å Lernmark (pone.0241925.ref006) 2013; 9
H Liang (pone.0241925.ref001) 2019; 25
JS Skyler (pone.0241925.ref005) 2011; 60
J Miska (pone.0241925.ref021) 2014; 211
MH Abdulreda (pone.0241925.ref015) 2019; 62
A Pileggi (pone.0241925.ref020) 2001; 50
References_xml – volume: 108
  start-page: 12863
  issue: 31
  year: 2011
  ident: pone.0241925.ref017
  article-title: High-resolution, noninvasive longitudinal live imaging of immune responses
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1105002108
– volume: 211
  start-page: 441
  issue: 3
  year: 2014
  ident: pone.0241925.ref021
  article-title: Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance
  publication-title: J Exp Med
  doi: 10.1084/jem.20130785
– volume: 147
  start-page: 195
  issue: 1
  year: 1981
  ident: pone.0241925.ref024
  article-title: Identification of common molecular subsequences
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(81)90087-5
– volume: 25
  start-page: 433
  issue: 3
  year: 2019
  ident: pone.0241925.ref001
  article-title: Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0335-9
– volume: 9
  start-page: 207
  issue: 10
  year: 2019
  ident: pone.0241925.ref013
  article-title: Feasibility of Localized Metabolomics in the Study of Pancreatic Islets and Diabetes
  publication-title: Metabolites
  doi: 10.3390/metabo9100207
– year: 2020
  ident: pone.0241925.ref014
  article-title: Longitudinal Proteomics Analysis in the Immediate Microenvironment of Islet Allografts During Progression of Rejection
  publication-title: Journal of proteomics
– volume: 350
  start-page: 1332
  issue: 6266
  year: 2015
  ident: pone.0241925.ref003
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
  doi: 10.1126/science.aab3050
– volume: 880
  start-page: 58
  issue: 1
  year: 2012
  ident: pone.0241925.ref026
  article-title: In vivo monitoring of cerebral agmatine by microdialysis and capillary electrophoresis
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2011.11.016
– volume: 9
  start-page: 70
  year: 2018
  ident: pone.0241925.ref004
  article-title: Understanding pre-type 1 diabetes: the key to prevention
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2018.00070
– volume: 652
  start-page: 399
  issue: 2
  year: 1993
  ident: pone.0241925.ref018
  article-title: Colinear laser-induced fluorescence detector for capillary electrophoresis. Analysis of glutamic acid in brain dialysates
  publication-title: J Chromatogr A
  doi: 10.1016/0021-9673(93)83259-U
– volume: 50
  start-page: 1983
  issue: 9
  year: 2001
  ident: pone.0241925.ref020
  article-title: Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.9.1983
– volume: 173
  start-page: R165
  issue: 5
  year: 2015
  ident: pone.0241925.ref012
  article-title: THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-15-0094
– start-page: e50466
  issue: 73
  year: 2013
  ident: pone.0241925.ref016
  article-title: Transplantation into the Anterior Chamber of the Eye for Longitudinal, Non-invasive In vivo Imaging with Single-cell Resolution in Real-time
  publication-title: J Vis Exp
– volume: 559
  start-page: 13
  issue: 1–2
  year: 1991
  ident: pone.0241925.ref022
  article-title: Laser-induced fluorescence and fluorescence microscopy for capillary electrophoresis zone detection—ScienceDirect
  publication-title: Journal of Chromatography A
– volume: 6
  start-page: 527
  issue: 7
  year: 2018
  ident: pone.0241925.ref011
  article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(18)30078-0
– volume: 13
  start-page: 268
  issue: 5
  year: 2017
  ident: pone.0241925.ref010
  article-title: Clinical pancreatic islet transplantation
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2016.178
– volume: 1081–1082
  start-page: 51
  year: 2018
  ident: pone.0241925.ref027
  article-title: Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson's disease patients
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2018.02.015
– volume: 60
  start-page: 1
  issue: 1
  year: 2011
  ident: pone.0241925.ref005
  article-title: Stopping type 1 diabetes: attempts to prevent or cure type 1 diabetes in man
  publication-title: Diabetes
  doi: 10.2337/db10-1114
– volume: 38
  start-page: 997
  issue: 6
  year: 2015
  ident: pone.0241925.ref007
  article-title: Prevention and reversal of type 1 diabetes—past challenges and future opportunities
  publication-title: Diabetes Care
  doi: 10.2337/dc15-0349
– volume: 29
  start-page: 2828
  issue: 13
  year: 2008
  ident: pone.0241925.ref023
  article-title: Pattern recognition in capillary electrophoresis data using dynamic programming in the wavelet domain
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700831
– volume: 32
  start-page: 28
  issue: 1
  year: 2019
  ident: pone.0241925.ref028
  article-title: Urinary proteomics to diagnose chronic active antibody-mediated rejection in pediatric kidney transplantation—a pilot study
  publication-title: Transpl Int
  doi: 10.1111/tri.13363
– year: 2018
  ident: pone.0241925.ref008
  article-title: The challenge of modulating β-cell autoimmunity in type 1 diabetes
  publication-title: Lancet Diab Endocrinol
– volume: 162
  start-page: 705
  issue: 3
  year: 1982
  ident: pone.0241925.ref025
  article-title: An improved algorithm for matching biological sequences
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(82)90398-9
– volume: 62
  start-page: 811
  issue: 5
  year: 2019
  ident: pone.0241925.ref019
  article-title: Operational immune tolerance towards transplanted allogeneic pancreatic islets in mice and a non-human primate
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4814-4
– volume: 39
  start-page: 1230
  issue: 7
  year: 2016
  ident: pone.0241925.ref009
  article-title: Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1988
– volume: 9
  start-page: 92
  issue: 2
  year: 2013
  ident: pone.0241925.ref006
  article-title: Immune therapy in type 1 diabetes mellitus
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2012.237
– volume: 62
  start-page: 1237
  issue: 7
  year: 2019
  ident: pone.0241925.ref015
  article-title: In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4879-0
– volume: 12
  start-page: e0179790
  issue: 6
  year: 2017
  ident: pone.0241925.ref002
  article-title: Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179790
SSID ssj0053866
Score 2.383981
Snippet The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0241925
SubjectTerms Aging
Allografts
Analytical chemistry
Animals
Anterior chamber
Aqueous humour
Artificial Intelligence
Biology and Life Sciences
Biomarkers
Biomedical research
Categories
Chromatography
Computer and Information Sciences
Computer programs
Diabetes
Diabetes Mellitus, Experimental - immunology
Digital video recorders
Disease
Electrokinetics
Engineering and Technology
FDA approval
Feasibility
Female
Fluorescence
Forecasting - methods
Forecasts and trends
Graft rejection
Graft Rejection - physiopathology
Graft Survival - immunology
Health aspects
Immune Tolerance
Immunological tolerance
Immunosuppression Therapy - methods
Islet cell transplantation
Islets of Langerhans - immunology
Islets of Langerhans - metabolism
Islets of Langerhans Transplantation - methods
Isoantigens - immunology
Laser induced fluorescence
Learning algorithms
Machine Learning
Male
Medical research
Medicine
Medicine and Health Sciences
Mice
Mice, Inbred C57BL
Mice, Inbred DBA
Pancreas transplantation
Pancreatic islet transplantation
Patient outcomes
Pattern recognition
Rejection
Software
Support Vector Machine
Support vector machines
Transplantation, Homologous
Transplants & implants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTWI7sY8LoipIgAQUlVNkO_ZSFLKrTVaIf89M4o0aUak9cI3HkTIvz8Qz3xDyXDJtKzgW40plNuaKi1hqz2ItFKvAJ1fGY3Pyh4_58Ql_fypOz436wpqwAR54YNyhERaVLJeYunjQr8R4zn3ODPfeqL51L5Fql0wNPhisOM9Doxwr0sMgl_l61bg5nEoQ1ojJQdTj9Y9eebauV-1FIee_lZPXt81a__mt6_rcsXR0i9wM8SRdDN-xR6655jbZCxbb0pcBVvrVHfJ9QX_1lZOOhlERS7pDFKfdiq43eGfTUXAPQyRp6VkLUqXLjfZdSzfuZ1-21VCs5Ni2sKd2OJbD3SUnR2-_vjmOw2CF2OYq62IrGRfWSJ8UlUu1dIKbzOYZt6kRaQUpkbNCVdYrKdNcp0rqxBdSofUrXxl2j8waYOU-oRBwpNoInjnruSvAjcs0qTJXQR6onXQRYTsulzagjuPwi7rsr9IKyD4GRpUomzLIJiLxuGs9oG5cQv8aBTjSImZ2_wA0qQyaVF6mSRF5guIvhwbU0fLLBd51Yp9XFpFnPQXiZjRYmLPU27Yt3336dgWiL58nRC8CkV8BO6wOzRDwTYjHNaE8mFCC9dvJ8j4q644rbZlx7C5mvMhh506BL15-Oi7jS7HYrnGrbU8jE8bB9Ufk_qDvI2cZg4AP0oSIFBNLmLB-utKc_ehhywsIvSGijMh8tJkrCffB_xDuQ3Ijwz8leCEgDsis22zdIwgnO_O49xx_Afd5dGw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgIuiJZHAwUMQgIO2W5iJ3EOCG1Rq4LUBRWKyily_FiKliRsskL8e2ayTiCigl7jcaTMeD6P45lvCHkqmFQatkVfp6HyecojX0jLfBmlTAMm69xicfLxLD465W_PorMNMutqYTCtssPEFqh1qfAf-V7IsWqS8SR-VX33sWsU3q52LTSka62gX7YUY1fIZojMWCOyuX8we3_SYTN4dxy7AjqWBHvOXuOqLMwYdisId6LBBtXy-PdoPaoWZX1RKPp3RuW1VVHJnz_kYvHHdnV4k9xwcSadrhfGFtkwxTa5euxu0rfJlnPqmj53zNMvbpHPU_qtTa401HWTmNOOdJw2Ja2WOL-hgCDrYFPR8xoMT-dLaZuaLs3XNrOroJjssaphzsJg5w5zm5weHnx8feS73gu-itOw8ZVgPFK5sJNEm0AKE_E8VHHIVZBHgYZTk1FRqpVNhQhiGaRCTmwiUgSI1Oqc3SGjArS6QyjEJIHMIx4aZblJAOlFMNGh0XBUlEYYj7BO4ZlyxOTYH2ORtbdtCRxQ1jrL0EyZM5NH_H5WtSbm-I_8Ptqyl0Va7fZBuZxnzkuzPFKIaLHAc7IFMJvklnMbs5xbm6epRx7hSsjWNao9OGRTvA7FUrDQI09aCaTWKDB3Zy5XdZ29effpEkIfTgZCz5yQLUEdSrp6CfgmpOwaSO4OJAEg1GB4B9dtp5U6--1KMLNbyxcPP-6H8aWYj1eYctXKiAnjsDt45O566feaZQxiQjhJeCQZOMVA9cOR4vxLy2yeQHQOQadHxr37XMq49_79HffJ9RB_k-BtQLRLRs1yZR5ALNnkDx1A_AJlanY8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsRO4hwXRFWQKAhY1B5Q5Dj2Uliyq00iBAd-OzOJExEoohy4RfHYisf2PDIznwm5J5hUBahFt0hD5fKUR66QhrkySlkBMrnIDRYnvziI92f8-WF0uEHe97UwloPgIy6WVRvJx4dlqXctJ3cRr6iLnnoBS4K-h7cCIg80Dpgs0f0WcQj_jNVYgHSGbMYRmOoTsjk7eDU96iLNoRuHPrPldH8aaaSuWlT_QXZP8MtOMkx_z68825Qr-fWLXCx-Ul57F8j3ftpdzsonr6lzT337BRHyv_HlIjlvzV467UbZIhu6vES2rGCp6EOLfv3oMjma0s9tgqem9kaLOe2Bz2m9pKs1hpZqClKsM3gVPa5g89H5Wpq6omv9sc0uKykmnDQV9FlovD1EXyGzvadvn-y79v4HV8VpWLtKMB6pXBg_KXQghY54Hqo45CrIo6AAz02rKC2USYUIYhmkQvomESkKqdQUObtKJiXMfptQsIsCmUc81MpwnYC2EYFfhLoAd1VqoR3C-mXOlAVHxzs6Flkb8UvASeoYlSE7M8tOh7hDr1UHDvIX-se4gwZahPZuX8B6ZnYdszxSKFVjgb66AYHq54ZzE7OcG5OnqUNu4_7LujrZQUBlUwzJYjla6JC7LQXCe5SYPzSXTVVlz16-OwXRm9cjogeWyCyBHUramg2YE263EeXOiBKElBo1b-N-7blSZSHHImjGkxh69ifo5OY7QzMOijmBpV42LY3wGQcN5ZBr3YEbOMsY2KXgzTgkGR3FEevHLeXxhxZdPQEPAQxfh3jDoT3V4l7_1w43yLkQf95gjCLaIZN63eibYOHW-S0rp34AUT-sHg
  priority: 102
  providerName: Unpaywall
Title A machine learning approach to predict pancreatic islet grafts rejection versus tolerance
URI https://www.ncbi.nlm.nih.gov/pubmed/33152016
https://www.proquest.com/docview/2457963476
https://www.proquest.com/docview/2458034301
https://pubmed.ncbi.nlm.nih.gov/PMC7644021
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241925&type=printable
https://doaj.org/article/b5c0488680614f5780bf44f63b4ffb99
http://dx.doi.org/10.1371/journal.pone.0241925
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtNAcNWmB7hUlFcNJSwICTg48mNtrw8IpVVDQWqoCkHpyVqvd0ORsYOdCPr3zPglLILIxQfvrCXP7Lx2XoS84K6QCahFMwkdabKQeSYX2jWFF7oJyOQk1licfD71z2bsw9yb75B2ZmuDwHKja4fzpGZFOvr14-YtMPybampDYLebRss8UyPQOWC0eLtkD3RViMMczlkXVwDurqKXaLWYvmO5TTHdv77SU1ZVT_9Ocg-WaV5uMkv_zq68tc6W4uanSNM_VNfkDtlvbE46rg_JAdlR2V1y0HB1SV81radf3yNXY_q9yq5UtBknsaBt13G6yumywLjOioIIqa1NSa9LoDxdFEKvSlqob1VqV0Yx22Ndwp5U4egOdZ_MJqefT87MZviCKf3QWZmSu8yTMddWkChbcOWx2JG-w6Qde3YCbpOSXphIHXJu-8IOubB0wEOUEKFOYvcBGWSAykNCwSixRewxR0nNVACinttW4qgEfEWhuDKI22I5kk1nchyQkUZVuC0AD6VGVIS0iRraGMTsdi3rzhz_gT9GAnaw2Fe7epEXi6hh0yj2JIo0n6OjrEGaWbFmTPtuzLSOw9AgT5H8UV2k2kmHaIzxUKwFcwzyvILA3hoZJu8sxLoso_cfv2wB9OmyB_SyAdI5oEOKpmAC_gl7dvUgj3qQICFkb_kQD2uLlTJyGFYguyzwYWd7gDcvP-uW8aOYkJepfF3BcMtloB4M8rA-7x1mXReMQnAlDBL0OKGH-v5Kdv21am0egHkOVqdBRh3PbEXcR1vj6jG57eCVCUYGvCMyWBVr9QTsylU8JLvBPIAnP7HxOXk3JHvHp9OLy2F1UzOsRAm8m00vxle_AQAofv0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIlEuiJZHA4UaBIIest3EzuuA0PKotrRbJGjRcgqOYy9FSxI2u6r6p_iNzCROIKKCXnqNx5EyM_5mJp4HIU9CJmQKZtFOI1faPOKeHQrNbOFFLAVMThONxcnjQ390zN9NvMkK-dnUwmBaZYOJFVCnucR_5Dsux6pJxgP_ZfHDxqlReLvajNCo1WJfnZ1CyFa-2HsD8n3qurtvj16PbDNVwJZ-5C5sGTLuySTUgyBVjgiVxxNX-i6XTuI5KcQDSnpRKnUUho4vICgXAx2EEap-pNOEwXuvkKucAZbA-QkmbYAH2OH7pjyPBc6O0YZ-kWeqD7YQnCmvY_6qKQGtLegVs7w8z9H9O19zdZkV4uxUzGZ_GMPdm-SG8WLpsFa7NbKisnVybWzu6dfJmoGMkj43fa23b5HPQ_q9St1U1MyqmNKmpTld5LSY4_4FBXyqXVlJT0pQKzqdC70o6Vx9q_LGMoqpJMsS9swUzgVRt8nxpcjgDullwNUNQsHjcUTicVdJzVUAdiR0BqmrUghEhQqVRVjD8Fiatuc4fWMWV3d5AYQ_Nc9iFFNsxGQRu91V1G0__kP_CmXZ0mLT7upBPp_GBgPixJOIl36IUbgGqBwkmnPts4RrnUSRRbZQE-K6AraFnniIl61YaOZa5HFFgY07MswMmoplWcZ77z9dgOjjhw7RM0Okc2CHFKYaA74JG4J1KDc7lAA_srO8gXrbcKWMfx9U2Nno8vnLj9plfClm-2UqX1Y04YDBCXMscrdW_ZazjIHHCXGKRYLOoeiwvruSnXyt-qYH4PuDS2uRfnt8LiTce__-ji2yOjoaH8QHe4f798l1F3_I4L2Dt0l6i_lSPQCvdZE8rKCCki-XjU2_AN50rIc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhUuiJZHA4UaBAIO2d3EzuuA0EJZtZQWRClaTsFx7KVoScJmV1X_Gr-OmcQJRFTQS6_xOFJmxt_MxPMg5FHIhEzBLNpp5EqbR9yzQ6GZLbyIpYDJaaKxOHn_wN854m8m3mSF_GxqYTCtssHECqjTXOI_8oHLsWqS8cAfaJMW8X57_KL4YeMEKbxpbcZp1Cqyp05PIHwrn-9ug6wfu-749cdXO7aZMGBLP3IXtgwZ92QS6mGQKkeEyuOJK32XSyfxnBRiAyW9KJU6CkPHFxCgi6EOwgiPQaTThMF7L5HLAWMRphMGkzbYAxzxfVOqxwJnYDSjX-SZ6oNdBMfK65jCamJAaxd6xSwvz3J6_87dvLLMCnF6ImazPwzj-Dq5ZjxaOqpVcI2sqGydrO6bO_t1smbgo6RPTY_rZzfI5xH9XqVxKmrmVkxp096cLnJazHH_ggJW1W6tpMclqBidzoVelHSuvlU5ZBnFtJJlCXtmCmeEqJvk6EJkcIv0MuDqBqHg_Tgi8birpOYqAJsSOsPUVSkEpUKFyiKsYXgsTQt0nMQxi6t7vQBCoZpnMYopNmKyiN3uKuoWIP-hf4mybGmxgXf1IJ9PY4MHceJJxE4_xIhcA2wOE8259lnCtU6iyCJbqAlxXQ3bwlA8wotXLDpzLfKwosAmHhkeh6lYlmW8--7TOYgOP3SInhginQM7pDCVGfBN2BysQ7nZoQQokp3lDdTbhitl_PvQws5Gl89eftAu40sx8y9T-bKiCYeMgx2yyO1a9VvOMgbeJ8QsFgk6h6LD-u5Kdvy16qEeQBwA7q1F-u3xOZdw7_z7O7bIKqBS_Hb3YO8uuerivxm8gvA2SW8xX6p74MAukvsVUlDy5aKh6Rc4NbDK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsRO4hwXRFWQKAhY1B5Q5Dj2Uliyq00iBAd-OzOJExEoohy4RfHYisf2PDIznwm5J5hUBahFt0hD5fKUR66QhrkySlkBMrnIDRYnvziI92f8-WF0uEHe97UwloPgIy6WVRvJx4dlqXctJ3cRr6iLnnoBS4K-h7cCIg80Dpgs0f0WcQj_jNVYgHSGbMYRmOoTsjk7eDU96iLNoRuHPrPldH8aaaSuWlT_QXZP8MtOMkx_z68825Qr-fWLXCx-Ul57F8j3ftpdzsonr6lzT337BRHyv_HlIjlvzV467UbZIhu6vES2rGCp6EOLfv3oMjma0s9tgqem9kaLOe2Bz2m9pKs1hpZqClKsM3gVPa5g89H5Wpq6omv9sc0uKykmnDQV9FlovD1EXyGzvadvn-y79v4HV8VpWLtKMB6pXBg_KXQghY54Hqo45CrIo6AAz02rKC2USYUIYhmkQvomESkKqdQUObtKJiXMfptQsIsCmUc81MpwnYC2EYFfhLoAd1VqoR3C-mXOlAVHxzs6Flkb8UvASeoYlSE7M8tOh7hDr1UHDvIX-se4gwZahPZuX8B6ZnYdszxSKFVjgb66AYHq54ZzE7OcG5OnqUNu4_7LujrZQUBlUwzJYjla6JC7LQXCe5SYPzSXTVVlz16-OwXRm9cjogeWyCyBHUramg2YE263EeXOiBKElBo1b-N-7blSZSHHImjGkxh69ifo5OY7QzMOijmBpV42LY3wGQcN5ZBr3YEbOMsY2KXgzTgkGR3FEevHLeXxhxZdPQEPAQxfh3jDoT3V4l7_1w43yLkQf95gjCLaIZN63eibYOHW-S0rp34AUT-sHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+predict+pancreatic+islet+grafts+rejection+versus+tolerance&rft.jtitle=PloS+one&rft.au=Ceballos%2C+Gerardo+A&rft.au=Hernandez%2C+Luis+F&rft.au=Paredes%2C+Daniel&rft.au=Betancourt%2C+Luis+R&rft.date=2020-11-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=11&rft.spage=e0241925&rft_id=info:doi/10.1371%2Fjournal.pone.0241925&rft.externalDocID=A640707142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon