A machine learning approach to predict pancreatic islet grafts rejection versus tolerance
The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medic...
Saved in:
| Published in | PloS one Vol. 15; no. 11; p. e0241925 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
05.11.2020
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0241925 |
Cover
| Abstract | The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance. |
|---|---|
| AbstractList | The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance. The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance. |
| Audience | Academic |
| Author | Ceballos, Gerardo A. Betancourt, Luis R. Abdulreda, Midhat H. Hernandez, Luis F. Paredes, Daniel |
| AuthorAffiliation | 2 Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America 3 Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America 5 Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America 1 Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America Korea National University of Transportation, REPUBLIC OF KOREA 4 Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America |
| AuthorAffiliation_xml | – name: 1 Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America – name: Korea National University of Transportation, REPUBLIC OF KOREA – name: 2 Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America – name: 4 Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America – name: 5 Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America – name: 3 Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America |
| Author_xml | – sequence: 1 givenname: Gerardo A. surname: Ceballos fullname: Ceballos, Gerardo A. – sequence: 2 givenname: Luis F. surname: Hernandez fullname: Hernandez, Luis F. – sequence: 3 givenname: Daniel surname: Paredes fullname: Paredes, Daniel – sequence: 4 givenname: Luis R. orcidid: 0000-0002-0791-6113 surname: Betancourt fullname: Betancourt, Luis R. – sequence: 5 givenname: Midhat H. orcidid: 0000-0002-0146-5876 surname: Abdulreda fullname: Abdulreda, Midhat H. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33152016$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltr3DAQhU1JaS7tPyitoVDah93qZlnuQ2EJvSwEAr1Bn4QsS14tWsmV5LT599VmNyEOgQY_2Iy_OZozR8fFgfNOFcVzCOYQ1_Dd2o_BCTsfcnkOEIENqh4VR7DBaEYRwAe3vg-L4xjXAFSYUfqkOMQYVghAelT8WpQbIVfGqdIqEZxxfSmGIfhcLJMvh6A6I1M5CCeDEsnI0kSrUtkHoVMsg1ormYx35YUKcYy5x6qQYfW0eKyFjerZ_n1S_Pj08fvpl9nZ-efl6eJsJmmD0kwyTCrZMg3qTkHBVEVaJCkiErYV7CiqlKyaTuqGMUgFbJgAumYNwwg1umvxSfFypztYH_l-K5EjUtUNxaSmmVjuiM6LNR-C2Yhwyb0w_KrgQ89FyM6s4m0lAWGMMkAh0VXNQKsJ0RS3ROu2abJWtdMa3SAu_whrbwQh4Ntgrkfg22D4Ppjc92E_5dhuVCeVS0HYyTDTP86seO8veE0JAQhmgTd7geB_jyomvjFRKmuFU3688ssAJhhs0Vd30Pu3sqd6kY0bp30-V25F-YISUIMaEpSp-T1Ufjq1MTI71CbXJw1vJw2ZSepv6sUYI19--_pw9vznlH19i10pYdMqejtu716cgi9ub_pmxdd3PgPvd4AMPsagNJcmia1Otmbs_3Ikd5ofFP8_190o6A |
| CitedBy_id | crossref_primary_10_3389_fendo_2021_652853 crossref_primary_10_3390_jpm13071071 crossref_primary_10_1111_cts_13208 crossref_primary_10_3389_fmed_2022_991807 crossref_primary_10_3390_ijms22168754 crossref_primary_10_3390_biom11030383 crossref_primary_10_1177_09636897211045320 |
| Cites_doi | 10.1073/pnas.1105002108 10.1084/jem.20130785 10.1016/0022-2836(81)90087-5 10.1038/s41591-018-0335-9 10.3390/metabo9100207 10.1126/science.aab3050 10.1016/j.jchromb.2011.11.016 10.3389/fendo.2018.00070 10.1016/0021-9673(93)83259-U 10.2337/diabetes.50.9.1983 10.1530/EJE-15-0094 10.1016/S2213-8587(18)30078-0 10.1038/nrendo.2016.178 10.1016/j.jchromb.2018.02.015 10.2337/db10-1114 10.2337/dc15-0349 10.1002/elps.200700831 10.1111/tri.13363 10.1016/0022-2836(82)90398-9 10.1007/s00125-019-4814-4 10.2337/dc15-1988 10.1038/nrendo.2012.237 10.1007/s00125-019-4879-0 10.1371/journal.pone.0179790 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Ceballos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Ceballos et al 2020 Ceballos et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Ceballos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Ceballos et al 2020 Ceballos et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0241925 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine |
| DocumentTitleAlternate | Machine learning in islet transplant |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2457963476 oai_doaj_org_article_b5c0488680614f5780bf44f63b4ffb99 10.1371/journal.pone.0241925 PMC7644021 A640707142 33152016 10_1371_journal_pone_0241925 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States Venezuela United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US – name: Venezuela |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: UC4 DK116241 – fundername: NIAID NIH HHS grantid: R56 AI130330 – fundername: NIDDK NIH HHS grantid: K01 DK097194 – fundername: ; – fundername: ; grantid: PS00256278 – fundername: ; grantid: R56AI130330 – fundername: ; grantid: PS00289153 – fundername: ; grantid: UC4DK116241/K01DK097194 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c692t-c8345cb8f07de1a8e54b2c624c1b51d625ec59dcf98816a198a0f78983229fdb3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun May 07 16:28:34 EDT 2023 Fri Oct 03 12:44:16 EDT 2025 Sun Oct 26 04:10:51 EDT 2025 Tue Sep 30 16:42:58 EDT 2025 Wed Oct 01 13:41:59 EDT 2025 Tue Oct 07 09:17:22 EDT 2025 Mon Oct 20 22:08:54 EDT 2025 Mon Oct 20 16:21:04 EDT 2025 Thu Oct 16 13:59:15 EDT 2025 Thu Oct 16 15:22:32 EDT 2025 Thu May 22 21:25:21 EDT 2025 Wed Aug 06 16:35:41 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 Wed Oct 01 02:35:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-c8345cb8f07de1a8e54b2c624c1b51d625ec59dcf98816a198a0f78983229fdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Center of Biomedical Engineering and Telemedicine, Faculty of Engineering, University de Los Andes, Mérida, Venezuela Current address: Department of Morphological Sciences, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela Competing Interests: MHA is consultant for Biocrine, an unlisted biotech company that is using the anterior chamber of the eye technique as a research tool. This does not alter our adherence to PLOS ONE policies on sharing data and materials. All other authors declare no conflict of interest associated with their contribution to this manuscript. |
| ORCID | 0000-0002-0791-6113 0000-0002-0146-5876 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241925&type=printable |
| PMID | 33152016 |
| PQID | 2457963476 |
| PQPubID | 1436336 |
| PageCount | e0241925 |
| ParticipantIDs | plos_journals_2457963476 doaj_primary_oai_doaj_org_article_b5c0488680614f5780bf44f63b4ffb99 unpaywall_primary_10_1371_journal_pone_0241925 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7644021 proquest_miscellaneous_2458034301 proquest_journals_2457963476 gale_infotracmisc_A640707142 gale_infotracacademiconefile_A640707142 gale_incontextgauss_ISR_A640707142 gale_incontextgauss_IOV_A640707142 gale_healthsolutions_A640707142 pubmed_primary_33152016 crossref_citationtrail_10_1371_journal_pone_0241925 crossref_primary_10_1371_journal_pone_0241925 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-05 |
| PublicationDateYYYYMMDD | 2020-11-05 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | MH Abdulreda (pone.0241925.ref017) 2011; 108 M Khosravi-Maharlooei (pone.0241925.ref012) 2015; 173 GA Ceballos (pone.0241925.ref023) 2008; 29 MA Atkinson (pone.0241925.ref008) 2018 L Hernandez (pone.0241925.ref018) 1993; 652 (pone.0241925.ref014) 2020 NK Kanzelmeyer (pone.0241925.ref028) 2019; 32 JS Skyler (pone.0241925.ref007) 2015; 38 S Lablanche (pone.0241925.ref011) 2018; 6 O Gotoh (pone.0241925.ref025) 1982; 162 H Takahashi (pone.0241925.ref002) 2017; 12 MH Abdulreda (pone.0241925.ref016) 2013 LM Jacobsen (pone.0241925.ref004) 2018; 9 L Betancourt (pone.0241925.ref027) 2018; 1081–1082 BJ Hering (pone.0241925.ref009) 2016; 39 O Alcazar (pone.0241925.ref013) 2019; 9 L Betancourt (pone.0241925.ref026) 2012; 880 MH Abdulreda (pone.0241925.ref019) 2019; 62 BM Lake (pone.0241925.ref003) 2015; 350 AM Shapiro (pone.0241925.ref010) 2017; 13 JE Luis Hernandez (pone.0241925.ref022) 1991; 559 TF Smith (pone.0241925.ref024) 1981; 147 Å Lernmark (pone.0241925.ref006) 2013; 9 H Liang (pone.0241925.ref001) 2019; 25 JS Skyler (pone.0241925.ref005) 2011; 60 J Miska (pone.0241925.ref021) 2014; 211 MH Abdulreda (pone.0241925.ref015) 2019; 62 A Pileggi (pone.0241925.ref020) 2001; 50 |
| References_xml | – volume: 108 start-page: 12863 issue: 31 year: 2011 ident: pone.0241925.ref017 article-title: High-resolution, noninvasive longitudinal live imaging of immune responses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1105002108 – volume: 211 start-page: 441 issue: 3 year: 2014 ident: pone.0241925.ref021 article-title: Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance publication-title: J Exp Med doi: 10.1084/jem.20130785 – volume: 147 start-page: 195 issue: 1 year: 1981 ident: pone.0241925.ref024 article-title: Identification of common molecular subsequences publication-title: J Mol Biol doi: 10.1016/0022-2836(81)90087-5 – volume: 25 start-page: 433 issue: 3 year: 2019 ident: pone.0241925.ref001 article-title: Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0335-9 – volume: 9 start-page: 207 issue: 10 year: 2019 ident: pone.0241925.ref013 article-title: Feasibility of Localized Metabolomics in the Study of Pancreatic Islets and Diabetes publication-title: Metabolites doi: 10.3390/metabo9100207 – year: 2020 ident: pone.0241925.ref014 article-title: Longitudinal Proteomics Analysis in the Immediate Microenvironment of Islet Allografts During Progression of Rejection publication-title: Journal of proteomics – volume: 350 start-page: 1332 issue: 6266 year: 2015 ident: pone.0241925.ref003 article-title: Human-level concept learning through probabilistic program induction publication-title: Science doi: 10.1126/science.aab3050 – volume: 880 start-page: 58 issue: 1 year: 2012 ident: pone.0241925.ref026 article-title: In vivo monitoring of cerebral agmatine by microdialysis and capillary electrophoresis publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2011.11.016 – volume: 9 start-page: 70 year: 2018 ident: pone.0241925.ref004 article-title: Understanding pre-type 1 diabetes: the key to prevention publication-title: Front Endocrinol doi: 10.3389/fendo.2018.00070 – volume: 652 start-page: 399 issue: 2 year: 1993 ident: pone.0241925.ref018 article-title: Colinear laser-induced fluorescence detector for capillary electrophoresis. Analysis of glutamic acid in brain dialysates publication-title: J Chromatogr A doi: 10.1016/0021-9673(93)83259-U – volume: 50 start-page: 1983 issue: 9 year: 2001 ident: pone.0241925.ref020 article-title: Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation publication-title: Diabetes doi: 10.2337/diabetes.50.9.1983 – volume: 173 start-page: R165 issue: 5 year: 2015 ident: pone.0241925.ref012 article-title: THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away publication-title: Eur J Endocrinol doi: 10.1530/EJE-15-0094 – start-page: e50466 issue: 73 year: 2013 ident: pone.0241925.ref016 article-title: Transplantation into the Anterior Chamber of the Eye for Longitudinal, Non-invasive In vivo Imaging with Single-cell Resolution in Real-time publication-title: J Vis Exp – volume: 559 start-page: 13 issue: 1–2 year: 1991 ident: pone.0241925.ref022 article-title: Laser-induced fluorescence and fluorescence microscopy for capillary electrophoresis zone detection—ScienceDirect publication-title: Journal of Chromatography A – volume: 6 start-page: 527 issue: 7 year: 2018 ident: pone.0241925.ref011 article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(18)30078-0 – volume: 13 start-page: 268 issue: 5 year: 2017 ident: pone.0241925.ref010 article-title: Clinical pancreatic islet transplantation publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2016.178 – volume: 1081–1082 start-page: 51 year: 2018 ident: pone.0241925.ref027 article-title: Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson's disease patients publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2018.02.015 – volume: 60 start-page: 1 issue: 1 year: 2011 ident: pone.0241925.ref005 article-title: Stopping type 1 diabetes: attempts to prevent or cure type 1 diabetes in man publication-title: Diabetes doi: 10.2337/db10-1114 – volume: 38 start-page: 997 issue: 6 year: 2015 ident: pone.0241925.ref007 article-title: Prevention and reversal of type 1 diabetes—past challenges and future opportunities publication-title: Diabetes Care doi: 10.2337/dc15-0349 – volume: 29 start-page: 2828 issue: 13 year: 2008 ident: pone.0241925.ref023 article-title: Pattern recognition in capillary electrophoresis data using dynamic programming in the wavelet domain publication-title: Electrophoresis doi: 10.1002/elps.200700831 – volume: 32 start-page: 28 issue: 1 year: 2019 ident: pone.0241925.ref028 article-title: Urinary proteomics to diagnose chronic active antibody-mediated rejection in pediatric kidney transplantation—a pilot study publication-title: Transpl Int doi: 10.1111/tri.13363 – year: 2018 ident: pone.0241925.ref008 article-title: The challenge of modulating β-cell autoimmunity in type 1 diabetes publication-title: Lancet Diab Endocrinol – volume: 162 start-page: 705 issue: 3 year: 1982 ident: pone.0241925.ref025 article-title: An improved algorithm for matching biological sequences publication-title: J Mol Biol doi: 10.1016/0022-2836(82)90398-9 – volume: 62 start-page: 811 issue: 5 year: 2019 ident: pone.0241925.ref019 article-title: Operational immune tolerance towards transplanted allogeneic pancreatic islets in mice and a non-human primate publication-title: Diabetologia doi: 10.1007/s00125-019-4814-4 – volume: 39 start-page: 1230 issue: 7 year: 2016 ident: pone.0241925.ref009 article-title: Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia publication-title: Diabetes Care doi: 10.2337/dc15-1988 – volume: 9 start-page: 92 issue: 2 year: 2013 ident: pone.0241925.ref006 article-title: Immune therapy in type 1 diabetes mellitus publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2012.237 – volume: 62 start-page: 1237 issue: 7 year: 2019 ident: pone.0241925.ref015 article-title: In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice publication-title: Diabetologia doi: 10.1007/s00125-019-4879-0 – volume: 12 start-page: e0179790 issue: 6 year: 2017 ident: pone.0241925.ref002 article-title: Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0179790 |
| SSID | ssj0053866 |
| Score | 2.383981 |
| Snippet | The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0241925 |
| SubjectTerms | Aging Allografts Analytical chemistry Animals Anterior chamber Aqueous humour Artificial Intelligence Biology and Life Sciences Biomarkers Biomedical research Categories Chromatography Computer and Information Sciences Computer programs Diabetes Diabetes Mellitus, Experimental - immunology Digital video recorders Disease Electrokinetics Engineering and Technology FDA approval Feasibility Female Fluorescence Forecasting - methods Forecasts and trends Graft rejection Graft Rejection - physiopathology Graft Survival - immunology Health aspects Immune Tolerance Immunological tolerance Immunosuppression Therapy - methods Islet cell transplantation Islets of Langerhans - immunology Islets of Langerhans - metabolism Islets of Langerhans Transplantation - methods Isoantigens - immunology Laser induced fluorescence Learning algorithms Machine Learning Male Medical research Medicine Medicine and Health Sciences Mice Mice, Inbred C57BL Mice, Inbred DBA Pancreas transplantation Pancreatic islet transplantation Patient outcomes Pattern recognition Rejection Software Support Vector Machine Support vector machines Transplantation, Homologous Transplants & implants |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTWI7sY8LoipIgAQUlVNkO_ZSFLKrTVaIf89M4o0aUak9cI3HkTIvz8Qz3xDyXDJtKzgW40plNuaKi1hqz2ItFKvAJ1fGY3Pyh4_58Ql_fypOz436wpqwAR54YNyhERaVLJeYunjQr8R4zn3ODPfeqL51L5Fql0wNPhisOM9Doxwr0sMgl_l61bg5nEoQ1ojJQdTj9Y9eebauV-1FIee_lZPXt81a__mt6_rcsXR0i9wM8SRdDN-xR6655jbZCxbb0pcBVvrVHfJ9QX_1lZOOhlERS7pDFKfdiq43eGfTUXAPQyRp6VkLUqXLjfZdSzfuZ1-21VCs5Ni2sKd2OJbD3SUnR2-_vjmOw2CF2OYq62IrGRfWSJ8UlUu1dIKbzOYZt6kRaQUpkbNCVdYrKdNcp0rqxBdSofUrXxl2j8waYOU-oRBwpNoInjnruSvAjcs0qTJXQR6onXQRYTsulzagjuPwi7rsr9IKyD4GRpUomzLIJiLxuGs9oG5cQv8aBTjSImZ2_wA0qQyaVF6mSRF5guIvhwbU0fLLBd51Yp9XFpFnPQXiZjRYmLPU27Yt3336dgWiL58nRC8CkV8BO6wOzRDwTYjHNaE8mFCC9dvJ8j4q644rbZlx7C5mvMhh506BL15-Oi7jS7HYrnGrbU8jE8bB9Ufk_qDvI2cZg4AP0oSIFBNLmLB-utKc_ehhywsIvSGijMh8tJkrCffB_xDuQ3Ijwz8leCEgDsis22zdIwgnO_O49xx_Afd5dGw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgIuiJZHAwUMQgIO2W5iJ3EOCG1Rq4LUBRWKyily_FiKliRsskL8e2ayTiCigl7jcaTMeD6P45lvCHkqmFQatkVfp6HyecojX0jLfBmlTAMm69xicfLxLD465W_PorMNMutqYTCtssPEFqh1qfAf-V7IsWqS8SR-VX33sWsU3q52LTSka62gX7YUY1fIZojMWCOyuX8we3_SYTN4dxy7AjqWBHvOXuOqLMwYdisId6LBBtXy-PdoPaoWZX1RKPp3RuW1VVHJnz_kYvHHdnV4k9xwcSadrhfGFtkwxTa5euxu0rfJlnPqmj53zNMvbpHPU_qtTa401HWTmNOOdJw2Ja2WOL-hgCDrYFPR8xoMT-dLaZuaLs3XNrOroJjssaphzsJg5w5zm5weHnx8feS73gu-itOw8ZVgPFK5sJNEm0AKE_E8VHHIVZBHgYZTk1FRqpVNhQhiGaRCTmwiUgSI1Oqc3SGjArS6QyjEJIHMIx4aZblJAOlFMNGh0XBUlEYYj7BO4ZlyxOTYH2ORtbdtCRxQ1jrL0EyZM5NH_H5WtSbm-I_8Ptqyl0Va7fZBuZxnzkuzPFKIaLHAc7IFMJvklnMbs5xbm6epRx7hSsjWNao9OGRTvA7FUrDQI09aCaTWKDB3Zy5XdZ29effpEkIfTgZCz5yQLUEdSrp6CfgmpOwaSO4OJAEg1GB4B9dtp5U6--1KMLNbyxcPP-6H8aWYj1eYctXKiAnjsDt45O566feaZQxiQjhJeCQZOMVA9cOR4vxLy2yeQHQOQadHxr37XMq49_79HffJ9RB_k-BtQLRLRs1yZR5ALNnkDx1A_AJlanY8 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsRO4hwXRFWQKAhY1B5Q5Dj2Uliyq00iBAd-OzOJExEoohy4RfHYisf2PDIznwm5J5hUBahFt0hD5fKUR66QhrkySlkBMrnIDRYnvziI92f8-WF0uEHe97UwloPgIy6WVRvJx4dlqXctJ3cRr6iLnnoBS4K-h7cCIg80Dpgs0f0WcQj_jNVYgHSGbMYRmOoTsjk7eDU96iLNoRuHPrPldH8aaaSuWlT_QXZP8MtOMkx_z68825Qr-fWLXCx-Ul57F8j3ftpdzsonr6lzT337BRHyv_HlIjlvzV467UbZIhu6vES2rGCp6EOLfv3oMjma0s9tgqem9kaLOe2Bz2m9pKs1hpZqClKsM3gVPa5g89H5Wpq6omv9sc0uKykmnDQV9FlovD1EXyGzvadvn-y79v4HV8VpWLtKMB6pXBg_KXQghY54Hqo45CrIo6AAz02rKC2USYUIYhmkQvomESkKqdQUObtKJiXMfptQsIsCmUc81MpwnYC2EYFfhLoAd1VqoR3C-mXOlAVHxzs6Flkb8UvASeoYlSE7M8tOh7hDr1UHDvIX-se4gwZahPZuX8B6ZnYdszxSKFVjgb66AYHq54ZzE7OcG5OnqUNu4_7LujrZQUBlUwzJYjla6JC7LQXCe5SYPzSXTVVlz16-OwXRm9cjogeWyCyBHUramg2YE263EeXOiBKElBo1b-N-7blSZSHHImjGkxh69ifo5OY7QzMOijmBpV42LY3wGQcN5ZBr3YEbOMsY2KXgzTgkGR3FEevHLeXxhxZdPQEPAQxfh3jDoT3V4l7_1w43yLkQf95gjCLaIZN63eibYOHW-S0rp34AUT-sHg priority: 102 providerName: Unpaywall |
| Title | A machine learning approach to predict pancreatic islet grafts rejection versus tolerance |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33152016 https://www.proquest.com/docview/2457963476 https://www.proquest.com/docview/2458034301 https://pubmed.ncbi.nlm.nih.gov/PMC7644021 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241925&type=printable https://doaj.org/article/b5c0488680614f5780bf44f63b4ffb99 http://dx.doi.org/10.1371/journal.pone.0241925 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtNAcNWmB7hUlFcNJSwICTg48mNtrw8IpVVDQWqoCkHpyVqvd0ORsYOdCPr3zPglLILIxQfvrCXP7Lx2XoS84K6QCahFMwkdabKQeSYX2jWFF7oJyOQk1licfD71z2bsw9yb75B2ZmuDwHKja4fzpGZFOvr14-YtMPybampDYLebRss8UyPQOWC0eLtkD3RViMMczlkXVwDurqKXaLWYvmO5TTHdv77SU1ZVT_9Ocg-WaV5uMkv_zq68tc6W4uanSNM_VNfkDtlvbE46rg_JAdlR2V1y0HB1SV81radf3yNXY_q9yq5UtBknsaBt13G6yumywLjOioIIqa1NSa9LoDxdFEKvSlqob1VqV0Yx22Ndwp5U4egOdZ_MJqefT87MZviCKf3QWZmSu8yTMddWkChbcOWx2JG-w6Qde3YCbpOSXphIHXJu-8IOubB0wEOUEKFOYvcBGWSAykNCwSixRewxR0nNVACinttW4qgEfEWhuDKI22I5kk1nchyQkUZVuC0AD6VGVIS0iRraGMTsdi3rzhz_gT9GAnaw2Fe7epEXi6hh0yj2JIo0n6OjrEGaWbFmTPtuzLSOw9AgT5H8UV2k2kmHaIzxUKwFcwzyvILA3hoZJu8sxLoso_cfv2wB9OmyB_SyAdI5oEOKpmAC_gl7dvUgj3qQICFkb_kQD2uLlTJyGFYguyzwYWd7gDcvP-uW8aOYkJepfF3BcMtloB4M8rA-7x1mXReMQnAlDBL0OKGH-v5Kdv21am0egHkOVqdBRh3PbEXcR1vj6jG57eCVCUYGvCMyWBVr9QTsylU8JLvBPIAnP7HxOXk3JHvHp9OLy2F1UzOsRAm8m00vxle_AQAofv0 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIlEuiJZHA4UaBIIest3EzuuA0PKotrRbJGjRcgqOYy9FSxI2u6r6p_iNzCROIKKCXnqNx5EyM_5mJp4HIU9CJmQKZtFOI1faPOKeHQrNbOFFLAVMThONxcnjQ390zN9NvMkK-dnUwmBaZYOJFVCnucR_5Dsux6pJxgP_ZfHDxqlReLvajNCo1WJfnZ1CyFa-2HsD8n3qurtvj16PbDNVwJZ-5C5sGTLuySTUgyBVjgiVxxNX-i6XTuI5KcQDSnpRKnUUho4vICgXAx2EEap-pNOEwXuvkKucAZbA-QkmbYAH2OH7pjyPBc6O0YZ-kWeqD7YQnCmvY_6qKQGtLegVs7w8z9H9O19zdZkV4uxUzGZ_GMPdm-SG8WLpsFa7NbKisnVybWzu6dfJmoGMkj43fa23b5HPQ_q9St1U1MyqmNKmpTld5LSY4_4FBXyqXVlJT0pQKzqdC70o6Vx9q_LGMoqpJMsS9swUzgVRt8nxpcjgDullwNUNQsHjcUTicVdJzVUAdiR0BqmrUghEhQqVRVjD8Fiatuc4fWMWV3d5AYQ_Nc9iFFNsxGQRu91V1G0__kP_CmXZ0mLT7upBPp_GBgPixJOIl36IUbgGqBwkmnPts4RrnUSRRbZQE-K6AraFnniIl61YaOZa5HFFgY07MswMmoplWcZ77z9dgOjjhw7RM0Okc2CHFKYaA74JG4J1KDc7lAA_srO8gXrbcKWMfx9U2Nno8vnLj9plfClm-2UqX1Y04YDBCXMscrdW_ZazjIHHCXGKRYLOoeiwvruSnXyt-qYH4PuDS2uRfnt8LiTce__-ji2yOjoaH8QHe4f798l1F3_I4L2Dt0l6i_lSPQCvdZE8rKCCki-XjU2_AN50rIc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhUuiJZHA4UaBAIO2d3EzuuA0EJZtZQWRClaTsFx7KVoScJmV1X_Gr-OmcQJRFTQS6_xOFJmxt_MxPMg5FHIhEzBLNpp5EqbR9yzQ6GZLbyIpYDJaaKxOHn_wN854m8m3mSF_GxqYTCtssHECqjTXOI_8oHLsWqS8cAfaJMW8X57_KL4YeMEKbxpbcZp1Cqyp05PIHwrn-9ug6wfu-749cdXO7aZMGBLP3IXtgwZ92QS6mGQKkeEyuOJK32XSyfxnBRiAyW9KJU6CkPHFxCgi6EOwgiPQaTThMF7L5HLAWMRphMGkzbYAxzxfVOqxwJnYDSjX-SZ6oNdBMfK65jCamJAaxd6xSwvz3J6_87dvLLMCnF6ImazPwzj-Dq5ZjxaOqpVcI2sqGydrO6bO_t1smbgo6RPTY_rZzfI5xH9XqVxKmrmVkxp096cLnJazHH_ggJW1W6tpMclqBidzoVelHSuvlU5ZBnFtJJlCXtmCmeEqJvk6EJkcIv0MuDqBqHg_Tgi8birpOYqAJsSOsPUVSkEpUKFyiKsYXgsTQt0nMQxi6t7vQBCoZpnMYopNmKyiN3uKuoWIP-hf4mybGmxgXf1IJ9PY4MHceJJxE4_xIhcA2wOE8259lnCtU6iyCJbqAlxXQ3bwlA8wotXLDpzLfKwosAmHhkeh6lYlmW8--7TOYgOP3SInhginQM7pDCVGfBN2BysQ7nZoQQokp3lDdTbhitl_PvQws5Gl89eftAu40sx8y9T-bKiCYeMgx2yyO1a9VvOMgbeJ8QsFgk6h6LD-u5Kdvy16qEeQBwA7q1F-u3xOZdw7_z7O7bIKqBS_Hb3YO8uuerivxm8gvA2SW8xX6p74MAukvsVUlDy5aKh6Rc4NbDK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsRO4hwXRFWQKAhY1B5Q5Dj2Uliyq00iBAd-OzOJExEoohy4RfHYisf2PDIznwm5J5hUBahFt0hD5fKUR66QhrkySlkBMrnIDRYnvziI92f8-WF0uEHe97UwloPgIy6WVRvJx4dlqXctJ3cRr6iLnnoBS4K-h7cCIg80Dpgs0f0WcQj_jNVYgHSGbMYRmOoTsjk7eDU96iLNoRuHPrPldH8aaaSuWlT_QXZP8MtOMkx_z68825Qr-fWLXCx-Ul57F8j3ftpdzsonr6lzT337BRHyv_HlIjlvzV467UbZIhu6vES2rGCp6EOLfv3oMjma0s9tgqem9kaLOe2Bz2m9pKs1hpZqClKsM3gVPa5g89H5Wpq6omv9sc0uKykmnDQV9FlovD1EXyGzvadvn-y79v4HV8VpWLtKMB6pXBg_KXQghY54Hqo45CrIo6AAz02rKC2USYUIYhmkQvomESkKqdQUObtKJiXMfptQsIsCmUc81MpwnYC2EYFfhLoAd1VqoR3C-mXOlAVHxzs6Flkb8UvASeoYlSE7M8tOh7hDr1UHDvIX-se4gwZahPZuX8B6ZnYdszxSKFVjgb66AYHq54ZzE7OcG5OnqUNu4_7LujrZQUBlUwzJYjla6JC7LQXCe5SYPzSXTVVlz16-OwXRm9cjogeWyCyBHUramg2YE263EeXOiBKElBo1b-N-7blSZSHHImjGkxh69ifo5OY7QzMOijmBpV42LY3wGQcN5ZBr3YEbOMsY2KXgzTgkGR3FEevHLeXxhxZdPQEPAQxfh3jDoT3V4l7_1w43yLkQf95gjCLaIZN63eibYOHW-S0rp34AUT-sHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+predict+pancreatic+islet+grafts+rejection+versus+tolerance&rft.jtitle=PloS+one&rft.au=Ceballos%2C+Gerardo+A&rft.au=Hernandez%2C+Luis+F&rft.au=Paredes%2C+Daniel&rft.au=Betancourt%2C+Luis+R&rft.date=2020-11-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=11&rft.spage=e0241925&rft_id=info:doi/10.1371%2Fjournal.pone.0241925&rft.externalDocID=A640707142 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |