Differential Network Analysis Applied to Preoperative Breast Cancer Chemotherapy Response
In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making...
Saved in:
Published in | PloS one Vol. 8; no. 12; p. e81784 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.12.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0081784 |
Cover
Abstract | In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7. |
---|---|
AbstractList | In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7. In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7.In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7. |
Audience | Academic |
Author | Struckmann, Stephan Engel, Nadja Fuellen, Georg Warsow, Gregor Reimer, Toralf Kerkhoff, Claus |
AuthorAffiliation | 1 Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock Medical School, Rostock, Germany 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany 5 Department of Obstetrics and Gynecology, University of Rostock Medical School, Germany 4 Department of Biomedical Sciences, School of Human Sciences, University of Osnabrueck, Germany 2 Department of Mathematics and Informatics, University of Greifswald, Greifswald, Germany 6 Department of Cell Biology, University of Rostock Medical School, Rostock, Germany Leibniz-Institute for Farm Animal Biology (FBN), Germany |
AuthorAffiliation_xml | – name: 5 Department of Obstetrics and Gynecology, University of Rostock Medical School, Germany – name: 6 Department of Cell Biology, University of Rostock Medical School, Rostock, Germany – name: 2 Department of Mathematics and Informatics, University of Greifswald, Greifswald, Germany – name: 4 Department of Biomedical Sciences, School of Human Sciences, University of Osnabrueck, Germany – name: Leibniz-Institute for Farm Animal Biology (FBN), Germany – name: 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany – name: 1 Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock Medical School, Rostock, Germany |
Author_xml | – sequence: 1 givenname: Gregor surname: Warsow fullname: Warsow, Gregor – sequence: 2 givenname: Stephan surname: Struckmann fullname: Struckmann, Stephan – sequence: 3 givenname: Claus surname: Kerkhoff fullname: Kerkhoff, Claus – sequence: 4 givenname: Toralf surname: Reimer fullname: Reimer, Toralf – sequence: 5 givenname: Nadja surname: Engel fullname: Engel, Nadja – sequence: 6 givenname: Georg surname: Fuellen fullname: Fuellen, Georg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24349128$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9uO0zAQhiO0iD3AGyCIhITgosWnOAkXSKWcKq1YtBwkrizHmbQuaRxsZ6Fvj7NNUbNaIZQLRzPf_J4Zz5xGR41pIIoeYjTFNMUv1qazjaynbTBPEcpwmrE70QnOKZlwgujRwf9xdOrcGqGEZpzfi44JoyzHJDuJvr_RVQUWGq9lHX8E_8vYH_EsCG-ddvGsbWsNZexN_MmCacFKr68gfm1BOh_PZaPAxvMVbIxfBWe7jS_BhZQc3I_uVrJ28GA4z6Kv795-mX-YnF-8X8xn5xPFc-InipRpKkkuZZEWwFCBs6wqOa9yghkFlWCU5BQox1WeS4YwUrJAWcGSiqSEInoWPd7ptrVxYuiKE5hxjlPC0iwQix1RGrkWrdUbabfCSC2uDcYuhbReqxpEyIBVGOecQMpIyTPEyrxUBYUUMOZF0Ho13NYVGyhVaJyV9Uh07Gn0SizNlaBZkhLcp_tsELDmZwfOi412CupaNmC667xzzmh40IA-uYHeXt1ALWUoQDeVCfeqXlTMen-SEZ4GanoLFb4SNlqFEap0sI8Cno8CAuPht1_Kzjmx-Hz5_-zFtzH79IBdgaz9ypm68zoMzRh8dNjpvy3ez24AXu4AZY1zFiqhtJe9TihN1wIj0S_KvmmiXxQxLEoIZjeC9_r_DPsDcpcWmg |
CitedBy_id | crossref_primary_10_1042_BSR20181894 crossref_primary_10_1371_journal_pone_0129711 crossref_primary_10_1007_s12031_021_01807_9 crossref_primary_10_3389_fgene_2021_688447 crossref_primary_10_1007_s10549_015_3428_x crossref_primary_10_18632_oncotarget_27566 crossref_primary_10_1093_bib_bbv078 crossref_primary_10_1371_journal_pone_0169742 crossref_primary_10_1093_bib_bbx065 crossref_primary_10_1093_bioinformatics_btaa034 crossref_primary_10_1089_omi_2017_0010 |
Cites_doi | 10.1002/cncr.25016 10.1093/bioinformatics/btm019 10.1001/jama.295.21.2492 10.1016/0003-2697(76)90527-3 10.1002/hep.24174 10.1186/1752-0509-4-164 10.1200/JCO.2006.05.6861 10.1038/sj.bjc.6603449 10.1371/journal.pone.0034796 10.1038/msb4100180 10.1200/JCO.2007.14.4147 10.1186/bcr2468 10.1093/jnci/djq526 10.1093/bioinformatics/18.suppl_1.S233 10.1093/bioinformatics/btl230 10.1073/pnas.91.21.10079 10.1042/bj3610597 10.1093/nar/gkq973 10.1038/msb.2011.99 10.1083/jcb.141.2.503 10.1158/0008-5472.CAN-10-1295 10.1083/jcb.200412115 10.1038/onc.2008.430 10.1186/bcr2350 10.1093/bioinformatics/btr245 10.1371/journal.pone.0030804 10.1371/journal.pone.0047833 10.1074/jbc.271.16.9363 10.1074/jbc.M207478200 10.1093/nar/gks994 10.1039/c2ib00133k 10.1093/bioinformatics/bti440 10.1101/gr.071852.107 10.1186/gb-2011-12-6-r57 10.1158/0008-5472.CAN-08-4156 10.1186/bcr1617 10.1074/jbc.M308953200 10.1158/0008-5472.CAN-07-0746 10.1186/1471-2105-5-100 10.1038/nmeth.2212 10.1074/jbc.M503587200 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Warsow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Warsow et al 2013 Warsow et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Warsow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Warsow et al 2013 Warsow et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0081784 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine |
DocumentTitleAlternate | Differential Network Analysis of TFAC Response |
EISSN | 1932-6203 |
ExternalDocumentID | 1466172478 oai_doaj_org_article_be44f11962e742d6804d9dcb3e7e116b PMC3857210 3150579911 A478358267 24349128 10_1371_journal_pone_0081784 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. BBORY CGR CUY CVF ECM EIF NPM PV9 RZL PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO RC3 7X8 ESTFP 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c692t-c2d77a29aab7be40b188fd66f92143ec510593e361f99a4010cab08b45f272303 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 05 00:20:56 EDT 2023 Wed Aug 27 01:28:35 EDT 2025 Thu Aug 21 13:41:05 EDT 2025 Fri Sep 05 07:00:50 EDT 2025 Thu Sep 04 07:19:37 EDT 2025 Tue Jun 17 21:17:49 EDT 2025 Tue Jun 10 20:24:04 EDT 2025 Fri Jun 27 04:58:31 EDT 2025 Fri Jun 27 04:40:56 EDT 2025 Thu May 22 21:19:32 EDT 2025 Wed Feb 19 01:52:20 EST 2025 Tue Jul 01 01:26:20 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-c2d77a29aab7be40b188fd66f92143ec510593e361f99a4010cab08b45f272303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: GW SS CK NE GF. Performed the experiments: GW NE CK. Analyzed the data: GW SS CK TR NE GF. Contributed reagents/materials/analysis tools: NE CK. Wrote the paper: GW NE GF. |
OpenAccessLink | https://www.proquest.com/docview/1466172478?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 24349128 |
PQID | 1466172478 |
PQPubID | 1436336 |
PageCount | e81784 |
ParticipantIDs | plos_journals_1466172478 doaj_primary_oai_doaj_org_article_be44f11962e742d6804d9dcb3e7e116b pubmedcentral_primary_oai_pubmedcentral_nih_gov_3857210 proquest_miscellaneous_1469643008 proquest_journals_1466172478 gale_infotracmisc_A478358267 gale_infotracacademiconefile_A478358267 gale_incontextgauss_ISR_A478358267 gale_incontextgauss_IOV_A478358267 gale_healthsolutions_A478358267 pubmed_primary_24349128 crossref_citationtrail_10_1371_journal_pone_0081784 crossref_primary_10_1371_journal_pone_0081784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-09 |
PublicationDateYYYYMMDD | 2013-12-09 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Nacu (ref4) 2007; 23 MC Abba (ref23) 2006; 8 T Ideker (ref6) 2008; 18 G Warsow (ref15) 2010; 4 MM Bradford (ref18) 1976; 72 KR Hess (ref34) 2006; 24 V Popovici (ref14) 2010; 12 R Saito (ref17) 2012; 9 HY Chuang (ref10) 2007; 3 D Lin (ref30) 1994; 91 XR Yang (ref48) 2011; 103 ref38 MV Blagosklonny (ref36) 1995; 55 P Dao (ref7) 2011; 27 AR Thorner (ref25) 2009; 28 MR Pickard (ref26) 2009; 11 J Hannemann (ref46) 2006; 95 N Engel (ref19) 2012; 7 J Chou (ref22) 2010; 222 L Verlinden (ref39) 2005; 280 HA Seong (ref41) 2003; 278 BH Long (ref24) 1994; 54 DF Calvisi (ref42) 2011; 53 J Eeckhoute (ref21) 2007; 67 D Szklarczyk (ref13) 2011; 39 C Staiger (ref12) 2012; 7 LW Hebbard (ref28) 2010; 70 M Joaquin (ref29) 2003; 278 AML Liekens (ref32) 2011; 12 A Sala (ref31) 1996; 271 HA Seong (ref40) 2002; 361 AP Davis (ref33) 2013; 41 O Gevaert (ref11) 2006; 22 LA Carey (ref45) 2006; 295 T Ideker (ref8) 2012; 8 L Cabusora (ref3) 2005; 21 C Liedtke (ref20) 2008; 26 MJ Lund (ref47) 2010; 116 ref9 N Alcaraz (ref16) 2012; 4 ref5 G Raschell (ref27) 1999; 59 R Breitling (ref2) 2004; 5 I Nakano (ref35) 2005; 170 J Brugarolas (ref37) 1998; 141 M Mannefeld (ref43) 2009; 69 T Ideker (ref1) 2002; 18 B Tegze (ref44) 2012; 7 19671159 - Breast Cancer Res. 2009;11(4):R60 21696594 - Genome Biol. 2011;12(6):R57 16896004 - J Clin Oncol. 2006 Sep 10;24(26):4236-44 21118483 - BMC Syst Biol. 2010;4:164 17616709 - Cancer Res. 2007 Jul 1;67(13):6477-83 23112854 - PLoS One. 2012;7(10):e47833 12947099 - J Biol Chem. 2003 Nov 7;278(45):44255-64 23132118 - Nat Methods. 2012 Nov;9(11):1069-76 7913875 - Cancer Res. 1994 Aug 15;54(16):4355-61 21191117 - J Natl Cancer Inst. 2011 Feb 2;103(3):250-63 942051 - Anal Biochem. 1976 May 7;72:248-54 7553639 - Cancer Res. 1995 Oct 15;55(20):4623-6 16144839 - J Biol Chem. 2005 Nov 11;280(45):37319-30 22252388 - Mol Syst Biol. 2012;8:565 19383908 - Cancer Res. 2009 May 1;69(9):4073-80 7937841 - Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10079-83 8621601 - J Biol Chem. 1996 Apr 19;271(16):9363-7 16061694 - J Cell Biol. 2005 Aug 1;170(3):413-27 11802789 - Biochem J. 2002 Feb 1;361(Pt 3):597-604 21480327 - Hepatology. 2011 Apr;53(4):1226-36 15840709 - Bioinformatics. 2005 Jun 15;21(12):2898-905 9548727 - J Cell Biol. 1998 Apr 20;141(2):503-14 10416595 - Cancer Res. 1999 Jul 15;59(14):3365-8 12169552 - Bioinformatics. 2002;18 Suppl 1:S233-40 15272936 - BMC Bioinformatics. 2004 Jul 23;5:100 17940530 - Mol Syst Biol. 2007;3:140 19798694 - J Cell Physiol. 2010 Jan;222(1):42-9 22353882 - Integr Biol (Camb). 2012 Jul;4(7):756-64 17078870 - Breast Cancer Res. 2006;8(6):R64 20861186 - Cancer Res. 2010 Nov 1;70(21):8863-73 12645566 - J Biol Chem. 2003 Mar 14;278(11):9655-62 16873470 - Bioinformatics. 2006 Jul 15;22(14):e184-90 16757721 - JAMA. 2006 Jun 7;295(21):2492-502 22319589 - PLoS One. 2012;7(2):e30804 20336785 - Cancer. 2010 Jun 1;116(11):2549-59 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 22558100 - PLoS One. 2012;7(4):e34796 23093600 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1104-14 17267429 - Bioinformatics. 2007 Apr 1;23(7):850-8 18381899 - Genome Res. 2008 Apr;18(4):644-52 19043454 - Oncogene. 2009 Feb 5;28(5):742-51 18250347 - J Clin Oncol. 2008 Mar 10;26(8):1275-81 20064235 - Breast Cancer Res. 2010;12(1):R5 21685072 - Bioinformatics. 2011 Jul 1;27(13):i205-13 17088909 - Br J Cancer. 2006 Nov 20;95(10):1334-41 |
References_xml | – volume: 222 start-page: 42 year: 2010 ident: ref22 article-title: Gata3 in development and cancer differentiation: cells gata have it! J Cell Physiol – volume: 116 start-page: 2549 year: 2010 ident: ref47 article-title: Age/race differences in her2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report publication-title: Cancer doi: 10.1002/cncr.25016 – volume: 23 start-page: 850 year: 2007 ident: ref4 article-title: Gene expression network analysis and applications to immunology publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm019 – volume: 295 start-page: 2492 year: 2006 ident: ref45 article-title: Race, breast cancer subtypes, and survival in the carolina breast cancer study publication-title: JAMA doi: 10.1001/jama.295.21.2492 – volume: 72 start-page: 248 year: 1976 ident: ref18 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – ident: ref5 – volume: 53 start-page: 1226 year: 2011 ident: ref42 article-title: Activation of v-myb avian myeloblastosis viral oncogene homolog-like2 (mybl2)-lin9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53 publication-title: Hepatology doi: 10.1002/hep.24174 – volume: 4 start-page: 164 year: 2010 ident: ref15 article-title: Expressence-revealing the essence of differential experimental data in the context of an interaction/regulation net-work publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-164 – volume: 24 start-page: 4236 year: 2006 ident: ref34 article-title: Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and uorouracil, doxorubicin, and cyclophosphamide in breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2006.05.6861 – volume: 95 start-page: 1334 year: 2006 ident: ref46 article-title: Molecular subtypes of breast cancer and amplification of topoisomerase ii alpha: predictive role in dose intensive adjuvant chemotherapy publication-title: Br J Cancer doi: 10.1038/sj.bjc.6603449 – volume: 7 start-page: e34796 year: 2012 ident: ref12 article-title: A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0034796 – volume: 3 start-page: 140 year: 2007 ident: ref10 article-title: Network-based classification of breast cancer metastasis publication-title: Mol Syst Biol doi: 10.1038/msb4100180 – volume: 26 start-page: 1275 year: 2008 ident: ref20 article-title: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2007.14.4147 – volume: 12 start-page: R5 year: 2010 ident: ref14 article-title: Effect of training-sample size and classification difficulty on the accuracy of genomic predictors publication-title: Breast Cancer Res doi: 10.1186/bcr2468 – volume: 103 start-page: 250 year: 2011 ident: ref48 article-title: Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djq526 – volume: 18 start-page: S233 year: 2002 ident: ref1 article-title: Discovering regulatory and signalling circuits in molecular interaction networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S233 – ident: ref9 – volume: 22 start-page: e184 year: 2006 ident: ref11 article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl230 – volume: 91 start-page: 10079 year: 1994 ident: ref30 article-title: Constitutive expression of b-myb can bypass p53-induced waf1/cip1-mediated g1 arrest publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.21.10079 – volume: 361 start-page: 597 year: 2002 ident: ref40 article-title: Phosphorylation of a novel zinc-finger-like protein, zpr9, by murine protein serine/threonine kinase 38 (mpk38) publication-title: Biochem J doi: 10.1042/bj3610597 – volume: 39 start-page: D561 year: 2011 ident: ref13 article-title: The string database in 2011: functional interaction networks of proteins, globally integrated and scored publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq973 – volume: 8 start-page: 565 year: 2012 ident: ref8 article-title: Differential network biology publication-title: Mol Syst Biol doi: 10.1038/msb.2011.99 – volume: 54 start-page: 4355 year: 1994 ident: ref24 article-title: Paclitaxel inhibits progression of mitotic cells to g1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase publication-title: Cancer Res – volume: 141 start-page: 503 year: 1998 ident: ref37 article-title: p21 is a critical cdk2 regulator essential for proliferation control in rb-deficient cells publication-title: J Cell Biol doi: 10.1083/jcb.141.2.503 – volume: 55 start-page: 4623 year: 1995 ident: ref36 article-title: Taxol induction of p21waf1 and p53 requires c-raf-1 publication-title: Cancer Res – ident: ref38 – volume: 70 start-page: 8863 year: 2010 ident: ref28 article-title: Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-1295 – volume: 170 start-page: 413 year: 2005 ident: ref35 article-title: Maternal embryonic leucine zipper kinase (melk) regulates multipotent neural progenitor proliferation publication-title: J Cell Biol doi: 10.1083/jcb.200412115 – volume: 28 start-page: 742 year: 2009 ident: ref25 article-title: In vitro and in vivo analysis of b-myb in basal-like breast cancer publication-title: Oncogene doi: 10.1038/onc.2008.430 – volume: 11 start-page: R60 year: 2009 ident: ref26 article-title: Dysregulated expression of fau and melk is associated with poor prognosis in breast cancer publication-title: Breast Cancer Res doi: 10.1186/bcr2350 – volume: 27 start-page: i205 year: 2011 ident: ref7 article-title: Optimally discriminative subnetwork markers predict response to chemotherapy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr245 – volume: 7 start-page: e30804 year: 2012 ident: ref44 article-title: Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance publication-title: PLoS One doi: 10.1371/journal.pone.0030804 – volume: 7 start-page: e47833 year: 2012 ident: ref19 article-title: Metabolic profiling reveals sphingosine-1-phosphate kinase 2 and lyase as key targets of (phyto-) estrogen action in the breast cancer cell line mcf-7 and not in mcf-12a publication-title: PLoS One doi: 10.1371/journal.pone.0047833 – volume: 271 start-page: 9363 year: 1996 ident: ref31 article-title: B-myb promotes s phase and is a downstream target of the negative regulator p107 in human cells publication-title: J Biol Chem doi: 10.1074/jbc.271.16.9363 – volume: 278 start-page: 9655 year: 2003 ident: ref41 article-title: Enhancement of b-myb transcriptional activity by zpr9, a novel zinc finger protein publication-title: J Biol Chem doi: 10.1074/jbc.M207478200 – volume: 41 start-page: D1104 year: 2013 ident: ref33 article-title: The comparative toxicogenomics database: update 2013 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks994 – volume: 4 start-page: 756 year: 2012 ident: ref16 article-title: Efficient key pathway mining: combining networks and omics data publication-title: Integr Biol (Camb) doi: 10.1039/c2ib00133k – volume: 21 start-page: 2898 year: 2005 ident: ref3 article-title: Differential network expression during drug and stress response publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti440 – volume: 18 start-page: 644 year: 2008 ident: ref6 article-title: Protein networks in disease publication-title: Genome Res doi: 10.1101/gr.071852.107 – volume: 12 start-page: R57 year: 2011 ident: ref32 article-title: Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation publication-title: Genome Biol doi: 10.1186/gb-2011-12-6-r57 – volume: 69 start-page: 4073 year: 2009 ident: ref43 article-title: B-myb is required for recovery from the dna damageinduced g2 checkpoint in p53 mutant cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4156 – volume: 8 start-page: R64 year: 2006 ident: ref23 article-title: Gata3 protein as a muc1 transcriptional regulator in breast cancer cells publication-title: Breast Cancer Res doi: 10.1186/bcr1617 – volume: 278 start-page: 44255 year: 2003 ident: ref29 article-title: The cell cycle-regulated b-myb transcription factor overcomes cyclindependent kinase inhibitory activity of p57(kip2) by interacting with its cyclin-binding domain publication-title: J Biol Chem doi: 10.1074/jbc.M308953200 – volume: 67 start-page: 6477 year: 2007 ident: ref21 article-title: Positive cross-regulatory loop ties gata-3 to estrogen receptor alpha expression in breast cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0746 – volume: 59 start-page: 3365 year: 1999 ident: ref27 article-title: Expression of b-myb in neuroblastoma tumors is a poor prognostic factor independent from mycn amplification publication-title: Cancer Res – volume: 5 start-page: 100 year: 2004 ident: ref2 article-title: Graph-based iterative group analysis enhances microarray interpretation publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-100 – volume: 9 start-page: 1069 year: 2012 ident: ref17 article-title: A travel guide to cytoscape plugins publication-title: Nat Methods doi: 10.1038/nmeth.2212 – volume: 280 start-page: 37319 year: 2005 ident: ref39 article-title: Characterization of the condensin component cnap1 and protein kinase melk as novel e2f target genes down-regulated by 1,25-dihydroxyvitamin d3 publication-title: J Biol Chem doi: 10.1074/jbc.M503587200 – reference: 21685072 - Bioinformatics. 2011 Jul 1;27(13):i205-13 – reference: 12169552 - Bioinformatics. 2002;18 Suppl 1:S233-40 – reference: 22252388 - Mol Syst Biol. 2012;8:565 – reference: 7937841 - Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10079-83 – reference: 22558100 - PLoS One. 2012;7(4):e34796 – reference: 16896004 - J Clin Oncol. 2006 Sep 10;24(26):4236-44 – reference: 16757721 - JAMA. 2006 Jun 7;295(21):2492-502 – reference: 8621601 - J Biol Chem. 1996 Apr 19;271(16):9363-7 – reference: 10416595 - Cancer Res. 1999 Jul 15;59(14):3365-8 – reference: 17616709 - Cancer Res. 2007 Jul 1;67(13):6477-83 – reference: 17078870 - Breast Cancer Res. 2006;8(6):R64 – reference: 16873470 - Bioinformatics. 2006 Jul 15;22(14):e184-90 – reference: 16061694 - J Cell Biol. 2005 Aug 1;170(3):413-27 – reference: 22319589 - PLoS One. 2012;7(2):e30804 – reference: 17267429 - Bioinformatics. 2007 Apr 1;23(7):850-8 – reference: 23132118 - Nat Methods. 2012 Nov;9(11):1069-76 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 7553639 - Cancer Res. 1995 Oct 15;55(20):4623-6 – reference: 18250347 - J Clin Oncol. 2008 Mar 10;26(8):1275-81 – reference: 15272936 - BMC Bioinformatics. 2004 Jul 23;5:100 – reference: 16144839 - J Biol Chem. 2005 Nov 11;280(45):37319-30 – reference: 21118483 - BMC Syst Biol. 2010;4:164 – reference: 7913875 - Cancer Res. 1994 Aug 15;54(16):4355-61 – reference: 21480327 - Hepatology. 2011 Apr;53(4):1226-36 – reference: 19798694 - J Cell Physiol. 2010 Jan;222(1):42-9 – reference: 22353882 - Integr Biol (Camb). 2012 Jul;4(7):756-64 – reference: 23112854 - PLoS One. 2012;7(10):e47833 – reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 – reference: 15840709 - Bioinformatics. 2005 Jun 15;21(12):2898-905 – reference: 11802789 - Biochem J. 2002 Feb 1;361(Pt 3):597-604 – reference: 21191117 - J Natl Cancer Inst. 2011 Feb 2;103(3):250-63 – reference: 18381899 - Genome Res. 2008 Apr;18(4):644-52 – reference: 9548727 - J Cell Biol. 1998 Apr 20;141(2):503-14 – reference: 17088909 - Br J Cancer. 2006 Nov 20;95(10):1334-41 – reference: 20064235 - Breast Cancer Res. 2010;12(1):R5 – reference: 19043454 - Oncogene. 2009 Feb 5;28(5):742-51 – reference: 19383908 - Cancer Res. 2009 May 1;69(9):4073-80 – reference: 23093600 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1104-14 – reference: 19671159 - Breast Cancer Res. 2009;11(4):R60 – reference: 20861186 - Cancer Res. 2010 Nov 1;70(21):8863-73 – reference: 12947099 - J Biol Chem. 2003 Nov 7;278(45):44255-64 – reference: 20336785 - Cancer. 2010 Jun 1;116(11):2549-59 – reference: 12645566 - J Biol Chem. 2003 Mar 14;278(11):9655-62 – reference: 17940530 - Mol Syst Biol. 2007;3:140 – reference: 21696594 - Genome Biol. 2011;12(6):R57 |
SSID | ssj0053866 |
Score | 2.1790972 |
Snippet | In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e81784 |
SubjectTerms | Adjuvant chemotherapy Aging Anthracyclines Apoptosis Biomarkers Biomarkers, Pharmacological - metabolism Biotechnology Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer Cancer therapies Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line, Tumor Chemotherapy Clinical decision making Data processing Decision making Doxorubicin Doxorubicin - administration & dosage Drug Synergism Female Gene expression Gene Expression Regulation, Neoplastic - drug effects Gene Regulatory Networks Genes Genomes Hepatocellular carcinoma Humans Hypotheses Informatics Kinases Medical prognosis Medical schools Medicine Methods Molecular modelling Neoadjuvant Therapy Network analysis Paclitaxel Paclitaxel - administration & dosage Protein Interaction Mapping Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteins Software Software development tools Synergism Synergistic effect Trans-Activators - genetics Trans-Activators - metabolism Tumor cell lines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYfQxHH8OJZHVZAACSgqp8h2HEBakmiTPfDvmYm9UYMqlQPXeGIl38zYM8nMZ0KelLzJS8fK1EP0ncIOUaeq9DxVVvM8xx9BAnuH338QJ6f83Vl5du6oL6wJC_TAAbhD6zlMB3bCPGRxtVAZr3XtbOGlh8ksrr6ZznbJVFiDwYuFiI1yhcwPo15e9F3rkdA0l4ovNqKJr39elVf9uhsuCjn_rpw8txUdXyfXYgxJj8Kz75Ervr1B9qKXDvRZpJJ-fpN8ex3PPwE_XtM2lHxTE4lIqAkhKB072m981_tAA04tVqqP1KFFbCio9Vfs0_pNN6Gm1t8ip8dvvrw6SeNhCqkTmo2pY7WUhmljrARMM5sr1dRCNJpByOTdFGgVvhB5o7WBrCtzxmbK8rJhEvKU4jZZtQDfPqGlYSxTtXUM4g9jAEuJH0OsrMEgTKMSUuyQrVxkGscDL9bV9PtMQsYRgKpQH1XUR0LS-a4-MG1cIv8SlTbLIk_2dAGsp4rWU11mPQl5iCqvQtPp7O3VEccvYpB6yYQ8niSQK6PFYpzvZjsM1duPX_9B6POnhdDTKNR0AIczsQEC3gk5uBaSBwtJ8Hi3GN5HA92hMmD6hoEoCMCdO6O9ePjRPIyTYoFd67vtJIPMbIBtQu4EG5-RZbzgGuKYhMiF9S-gX460P39MVOWFKiXLs7v_Q1f3yFWGZ5FgLZE-IKtxs_X3ISIc7YPJ-f8AXg5fbg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVkJcEC2PphQwCAk4hCaOEzsHhLqlVUHqUi0UlVNkO06ptErCZvfAv2cmcQJBFXCNx1EyL4_tmW8IeR7zIowNi30L0bcPK0Tuy9hyX-qUhyFeBCVYO3w6S07O-YeL-GKDzPpaGEyr7H1i66jzyuAZ-T5YNC62XMi39Xcfu0bh7WrfQkO51gr5mxZi7AbZBJccBxOyOT2anc173wzWnSSugC4S4b6T1-u6Ki0CnYZC8tEC1eL4D956Ui-q5rpQ9M-Myt-WqOM75LaLLelBpwxbZMOW2-Tmqbs93yZbzpAb-tKhTb-6S76-cy1SwNQXdNZlhdMeq4S6KJWuKnq2tFVtO6RwOsVk9hU9RKVZUoQdcKVcP-i8S7u198j58dHnwxPf9VvwTZKylW9YLoRiqVJaaMsDHUpZ5ElSpAyiKmvaWCyyURIWaapgYxYYpQOpeVwwAVuZ6D6ZlMDJHUJjxVggc20YhChKAVsFnpdokYPOqEJ6JOqZnBkHRo49MRZZe8MmYFPS8SxD0WRONB7xh1l1B8bxD_opym-gRSjt9kG1vMycZWbwp6Cv4IiYFZzliQx4nuZGR1ZY0FbtkSco_ayrSx0cQnbA8dAMdmfCI89aCoTTKDFf51KtmyZ7__HLfxB9mo-IXjiiogJ2GOVqJOCfEKZrRLk3ogSnYEbDO6irPVea7Jf5wMxef68ffjoM40sxB6-01bqlQfA24K1HHnTqPnCW8YinEOp4RIwMYcT68Uh59a1FM49kLFgY7P79sx6SWwwbkWAiUbpHJqvl2j6CcHClHzsb_wkA0F-g priority: 102 providerName: ProQuest |
Title | Differential Network Analysis Applied to Preoperative Breast Cancer Chemotherapy Response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24349128 https://www.proquest.com/docview/1466172478 https://www.proquest.com/docview/1469643008 https://pubmed.ncbi.nlm.nih.gov/PMC3857210 https://doaj.org/article/be44f11962e742d6804d9dcb3e7e116b http://dx.doi.org/10.1371/journal.pone.0081784 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27oUXxPi1wCgGIQEPmRLHiZMHhNayMpAoU6Goe4rsxBlIVVKaVmL_PXeOExFUxF7yEJ8j5fPZvvOdvyPkRcgLP8xY6Gqwvl3YIXI3DjV3Y5Vw38dAUIR3hz9No_M5_7gIF3ukrdlqAax3unZYT2q-Xp78-nn9Fib8G1O1Qfhtp5NVVWqkK_VFzPfJgYkYYTIf7-IKMLtN9BKtFjdiXmAv0_3rK73NynD6dyv3YLWs6l1m6d_ZlX9sV5M75La1M-lpoxiHZE-Xd8mhnck1fWXppl_fI5fvbI0UmOtLOm3SwmlLVkKtmUo3Fb1YawCnoQqnI8xm39Axas2aIu-Avct1TWdN3q2-T-aTs6_jc9cWXHCzKGEbN2O5EJIlUiqhNPeUH8dFHkVFwsCs0pkxxgIdRH6RJBI8My-TyosVDwsmwJcJHpBBCfAdERpKxrw4VxkDG0VKwFLggYkSOSiNLGKHBC2yaWbZyLEoxjI1ITYBXkkDVIrjkdrxcIjb9Vo1bBz_kR_hoHWyyKVtXlTrq9ROzRT-FBQWViKmBWd5FHs8T_JMBVpoUFflkKc45GlzMbVbEdJTjqdm4J4Jhzw3EsinUWLCzpXc1nX64fO3Gwh9mfWEXlqhogI4MmkvScA_IU9XT_K4JwmrQtZrPkIFbVGp0cVDYxUEoGertLubn3XN-FFMwit1tTUyyN4G2DrkYaPjHbKMBzwBW8choqf9Pej7LeWP74bOPIhDwXzv0U3weUxuMaxHgvlEyTEZbNZb_QSswo0akn2xEPCMxz4-J--H5GB0Nr2YDc05y9AsBL8BJBFktg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviI2PBQYzCAQ8hCWOEycPE1r3oZWtZeo2NJ6MkzgDqUpK0wrtn-Nv4y5xAkET8LLX-hI192377neEvPB55voJ820N2bcNESK1Q19zO4wj7rp4ERRg7_BwFByc8ffn_vkS-dH0wmBZZeMTK0edFgmekW-CRWOw5SJ8N_1m49QovF1tRmgoM1oh3aogxkxjx6G-_A5buHJrsAvyfsnY_t7pzoFtpgzYSRCxuZ2wVAjFIqViEWvuxG4YZmkQZBGDXEInVQbiaS9wsyhSsB1xEhU7Ycz9jAlI4D147w2yzPEApUeW-3uj43ETC8CbBIFp2POEu2n04-20yDUCq7oi5J2AWM0NaKNDbzopyqtS3z8rOH8Lift3yR2Ty9LtWvlWyJLOV8nNobmtXyUrxnGU9LVBt35zj3zaNSNZwLVM6KiuQqcNNgo1WTGdF_R4pouprpHJaR-L5-d0B5V0RhHmwLSOXdJxXear75Oza-H8A9LLgZNrhPqKMSdM44RBSqQUsFXg-UwsUtBRlYUW8Romy8SAn-MMjomsbvQEbIJqnkkUjTSisYjdPjWtwT_-Qd9H-bW0CN1d_VDMLqTxBBK-FOwDHB_TgrM0CB2eRmkSe1posI7YIhsofVn3wbYOSG5zPKSD3aCwyPOKAuE7cqwPulCLspSDDx__g-hk3CF6ZYiyAtiRKNOTAd-EsGAdyvUOJTihpLO8hrracKWUv8wVnmz09-rlZ-0yvhRr_nJdLCoaBIsD3lrkYa3uLWcZ93gEqZVFRMcQOqzvruRfv1To6V7oC-Y6j_7-tzbIrYPT4ZE8GowOH5PbDIegYBFTtE5689lCP4FUdB4_NfZOyefrdjE_Ad_6m3c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ028IDY-FhjMIBDwEJo4Tpw8TGhdV62MlapsaDwFJ3EGUpWEphXav8hfxV3iBIIm4GWv9SVq7tv23e8Ieeby1HZj5poKsm8TIkRi-q7iph8F3LbxIsjD3uGTiXd0xt-eu-dr5EfTC4NllY1PrBx1ksd4Rt4Hi8Zgy4XfT3VZxHQ4elN8M3GCFN60NuM0pB6zkOxVcGO6yeNYXX6H7Vy5Nx6C7J8zNjo8PTgy9cQBM_YCtjRjlgghWSBlJCLFrcj2_TTxvDRgkFeouMpGHOV4dhoEErYmViwjy4-4mzIBybwD771B1gVEfdgIrg8OJ9NZExfAs3iebt5zhN3XuvK6yDOFIKu28HknOFYzBNpI0SvmeXlVGvxnNedv4XF0m9zSeS3drxVxk6ypbItsnOib-y2yqZ1ISV9qpOtXd8inoR7PAm5mTid1RTptcFKozpDpMqfThcoLVaOU0wEW0i_pASrsgiLkgW4ju6SzuuRX3SVn18L5e6SXASe3CXUlY5afRDGD9EhKYKvAs5pIJKCvMvUN4jRMDmMNhI7zOOZhdbsnYENU8yxE0YRaNAYx26eKGgjkH_QDlF9LizDe1Q_54iLUXiGELwVbASfIlOAs8XyLJ0ESR44SCiwlMsguSj-se2JbZxTuczywg52hMMjTigKhPDI0igu5Kstw_P7jfxB9mHWIXmiiNAd2xFL3Z8A3IURYh3KnQwkOKe4sb6OuNlwpw1-mC082-nv18pN2GV-K9X-ZylcVDQLHAW8Ncr9W95azjDs8gDTLIKJjCB3Wd1eyr18qJHXHdwWzrQd__1u7ZANcTfhuPDl-SG4ynIeC9UzBDuktFyv1CLLSZfRYmzsln6_bw_wEe62fuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Network+Analysis+Applied+to+Preoperative+Breast+Cancer+Chemotherapy+Response&rft.jtitle=PloS+one&rft.au=Warsow%2C+Gregor&rft.au=Struckmann%2C+Stephan&rft.au=Kerkhoff%2C+Claus&rft.au=Reimer%2C+Toralf&rft.date=2013-12-09&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=12&rft.spage=e81784&rft_id=info:doi/10.1371%2Fjournal.pone.0081784&rft.externalDBID=ISR&rft.externalDocID=A478358267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |