Biomarkers of erosive arthritis in systemic lupus erythematosus: Application of machine learning models

Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few stu...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 12; p. e0207926
Main Authors Ceccarelli, Fulvia, Sciandrone, Marco, Perricone, Carlo, Galvan, Giulio, Cipriano, Enrica, Galligari, Alessandro, Levato, Tommaso, Colasanti, Tania, Massaro, Laura, Natalucci, Francesco, Spinelli, Francesca Romana, Alessandri, Cristiano, Valesini, Guido, Conti, Fabrizio
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.12.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0207926

Cover

Abstract Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement. We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method. We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP. The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
AbstractList Objective Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement. Methods We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method. Results We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP. Conclusion The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement. We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method. We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP. The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement.OBJECTIVELimited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement.We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method.METHODSWe enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method.We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP.RESULTSWe enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP.The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.CONCLUSIONThe application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement. We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method. We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP. The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
ObjectiveLimited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement.MethodsWe enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0-20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method.ResultsWe enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP.ConclusionThe application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
Objective Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies (ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-CarP). Here, we considered the application of machine learning models to identify relevant factors in the development of ultrasonography (US)-detected erosive damage in a large cohort of SLE patients with joint involvement. Methods We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint (DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Factor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal interphalangeal joints were assessed by US: the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score (0–20). Concerning machine learning techniques, we applied and compared Logistic Regression and Decision Trees in conjunction with the feature selection Forward Wrapper method. Results We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median disease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them with clinically evident arthritis. We applied Logistic Regression in conjunction with the Forward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning procedure, we evaluated the relevance of the different factors: this value was higher than 35% for ACPA and anti-CarP. Conclusion The application of Machine Learning Models allowed to identify factors associated with US-detected erosive bone damage in a large SLE cohort and their relevance in determining this phenotype. Although the scope of this study is limited by the small sample size and its cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies in the development of erosive damage as also pointed out in other studies.
Audience Academic
Author Galvan, Giulio
Levato, Tommaso
Massaro, Laura
Natalucci, Francesco
Alessandri, Cristiano
Conti, Fabrizio
Colasanti, Tania
Ceccarelli, Fulvia
Galligari, Alessandro
Cipriano, Enrica
Spinelli, Francesca Romana
Valesini, Guido
Perricone, Carlo
Sciandrone, Marco
AuthorAffiliation University College London, UNITED KINGDOM
1 Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
2 Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy
AuthorAffiliation_xml – name: University College London, UNITED KINGDOM
– name: 1 Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
– name: 2 Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy
Author_xml – sequence: 1
  givenname: Fulvia
  orcidid: 0000-0001-5026-8783
  surname: Ceccarelli
  fullname: Ceccarelli, Fulvia
– sequence: 2
  givenname: Marco
  surname: Sciandrone
  fullname: Sciandrone, Marco
– sequence: 3
  givenname: Carlo
  surname: Perricone
  fullname: Perricone, Carlo
– sequence: 4
  givenname: Giulio
  orcidid: 0000-0002-0384-0334
  surname: Galvan
  fullname: Galvan, Giulio
– sequence: 5
  givenname: Enrica
  surname: Cipriano
  fullname: Cipriano, Enrica
– sequence: 6
  givenname: Alessandro
  orcidid: 0000-0002-8599-642X
  surname: Galligari
  fullname: Galligari, Alessandro
– sequence: 7
  givenname: Tommaso
  orcidid: 0000-0002-4616-8277
  surname: Levato
  fullname: Levato, Tommaso
– sequence: 8
  givenname: Tania
  surname: Colasanti
  fullname: Colasanti, Tania
– sequence: 9
  givenname: Laura
  surname: Massaro
  fullname: Massaro, Laura
– sequence: 10
  givenname: Francesco
  surname: Natalucci
  fullname: Natalucci, Francesco
– sequence: 11
  givenname: Francesca Romana
  surname: Spinelli
  fullname: Spinelli, Francesca Romana
– sequence: 12
  givenname: Cristiano
  surname: Alessandri
  fullname: Alessandri, Cristiano
– sequence: 13
  givenname: Guido
  surname: Valesini
  fullname: Valesini, Guido
– sequence: 14
  givenname: Fabrizio
  surname: Conti
  fullname: Conti, Fabrizio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30513105$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW51sHzIRWEbelgIBHq6FbIseZXKkivJafftK2edsA6BBl_IjL_5Pf_M6Dg5MNaIJHkOwRLiAr67tIMzTC_7GF4CBIoK5Y-SI1hhtMgRwAd774fJsfeXABBc5vmT5BADAjEE5ChpPyjbMfdLOJ9amQpnvboSKXNh41RQPlUm9VsfRKd4qod-8JHZho3oWLB-8Kfpqu-14iwoa0aFjvGNMiLVgjmjTJt2thHaP00eS6a9eDadJ8mPTx-_n31ZnF98Xp-tzhc8r1BY1BJlJYRAVhlAiGOMOEAQyQxhUpYClqypC9ngskKFYDIrSF3HjKIWEOSESXySvNzp9tp6OvXIUwSzqiwhBjgS6x3RWHZJe6ei_S21TNHrgHUtje4V14IKKfNKEkCqGmakKGvBUN7wDFSIZDyvoxbZaQ2mZ9s_TOtbQQjoOKabEug4JjqNKea9n6oc6k40XJjgmJ4VM_9i1Ia29ormqKgAHE28mQSc_T0IH2inPBdaMyPsMPqNVaMigzCir-6g93dloloWjSsjbfwvH0XpiuQZBjkqSaSW91Dxacb9iA6livFZwttZQmSC-BtaNnhP19--Ppy9-DlnX--xG8F02Hirh3EL_Rx8sd_p2xbf3IAInO4AHlffOyEpV-F6m6M1pf83x-xO8oPG_w93kC5o
CitedBy_id crossref_primary_10_1016_j_archoralbio_2020_104708
crossref_primary_10_7759_cureus_52110
crossref_primary_10_1016_S2665_9913_23_00010_3
crossref_primary_10_1155_2019_7592851
crossref_primary_10_3390_ijms24054514
crossref_primary_10_1016_j_autrev_2023_103294
crossref_primary_10_1038_s41746_020_0229_3
crossref_primary_10_1177_09612033231206830
crossref_primary_10_1016_j_cca_2023_117388
crossref_primary_10_1177_09612033211051637
crossref_primary_10_1007_s10067_019_04791_z
crossref_primary_10_1177_0961203319897127
crossref_primary_10_1186_s13040_021_00284_5
crossref_primary_10_1148_radiol_230764
crossref_primary_10_1136_lupus_2023_001140
crossref_primary_10_1007_s00296_024_05561_0
crossref_primary_10_1371_journal_pone_0211791
crossref_primary_10_3389_fgene_2021_604714
crossref_primary_10_1038_s41584_021_00708_w
crossref_primary_10_3390_diagnostics12071661
crossref_primary_10_1016_j_autrev_2020_102508
crossref_primary_10_1016_j_compbiomed_2022_105435
crossref_primary_10_22141_pjs_12_3_2022_336
crossref_primary_10_1007_s12016_020_08805_6
crossref_primary_10_1093_rap_rkaa005
crossref_primary_10_1016_j_artmed_2024_103042
Cites_doi 10.1016/j.compbiomed.2008.05.005
10.1155/2015/712490
10.1002/art.1780400928
10.4081/reumatismo.2012.321
10.1371/journal.pone.0174200
10.1177/0961203317713141
10.4081/reumatismo.2015.828
10.1136/ard.60.7.641
10.1038/nm0102-68
10.1186/ar2036
10.1002/1529-0131(199906)42:6<1232::AID-ANR21>3.0.CO;2-3
10.1191/0961203306lu2340oa
10.1186/s13075-018-1622-z
10.3109/03009742.2014.882407
10.1186/s13637-016-0046-9
10.1016/j.semarthrit.2017.03.022
10.1155/2014/236842
10.1002/art.1780390303
10.1177/1094428109341993
10.1073/pnas.1114465108
10.1186/s13075-016-1192-x
10.1097/MAT.0b013e318222db30
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Ceccarelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Ceccarelli et al 2018 Ceccarelli et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Ceccarelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Ceccarelli et al 2018 Ceccarelli et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0207926
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database


MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Machine learning models in SLE erosive arthritis
EISSN 1932-6203
ExternalDocumentID 2149881303
oai_doaj_org_article_eff69f5059b14578bea26dc409254c6b
10.1371/journal.pone.0207926
PMC6279013
A564306285
30513105
10_1371_journal_pone_0207926
Genre Journal Article
GeographicLocations United States--US
Italy
GeographicLocations_xml – name: United States--US
– name: Italy
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-bf248110f94022c332c0212f423588e18adb7fd38927eaf475bb2487be1065af3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:55 EDT 2023
Fri Oct 03 12:52:49 EDT 2025
Wed Oct 29 12:05:53 EDT 2025
Tue Sep 30 16:52:06 EDT 2025
Mon Sep 08 04:32:15 EDT 2025
Tue Oct 07 09:06:41 EDT 2025
Mon Oct 20 22:15:23 EDT 2025
Mon Oct 20 16:03:28 EDT 2025
Thu Oct 16 15:25:37 EDT 2025
Thu Oct 16 14:08:48 EDT 2025
Thu May 22 21:21:16 EDT 2025
Wed Feb 19 02:30:40 EST 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Oct 01 03:54:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-bf248110f94022c332c0212f423588e18adb7fd38927eaf475bb2487be1065af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8599-642X
0000-0002-0384-0334
0000-0002-4616-8277
0000-0001-5026-8783
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0207926
PMID 30513105
PQID 2149881303
PQPubID 1436336
PageCount e0207926
ParticipantIDs plos_journals_2149881303
doaj_primary_oai_doaj_org_article_eff69f5059b14578bea26dc409254c6b
unpaywall_primary_10_1371_journal_pone_0207926
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279013
proquest_miscellaneous_2150527411
proquest_journals_2149881303
gale_infotracmisc_A564306285
gale_infotracacademiconefile_A564306285
gale_incontextgauss_ISR_A564306285
gale_incontextgauss_IOV_A564306285
gale_healthsolutions_A564306285
pubmed_primary_30513105
crossref_citationtrail_10_1371_journal_pone_0207926
crossref_primary_10_1371_journal_pone_0207926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-04
PublicationDateYYYYMMDD 2018-12-04
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References F Ceccarelli (ref8) 2017; 12
M Backhaus (ref19) 2001; 60
LM Amezcua-Guerra (ref5) 2006; 8
F Ceccarelli (ref7); 20
J Shi (ref18) 2011; 108
S Wright (ref2) 2006; 15
Isabelle Guyon (ref22) 2003; 3
LK Brakenhoff (ref26) 2014; 43
RJ Wakefield (ref20) 2005; 32
M Ziegelasch (ref6) 2016; 18
S Tonidandel (ref21) 2010; 13
F Ceccarelli (ref14) 2014; 2014
F Ceccarelli (ref1) 2017; 47
E Cipriano (ref15) 2015; 67
DD Gladman (ref16) 2002; 29
F Ceccarelli (ref25) 2017; 35
MC Hochberg (ref13) 1997; 40
D Gladman (ref17) 1996; 39
MA Shipp (ref11) 2002; 8
MK Verheul (ref3) 2018
H Tang (ref9) 2011; 57
Y Jin (ref12) 2016; 2016
L Massaro (ref24) 2018; 27
M Taraborelli (ref4) 2012; 64
A Mastrangelo (ref23) 2015; 2015
ME Blazadonakis (ref10) 2008; 38
M Backhaus (ref27) 1999; 42
30699190 - PLoS One. 2019 Jan 30;14(1):e0211791
References_xml – volume: 38
  start-page: 894
  year: 2008
  ident: ref10
  article-title: Wrapper filtering criteria via linear neuron and kernel approaches
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2008.05.005
– volume: 2015
  start-page: 712490
  year: 2015
  ident: ref23
  article-title: The Role of Posttranslational Protein Modifications in Rheumatological Diseases: Focus on Rheumatoid Arthritis
  publication-title: J Immunol Res
  doi: 10.1155/2015/712490
– volume: 29
  start-page: 288
  year: 2002
  ident: ref16
  article-title: Systemic lupus erythematosus disease activity index 2000
  publication-title: J Rheumatol
– volume: 32
  start-page: 2485
  year: 2005
  ident: ref20
  article-title: Musculoskeletal ultrasound including definitions for ultrasonographic pathology
  publication-title: J Rheumatol
– volume: 40
  start-page: 1725
  year: 1997
  ident: ref13
  article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780400928
– volume: 64
  start-page: 321
  year: 2012
  ident: ref4
  article-title: Anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus patients with articular involvement: a predictive marker for erosive disease?
  publication-title: Reumatismo
  doi: 10.4081/reumatismo.2012.321
– volume: 12
  start-page: e0174200
  year: 2017
  ident: ref8
  article-title: Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174200
– volume: 27
  start-page: 105
  year: 2018
  ident: ref24
  article-title: Anti-carbamylated protein antibodies in systemic lupus erythematosus patients with articular involvement
  publication-title: Lupus
  doi: 10.1177/0961203317713141
– volume: 35
  start-page: 674
  year: 2017
  ident: ref25
  article-title: Jaccoud's arthropathy in systemic lupus erythematosus: clinical, laboratory and ultrasonographic features
  publication-title: Clin Exp Rheumatol
– volume: 67
  start-page: 62
  year: 2015
  ident: ref15
  article-title: Joint involvement in patients affected by systemic lupus erythematosus: application of the swollen to tender joint count ratio
  publication-title: Reumatismo
  doi: 10.4081/reumatismo.2015.828
– volume: 60
  start-page: 641
  year: 2001
  ident: ref19
  article-title: Guidelines for musculoskeletal ultrasound in rheumatology
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.60.7.641
– volume: 8
  start-page: 68
  year: 2002
  ident: ref11
  article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
  publication-title: Nat Med
  doi: 10.1038/nm0102-68
– volume: 8
  start-page: R144
  year: 2006
  ident: ref5
  article-title: Presence of antibodies against cyclic citrullinated peptides in patients with 'rhupus': across-sectional study
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar2036
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref22
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res
– volume: 42
  start-page: 1232
  year: 1999
  ident: ref27
  article-title: Arthritis of the finger joints: a comprehensive approach comparing conventional radiography, scintigraphy, ultrasound, and contrast-enhanced magnetic resonance imaging
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(199906)42:6<1232::AID-ANR21>3.0.CO;2-3
– volume: 15
  start-page: 501
  year: 2006
  ident: ref2
  article-title: Hand arthritis in systemic lupus erythematosus: an ultrasound pictorial essay
  publication-title: Lupus
  doi: 10.1191/0961203306lu2340oa
– volume: 20
  start-page: 126
  ident: ref7
  article-title: Anti-carbamylated protein antibodies as a new biomarker of erosive joint damage in systemic lupus erythematosus
  publication-title: Arthritis Res Ther2018
  doi: 10.1186/s13075-018-1622-z
– volume: 43
  start-page: 416
  year: 2014
  ident: ref26
  article-title: Magnetic resonance imaging of the hand joints in patients with inflammatory bowel disease and arthralgia: a pilot study
  publication-title: Scand J Rheumatol
  doi: 10.3109/03009742.2014.882407
– volume: 2016
  start-page: 12
  year: 2016
  ident: ref12
  article-title: Heterogeneous multimodal biomarkers analysis for Alzheimer's disease via Bayesian network
  publication-title: EURASIP J Bioinform Syst Biol
  doi: 10.1186/s13637-016-0046-9
– volume: 47
  start-page: 53
  year: 2017
  ident: ref1
  article-title: Joint involvement in systemic lupus erythematosus: From pathogenesis to clinical assessment
  publication-title: Semin Arthritis Rheum
  doi: 10.1016/j.semarthrit.2017.03.022
– volume: 2014
  year: 2014
  ident: ref14
  article-title: The role of disease activity score 28 in the evaluation of articular involvement in systemic lupus erythematosus
  publication-title: ScientificWorldJournal
  doi: 10.1155/2014/236842
– year: 2018
  ident: ref3
  article-title: The combination of three autoantibodies, ACPA, RF and anti-CarP antibodies is highly specific for rheumatoid arthritis: implications for very early identification of individuals at risk to develop rheumatoid arthritis
  publication-title: Arthritis Rheumatol
– volume: 39
  start-page: 363
  issue: 3
  year: 1996
  ident: ref17
  article-title: The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus
  publication-title: Arthritis and rheumatism
  doi: 10.1002/art.1780390303
– volume: 13
  start-page: 767
  year: 2010
  ident: ref21
  article-title: Determining the Relative Importance of Predictors in Logistic Regression: An Extension of Relative Weight Analysis
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428109341993
– volume: 108
  start-page: 17372
  year: 2011
  ident: ref18
  article-title: Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1114465108
– volume: 18
  start-page: 289
  year: 2016
  ident: ref6
  article-title: Antibodies against carbamylated proteins and cyclic citrullinated peptides in systemic lupus erythematosus: results from two well-defined European cohorts
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-016-1192-x
– volume: 57
  start-page: 300
  year: 2011
  ident: ref9
  article-title: Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus
  publication-title: ASAIO J
  doi: 10.1097/MAT.0b013e318222db30
– reference: 30699190 - PLoS One. 2019 Jan 30;14(1):e0211791
SSID ssj0053866
Score 2.4341202
Snippet Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis. Anti-citrullinated...
Objective Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis....
ObjectiveLimited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis....
Objective Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus (SLE) patients at risk to develop erosive arthritis....
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0207926
SubjectTerms Adult
Alzheimer's disease
Anti-Citrullinated Protein Antibodies - blood
Antibodies
Arthralgia
Arthritis
Arthritis - diagnostic imaging
Arthritis - etiology
Arthritis - immunology
Artificial intelligence
Autoantibodies - blood
Autoimmune diseases
Biological markers
Biology and Life Sciences
Biomarkers
Biomarkers - blood
Carp
Chronic conditions
Citrulline
Cohort Studies
Computer and Information Sciences
Cross-Sectional Studies
Damage detection
Decision Trees
Development and progression
Diagnosis
Diagnostic imaging
Engineering and Technology
Family medical history
Female
Humans
Immunoglobulins
Joint diseases
Laboratories
Learning algorithms
Logistic Models
Lupus
Lupus erythematosus
Lupus Erythematosus, Systemic - complications
Lupus Erythematosus, Systemic - immunology
Lymphoma
Machine Learning
Male
Medicine and Health Sciences
Middle Aged
NMR
Nuclear magnetic resonance
Patients
Peptides
Phenotypes
Protein Carbamylation - immunology
Proteins
Research and Analysis Methods
Rheumatoid arthritis
Rheumatoid factor
Rheumatoid Factor - blood
Rheumatology
Risk Factors
Systemic lupus erythematosus
Ultrasonic imaging
Ultrasonography
Ultrasound
Ultrasound imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX6tMMAgJOAh3eqmccJbh5gGEiABQ3uLbMfuKnVJtTRC--_5znFDIyZtD7zWl6S5O9_dp5y_Y-x1YoHQnIMFZCGiOFY20kg0kVIO2UkrXXie7i9fk-OT-PPp9HRr1Bf1hLX0wK3i9q1zSeaQpzM9juFe2iqRFAawBNDGJJqi70GabcBUG4Oxi5MkHJSbyPF-sMtoVZV2hAJJZkSmsJWIPF9_F5UHq2VVX1Vy_ts5ebspV-ryt1out9LS0T12N9STfNa-xw67Zcv7bCfs2Jq_DbTS7x6w-eGiOqdmnIuaV45b_CtEOg4NnHliI74oecvrvDB82ayaGjKXLalrVTf1ez77-7Gb7nDu-zAtD4Mn5txP1akfspOjjz8_HEdhzEJkkkysI-1EnKIKcBmwpDCTiTDE--5iOkWb2nGqCi1dgcpGSKtcLKda4wqpLeDkVLnJIzYoodhdxouicDHSnQHyhbGAHpUURqR2ilRpD8ZDNtnoPDeBg5xGYSxz_2FNAou0asvJUnmw1JBF3VWrloPjGvlDMmcnSwza_gf4VR78Kr_Or4bsBTlD3h5H7eJAPpuihvMHT4fslZcgFo2S2nTmqqnr_NO3XzcQ-vG9J_QmCLkK6jAqHI3AOxE7V09yryeJWGB6y7vkuhut1LkAAE5TqlNw5cadr15-2S3TTan1rrRVQzI06xCFJ6z3uPX-TrNIFmPgAzxX9vZFT_X9lXJx5knMEyFRiuK5o24H3ci4T_6HcZ-yOyh8U9-WFO-xwfqisc9QXK71cx9H_gAMJnls
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvaONrhQEGIQEP6ajz4QQJoRZtGkgUNBjaW2Q7dlepS7KmEdp_z53jZIuYYK_1OR935_to7n5HyKtIQ4ZmDEiAZ8wLAqE9CY7GE8KAd5JCZhan--ssOjwOvpyEJxtk1vbCYFllaxOtoc4Khf-R7zEI5eMYLe7H8tzDqVH4dbUdoSHcaIXsg4UYu0U2GSJjDcjmdH_2_ai1zXC6o8g10Pl8vOfkNSqLXI8gcOIJgixccVAWx7-z1oNyWVTXhaJ_V1TervNSXPwWy-UVd3WwRe66OJNOGsXYJhs6v0e23Umu6BsHN_32PplPF8UZFumsKloYquGpwAJSUKlTC3hEFzlt8J4Xii7rsq6A5qIBey2qunpPJ5cfwfEKZ7Y-U1M3kGJO7bSd6gE5Ptj_-enQc-MXPBUlbO1Jw4IYogOTQI7JlO8zhXjwJsDu2liPY5FJbjKIeBjXwgQ8lBJ2cKkhzQyF8R-SQQ6M3SE0yzITgBtUkBEHIbjDQHCmWKxDEKh-Nx4Sv-V5qhw2OY7IWKb2gxuHHKVhW4qSSp2khsTrdpUNNsd_6Kcozo4WkbXtD8VqnrqDmmpjosRAXJjIMTxqLLVgUaYgDYZUWkVySJ6jMqRNm2pnH9JJCLGdbUgdkpeWAtE1cizfmYu6qtLP337dgOjHUY_otSMyBbBDCdcyAe-EqF09yt0eJdgI1VveQdVtuVKll6cJdrbqfP3yi24ZL4olebkuaqTBGYgQkIL0HjXa33EWnMgY8ga4L--dix7r-yv54tSCm0eMQ4gK9x11J-hGwn387_d4Qu5AqBvbQqRglwzWq1o_hXByLZ85G_EHoGl3Nw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXSnl1SwGDEI9D0sZ5OMtti6gKEgUBi8oBRbZjb1dsk1WzESoHfjszjhMIFFEO3FbrsZ2MH_NNPPOZkAeJBg_NGBgBnjMvioT2JBgaTwgD1kkKmVue7lcHyf4kenkYH66QT20ujNMg-IjzsrIn-fijLPS20-Q28hU1p6d-EPKgreEvQMgH8MNHLHloGYfwy9gSE5AukNUkBqg-IKuTgzfjj81JM_MSthO6dLo_tdQzV5bVv9u7B_hkZwHT3-MrL9bFQpx-EfP5T8Zrb418a1-7iVn57NdL6auvvzBC_je9XCGXHeyl46aVdbKii6tk3W0sFX3s2K-fXCPT3Vl5jDFDJxUtDdWgFtiQKfR_ZPmX6KygDf30TNF5vagrkDltuGfLqq6e0vGPM3ls4diGi2rq7seYUnv5T3WdTPaev3-277nbIDyVjNjSk4ZFKYAVMwKXl6kwZArp6U2Eyb6pDlKRS25yAGCMa2EiHksJNbjU4PXGwoQ3yKAAXWwQmue5icAqK3DQoxiscyQ4UyzVMVh0vRMMSdgOeqYcVTre2DHP7PkfB5epUVuGys2ccofE62otGqqQv8jv4nzqZJHo2_4Bo5u5Uc20McnIAEwdyQAeNZVasCRX4JWDZ68SOSR3cTZmTdZst11l4xigps2PHZL7VgLJPgqMJpqKuqqyF68_nEPo3due0CMnZEpQhxIugwPeCSdfT3KrJwlbluoVb-DsbbVSZQz89DRFOAU12_V0dvG9rhgbxQjBQpc1yuCVjICPYfRuNsuv0yzYtADcGOiX9xZmT_X9kmJ2ZLnWE8YBMUO_freEzzW4m_9a4Ra5BFg8tZFS0RYZLE9qfRvw7lLecbvWd9ZqsHc
  priority: 102
  providerName: Unpaywall
Title Biomarkers of erosive arthritis in systemic lupus erythematosus: Application of machine learning models
URI https://www.ncbi.nlm.nih.gov/pubmed/30513105
https://www.proquest.com/docview/2149881303
https://www.proquest.com/docview/2150527411
https://pubmed.ncbi.nlm.nih.gov/PMC6279013
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207926&type=printable
https://doaj.org/article/eff69f5059b14578bea26dc409254c6b
http://dx.doi.org/10.1371/journal.pone.0207926
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFe0MavlY1iEBLwkGpxkzhBQqidVgbSyjQo6p4i27G7SllSmkbQ_56z4wYiiuhLHuJzkp7Pvu_q83cIvQwkRGhKwQjQhDiex6TDwdE4jCnwTpzxxPB0X4yC87H3aeJPdtC6ZqtVYLExtNP1pMaLtPvz--o9TPh3pmoDddeduvM8k12APzQiwS7aA18V6WIOF169rwCz2-xeatTiBOSkZw_T_espDWdlOP3rlbs1T_NiEyz9O7vyTpnN2eoHS9M_XNdwH92zmBP3KyM5QDsyu48O7Kwu8GtLPf3mAZoOZvmtTthZFDhXWMJXwWqIwbxuDPkRnmW44n6eCZyW87IAmVVF_JoXZfEW939viOsn3JpcTYltcYopNpV3iodoPDz7enru2FIMjggisnS4Il4ISEFFEG8S0esRobnhladP2obSDVnCqUoA_RAqmfKozzn0oFxCyOkz1XuEWhko9hDhJEmUBy5RQHTs-eAaPUaJIKH0wZ3KE7eNemudx8LylOtyGWlsNt8oxCuV2mI9UrEdqTZy6l7ziqfjP_IDPZy1rGbZNjfyxTS2kzaWSgWRAowYcRc-NeSSkSARYFcQVouAt9EzbQxxdWS1Xivivg84zxxObaMXRkIzbWQ6lWfKyqKIP37-toXQl6uG0CsrpHJQh2D2-AT8Js3g1ZA8bkjCeiEazYfadNdaKWICQXIYaiwDPdfmvLn5ed2sH6rT8zKZl1pG10MEcAqj97iy_lqz4FBciCHgvbQxLxqqb7ZksxtDdB4QCnAV3tutZ9BWg_tkG60fobsAfkOTmuQdo9ZyUcqnADCXvIN26YTCNTx19XX4oYP2Bmejy6uO-cumY9YUuDceXfavfwF3IoFA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wmAGgYCHdNT5cIqEUAdMK_tAgg31zdiO3VXqktA0mvpP8TdydpxsERPsZa_12UnuzvdRn3-H0ItIQYamNUiAJsQLAq48AY7G41yDdxJcJBan--Aw2j0OvozD8Qr6Xd-FMWWVtU20hjrJpPmPfItAKB_HxuJ-yH95pmuUOV2tW2hUarGnlmeQshXvR59Avi8J2fl89HHXc10FPBkNyMITmgQxOD09gNSJSN8n0sCc68BcGo1VP-aJoDoBR06o4jqgoRAwgwoF2VPItQ_r3kA3Ax9sCewfOm4SPLAdUeSu5_m0v-W0oZdnqepBWEYHBsLhgvuzXQIaX9DJZ1lxWaD7d73mapnmfHnGZ7MLznDnDrrtolg8rNRuDa2o9C5ac3aiwK8dmPWbe2iyPc1OTQnQvMCZxgreCuwrBoU9sXBKeJriCk16KvGszMsCaJYVlGxWlMU7PDw_YjcrnNrqT4Vdu4sJtr18ivvo-FrE8AB1UmDsOsJJkugAnKyEfDsIwdkGnBJJYhWCuqi3_S7ya54z6ZDPTQOOGbPHeRQyoIptzEiKOUl1kdfMyivkj__QbxtxNrQGt9v-kM0nzJkBprSOBhqizoHow6vGQnESJRKSbEjUZSS6aNMoA6suwTbWhw1DiBztddcuem4pDHZHaoqDJrwsCjb6-uMKRN-_tYheOSKdATskdxcy4JsMJliLcqNFCRZItobXjerWXCnY-V6FmbU6Xz78rBk2i5qCv1RlpaExHRYh3AXpPay0v-EsuKg-ZCXwXNraFy3Wt0fS6YmFTo8IhQAYnttrdtCVhPvo39-xiVZ3jw722f7ocO8xugVBdWxLnoIN1FnMS_UEAteFeGqtBUY_r9s8_QEn-awc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBDWup8OEFCqGNUK4OBBkN9C7Zjd5W6JDSNpv5r_HWcHSdbxAR72Wt9dpK7833U598h9CyQkKEpBRKgCXE8j0mHg6NxGFPgnTjjicHp_rwf7B56Hyf-ZA39ru_C6LLK2iYaQ51kQv9H3icQyoehtrh9Zcsivu6M3uW_HN1BSp-01u00KhXZk6sTSN-Kt-MdkPVzQkYfvr_fdWyHAUcEEVk6XBEvBAeoIkijiHBdIjTkufL0BdJQDkKWcKoScOqESqY86nMOMyiXkEn5TLmw7hV0lbpupMsJ6aRJ9sCOBIG9qufSQd9qRi_PUtmDEI1GGs7hjCs0HQMav9DJ51lxXtD7d-3m9TLN2eqEzednHOPoFrppI1o8rFRwHa3J9DZatzajwC8tsPWrO2i6PcuOdTnQosCZwhLeCmwtBuU9MtBKeJbiCll6JvC8zMsCaFYVrGxWlMUbPDw9btcrHJtKUIlt64spNn19irvo8FLEcA91UmDsBsJJkigPHK6A3NvzwfF6jBJBQumD6sjXgy5ya57HwqKg62Yc89gc7VHIhiq2xVpSsZVUFznNrLxCAfkP_bYWZ0OrMbzND9liGluTEEulgkhBBBrxAbxqyCUjQSIg4YakXQS8i7a0MsTVhdjGEsVDH6JIc_W1i54aCo3jkeodMWVlUcTjLz8uQPTtoEX0whKpDNghmL2cAd-k8cFalJstSrBGojW8oVW35koRn-5bmFmr8_nDT5phvagu_ktlVmoa3W0RQl-Q3v1K-xvOgrsaQIYCz6WtfdFifXsknR0ZGPWAUAiG4bm9ZgddSLgP_v0dW-gaGKb403h_7yG6AfF1aKqfvE3UWS5K-Qhi2CV_bIwFRj8v2zr9AY2XsF8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXSnl1SwGDEI9D0sZ5OMtti6gKEgUBi8oBRbZjb1dsk1WzESoHfjszjhMIFFEO3FbrsZ2MH_NNPPOZkAeJBg_NGBgBnjMvioT2JBgaTwgD1kkKmVue7lcHyf4kenkYH66QT20ujNMg-IjzsrIn-fijLPS20-Q28hU1p6d-EPKgreEvQMgH8MNHLHloGYfwy9gSE5AukNUkBqg-IKuTgzfjj81JM_MSthO6dLo_tdQzV5bVv9u7B_hkZwHT3-MrL9bFQpx-EfP5T8Zrb418a1-7iVn57NdL6auvvzBC_je9XCGXHeyl46aVdbKii6tk3W0sFX3s2K-fXCPT3Vl5jDFDJxUtDdWgFtiQKfR_ZPmX6KygDf30TNF5vagrkDltuGfLqq6e0vGPM3ls4diGi2rq7seYUnv5T3WdTPaev3-277nbIDyVjNjSk4ZFKYAVMwKXl6kwZArp6U2Eyb6pDlKRS25yAGCMa2EiHksJNbjU4PXGwoQ3yKAAXWwQmue5icAqK3DQoxiscyQ4UyzVMVh0vRMMSdgOeqYcVTre2DHP7PkfB5epUVuGys2ccofE62otGqqQv8jv4nzqZJHo2_4Bo5u5Uc20McnIAEwdyQAeNZVasCRX4JWDZ68SOSR3cTZmTdZst11l4xigps2PHZL7VgLJPgqMJpqKuqqyF68_nEPo3due0CMnZEpQhxIugwPeCSdfT3KrJwlbluoVb-DsbbVSZQz89DRFOAU12_V0dvG9rhgbxQjBQpc1yuCVjICPYfRuNsuv0yzYtADcGOiX9xZmT_X9kmJ2ZLnWE8YBMUO_freEzzW4m_9a4Ra5BFg8tZFS0RYZLE9qfRvw7lLecbvWd9ZqsHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarkers+of+erosive+arthritis+in+systemic+lupus+erythematosus%3A+Application+of+machine+learning+models&rft.jtitle=PloS+one&rft.au=Ceccarelli%2C+Fulvia&rft.au=Sciandrone%2C+Marco&rft.au=Perricone%2C+Carlo&rft.au=Galvan%2C+Giulio&rft.date=2018-12-04&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=12&rft.spage=e0207926&rft_id=info:doi/10.1371%2Fjournal.pone.0207926&rft.externalDBID=IOV&rft.externalDocID=A564306285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon