The Community Simulator: A Python package for microbial ecology

Natural microbial communities contain hundreds to thousands of interacting species. For this reason, computational simulations are playing an increasingly important role in microbial ecology. In this manuscript, we present a new open-source, freely available Python package called Community Simulator...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 3; p. e0230430
Main Authors Marsland, Robert, Cui, Wenping, Goldford, Joshua, Mehta, Pankaj
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.03.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0230430

Cover

More Information
Summary:Natural microbial communities contain hundreds to thousands of interacting species. For this reason, computational simulations are playing an increasingly important role in microbial ecology. In this manuscript, we present a new open-source, freely available Python package called Community Simulator for simulating microbial population dynamics in a reproducible, transparent and scalable way. The Community Simulator includes five major elements: tools for preparing the initial states and environmental conditions for a set of samples, automatic generation of dynamical equations based on a dictionary of modeling assumptions, random parameter sampling with tunable levels of metabolic and taxonomic structure, parallel integration of the dynamical equations, and support for metacommunity dynamics with migration between samples. To significantly speed up simulations using Community Simulator, our Python package implements a new Expectation-Maximization (EM) algorithm for finding equilibrium states of community dynamics that exploits a recently discovered duality between ecological dynamics and convex optimization. We present data showing that this EM algorithm improves performance by between one and two orders compared to direct numerical integration of the corresponding ordinary differential equations. We conclude by listing several recent applications of the Community Simulator to problems in microbial ecology, and discussing possible extensions of the package for directly analyzing microbiome compositional data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0230430