Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder
Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coeffic...
Saved in:
| Published in | PloS one Vol. 14; no. 4; p. e0214712 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
16.04.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0214712 |
Cover
| Abstract | Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques. |
|---|---|
| AbstractList | Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques. Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques.Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques. |
| Audience | Academic |
| Author | Hu, Xue Hao, Yaru Chen, Lili |
| AuthorAffiliation | 3 Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Liverpool John Moores University, UNITED KINGDOM 1 School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China 2 School of Chongqing Key Laboratory of Urban Rail Transit Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing, China |
| AuthorAffiliation_xml | – name: Liverpool John Moores University, UNITED KINGDOM – name: 2 School of Chongqing Key Laboratory of Urban Rail Transit Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing, China – name: 3 Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China – name: 1 School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China |
| Author_xml | – sequence: 1 givenname: Lili surname: Chen fullname: Chen, Lili – sequence: 2 givenname: Yaru surname: Hao fullname: Hao, Yaru – sequence: 3 givenname: Xue orcidid: 0000-0002-8840-2586 surname: Hu fullname: Hu, Xue |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30990810$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11r2zAUhs3oWD-2fzA2w2BsF8kkWZLtXQxK91UoFLayW3EsHSfqHCmV5Hb991OWtDSljOIL20fP-54ve7_Ycd5hUbykZEqrmn4492NwMEyXOTwljPKasifFHm0rNpGMVDt3nneL_RjPCRFVI-WzYrcibUsaSvaK8BkT6mS9K31fLkN-C4uysyHNS-tKHPJh8PPrmON-FmBRRjvLaWPZQURTZt0VXGYslSmAi73PcnCmjAn07wzEJYSIJYzJo9PeYHhePO2zAb7Y3A-Ks69fzo6-T05Ovx0fHZ5MtGxZmnQt6-qu4Y1oa2OklhoEaEJ420tei462LTWAouNdLZFIg8gJ46binWaGVgfF67XtcvBRbaYVFWOUCCop4Zk4XhPGw7laBruAcK08WPUv4MNMQUhWD6gI9ET2NVZNh5w3BFoQpkLoRS1YVXfZS6y9RreE6ysYhltDStRqYTclqNXC1GZhWfdpU-XYLdBodHmMw1Yx2yfOztXMXyrJZV01JBu82xgEfzFiTGpho8ZhAId-XPfbCtqyJqNv7qEPT2VDzSA3bl3vc169MlWHomGilqySmZo-QOXL4MLq3GFvc3xL8H5LkJmEf9IMxhjV8c8fj2dPf22zb--wc4QhzaMfxtUnHbfBV3cnfTvim38hA3wN6OBjDNg_doMf78m0TbBKnydih_-L_wIt8DNI |
| CitedBy_id | crossref_primary_10_1007_s00129_022_04994_7 crossref_primary_10_1038_s41598_024_70773_0 crossref_primary_10_3390_electronics11223739 crossref_primary_10_1007_s11517_025_03293_2 crossref_primary_10_1016_j_bbe_2022_12_004 crossref_primary_10_1016_j_bspc_2023_104771 crossref_primary_10_1016_j_bspc_2021_103231 crossref_primary_10_2196_16503 crossref_primary_10_3390_app11136238 crossref_primary_10_1016_j_imu_2021_100771 crossref_primary_10_3389_fbioe_2021_780389 crossref_primary_10_1016_j_bbe_2021_01_004 crossref_primary_10_1016_j_bbe_2019_12_003 crossref_primary_10_1038_s41597_023_02581_6 |
| Cites_doi | 10.1016/j.physa.2018.05.085 10.1088/0031-9155/61/20/7300 10.1016/j.medengphy.2014.01.009 10.1016/j.neucom.2015.07.119 10.1016/j.compbiomed.2009.11.005 10.5120/8144-1928 10.1088/0031-9155/61/9/3387 10.1053/j.sodo.2015.07.001 10.1109/ICECS.2011.6122222 10.1016/j.ijepes.2010.10.001 10.1504/IJMIC.2009.024330 10.1016/j.robot.2014.11.005 10.1002/uog.5323 10.1016/j.irbm.2009.12.004 10.1016/j.measurement.2016.04.007 10.1007/s11517-008-0350-y 10.1109/TPAMI.2012.277 10.1161/01.CIR.101.23.e215 10.1016/j.bspc.2014.03.007 10.1016/j.jri.2015.02.006 10.1007/s10439-006-9248-8 10.1016/j.semcdb.2007.05.004 10.1038/sdata.2015.17 10.1109/MSP.2012.2205597 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Chen et al 2019 Chen et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Chen et al 2019 Chen et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0214712 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Detection of preterm birth in electrohysterogram signals based on wavelet transform and SSAE |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2210516104 oai_doaj_org_article_0af06f7e38be4480a9a5d3eaf575237b 10.1371/journal.pone.0214712 PMC6467380 A582576236 30990810 10_1371_journal_pone_0214712 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: cstc2016jcyjA0526 – fundername: ; grantid: KJ1600519 – fundername: ; grantid: CYS17203 – fundername: ; grantid: CYS17215 – fundername: ; grantid: cstc2017shmsA30016 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-b92b7b848597dd6c6ca5ac0049f6475b1991dae5b4b76e06dee4024d34bc2d13 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:52:45 EST 2021 Fri Oct 03 12:51:10 EDT 2025 Sun Oct 26 04:04:59 EDT 2025 Tue Sep 30 17:15:20 EDT 2025 Fri Sep 05 13:02:38 EDT 2025 Tue Oct 07 07:56:41 EDT 2025 Mon Oct 20 21:56:33 EDT 2025 Mon Oct 20 16:10:40 EDT 2025 Thu Oct 16 14:43:50 EDT 2025 Thu Oct 16 14:16:49 EDT 2025 Thu May 22 21:31:12 EDT 2025 Wed Feb 19 02:31:03 EST 2025 Thu Apr 24 23:00:48 EDT 2025 Wed Oct 01 01:51:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-b92b7b848597dd6c6ca5ac0049f6475b1991dae5b4b76e06dee4024d34bc2d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8840-2586 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0214712 |
| PMID | 30990810 |
| PQID | 2210516104 |
| PQPubID | 1436336 |
| PageCount | e0214712 |
| ParticipantIDs | plos_journals_2210516104 doaj_primary_oai_doaj_org_article_0af06f7e38be4480a9a5d3eaf575237b unpaywall_primary_10_1371_journal_pone_0214712 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467380 proquest_miscellaneous_2210951928 proquest_journals_2210516104 gale_infotracmisc_A582576236 gale_infotracacademiconefile_A582576236 gale_incontextgauss_ISR_A582576236 gale_incontextgauss_IOV_A582576236 gale_healthsolutions_A582576236 pubmed_primary_30990810 crossref_primary_10_1371_journal_pone_0214712 crossref_citationtrail_10_1371_journal_pone_0214712 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-16 |
| PublicationDateYYYYMMDD | 2019-04-16 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Hassan (ref9) 2010; 31 H Liu (ref32) 2016; 2016 K Fu (ref34) 2014; 13 WL Maner (ref2) 2007; 35 L Chen (ref33) 2017; 2017 B Kusnoto (ref15) 2015; 21 Z He (ref14) 2011; 33 RE Garfield (ref5) 2007; 18 I Hudić (ref4) 2015; 109 ref18 JMG Crane (ref3) 2008; 31 D Xia (ref6) 2016; 61 N Lu (ref16) 2008; 6 A Alexandersson (ref25) 2015; 2 D Radomski (ref10) 2008 ME Cek (ref13) 2010; 40 N Zhang (ref29) 2018; 508 A Diab (ref11) 2014; 36 Z Zhang (ref24) 2016; 61 S Arora (ref8) 2012; 51 ref20 AL Goldberger (ref26) 2000; 101 G Fele-Žorž (ref12) 2008; 46 A Droniou (ref23) 2015; 71 ref28 W Sun (ref19) 2016; 89 C Howson (ref1) 2012 Y Bengio (ref31) 2009; 2 WL Maner (ref7) 2003; 101 G Hinton (ref21) 2012; 29 B Moslem (ref17) 2011 HC Shin (ref22) 2013; 35 AM El-Zonkoly (ref27) 2011; 3 W Liu (ref30) 2015; 187 |
| References_xml | – start-page: 325 year: 2008 ident: ref10 article-title: Information Technologies in Biomedicine; Advances in Soft Computing – volume: 508 start-page: 595 year: 2018 ident: ref29 article-title: Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series publication-title: Physica a-Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2018.05.085 – volume: 61 start-page: 7300 issue: 20 year: 2016 ident: ref6 article-title: Optimization-based image reconstruction with artifact reduction in C-arm CBCT publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/20/7300 – volume: 2016 start-page: 12 issue: 2 year: 2016 ident: ref32 article-title: Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals publication-title: Shock Vib – volume: 36 start-page: 761 issue: 6 year: 2014 ident: ref11 article-title: Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2014.01.009 – ident: ref20 – volume: 187 start-page: 59 year: 2015 ident: ref30 article-title: HSAE: A Hessian regularized sparse auto-encoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.119 – volume: 40 start-page: 90 issue: 1 year: 2010 ident: ref13 article-title: Continuous time wavelet entropy of auditory evoked potentials publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2009.11.005 – volume: 51 start-page: 37 issue: 18 year: 2012 ident: ref8 article-title: A Novel Scheme to Classify EHG Signal for Term and Pre-term Pregnancy Analysis publication-title: International Journal of Computer Applications doi: 10.5120/8144-1928 – volume: 2017 start-page: 7949507 year: 2017 ident: ref33 article-title: Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine publication-title: Comput Math Method M – volume: 61 start-page: 3387 issue: 9 year: 2016 ident: ref24 article-title: Artifact reduction in short-scan CBCT by use of optimization-based reconstruction publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/9/3387 – year: 2012 ident: ref1 article-title: Born Too Soon: The Global Action Report on Preterm Birth – volume: 21 start-page: 233 issue: 4 year: 2015 ident: ref15 article-title: Implementation of ultra-low-dose CBCT for routine 2D orthodontic diagnostic radiographs: Cephalometric landmark identification and image quality assessment publication-title: Semin Orthod doi: 10.1053/j.sodo.2015.07.001 – ident: ref18 doi: 10.1109/ICECS.2011.6122222 – volume: 33 start-page: 402 issue: 3 year: 2011 ident: ref14 article-title: Study of a new method for power system transients classification based on wavelet entropy and neural network publication-title: Int J Elec Power doi: 10.1016/j.ijepes.2010.10.001 – volume: 6 start-page: 136 issue: 2 year: 2008 ident: ref16 article-title: Uterine electromyography signal feature extraction and classification publication-title: International Journal of Modelling Identification & Control doi: 10.1504/IJMIC.2009.024330 – volume: 71 start-page: 83 issue: 3 year: 2015 ident: ref23 article-title: Deep unsupervised network for multimodal perception, representation and classification publication-title: Robot Auyon Syst doi: 10.1016/j.robot.2014.11.005 – volume: 3 start-page: 34 issue: 8 year: 2011 ident: ref27 article-title: Wavelet entropy based algorithm for fault detection and classification in FACTS compensated transmission line publication-title: Int J Elec Power – volume: 31 start-page: 579 issue: 5 year: 2008 ident: ref3 article-title: Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review publication-title: Ultrasound in Obstetrics & Gynecology doi: 10.1002/uog.5323 – volume: 31 start-page: 182 issue: 3 year: 2010 ident: ref9 article-title: Application of wavelet coherence to the detection of uterine electrical activity synchronization in labor publication-title: Irbm doi: 10.1016/j.irbm.2009.12.004 – ident: ref28 – year: 2011 ident: ref17 article-title: Signal Processing Systems – volume: 101 start-page: 1254 issue: 6 year: 2003 ident: ref7 article-title: Predicting term and preterm delivery with transabdominal uterine electromyography publication-title: OBSTET GYNECOL – volume: 89 start-page: 171 year: 2016 ident: ref19 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 46 start-page: 911 issue: 9 year: 2008 ident: ref12 article-title: A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups publication-title: Med Biol Eng Comput doi: 10.1007/s11517-008-0350-y – volume: 35 start-page: 1930 issue: 8 year: 2013 ident: ref22 article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2012.277 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: ref26 article-title: PhysioBank P. PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 13 start-page: 15 issue: 5 year: 2014 ident: ref34 article-title: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM publication-title: Biomed Signal Proces doi: 10.1016/j.bspc.2014.03.007 – volume: 109 start-page: 36 year: 2015 ident: ref4 article-title: Maternal serum progesterone-induced blocking factor (PIBF) in the prediction of preterm birth publication-title: J Reprod Immunol doi: 10.1016/j.jri.2015.02.006 – volume: 35 start-page: 465 issue: 3 year: 2007 ident: ref2 article-title: Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data publication-title: Ann Biomed Eng doi: 10.1007/s10439-006-9248-8 – volume: 18 start-page: 289 issue: 3 year: 2007 ident: ref5 article-title: Physiology and electrical activity of uterine contractions publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2007.05.004 – volume: 2 start-page: 150017 year: 2015 ident: ref25 article-title: The Icelandic 16-electrode electrohysterogram database publication-title: Sci Data doi: 10.1038/sdata.2015.17 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: ref21 article-title: Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups publication-title: IEEE Signal Proc Mag doi: 10.1109/MSP.2012.2205597 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: ref31 article-title: Learning Deep Architectures for AI publication-title: Foundations & Trends |
| SSID | ssj0053866 |
| Score | 2.4198918 |
| Snippet | Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0214712 |
| SubjectTerms | Accuracy Approximation Area Under Curve Biology and Life Sciences Birth Classification Classifiers Coefficients Computer and Information Sciences Diagnosis Electromyography Electrophysiological Phenomena Electrophysiology Engineering and Technology Entropy Fault diagnosis Female Health aspects Humans Infant, Newborn International conferences Laboratories Learning algorithms Mathematical analysis Medicine and Health Sciences Methods Neural networks Obstetrical research Physical Sciences Pregnancy Premature birth Premature Birth - diagnosis Premature infants Prenatal diagnosis Research and Analysis Methods Risk factors ROC Curve Sensitivity and Specificity Signal processing Support vector machines Unsupervised Machine Learning Uterine contractions Wavelet Analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyzcOxnWN5VAUJkKCg3iI7trsrrZJok6ji3zOTeKNGVGoPnCLF40iZGY-_kcffEPI6llJJp3WIVCchUyYOc0AFoXAy44ZJzYaLwl-_8ZNf7MtZdnap1RfWhI30wKPiDiPlIu6ETaW2kEpEKleZSa1y8MUkFRqjbyTzXTI1xmBYxZz7i3KpiA-9XZZNXdklsoSJOJltRANf_xSVF82mbq-CnP9WTt7uq0b9uVCbzaVt6fgeuevxJD0a_2OP3LLVfbLnV2xL33pa6XcPyPaj7Ya6q4rWjmKdIQRlqtfbbkXXFfX9cFbI7DzWbFGs7QDvpLjTGQrzLhS2qehot0O7VFWGAr6EUADPBpJkS1Xf1ciOaez2ITk9_nT64ST0HRfCkudJF-o80UJLJiHNMIaXvFSZKjGLcJyJTGOdlFE200wLbiNurIX8k5mU6TIxcfqILCpQ8T6hkQDg4ZQzScSYgLRKpUbb3NjM5bnJ44CkO-0XpWcjx6YYm2I4YhOQlYwKLNBmhbdZQMJpVjOycVwj_x4NO8kil_bwAjys8B5WXOdhAXmBblGMF1OniFAcZRKztSTlAXk1SCCfRoUFO-eqb9vi8_ffNxD6-WMm9MYLuRrUUSp_SQL-CXm6ZpIHM0mICuVseB-deKeVtkggt88A3kcMZu4c--rhl9MwfhSL8Cpb96MMAPI8kQF5PK6DSbMpHrDKOAqImK2QmernI9V6NdCZc4adZ2HmclpLNzLuk_9h3KfkDkDg4Xww5gdk0W17-wxgZqefDxHlL4TUfjw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoIBBSMAh2zwcOzkg1EKrgkRBpaDeIju2uyutkrCbVcW_ZyZxAhEV9BRpPY6UeXlmPfMNIS_CNJWpVcpHqBOfSR36GUQFvrBpwjVLFWsbhT-d8ONv7ON5cr5BTvpeGCyr7H1i66h1VeB_5HsR5CYJhCcBe1v_8HFqFN6u9iM0pButoN-0EGM3yGaEyFgTsnlwePLltPfNYN2cuwa6WIR7Tl7TuirNFNHDRBiNDqgWx3_w1pN6Ua2uCkX_rqi8uS5r-fNSLhZ_HFdHt8mWizPpfqcY22TDlHfItrPkFX3l4KZf3yXL96Zp67FKWlmK9YfgrKmaL5sZnZfUzcmZIeJzV8tFseYDtJbiCagp7LuUOL6ioU0fBVNZagpxJ7gIeNaQPBsq102FqJnaLO-Rs6PDs3fHvpvE4Bc8ixpfZZESKmUppB9a84IXMpEFZheWM5EorJ_S0iSKKcFNwLUxkJcyHTNVRDqM75NJCSzeITQQEJBYaXUUMCYg3ZKxVibTJrFZprPQI3HP_bxwKOU4LGORt1dvArKVjoE5yix3MvOIP-yqO5SO_9AfoGAHWsTYbn-olhe5M9k8kDbgVpg4VQaS2EBmMtGxkRZ0OYqF8shTVIu8a1gdPEW-n6SYxUUx98jzlgJxNkos5LmQ69Uq__D5-zWIvp6OiF46IlsBOwrpmifgmxC_a0S5O6IEb1GMlndQiXuurPLfdgU7e8W-evnZsIwvxeK80lTrjgYC9SxKPfKgs4OBszFevKZh4BExspAR68cr5XzWwpxzhhNpYed0sKVrCffhv7_jEbkFQW97IxjyXTJplmvzGALLRj1x3uIXz7x7mw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1UMAgJEAiIQ_HTo7LoypILQha1J4iO3bYFatktZuogl_PTOJEDRSxnFaKZ1by2DP-Rh5_Q8jTIElkUijlItWJy6QO3BRQgSuKJOaaJYq1D4UPj_jBCftwGp9ukZf9W5iL9_eRCF5Zi3rLqjQe8nsJbCm8zWNA3hOyfXL0aXrWXRyHLg_9yL6O-5vq6PRpSfqHUDxZLqr1ZTjzz3LJK025lD_O5WJx4Szav04O-1l0JSjfvaZWXv7zN4LHTad5g1yzoJROu120Q7ZMeZPsWLdf0-eWm_rFLbJ6a-q2eKukVUGxWBEiO1XzVT2j85LapjozpIfuCr8oFojAFqd4XGoKeucSe13UtO4hM5WlpgBSIZ7A7xIybUNlU1dIsanN6jY53n93_ObAtW0b3JynYe2qNFRCJSyBXEVrnvNcxjLHVKTgTMQKi620NLFiSnDjc20MJLFMR0zloQ6iO2RSghl2CfUFoJdCFjr0GROQm8lIK5NqExdpqtPAIVG_mlluKc2xs8Yia-_pBKQ2nQEztGtm7eoQd9BadpQe_5B_jRtlkEVC7vYDLGBm_TvzZeHzQpgoUQYyXl-mMtaRkQVs_DASyiGPcJtl3evWIaxk0zjBlC-MuEOetBJIylFi1c832azX2fuPXzcQ-vJ5JPTMChUVmCOX9qUFzAnJvkaSeyNJCC35aHgXnaK3yjoLQ4DjkCP4DDR7R7l8-PEwjH-KlXylqZpOBlB9GiYOudv51WDZCG9pk8B3iBh53Mj045FyPms50TnD9rWg6Q2-udHi3vtfhfvkKmDm9kIx4HtkUq8a8wBwaa0e2nD0C3BDjiI priority: 102 providerName: Unpaywall |
| Title | Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30990810 https://www.proquest.com/docview/2210516104 https://www.proquest.com/docview/2210951928 https://pubmed.ncbi.nlm.nih.gov/PMC6467380 https://doi.org/10.1371/journal.pone.0214712 https://doaj.org/article/0af06f7e38be4480a9a5d3eaf575237b http://dx.doi.org/10.1371/journal.pone.0214712 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Food Science Source (EBSCO) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAviPG1wigGIQEPqfLh2MkDQt1YGUgr01hReYrs2FkrVUlpUo3999zlS0QUMV4SKT5HyvnufJc7_46QV04QyCBRykKoE4tJ7VgheAWWSAKfaxYoVh4UPp3wkyn7PPNnO6Tp2VozMN8a2mE_qel6Ofz54_o9KPy7smuDcJpJw1WWmiFigAlsO7wLe1WIzRxOWZtXAO0us5fotVjctb36MN3f3tLZrEpM_9Zy91bLLN_mlv5ZXXl7k67k9ZVcLn_busb3yN3a56SjSkj2yI5J75O9Wqtz-qaGnn77gKw_mKKszUppllCsRQTDTdViXczpIqV1z5w5oj9XdV0U6z-AkxR3Q01h3pXEVhYFLRqPmMpUU_BBwVzAfQXcNlRuigwRNLVZPyQX4-OLoxOr7spgxTx0C0uFrhIqYAGEIlrzmMfSlzFGGglnwldYS6Wl8RVTghuba2MgRmXaYyp2teM9Ir0UWLxPqC3AOUlkol2bMQGhl_S0MqE2fhKGOnT6xGu4H8U1Yjk2zlhGZRpOQORSMTDCNYvqNesTq521qhA7_kF_iAvb0iLedvkgW19GtfpGtkxsngjjBcpAQGvLUPraMzIBuXY9ofrkOYpFVB1eba1GNPIDjOhcj_fJy5ICMTdSLOq5lJs8jz59-XYDoq_nHaLXNVGSATtiWR-kgG9CLK8O5UGHEixH3BneRyFuuJJHLsT_PoQANoOZjWBvH37RDuNLsVAvNdmmogGnPXSDPnlc6UHLWQ-TsIFj94noaEiH9d2RdDEvIc85w-60MHPY6tKNFvfJfwrDU3IHPOIyXejwA9Ir1hvzDLzOQg3ILTETcA2OHLyOPw7I7uHx5Ox8UP7HGZSGBp5NJ2ej778AGryJ7Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcCgXRNlqKHRAIODg1Mt4xj4gVChVQhckKCg3a8YzbiJFtkkcRf1R_Efe8wYWFfTSU6TMG0t-23zP8xZCXrhhKMNUKRtbndhMateOABXYIg0DrlmoWFUofHLKR9_Yp0kw2SA_21oYTKtsfWLlqHWe4DfyPQ9ikwDgicPeFT9snBqFt6vtCI1aLY7MxRpCtuXb8QHI96XnHX48-zCym6kCdsIjr7RV5CmhQhYClNaaJzyRgUwQKaeciUBhLpCWJlBMCW4cro2BGItpn6nE064Pj71BbjIfXAmYj5h08R24Ds6b6jxfuHuNMgyLPDNDbE0mXK93-lVDArqjYFDM8-VlOPfvdM3NVVbIi7Wcz_84Cw_vkNsNiKX7tdZtkQ2T3SVbjZtY0tdNL-s398jiwJRVsldG85RiciOcBFTNFuWUzjLaDOGZYjvpOlGMYkIJmATF41VT2LeWOBujpGULsanMNAVQC_4HfguIzA2VqzLHlpzaLO6Ts-sQyAMyyIDF24Q6AtBOKlPtOYwJiOWkr5WJtAnSKNKRaxG_5X6cNC3QcRLHPK7u9QSEQjUDY5RZ3MjMIna3q6hbgPyH_j0KtqPFBt7VH_niPG78QezI1OGpMH6oDETIjoxkoH0jUzAUzxfKIruoFnFdDdu5oXg_CDFE9HxukecVBTbxyDBL6Fyulst4_Pn7FYi-fukRvWqI0hzYkcimMgPeCZuD9Sh3epTgipLe8jYqccuVZfzbaGFnq9iXLz_rlvGhmPmXmXxV00AUEHmhRR7WdtBx1sdb3dB1LCJ6FtJjfX8lm02rHuqc4bhb2DnsbOlKwn307_fYJZujs5Pj-Hh8evSY3AJ0XV09unyHDMrFyjwBBFuqp5XfoCS-Zj_1CwIIsbI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHl1oVCDQMAhbR6OnRwQKpSqS6EgWlBvkR073ZVWSdhkVfWn8e-YSZxARAW99LTSehwp8_I38TwIeeZFkYwypRxsdeIwqT0nBlTgiCwKuWaRYk2h8KcDvveNfTgOj1fIz64WBtMqO5_YOGpdpPiNfMuH2CQEeOKyrcymRXzZ2X1T_nBwghTetHbjNFoV2TdnpxC-Va8nOyDr576_-_7o3Z5jJww4KY_92lGxr4SKWASwWmue8lSGMkXUnHEmQoV5QVqaUDEluHG5NgbiLaYDplJfewE89gq5KoIgxmxCcdzHeuBGOLeVeoHwtqxibJZFbjaxTZnw_MFJ2AwM6I-FUTkvqvMw79-pm9eXeSnPTuV8_se5uHuL3LSAlm63GrhKVkx-m6xal1HRl7av9as7ZLFj6ibxK6dFRjHREU4FqmaLekpnObUDeabYWrpNGqOYXALmQfGo1RT2nUqck1HTuoPbVOaaAsAFXwS_JUTphsplXWB7Tm0Wd8nRZQjkHhnlwOI1Ql0ByCeTmfZdxgTEdTLQysTahFkc69gbk6DjfpLadug4lWOeNHd8AsKiloEJyiyxMhsTp99Vtu1A_kP_FgXb02Iz7-aPYnGSWN-QuDJzeSZMECkD0bIrYxnqwMgMjMYPhBqTDVSLpK2M7V1Ssh1GGC76AR-Tpw0FNvTI0TRO5LKqksnn7xcgOvw6IHphibIC2JFKW6UB74SNwgaU6wNKcEvpYHkNlbjjSpX8NmDY2Sn2-ctP-mV8KGYB5qZYtjQQEcR-NCb3WzvoORvgDW_kuWMiBhYyYP1wJZ9Nm37qnOHoW9i52dvShYT74N_vsUGugYdKPk4O9h-SGwC0m1tIj6-TUb1YmkcAZmv1uHEblCSX7KZ-AXs8tfU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1UMAgJEAiIQ_HTo7LoypILQha1J4iO3bYFatktZuogl_PTOJEDRSxnFaKZ1by2DP-Rh5_Q8jTIElkUijlItWJy6QO3BRQgSuKJOaaJYq1D4UPj_jBCftwGp9ukZf9W5iL9_eRCF5Zi3rLqjQe8nsJbCm8zWNA3hOyfXL0aXrWXRyHLg_9yL6O-5vq6PRpSfqHUDxZLqr1ZTjzz3LJK025lD_O5WJx4Szav04O-1l0JSjfvaZWXv7zN4LHTad5g1yzoJROu120Q7ZMeZPsWLdf0-eWm_rFLbJ6a-q2eKukVUGxWBEiO1XzVT2j85LapjozpIfuCr8oFojAFqd4XGoKeucSe13UtO4hM5WlpgBSIZ7A7xIybUNlU1dIsanN6jY53n93_ObAtW0b3JynYe2qNFRCJSyBXEVrnvNcxjLHVKTgTMQKi620NLFiSnDjc20MJLFMR0zloQ6iO2RSghl2CfUFoJdCFjr0GROQm8lIK5NqExdpqtPAIVG_mlluKc2xs8Yia-_pBKQ2nQEztGtm7eoQd9BadpQe_5B_jRtlkEVC7vYDLGBm_TvzZeHzQpgoUQYyXl-mMtaRkQVs_DASyiGPcJtl3evWIaxk0zjBlC-MuEOetBJIylFi1c832azX2fuPXzcQ-vJ5JPTMChUVmCOX9qUFzAnJvkaSeyNJCC35aHgXnaK3yjoLQ4DjkCP4DDR7R7l8-PEwjH-KlXylqZpOBlB9GiYOudv51WDZCG9pk8B3iBh53Mj045FyPms50TnD9rWg6Q2-udHi3vtfhfvkKmDm9kIx4HtkUq8a8wBwaa0e2nD0C3BDjiI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+preterm+birth+in+electrohysterogram+signals+based+on+wavelet+transform+and+stacked+sparse+autoencoder&rft.jtitle=PloS+one&rft.au=Chen%2C+Lili&rft.au=Hao%2C+Yaru&rft.au=Hu%2C+Xue&rft.date=2019-04-16&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft.spage=e0214712&rft_id=info:doi/10.1371%2Fjournal.pone.0214712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0214712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |