An XAI method for convolutional neural networks in self-driving cars
eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when usi...
Saved in:
Published in | PloS one Vol. 17; no. 8; p. e0267282 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
16.08.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0267282 |
Cover
Abstract | eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately. |
---|---|
AbstractList | eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately. eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately.eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately. |
Audience | Academic |
Author | Kim, Hong-Sik Joe, Inwhee |
AuthorAffiliation | Dept. of Computer and Software, Hanyang University, Seongdong-gu, Seoul, South Korea Al Mansour University College-Baghdad-Iraq, IRAQ |
AuthorAffiliation_xml | – name: Al Mansour University College-Baghdad-Iraq, IRAQ – name: Dept. of Computer and Software, Hanyang University, Seongdong-gu, Seoul, South Korea |
Author_xml | – sequence: 1 givenname: Hong-Sik surname: Kim fullname: Kim, Hong-Sik – sequence: 2 givenname: Inwhee orcidid: 0000-0002-8435-0395 surname: Joe fullname: Joe, Inwhee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35972916$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk2tr2zAUhs3oWC_bPxibYTC2D8l0sWSpHwahuwUKhd3YNyHLUqLMkTLJTrt_P7lxRlzKGDbIHD_vK5_XOqfZkfNOZ9lTCKYQl_DNynfByWa6SeUpQLREDD3ITiDHaEIRwEcHz8fZaYwrAAhmlD7KjjHhJeKQnmTvZi7_MZvna90ufZ0bH3Ll3dY3XWt9ss-d7sLt0l778DPm1uVRN2ZSB7u1bpErGeLj7KGRTdRPhvUs-_bh_deLT5PLq4_zi9nlRFGO2klVEIK4hDDdJdSAFZARVWhCjGGUc1rTUlXMVKagtcYMAglrzAwqqNE1Rvgse77z3TQ-iiGAKFAJUjOEQJKI-Y6ovVyJTbBrGX4LL624LfiwEDK0VjVaMAwwr7EqCcSF4ZxVBhIFcCkZRbysktfbYbeuWutaademJEam4zfOLsXCbwXHDHACksGrwSD4X52OrVjbqHTTSKd9N3x3SRjq0Rd30Pu7G6iFTA1YZ3zaV_WmYlbCAtA-0ERN76HSVeu1TT9XG5vqI8HrkSAxrb5pF7KLUcy_fP5_9ur7mH15wC61bNplHE5WHIPPDpP-G_H-mCbgfAeo4GMM2ghlW9n7pNZsIyAQ_UzsQxP9TIhhJpK4uCPe-_9T9gc7OA1u |
CitedBy_id | crossref_primary_10_1007_s00521_024_10811_0 crossref_primary_10_3390_app14198884 crossref_primary_10_1016_j_patrec_2024_06_006 crossref_primary_10_1016_j_compeleceng_2024_109246 crossref_primary_10_1109_ACCESS_2024_3489476 crossref_primary_10_1371_journal_pone_0295144 crossref_primary_10_1016_j_dajour_2023_100230 crossref_primary_10_4271_12_07_02_0008 |
Cites_doi | 10.1177/1071181320641077 10.1109/CVPR.2018.00920 10.1016/j.future.2021.11.018 10.1109/ACCESS.2021.3051171 10.1117/12.2549298 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Kim, Joe. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Kim, Joe 2022 Kim, Joe |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Kim, Joe. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Kim, Joe 2022 Kim, Joe |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0267282 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | An XAI method for convolutional neural networks in self-driving cars |
EISSN | 1932-6203 |
ExternalDocumentID | 2702915515 oai_doaj_org_article_83039d3c75134f998bf15c037a86297b PMC9380950 A714064185 35972916 10_1371_journal_pone_0267282 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: ; grantid: 2020-0-00107 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM AAPBV ABPTK BBAFP |
ID | FETCH-LOGICAL-c692t-b45529a11a1171e084185c4e55ff86996d67cb8fbf46de3810a1d38f246fed323 |
IEDL.DBID | BENPR |
ISSN | 1932-6203 |
IngestDate | Sun Oct 02 00:10:59 EDT 2022 Wed Aug 27 01:17:49 EDT 2025 Thu Aug 21 14:04:40 EDT 2025 Mon Sep 08 06:42:40 EDT 2025 Fri Jul 25 10:41:25 EDT 2025 Tue Jun 17 21:37:29 EDT 2025 Tue Jun 10 20:09:05 EDT 2025 Fri Jun 27 04:46:37 EDT 2025 Fri Jun 27 03:46:12 EDT 2025 Thu May 22 20:49:11 EDT 2025 Mon Jul 21 06:04:29 EDT 2025 Tue Jul 01 03:10:21 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-b45529a11a1171e084185c4e55ff86996d67cb8fbf46de3810a1d38f246fed323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-8435-0395 |
OpenAccessLink | https://www.proquest.com/docview/2702915515?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 35972916 |
PQID | 2702915515 |
PQPubID | 1436336 |
PageCount | e0267282 |
ParticipantIDs | plos_journals_2702915515 doaj_primary_oai_doaj_org_article_83039d3c75134f998bf15c037a86297b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9380950 proquest_miscellaneous_2702975820 proquest_journals_2702915515 gale_infotracmisc_A714064185 gale_infotracacademiconefile_A714064185 gale_incontextgauss_ISR_A714064185 gale_incontextgauss_IOV_A714064185 gale_healthsolutions_A714064185 pubmed_primary_35972916 crossref_citationtrail_10_1371_journal_pone_0267282 crossref_primary_10_1371_journal_pone_0267282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-16 |
PublicationDateYYYYMMDD | 2022-08-16 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0267282.ref001 pone.0267282.ref023 pone.0267282.ref022 pone.0267282.ref021 pone.0267282.ref020 pone.0267282.ref005 pone.0267282.ref027 pone.0267282.ref004 pone.0267282.ref026 pone.0267282.ref003 pone.0267282.ref025 pone.0267282.ref002 pone.0267282.ref024 pone.0267282.ref019 pone.0267282.ref018 pone.0267282.ref017 pone.0267282.ref012 pone.0267282.ref034 pone.0267282.ref011 pone.0267282.ref033 pone.0267282.ref010 pone.0267282.ref032 pone.0267282.ref031 pone.0267282.ref016 pone.0267282.ref015 pone.0267282.ref014 pone.0267282.ref013 pone.0267282.ref030 pone.0267282.ref009 pone.0267282.ref008 pone.0267282.ref007 pone.0267282.ref029 pone.0267282.ref006 pone.0267282.ref028 |
References_xml | – ident: pone.0267282.ref018 – ident: pone.0267282.ref016 – ident: pone.0267282.ref020 doi: 10.1177/1071181320641077 – ident: pone.0267282.ref012 – ident: pone.0267282.ref014 – ident: pone.0267282.ref010 – ident: pone.0267282.ref004 – ident: pone.0267282.ref006 – ident: pone.0267282.ref031 – ident: pone.0267282.ref008 – ident: pone.0267282.ref033 – ident: pone.0267282.ref027 – ident: pone.0267282.ref029 – ident: pone.0267282.ref023 – ident: pone.0267282.ref002 – ident: pone.0267282.ref025 doi: 10.1109/CVPR.2018.00920 – ident: pone.0267282.ref017 – ident: pone.0267282.ref022 doi: 10.1016/j.future.2021.11.018 – ident: pone.0267282.ref015 – ident: pone.0267282.ref019 – ident: pone.0267282.ref013 – ident: pone.0267282.ref021 doi: 10.1109/ACCESS.2021.3051171 – ident: pone.0267282.ref011 doi: 10.1117/12.2549298 – ident: pone.0267282.ref007 – ident: pone.0267282.ref032 – ident: pone.0267282.ref005 – ident: pone.0267282.ref030 – ident: pone.0267282.ref009 – ident: pone.0267282.ref026 – ident: pone.0267282.ref034 – ident: pone.0267282.ref028 – ident: pone.0267282.ref024 – ident: pone.0267282.ref003 – ident: pone.0267282.ref001 |
SSID | ssj0053866 |
Score | 2.5068738 |
Snippet | eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0267282 |
SubjectTerms | Accident prevention Algorithms Artificial Intelligence Artificial neural networks Autonomous cars Autonomous Vehicles Biology and Life Sciences Computer and Information Sciences Computers Darkness Decision making Deep learning Driverless cars Driving ability Evaluation Explainable artificial intelligence Learning algorithms Machine learning Methods Modelling Neural networks Neural Networks, Computer Physical Sciences Propagation Reliability Reproducibility of Results Research and Analysis Methods Sensitivity analysis Shades |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4yT76I622rq0YR1IfuNkmbNI_jZdkVVFBX5i00Nx0YOsN25v97TpspW1lYH4TCQHMaZr5zyTmdky-EvAqNra2TIrceQmBplc8br3kuvNZBR6t4xBf6n7_Is4vy06JaXDnqC3vCBnrgAbiTGmKs9sKpiokyQnFgI6tcIVQDubhWFqNvoYt9MTXEYPBiKdNGOaHYSdLL8WbdhmM8c4nXfLIQ9Xz9Y1SebVbr7rqU8-_OyStL0eldciflkHQ-fPcDciu098hB8tKOvklU0m_vkw_zli7m53Q4J5pCgkqxzTyZG8yBdJb9R98M3tFlS7uwirm_XOKbBuqg7n1ALk4__nh_lqdzE3InNd_mtqwqrhvG4FIsFDUS1LgyVFWMtYQCx0vlbB1tLKUPSPHVMC_qyEsZgxdcPCSzFpA6JDRWDWR0FsIarOXSawsJT2lZHVnjYJoiI2IPonGJVBzPtliZ_p8yBcXFgIlB6E2CPiP5-NRmINW4Qf4d6meURUrs_gYYikmGYm4ylIw8R-2aYX_p6NhmjpSFEiHKyMteAmkxWuy7-dXsus6cf_35D0Lfv02EXiehuAY4XJP2OsBvQrqtieTRRBKc202GD9EW96h0BrcPIqU_wyf39nn98ItxGCfFXro2rHdJBspEDtp7NJjziKyA-hImkBlRE0OfQD8daZe_e1ZyLWpI14vH_0NXT8htjttMkHpYHpHZ9nIXnkLyt7XPej__AwPhVPo priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWcuGCWF4bWCAgJOCQqokTOz4gVB6rXSRAAop6s-LXUqlKu00rLf-eGceJCCoPqVKlemyln2fsmXj8DSFPbaVKpRlNlIElMFfcJJURWUKNEFY4xTOHL_Q_fGSns_z9vJgfkK5mawCw2RvaYT2p2WY5vrz48QoM_qWv2sDTrtN4vartGCsqQRhxhVz1J0aYzJf35wpg3YyFC3R_6jnYoDyPf79aj9bLVbPPFf09o_KXLerkBrkefMt42irDITmw9U1yGKy3iZ8HiukXt8jbaR3Pp2dxWz86Bsc1xvTzoIYwBtJc-i-fJN7Eizpu7NIlZrPANxCxBtBuk9nJu69vTpNQTyHRTGTbROVFkYkqTeHDUzspkbhG57YonCsZBD6Gca1Kp1zOjEXqryo1tHRZzpw1NKN3yKgGpI5I7IoKPD0Fyx3s8cwIBY5QrtLSpZWGYSYRoR2IUgeycax5sZT-BI1D0NFiIhF6GaCPSNL3WrdkG_-Qf43z08siVbb_YbU5l8HyZAmbtDBU8yKluYPoUrm00BPKKwjmBFcReYSzK9t7p73ByylSGTKEKCJPvATSZdSYj3Ne7ZpGnn369h9CXz4PhJ4FIbcCOHQV7kDAf0IaroHk8UASjF4Pmo9QFztUGonXCpHqP8WenX7ub37cN-OgmGNX29UuyED4mMHs3W3VuUeWQtwJA7CI8IGiD6AfttSL756tXNAS3PjJvb8_1n1yLcOLJUg2zI7JaLvZ2Qfg7m3VQ2_BPwGmGlOM priority: 102 providerName: Scholars Portal |
Title | An XAI method for convolutional neural networks in self-driving cars |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35972916 https://www.proquest.com/docview/2702915515 https://www.proquest.com/docview/2702975820 https://pubmed.ncbi.nlm.nih.gov/PMC9380950 https://doaj.org/article/83039d3c75134f998bf15c037a86297b http://dx.doi.org/10.1371/journal.pone.0267282 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaxygBIQEP2eo4sZ0HhLqxsiFtoMFQ36L4a1SqktK0_z93iRMImgCpSqX6YqXnu_Odc_c7Ql7aXEmlOQuVARMYK2HC3KRRyEya2tQpETk80L-45GfX8cdZMtsil20tDKZVtjaxNtSm1HhGfoR1U4hlTpN3yx8hdo3Ct6ttC43ct1Ywb2uIsW2yAyY5GQ_IzvHp5eer1jaDdnPuC-iYoEd-vQ6XZWEPsRdTJKPeBlXj-HfWerBclNVtruifGZW_bVHTe-Su9y2DSSMMu2TLFvfJrtfeKnjtIabfPCDvJ0Uwm5wHTf_oABzXANPPvRjCHAhzWX_VSeJVMC-Cyi5caFZzPIEINMTDD8n19PTryVno-ymEmqfROlRxkkRpTil8BLVjicA1OrZJ4pzkEPgYLrSSTrmYG4vQXzk1TLoo5s4aFrFHZFAAp_ZI4JIcPD0F5g72eG5SBY5QrKh0NNcwzXhIWMvETHuwcex5scjqN2gCgo6GJxmyPvOsH5Kwu2vZgG38g_4Y16ejRajs-odydZN5zcskbNKpYVoklMUOokvlaKLHTOQQzKVCDckzXN2sqTvtFD6bIJQhRxYNyYuaAuEyCszHuck3VZWdf_r2H0RfrnpErzyRK4EdOvc1EPCfEIarR3nQowSl173hPZTFlitV9ks94M5WPm8fft4N46SYY1fYcuNpIHyMYPUeN-LccZZB3AkT8CERPUHvsb4_Usy_12jlKZPgxo_3__5YT8idCAtLEGyYH5DBerWxT8HdW6sR2RYzAVd5QvE6_TDyWj2qD1DgehHLnwo1WKw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPKqoVCDQMDBbey11_ahQiltldA2oNKi3Bbvq0SK7BAnQvw5fhsz9tpgVAGXSpEiZccr59vx7Mx65htCnutMJEIy6gkFJjAUsfIylQYeVWmqUyPiwOCB_umYDS_Cd5NoskZ-NLUwmFbZ2MTKUKtC4hn5LtZNIZe5H72Zf_WwaxS-XW1aaGS2tYLaqyjGbGHHsf7-DUK4cm90AOv9IgiODs_fDj3bZcCTLA2WngijKEgz34dP7Ot-gnQuMtRRZEzCIBxQLJYiMcKETGkkxMp8RRMThMxoRZH4ALaA9RAPUHpkff9w_OGs2QvAmjBmC_Zo7O9a_diZF7newd5PQRJ0NsSqb0C7O_Tms6K8yvX9M4Pzty3x6Da5ZX1Zd1Ar3wZZ0_kdsmGtRem-spTWr--Sg0HuTgYjt-5X7YKj7GK6u1V7mANpNauvKim9dKe5W-qZ8dRiiiceroT4-x65uBZk75NeDkhtEtdEGXiWAswr-BRMpQIcr1D4ifEzCdP0HUIbELm05ObYY2PGqzd2MQQ5NSYcoecWeod47VXzmtzjH_L7uD6tLFJzVz8Ui0tun3SegFOQKirjyKehgWhWGD-SfRpnEDymsXDINq4ur-tcWwPDB0idyBAihzyrJJCeI8f8n8tsVZZ89P7Tfwh9POsIvbRCpgA4ZGZrLuA_Ie1XR3KrIwlGRnaGN1EXG1RK_utxhCsb_bx6-Gk7jJNiTl-ui5WVgXA1gNV7UKtziyyFOBcmYA6JO4regb47kk-_VOzoKU0gbOg__PttbZMbw_PTE34yGh8_IjcDLGpBomO2RXrLxUo_BldzKZ7Y59kln6_bhPwE7eKQVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrZYMFBAIesjZ2YicPCBVKtTIYCBjqW4i_tkpVUppWiH-Nv467xAkETcDLpEqV6ouVns-_3Dl3vyPkoclkLBVnvtQAgaEU2s90Qn2mk8QkVgpq8UD_7TE_PAlfz6LZFvnR1MJgWmWDiRVQ60LhGfkA66aQyzyIBtalRbwfT54vv_rYQQrftDbtNGoTOTLfv0H4Vj6bjmGtH1E6efXp5aHvOgz4iid07cswimiSBQF8RGCGMVK5qNBEkbUxh1BAc6FkbKUNuTZIhpUFmsWWhtwazZD0AOD_kmBhiG0jxKwN9gBHOHelekwEA2cZB8siNwfY9YnGtPMorDoGtM-F3nJRlOc5vX_mbv72MJxcI1edF-uNarPbJlsmv062HU6U3hNHZv30BhmPcm82mnp1p2oPXGQPE92dwcMcSKhZfVXp6KU3z73SLKyvV3M86_AURN43ycmF6PUW6eWgqR3i2SgDn1ICsII3wXUiweUKZRDbIFMwzbBPWKPEVDlac-yusUird3UCwptaJymqPnWq7xO_vWpZ03r8Q_4Frk8ri6Tc1Q_F6jR1ezyNwR1INFMiClhoIY6VNojUkIkMwsZEyD7Zx9VN6wrXFlrSEZImclRRnzyoJJCYI0cTP802ZZlO333-D6GPHzpCj52QLUAdKnPVFvCfkPCrI7nXkQR4UZ3hHbTFRitl-msjwpWNfZ4_fL8dxkkxmy83xcbJQKBKYfVu1-bcapZBhAsT8D4RHUPvqL47ks_PKl70hMUQMAzv_P229sllAI70zfT4aJdcoVjNggzHfI_01quNuQs-5lreqzazR75cNHr8BPgWjfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+XAI+method+for+convolutional+neural+networks+in+self-driving+cars&rft.jtitle=PloS+one&rft.au=Hong-Sik%2C+Kim&rft.au=Inwhee+Joe&rft.date=2022-08-16&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=8&rft.spage=e0267282&rft_id=info:doi/10.1371%2Fjournal.pone.0267282&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |