An XAI method for convolutional neural networks in self-driving cars

eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when usi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 8; p. e0267282
Main Authors Kim, Hong-Sik, Joe, Inwhee
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.08.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0267282

Cover

Abstract eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately.
AbstractList eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately.
eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately.eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive output based on a large volume of data set. Here, the problem is that it is hard to know why such prediction was derived, especially when using deep learning models. It makes the models unreliable in the case of reliability-critical applications. So, it is required to explain how they derived such output. It is a reliability-critical application for self-driving cars because the mistakes made by the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI models in this field. In this paper, we propose an XAI method based on computing and explaining the difference of the output values of the neurons in the last hidden layer of convolutional neural networks. First, we input the original image and some modified images of it. Then we derive output values for each image and compare these values. Then, we introduce the Sensitivity Analysis technique to explain which parts of the original image are needed to distinguish the category. In detail, we divide the image into several parts and fill these parts with shades. First, we compute the influence value on the vector indicating the last hidden layer of the model for each of these parts. Then we draw shades whose darkness is in proportion to the influence values. The experimental results show that our approach for XAI in self-driving cars finds the parts needed to distinguish the category of these images accurately.
Audience Academic
Author Kim, Hong-Sik
Joe, Inwhee
AuthorAffiliation Dept. of Computer and Software, Hanyang University, Seongdong-gu, Seoul, South Korea
Al Mansour University College-Baghdad-Iraq, IRAQ
AuthorAffiliation_xml – name: Al Mansour University College-Baghdad-Iraq, IRAQ
– name: Dept. of Computer and Software, Hanyang University, Seongdong-gu, Seoul, South Korea
Author_xml – sequence: 1
  givenname: Hong-Sik
  surname: Kim
  fullname: Kim, Hong-Sik
– sequence: 2
  givenname: Inwhee
  orcidid: 0000-0002-8435-0395
  surname: Joe
  fullname: Joe, Inwhee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35972916$$D View this record in MEDLINE/PubMed
BookMark eNqNk2tr2zAUhs3oWC_bPxibYTC2D8l0sWSpHwahuwUKhd3YNyHLUqLMkTLJTrt_P7lxRlzKGDbIHD_vK5_XOqfZkfNOZ9lTCKYQl_DNynfByWa6SeUpQLREDD3ITiDHaEIRwEcHz8fZaYwrAAhmlD7KjjHhJeKQnmTvZi7_MZvna90ufZ0bH3Ll3dY3XWt9ss-d7sLt0l778DPm1uVRN2ZSB7u1bpErGeLj7KGRTdRPhvUs-_bh_deLT5PLq4_zi9nlRFGO2klVEIK4hDDdJdSAFZARVWhCjGGUc1rTUlXMVKagtcYMAglrzAwqqNE1Rvgse77z3TQ-iiGAKFAJUjOEQJKI-Y6ovVyJTbBrGX4LL624LfiwEDK0VjVaMAwwr7EqCcSF4ZxVBhIFcCkZRbysktfbYbeuWutaademJEam4zfOLsXCbwXHDHACksGrwSD4X52OrVjbqHTTSKd9N3x3SRjq0Rd30Pu7G6iFTA1YZ3zaV_WmYlbCAtA-0ERN76HSVeu1TT9XG5vqI8HrkSAxrb5pF7KLUcy_fP5_9ur7mH15wC61bNplHE5WHIPPDpP-G_H-mCbgfAeo4GMM2ghlW9n7pNZsIyAQ_UzsQxP9TIhhJpK4uCPe-_9T9gc7OA1u
CitedBy_id crossref_primary_10_1007_s00521_024_10811_0
crossref_primary_10_3390_app14198884
crossref_primary_10_1016_j_patrec_2024_06_006
crossref_primary_10_1016_j_compeleceng_2024_109246
crossref_primary_10_1109_ACCESS_2024_3489476
crossref_primary_10_1371_journal_pone_0295144
crossref_primary_10_1016_j_dajour_2023_100230
crossref_primary_10_4271_12_07_02_0008
Cites_doi 10.1177/1071181320641077
10.1109/CVPR.2018.00920
10.1016/j.future.2021.11.018
10.1109/ACCESS.2021.3051171
10.1117/12.2549298
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Kim, Joe. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Kim, Joe 2022 Kim, Joe
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Kim, Joe. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Kim, Joe 2022 Kim, Joe
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0267282
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE


Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate An XAI method for convolutional neural networks in self-driving cars
EISSN 1932-6203
ExternalDocumentID 2702915515
oai_doaj_org_article_83039d3c75134f998bf15c037a86297b
PMC9380950
A714064185
35972916
10_1371_journal_pone_0267282
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: ;
  grantid: 2020-0-00107
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
AAPBV
ABPTK
BBAFP
ID FETCH-LOGICAL-c692t-b45529a11a1171e084185c4e55ff86996d67cb8fbf46de3810a1d38f246fed323
IEDL.DBID BENPR
ISSN 1932-6203
IngestDate Sun Oct 02 00:10:59 EDT 2022
Wed Aug 27 01:17:49 EDT 2025
Thu Aug 21 14:04:40 EDT 2025
Mon Sep 08 06:42:40 EDT 2025
Fri Jul 25 10:41:25 EDT 2025
Tue Jun 17 21:37:29 EDT 2025
Tue Jun 10 20:09:05 EDT 2025
Fri Jun 27 04:46:37 EDT 2025
Fri Jun 27 03:46:12 EDT 2025
Thu May 22 20:49:11 EDT 2025
Mon Jul 21 06:04:29 EDT 2025
Tue Jul 01 03:10:21 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-b45529a11a1171e084185c4e55ff86996d67cb8fbf46de3810a1d38f246fed323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8435-0395
OpenAccessLink https://www.proquest.com/docview/2702915515?pq-origsite=%requestingapplication%&accountid=15518
PMID 35972916
PQID 2702915515
PQPubID 1436336
PageCount e0267282
ParticipantIDs plos_journals_2702915515
doaj_primary_oai_doaj_org_article_83039d3c75134f998bf15c037a86297b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9380950
proquest_miscellaneous_2702975820
proquest_journals_2702915515
gale_infotracmisc_A714064185
gale_infotracacademiconefile_A714064185
gale_incontextgauss_ISR_A714064185
gale_incontextgauss_IOV_A714064185
gale_healthsolutions_A714064185
pubmed_primary_35972916
crossref_citationtrail_10_1371_journal_pone_0267282
crossref_primary_10_1371_journal_pone_0267282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-16
PublicationDateYYYYMMDD 2022-08-16
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0267282.ref001
pone.0267282.ref023
pone.0267282.ref022
pone.0267282.ref021
pone.0267282.ref020
pone.0267282.ref005
pone.0267282.ref027
pone.0267282.ref004
pone.0267282.ref026
pone.0267282.ref003
pone.0267282.ref025
pone.0267282.ref002
pone.0267282.ref024
pone.0267282.ref019
pone.0267282.ref018
pone.0267282.ref017
pone.0267282.ref012
pone.0267282.ref034
pone.0267282.ref011
pone.0267282.ref033
pone.0267282.ref010
pone.0267282.ref032
pone.0267282.ref031
pone.0267282.ref016
pone.0267282.ref015
pone.0267282.ref014
pone.0267282.ref013
pone.0267282.ref030
pone.0267282.ref009
pone.0267282.ref008
pone.0267282.ref007
pone.0267282.ref029
pone.0267282.ref006
pone.0267282.ref028
References_xml – ident: pone.0267282.ref018
– ident: pone.0267282.ref016
– ident: pone.0267282.ref020
  doi: 10.1177/1071181320641077
– ident: pone.0267282.ref012
– ident: pone.0267282.ref014
– ident: pone.0267282.ref010
– ident: pone.0267282.ref004
– ident: pone.0267282.ref006
– ident: pone.0267282.ref031
– ident: pone.0267282.ref008
– ident: pone.0267282.ref033
– ident: pone.0267282.ref027
– ident: pone.0267282.ref029
– ident: pone.0267282.ref023
– ident: pone.0267282.ref002
– ident: pone.0267282.ref025
  doi: 10.1109/CVPR.2018.00920
– ident: pone.0267282.ref017
– ident: pone.0267282.ref022
  doi: 10.1016/j.future.2021.11.018
– ident: pone.0267282.ref015
– ident: pone.0267282.ref019
– ident: pone.0267282.ref013
– ident: pone.0267282.ref021
  doi: 10.1109/ACCESS.2021.3051171
– ident: pone.0267282.ref011
  doi: 10.1117/12.2549298
– ident: pone.0267282.ref007
– ident: pone.0267282.ref032
– ident: pone.0267282.ref005
– ident: pone.0267282.ref030
– ident: pone.0267282.ref009
– ident: pone.0267282.ref026
– ident: pone.0267282.ref034
– ident: pone.0267282.ref028
– ident: pone.0267282.ref024
– ident: pone.0267282.ref003
– ident: pone.0267282.ref001
SSID ssj0053866
Score 2.5068738
Snippet eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning models are used to predict or decide something, and they derive...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0267282
SubjectTerms Accident prevention
Algorithms
Artificial Intelligence
Artificial neural networks
Autonomous cars
Autonomous Vehicles
Biology and Life Sciences
Computer and Information Sciences
Computers
Darkness
Decision making
Deep learning
Driverless cars
Driving ability
Evaluation
Explainable artificial intelligence
Learning algorithms
Machine learning
Methods
Modelling
Neural networks
Neural Networks, Computer
Physical Sciences
Propagation
Reliability
Reproducibility of Results
Research and Analysis Methods
Sensitivity analysis
Shades
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4yT76I622rq0YR1IfuNkmbNI_jZdkVVFBX5i00Nx0YOsN25v97TpspW1lYH4TCQHMaZr5zyTmdky-EvAqNra2TIrceQmBplc8br3kuvNZBR6t4xBf6n7_Is4vy06JaXDnqC3vCBnrgAbiTGmKs9sKpiokyQnFgI6tcIVQDubhWFqNvoYt9MTXEYPBiKdNGOaHYSdLL8WbdhmM8c4nXfLIQ9Xz9Y1SebVbr7rqU8-_OyStL0eldciflkHQ-fPcDciu098hB8tKOvklU0m_vkw_zli7m53Q4J5pCgkqxzTyZG8yBdJb9R98M3tFlS7uwirm_XOKbBuqg7n1ALk4__nh_lqdzE3InNd_mtqwqrhvG4FIsFDUS1LgyVFWMtYQCx0vlbB1tLKUPSPHVMC_qyEsZgxdcPCSzFpA6JDRWDWR0FsIarOXSawsJT2lZHVnjYJoiI2IPonGJVBzPtliZ_p8yBcXFgIlB6E2CPiP5-NRmINW4Qf4d6meURUrs_gYYikmGYm4ylIw8R-2aYX_p6NhmjpSFEiHKyMteAmkxWuy7-dXsus6cf_35D0Lfv02EXiehuAY4XJP2OsBvQrqtieTRRBKc202GD9EW96h0BrcPIqU_wyf39nn98ItxGCfFXro2rHdJBspEDtp7NJjziKyA-hImkBlRE0OfQD8daZe_e1ZyLWpI14vH_0NXT8htjttMkHpYHpHZ9nIXnkLyt7XPej__AwPhVPo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWcuGCWF4bWCAgJOCQqokTOz4gVB6rXSRAAop6s-LXUqlKu00rLf-eGceJCCoPqVKlemyln2fsmXj8DSFPbaVKpRlNlIElMFfcJJURWUKNEFY4xTOHL_Q_fGSns_z9vJgfkK5mawCw2RvaYT2p2WY5vrz48QoM_qWv2sDTrtN4vartGCsqQRhxhVz1J0aYzJf35wpg3YyFC3R_6jnYoDyPf79aj9bLVbPPFf09o_KXLerkBrkefMt42irDITmw9U1yGKy3iZ8HiukXt8jbaR3Pp2dxWz86Bsc1xvTzoIYwBtJc-i-fJN7Eizpu7NIlZrPANxCxBtBuk9nJu69vTpNQTyHRTGTbROVFkYkqTeHDUzspkbhG57YonCsZBD6Gca1Kp1zOjEXqryo1tHRZzpw1NKN3yKgGpI5I7IoKPD0Fyx3s8cwIBY5QrtLSpZWGYSYRoR2IUgeycax5sZT-BI1D0NFiIhF6GaCPSNL3WrdkG_-Qf43z08siVbb_YbU5l8HyZAmbtDBU8yKluYPoUrm00BPKKwjmBFcReYSzK9t7p73ByylSGTKEKCJPvATSZdSYj3Ne7ZpGnn369h9CXz4PhJ4FIbcCOHQV7kDAf0IaroHk8UASjF4Pmo9QFztUGonXCpHqP8WenX7ub37cN-OgmGNX29UuyED4mMHs3W3VuUeWQtwJA7CI8IGiD6AfttSL756tXNAS3PjJvb8_1n1yLcOLJUg2zI7JaLvZ2Qfg7m3VQ2_BPwGmGlOM
  priority: 102
  providerName: Scholars Portal
Title An XAI method for convolutional neural networks in self-driving cars
URI https://www.ncbi.nlm.nih.gov/pubmed/35972916
https://www.proquest.com/docview/2702915515
https://www.proquest.com/docview/2702975820
https://pubmed.ncbi.nlm.nih.gov/PMC9380950
https://doaj.org/article/83039d3c75134f998bf15c037a86297b
http://dx.doi.org/10.1371/journal.pone.0267282
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaxygBIQEP2eo4sZ0HhLqxsiFtoMFQ36L4a1SqktK0_z93iRMImgCpSqX6YqXnu_Odc_c7Ql7aXEmlOQuVARMYK2HC3KRRyEya2tQpETk80L-45GfX8cdZMtsil20tDKZVtjaxNtSm1HhGfoR1U4hlTpN3yx8hdo3Ct6ttC43ct1Ywb2uIsW2yAyY5GQ_IzvHp5eer1jaDdnPuC-iYoEd-vQ6XZWEPsRdTJKPeBlXj-HfWerBclNVtruifGZW_bVHTe-Su9y2DSSMMu2TLFvfJrtfeKnjtIabfPCDvJ0Uwm5wHTf_oABzXANPPvRjCHAhzWX_VSeJVMC-Cyi5caFZzPIEINMTDD8n19PTryVno-ymEmqfROlRxkkRpTil8BLVjicA1OrZJ4pzkEPgYLrSSTrmYG4vQXzk1TLoo5s4aFrFHZFAAp_ZI4JIcPD0F5g72eG5SBY5QrKh0NNcwzXhIWMvETHuwcex5scjqN2gCgo6GJxmyPvOsH5Kwu2vZgG38g_4Y16ejRajs-odydZN5zcskbNKpYVoklMUOokvlaKLHTOQQzKVCDckzXN2sqTvtFD6bIJQhRxYNyYuaAuEyCszHuck3VZWdf_r2H0RfrnpErzyRK4EdOvc1EPCfEIarR3nQowSl173hPZTFlitV9ks94M5WPm8fft4N46SYY1fYcuNpIHyMYPUeN-LccZZB3AkT8CERPUHvsb4_Usy_12jlKZPgxo_3__5YT8idCAtLEGyYH5DBerWxT8HdW6sR2RYzAVd5QvE6_TDyWj2qD1DgehHLnwo1WKw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPKqoVCDQMDBbey11_ahQiltldA2oNKi3Bbvq0SK7BAnQvw5fhsz9tpgVAGXSpEiZccr59vx7Mx65htCnutMJEIy6gkFJjAUsfIylQYeVWmqUyPiwOCB_umYDS_Cd5NoskZ-NLUwmFbZ2MTKUKtC4hn5LtZNIZe5H72Zf_WwaxS-XW1aaGS2tYLaqyjGbGHHsf7-DUK4cm90AOv9IgiODs_fDj3bZcCTLA2WngijKEgz34dP7Ot-gnQuMtRRZEzCIBxQLJYiMcKETGkkxMp8RRMThMxoRZH4ALaA9RAPUHpkff9w_OGs2QvAmjBmC_Zo7O9a_diZF7newd5PQRJ0NsSqb0C7O_Tms6K8yvX9M4Pzty3x6Da5ZX1Zd1Ar3wZZ0_kdsmGtRem-spTWr--Sg0HuTgYjt-5X7YKj7GK6u1V7mANpNauvKim9dKe5W-qZ8dRiiiceroT4-x65uBZk75NeDkhtEtdEGXiWAswr-BRMpQIcr1D4ifEzCdP0HUIbELm05ObYY2PGqzd2MQQ5NSYcoecWeod47VXzmtzjH_L7uD6tLFJzVz8Ui0tun3SegFOQKirjyKehgWhWGD-SfRpnEDymsXDINq4ur-tcWwPDB0idyBAihzyrJJCeI8f8n8tsVZZ89P7Tfwh9POsIvbRCpgA4ZGZrLuA_Ie1XR3KrIwlGRnaGN1EXG1RK_utxhCsb_bx6-Gk7jJNiTl-ui5WVgXA1gNV7UKtziyyFOBcmYA6JO4regb47kk-_VOzoKU0gbOg__PttbZMbw_PTE34yGh8_IjcDLGpBomO2RXrLxUo_BldzKZ7Y59kln6_bhPwE7eKQVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrZYMFBAIesjZ2YicPCBVKtTIYCBjqW4i_tkpVUppWiH-Nv467xAkETcDLpEqV6ouVns-_3Dl3vyPkoclkLBVnvtQAgaEU2s90Qn2mk8QkVgpq8UD_7TE_PAlfz6LZFvnR1MJgWmWDiRVQ60LhGfkA66aQyzyIBtalRbwfT54vv_rYQQrftDbtNGoTOTLfv0H4Vj6bjmGtH1E6efXp5aHvOgz4iid07cswimiSBQF8RGCGMVK5qNBEkbUxh1BAc6FkbKUNuTZIhpUFmsWWhtwazZD0AOD_kmBhiG0jxKwN9gBHOHelekwEA2cZB8siNwfY9YnGtPMorDoGtM-F3nJRlOc5vX_mbv72MJxcI1edF-uNarPbJlsmv062HU6U3hNHZv30BhmPcm82mnp1p2oPXGQPE92dwcMcSKhZfVXp6KU3z73SLKyvV3M86_AURN43ycmF6PUW6eWgqR3i2SgDn1ICsII3wXUiweUKZRDbIFMwzbBPWKPEVDlac-yusUird3UCwptaJymqPnWq7xO_vWpZ03r8Q_4Frk8ri6Tc1Q_F6jR1ezyNwR1INFMiClhoIY6VNojUkIkMwsZEyD7Zx9VN6wrXFlrSEZImclRRnzyoJJCYI0cTP802ZZlO333-D6GPHzpCj52QLUAdKnPVFvCfkPCrI7nXkQR4UZ3hHbTFRitl-msjwpWNfZ4_fL8dxkkxmy83xcbJQKBKYfVu1-bcapZBhAsT8D4RHUPvqL47ks_PKl70hMUQMAzv_P229sllAI70zfT4aJdcoVjNggzHfI_01quNuQs-5lreqzazR75cNHr8BPgWjfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+XAI+method+for+convolutional+neural+networks+in+self-driving+cars&rft.jtitle=PloS+one&rft.au=Hong-Sik%2C+Kim&rft.au=Inwhee+Joe&rft.date=2022-08-16&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=8&rft.spage=e0267282&rft_id=info:doi/10.1371%2Fjournal.pone.0267282&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon