Diagnostic accuracy of adenosine deaminase for pleural tuberculosis in a low prevalence setting: A machine learning approach within a 7-year prospective multi-center study

To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are no...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 11; p. e0259203
Main Authors Garcia-Zamalloa, Alberto, Vicente, Diego, Arnay, Rafael, Arrospide, Arantzazu, Taboada, Jorge, Castilla-Rodríguez, Iván, Aguirre, Urko, Múgica, Nekane, Aldama, Ladislao, Aguinagalde, Borja, Jimenez, Montserrat, Bikuña, Edurne, Basauri, Miren Begoña, Alonso, Marta, Perez-Trallero, Emilio
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.11.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0259203

Cover

Abstract To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
AbstractList To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant.OBJECTIVETo analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant.We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other.PATIENTS AND METHODSWe prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other.Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases.RESULTSOut of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases.The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.CONCLUSIONThe level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
Objective To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. Patients and methods We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. Results Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. Conclusion The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
Objective To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. Patients and methods We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. Results Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. Conclusion The level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
ObjectiveTo analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant.Patients and methodsWe prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other.ResultsOut of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases.ConclusionThe level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
Audience Academic
Author Arrospide, Arantzazu
Aldama, Ladislao
Castilla-Rodríguez, Iván
Jimenez, Montserrat
Basauri, Miren Begoña
Aguinagalde, Borja
Alonso, Marta
Perez-Trallero, Emilio
Taboada, Jorge
Aguirre, Urko
Múgica, Nekane
Arnay, Rafael
Vicente, Diego
Garcia-Zamalloa, Alberto
Bikuña, Edurne
AuthorAffiliation 1 Internal Medicine Service, Osakidetza/Basque Health Service, Mendaro Hospital, Gipuzkoa, Spain
14 Epidemiological Surveillance Unit, Health Department, Basque Government, Gipuzkoa, Spain
3 Microbiology Department, Respiratory Infection and Antimicrobial Resistance Group. Osakidetza/Basque Health Service, Biodonostia Health Research Institute, Donostia University Hospital, Gipuzkoa, Spain
9 Health Services Research on Chronic Patients Network (REDISSEC), Spain
13 Thoracic Surgery Service, Osakidetza/Basque Health Service, Donostia University Hospital, Gipuzkoa, Spain
10 Preventive Medicine and Western Gipuzkoa Clinical Research Unit, Osakidetza/Basque Health Service, Mendaro Hospital, Gipuzkoa, Spain
7 Epidemiology and Public Health Area, Economic Evaluation of Chronic Diseases Research Group, Biodonostia Health Research Institute, Donostia, Spain
2 Mycobacterial Infection Study Group (GEIM), From the Spanish Infectious Diseases Society, Spain
5 Departamento de Ingeniería Informática y de Sis
AuthorAffiliation_xml – name: 15 Biochemistry Laboratory, Osakidetza/Basque Health Service, Mendaro Hospital, Gipuzkoa, Spain
– name: 3 Microbiology Department, Respiratory Infection and Antimicrobial Resistance Group. Osakidetza/Basque Health Service, Biodonostia Health Research Institute, Donostia University Hospital, Gipuzkoa, Spain
– name: 1 Internal Medicine Service, Osakidetza/Basque Health Service, Mendaro Hospital, Gipuzkoa, Spain
– name: 7 Epidemiology and Public Health Area, Economic Evaluation of Chronic Diseases Research Group, Biodonostia Health Research Institute, Donostia, Spain
– name: 10 Preventive Medicine and Western Gipuzkoa Clinical Research Unit, Osakidetza/Basque Health Service, Mendaro Hospital, Gipuzkoa, Spain
– name: 4 Faculty of Medicine, University of the Basque Country, UPV/EHU, Gipuzkoa, Donostia, Spain
– name: 13 Thoracic Surgery Service, Osakidetza/Basque Health Service, Donostia University Hospital, Gipuzkoa, Spain
– name: 12 Pneumology Service, Osakidetza/Basque Health Service, Donostia University Hospital, Gipuzkoa. Spain
– name: 11 Osakidetza/Basque Health Service, Research Unit, Galdakao University Hospital, Bizkaia, Spain
– name: 6 Gipuzkoa Primary Care-Integrated Health Organisation Research Unit, Osakidetza/Basque Health Service, Debagoiena Integrated Health Organisation, Alto Deba Hospital, Arrasate-Mondragon, Spain
– name: 2 Mycobacterial Infection Study Group (GEIM), From the Spanish Infectious Diseases Society, Spain
– name: 5 Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
– name: 14 Epidemiological Surveillance Unit, Health Department, Basque Government, Gipuzkoa, Spain
– name: 8 Kronikgune Institute for Health Services Research, Bizkaia/Barakaldo, Spain
– name: 9 Health Services Research on Chronic Patients Network (REDISSEC), Spain
– name: The University of Georgia, UNITED STATES
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0001-9959-2429
  surname: Garcia-Zamalloa
  fullname: Garcia-Zamalloa, Alberto
– sequence: 2
  givenname: Diego
  surname: Vicente
  fullname: Vicente, Diego
– sequence: 3
  givenname: Rafael
  surname: Arnay
  fullname: Arnay, Rafael
– sequence: 4
  givenname: Arantzazu
  surname: Arrospide
  fullname: Arrospide, Arantzazu
– sequence: 5
  givenname: Jorge
  surname: Taboada
  fullname: Taboada, Jorge
– sequence: 6
  givenname: Iván
  orcidid: 0000-0003-3933-2582
  surname: Castilla-Rodríguez
  fullname: Castilla-Rodríguez, Iván
– sequence: 7
  givenname: Urko
  orcidid: 0000-0002-8049-3030
  surname: Aguirre
  fullname: Aguirre, Urko
– sequence: 8
  givenname: Nekane
  surname: Múgica
  fullname: Múgica, Nekane
– sequence: 9
  givenname: Ladislao
  surname: Aldama
  fullname: Aldama, Ladislao
– sequence: 10
  givenname: Borja
  surname: Aguinagalde
  fullname: Aguinagalde, Borja
– sequence: 11
  givenname: Montserrat
  surname: Jimenez
  fullname: Jimenez, Montserrat
– sequence: 12
  givenname: Edurne
  surname: Bikuña
  fullname: Bikuña, Edurne
– sequence: 13
  givenname: Miren Begoña
  surname: Basauri
  fullname: Basauri, Miren Begoña
– sequence: 14
  givenname: Marta
  surname: Alonso
  fullname: Alonso, Marta
– sequence: 15
  givenname: Emilio
  surname: Perez-Trallero
  fullname: Perez-Trallero, Emilio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34735491$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5RWUCjtxW4tywc5F4WQngKBQE-3YlaSdxW0kiPJSfeZ-pIdZzchGwINvpAYffNr5h95P9tx3ukse0nzKWUN_XDuh-DATnsMT_OiaoucPcn2aMuKSY37nTv73Ww_xvM8rxiv62fZLisbVpUt3cv-fjIwdz4mIwlIOQSQK-I7Akpj1DhNlIalcRA16XwgvdXIWJKGmQ5ysMhEYhwBYv0V6YO-BKud1CTqlIybH5IjsgS5GJWshuAwRqDvg8cguTJpcZ3cTFZ4iPk-9lomc6nJcrDJTKR2SQcS06BWz7OnHdioX2zWg-zXl88_j79NTs--nhwfnU5k3RZpAo1iLaWcKtmoRupZXivJac6Loqokq6XqyrztuGx5yYHWyHctZyWXRcVg1rKD7PVat8f2xMbnKNBiVnFeNw0SJ2tCeTgXfTBLCCvhwYjrgA9zAQEttVrQtioqNZNczVTJW8VBs1blhWqp7HhVola11hpcD6srsPZWkOZiHPVNCWIctdiMGvM-bqocZkutRqMC2K1itk-cWYi5vxS8qnlRjxe_2wgEfzHomMTSRKmtBaf9cN1vWaCRrEL0zT30YVc21BzfgDCu83ivHEXFUc1pwXnOc6SmD1D4Kb00EjvsDMa3Et5vJSCT9J80hyFGcfLj--PZs9_b7Ns77EKDTYvo7ZCMd3EbfHXX6VuLb_4iBA7XgMT3G4PuhDQJRh1szdj_zbG8l_yo8f8DR89IRA
CitedBy_id crossref_primary_10_1016_j_ijmedinf_2023_105320
crossref_primary_10_22328_2077_9828_2023_15_1_32_40
crossref_primary_10_47162_RJME_65_4_17
crossref_primary_10_1016_j_pbiomolbio_2023_03_001
crossref_primary_10_58838_2075_1230_2025_103_1_54_59
crossref_primary_10_1007_s13042_024_02440_9
crossref_primary_10_1080_10408363_2022_2158779
crossref_primary_10_1515_cclm_2022_0844
crossref_primary_10_1093_jalm_jfad014
crossref_primary_10_1513_AnnalsATS_202305_410OC
Cites_doi 10.21037/atm.2016.07.23
10.1080/07357907.2020.1776313
10.1007/s00408-017-0032-3
10.1186/s12879-018-3654-z
10.1097/MCP.0b013e328339cf6e
10.3109/23744235.2015.1019919
10.1371/journal.pone.0040450
10.1371/journal.pone.0002788
10.1136/bmjopen-2016-012799
10.5588/ijtld.16.0803
10.1080/17476348.2019.1637737
10.1111/crj.12125
10.1002/bimj.200710415
10.1016/j.rmed.2007.12.007
10.1016/j.retram.2018.08.002
10.1016/j.diagmicrobio.2015.11.007
10.1007/978-3-642-40994-3_29
10.1007/s00408-009-9165-3
10.5152/ttd.2014.001
10.1136/thoraxjnl-2016-209718
10.1371/journal.pone.0113047
10.1016/S0031-3203(96)00142-2
10.1371/journal.pone.0213728
10.1177/0278364904045481
10.1186/1471-2466-14-58
10.1038/srep20607
10.1177/1753466618808660
10.1016/j.ijid.2021.04.011
10.1111/crj.12900
10.1128/JCM.00258-18
10.1378/chest.116.1.97
10.1111/resp.13275
10.1016/j.cmpb.2017.10.022
10.4103/1817-1737.197762
10.1007/978-3-540-31865-1_25
10.1016/j.chest.2019.07.027
10.1001/archinte.158.18.2017
10.1016/j.arbr.2018.11.007
10.1371/journal.pone.0224453
10.1378/chest.06-2273
10.1590/S1806-37132008000400006
10.1371/journal.pone.0038729
10.1183/2312508X.10023819
10.1136/thoraxjnl-2011-201363
10.1097/00063198-200007000-00002
10.5588/ijtld.12.0829
10.1371/journal.pone.0202481
10.1097/MCP.0000000000000277
10.1097/MCP.0b013e32833a7154
10.1159/000486963
10.1056/NEJMcp010731
10.5588/ijtld.12.0892
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Garcia-Zamalloa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Garcia-Zamalloa et al 2021 Garcia-Zamalloa et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Garcia-Zamalloa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Garcia-Zamalloa et al 2021 Garcia-Zamalloa et al
CorporateAuthor with the Gipuzkoa Pleura Group Consortium
CorporateAuthor_xml – name: with the Gipuzkoa Pleura Group Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0259203
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database (NC LIVE)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science Collection (NC LIVE)
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
ProQuest Engineering Database (NC LIVE)
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Environmental Science Collection (NC LIVE)
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



Agricultural Science Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
DocumentTitleAlternate Adenosine deaminase and diagnosis of pleural tuberculosis in a low prevalence setting
EISSN 1932-6203
ExternalDocumentID 2593588677
oai_doaj_org_article_19525dbc8dbd489d8ae39d02d91cf854
10.1371/journal.pone.0259203
PMC8568264
A681288080
34735491
10_1371_journal_pone_0259203
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Observational Study
GeographicLocations Spain
Tenerife
GeographicLocations_xml – name: Spain
– name: Tenerife
GrantInformation_xml – fundername: ;
  grantid: PI 2016111036
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-a7d391181dc7d7ceb06dc81082255c36cdf409f8c9848a16a7df98348c253ab93
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:17 EDT 2023
Fri Oct 03 12:52:06 EDT 2025
Sun Oct 26 04:03:41 EDT 2025
Tue Sep 30 16:36:48 EDT 2025
Fri Sep 05 13:32:36 EDT 2025
Tue Oct 07 09:13:24 EDT 2025
Mon Oct 20 22:00:39 EDT 2025
Mon Oct 20 16:33:31 EDT 2025
Thu Oct 16 15:30:26 EDT 2025
Thu Oct 16 14:02:18 EDT 2025
Thu May 22 21:26:08 EDT 2025
Thu Apr 03 07:10:20 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Oct 01 04:41:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-a7d391181dc7d7ceb06dc81082255c36cdf409f8c9848a16a7df98348c253ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Membership list can be listed in the Acknowledgments section.
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-9959-2429
0000-0002-8049-3030
0000-0003-3933-2582
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0259203
PMID 34735491
PQID 2593588677
PQPubID 1436336
PageCount e0259203
ParticipantIDs plos_journals_2593588677
doaj_primary_oai_doaj_org_article_19525dbc8dbd489d8ae39d02d91cf854
unpaywall_primary_10_1371_journal_pone_0259203
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568264
proquest_miscellaneous_2594291135
proquest_journals_2593588677
gale_infotracmisc_A681288080
gale_infotracacademiconefile_A681288080
gale_incontextgauss_ISR_A681288080
gale_incontextgauss_IOV_A681288080
gale_healthsolutions_A681288080
pubmed_primary_34735491
crossref_citationtrail_10_1371_journal_pone_0259203
crossref_primary_10_1371_journal_pone_0259203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211104
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 20211104
  day: 4
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0259203.ref010
pone.0259203.ref012
C Li (pone.0259203.ref069) 2020
pone.0259203.ref055
pone.0259203.ref013
JM Porcel (pone.0259203.ref057) 2003; 9
MJ Vorster (pone.0259203.ref017) 2015; 7
Y Nakajima (pone.0259203.ref060) 2020; 38
G Wang (pone.0259203.ref067) 2020; 157
L Antonangelo (pone.0259203.ref031) 2019; 13
JF Cohen (pone.0259203.ref020) 2016; 6
S Sahn (pone.0259203.ref019) 2013; 17
P Riantawan (pone.0259203.ref045) 1999; 116
SY Ruan (pone.0259203.ref064) 2012; 67
J He (pone.0259203.ref018) 2018; 66
MD Ruopp (pone.0259203.ref030) 2008; 50
JM Porcel (pone.0259203.ref015) 2009; 187
LA Cohen (pone.0259203.ref002) 2015; 16
M Li (pone.0259203.ref043) 2017; 96
pone.0259203.ref021
WB Yang (pone.0259203.ref041) 2012; 7
J Seixas (pone.0259203.ref061) 2013; 17
A Leha (pone.0259203.ref011) 2019; 14
pone.0259203.ref027
R Krenke (pone.0259203.ref047) 2010; 16
pone.0259203.ref029
M Blakiston (pone.0259203.ref053) 2018; 56
Y Tang (pone.0259203.ref056) 2019; 19
A Garcia-Zamalloa (pone.0259203.ref008) 2012; 7
Q Liu (pone.0259203.ref016) 2018; 95
Y Gao (pone.0259203.ref059) 2016; 6
RW Light (pone.0259203.ref048) 2002; 346
K Baba (pone.0259203.ref046) 2008; 3
W Wang (pone.0259203.ref042) 2018; 73
DJ Christopher (pone.0259203.ref068) 2018; 23
P Morisson (pone.0259203.ref038) 2008; 34
E Pérez-Rodriguez (pone.0259203.ref033) 2000; 6
JA Shaw (pone.0259203.ref003) 2018; 12
pone.0259203.ref032
C Li (pone.0259203.ref062) 2018; 153
JM Porcel (pone.0259203.ref005) 2018; 12
VS Skouras (pone.0259203.ref006) 2015; 47
RW Light (pone.0259203.ref058) 2011; 95
H Luzze (pone.0259203.ref065) 2001; 5
ZF Udwadia (pone.0259203.ref044) 2010; 16
VS Skouras (pone.0259203.ref007) 2016; 22
F Pedregosa (pone.0259203.ref024) 2011; 12
R Kohavi (pone.0259203.ref026) 1995
AP Bradley (pone.0259203.ref028) 1997; 30
AN Aggarwal (pone.0259203.ref037) 2019; 14
P Sivakumar (pone.0259203.ref054) 2017; 21
R Meldau (pone.0259203.ref040) 2014; 14
JM Michot (pone.0259203.ref051) 2016; 84
AP Santos (pone.0259203.ref050) 2018; 13
pone.0259203.ref001
L Valdés (pone.0259203.ref014) 1998; 158
DT Arnold (pone.0259203.ref052) 2015; 10
S Greco (pone.0259203.ref035) 2003; 7
S Gao (pone.0259203.ref070) 2021; 106
pone.0259203.ref009
QL Liang (pone.0259203.ref036) 2008; 102
J Jiang (pone.0259203.ref039) 2007; 131
L Valdés (pone.0259203.ref049) 2015; 9
RM Palma (pone.0259203.ref034) 2019; 55
SM LaValle (pone.0259203.ref025) 2004; 23
M Kohli (pone.0259203.ref066) 2018; 8
Z Ren (pone.0259203.ref063) 2019; 20
JM Porcel (pone.0259203.ref004) 2016; 4
L Ferreiro (pone.0259203.ref023) 2017; 12
S Herrera-Lara (pone.0259203.ref022) 2017; 195
References_xml – volume: 4
  start-page: 282
  issue: 15
  year: 2016
  ident: pone.0259203.ref004
  article-title: Advances in the diagnosis of tuberculous pleuritis
  publication-title: Annals of translational medicine
  doi: 10.21037/atm.2016.07.23
– volume: 38
  start-page: 356
  issue: 6
  year: 2020
  ident: pone.0259203.ref060
  article-title: Adenosine Deaminase in Pleural Effusion and Its Relationship with Clinical Parameters in Patients with Malignant Pleural Mesothelioma
  publication-title: Cancer Investigation
  doi: 10.1080/07357907.2020.1776313
– volume: 195
  start-page: 653
  issue: 5
  year: 2017
  ident: pone.0259203.ref022
  article-title: Predicting malignant and paramalignant pleural effusions by combining clinical, radiological and pleural fluid analytical parameters
  publication-title: Lung
  doi: 10.1007/s00408-017-0032-3
– ident: pone.0259203.ref009
– volume: 19
  start-page: 55
  issue: 1
  year: 2019
  ident: pone.0259203.ref056
  article-title: Pleural IFN-γ release assay combined with biomarkers distinguished effectively tuberculosis from malignant pleural effusion
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-018-3654-z
– volume: 96
  issue: 50
  year: 2017
  ident: pone.0259203.ref043
  article-title: Accuracy of interleukin-27 assay for the diagnosis of tuberculous pleurisy: A PRISMA-compliant meta-analysis
  publication-title: Medicine
– volume: 16
  start-page: 399
  issue: 4
  year: 2010
  ident: pone.0259203.ref044
  article-title: Pleural tuberculosis: an update
  publication-title: Current opinion in pulmonary medicine
  doi: 10.1097/MCP.0b013e328339cf6e
– volume: 5
  start-page: 746
  issue: 8
  year: 2001
  ident: pone.0259203.ref065
  article-title: Evaluation of suspected tuberculous pleurisy: clinical and diagnostic findings in HIV-1-positive and HIV-negative adults in Uganda
  publication-title: The international journal of tuberculosis and lung disease
– volume: 47
  start-page: 477
  issue: 7
  year: 2015
  ident: pone.0259203.ref006
  article-title: Interleukin-27 improves the ability of adenosine deaminase to rule out tuberculous pleural effusion regardless of pleural tuberculosis prevalence
  publication-title: Infectious Diseases
  doi: 10.3109/23744235.2015.1019919
– volume: 7
  start-page: e40450
  issue: 7
  year: 2012
  ident: pone.0259203.ref041
  article-title: Cell origins and diagnostic accuracy of interleukin 27 in pleural effusions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040450
– volume: 3
  start-page: e2788
  issue: 7
  year: 2008
  ident: pone.0259203.ref046
  article-title: Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0002788
– volume: 6
  start-page: e012799
  issue: 11
  year: 2016
  ident: pone.0259203.ref020
  article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration
  publication-title: BMJ open
  doi: 10.1136/bmjopen-2016-012799
– volume: 21
  start-page: 697
  issue: 6
  year: 2017
  ident: pone.0259203.ref054
  article-title: The diagnostic utility of pleural fluid adenosine deaminase for tuberculosis in a low prevalence area
  publication-title: The International Journal of Tuberculosis and Lung Disease
  doi: 10.5588/ijtld.16.0803
– volume: 13
  start-page: 747
  issue: 8
  year: 2019
  ident: pone.0259203.ref031
  article-title: Tuberculous pleural effusion: diagnosis & management
  publication-title: Expert review of respiratory medicine
  doi: 10.1080/17476348.2019.1637737
– volume: 9
  start-page: 203
  issue: 2
  year: 2015
  ident: pone.0259203.ref049
  article-title: Predicting malignant and tuberculous pleural effusions through demographics and pleural fluid analysis of patients
  publication-title: The Clinical Respiratory Journal
  doi: 10.1111/crj.12125
– volume: 50
  start-page: 419
  issue: 3
  year: 2008
  ident: pone.0259203.ref030
  article-title: Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection
  publication-title: Biometrical Journal: Journal of Mathematical Methods in Biosciences
  doi: 10.1002/bimj.200710415
– ident: pone.0259203.ref021
– volume: 102
  start-page: 744
  issue: 5
  year: 2008
  ident: pone.0259203.ref036
  article-title: Diagnostic accuracy of adenosine deaminase in tuberculous pleurisy: a meta-analysis
  publication-title: Respiratory medicine
  doi: 10.1016/j.rmed.2007.12.007
– volume: 66
  start-page: 103
  issue: 4
  year: 2018
  ident: pone.0259203.ref018
  article-title: Diagnostic accuracy of interleukin-22 and adenosine deaminase for tuberculous pleural effusions
  publication-title: Current Research in Translational Medicine
  doi: 10.1016/j.retram.2018.08.002
– volume: 84
  start-page: 215
  issue: 3
  year: 2016
  ident: pone.0259203.ref051
  article-title: Adenosine deaminase is a useful biomarker to diagnose pleural tuberculosis in low to medium prevalence settings
  publication-title: Diagnostic Microbiology and Infectious Disease
  doi: 10.1016/j.diagmicrobio.2015.11.007
– ident: pone.0259203.ref029
  doi: 10.1007/978-3-642-40994-3_29
– volume: 187
  start-page: 263
  issue: 5
  year: 2009
  ident: pone.0259203.ref015
  article-title: Tuberculous pleural effusion
  publication-title: Lung
  doi: 10.1007/s00408-009-9165-3
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: pone.0259203.ref002
  article-title: Tuberculous pleural effusion
  publication-title: Turkish thoracic journal
  doi: 10.5152/ttd.2014.001
– volume: 73
  start-page: 240
  issue: 3
  year: 2018
  ident: pone.0259203.ref042
  article-title: Diagnostic accuracy of interleukin 27 for tuberculous pleural effusion: two prospective studies and one meta-analysis
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2016-209718
– volume: 10
  start-page: e0113047
  issue: 2
  year: 2015
  ident: pone.0259203.ref052
  article-title: Pleural fluid adenosine deaminase (pfADA) in the diagnosis of tuberculous effusions in a low incidence population
  publication-title: PloS one
  doi: 10.1371/journal.pone.0113047
– ident: pone.0259203.ref012
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: pone.0259203.ref028
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 9
  start-page: CR175
  issue: 5
  year: 2003
  ident: pone.0259203.ref057
  article-title: Differentiating tuberculous from malignant pleural effusions: a scoring model
  publication-title: Medical Science Monitor
– volume: 14
  start-page: e0213728
  issue: 3
  year: 2019
  ident: pone.0259203.ref037
  article-title: Adenosine deaminase for diagnosis of tuberculous pleural effusion: A systematic review and meta-analysis
  publication-title: PloS one
  doi: 10.1371/journal.pone.0213728
– volume: 23
  start-page: 673
  issue: 7-8
  year: 2004
  ident: pone.0259203.ref025
  article-title: On the relationship between classical grid search and probabilistic roadmaps
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364904045481
– volume: 14
  start-page: 58
  issue: 1
  year: 2014
  ident: pone.0259203.ref040
  article-title: Comparison of same day diagnostic tools including Gene Xpert and unstimulated IFN-γ for the evaluation of pleural tuberculosis: a prospective cohort study
  publication-title: BMC pulmonary medicine
  doi: 10.1186/1471-2466-14-58
– volume: 6
  start-page: 20607
  year: 2016
  ident: pone.0259203.ref059
  article-title: Potential diagnostic value of serum/pleural fluid IL-31 levels for tuberculous pleural effusion
  publication-title: Scientific Reports
  doi: 10.1038/srep20607
– volume: 12
  start-page: 1
  year: 2018
  ident: pone.0259203.ref005
  article-title: Biomarkers in the diagnosis of pleural diseases: a 2018 update
  publication-title: Therapeutic advances in respiratory disease
  doi: 10.1177/1753466618808660
– volume: 106
  start-page: 370
  year: 2021
  ident: pone.0259203.ref070
  article-title: Xpert MTB/RIF Ultra enhanced tuberculous pleurisy diagnosis for patients with unexplained exudative pleural effusion who underwent a pleural biopsy via thoracoscopy: A prospective cohort study
  publication-title: International Journal of Infectious Diseases
  doi: 10.1016/j.ijid.2021.04.011
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0259203.ref024
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 1137
  volume-title: Ijcai
  year: 1995
  ident: pone.0259203.ref026
– year: 2020
  ident: pone.0259203.ref069
  article-title: Performance of Xpert® MTB/RIF in diagnosing tuberculous pleuritis using thoracoscopic pleural biopsies
  publication-title: BMC Infectious Diseases
– ident: pone.0259203.ref001
– volume: 12
  start-page: 1779
  issue: 5
  year: 2018
  ident: pone.0259203.ref003
  article-title: Pleural tuberculosis: a concise clinical review
  publication-title: The clinical respiratory journal
  doi: 10.1111/crj.12900
– volume: 56
  issue: 8
  year: 2018
  ident: pone.0259203.ref053
  article-title: Diagnostic performance of pleural fluid adenosine deaminase for tuberculous pleural effusion in a low-incidence setting
  publication-title: Journal of clinical microbiology
  doi: 10.1128/JCM.00258-18
– ident: pone.0259203.ref055
– volume: 116
  start-page: 97
  issue: 1
  year: 1999
  ident: pone.0259203.ref045
  article-title: Diagnostic value of pleural fluid adenosine deaminase in tuberculous pleuritis with reference to HIV coinfection and a Bayesian analysis
  publication-title: Chest
  doi: 10.1378/chest.116.1.97
– volume: 7
  start-page: 777
  issue: 8
  year: 2003
  ident: pone.0259203.ref035
  article-title: Adenosine deaminase and interferon gamma measurements for the diagnosis of tuberculous pleurisy: a meta-analysis
  publication-title: The International Journal of Tuberculosis and Lung Disease
– volume: 23
  start-page: 714
  issue: 7
  year: 2018
  ident: pone.0259203.ref068
  article-title: Thoracoscopic pleural biopsy improves yield of Xpert MTB/RIF for diagnosis of pleural tuberculosis
  publication-title: Respirology
  doi: 10.1111/resp.13275
– volume: 153
  start-page: 211
  year: 2018
  ident: pone.0259203.ref062
  article-title: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2017.10.022
– volume: 12
  start-page: 3
  issue: 1
  year: 2017
  ident: pone.0259203.ref023
  article-title: Pleural procedures in the management of malignant effusions
  publication-title: Annals of Thoracic Medicine
  doi: 10.4103/1817-1737.197762
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0259203.ref063
  article-title: Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms
  publication-title: Respiratory research
– ident: pone.0259203.ref027
  doi: 10.1007/978-3-540-31865-1_25
– volume: 157
  start-page: 268
  issue: 2
  year: 2020
  ident: pone.0259203.ref067
  article-title: Accuracy of Xpert MTB/RIF Ultra for the Diagnosis of Pleural TB in a Multicenter Cohort Study
  publication-title: Chest
  doi: 10.1016/j.chest.2019.07.027
– volume: 158
  start-page: 2017
  issue: 18
  year: 1998
  ident: pone.0259203.ref014
  article-title: Tuberculous pleurisy: a study of 254 patients
  publication-title: Archives of internal medicine
  doi: 10.1001/archinte.158.18.2017
– volume: 55
  start-page: 23
  issue: 1
  year: 2019
  ident: pone.0259203.ref034
  article-title: Diagnostic accuracy of pleural fluid adenosine deaminase for diagnosing tuberculosis. Meta-analysis of Spanish studies
  publication-title: Archivos de Bronconeumología (English Edition)
  doi: 10.1016/j.arbr.2018.11.007
– volume: 14
  start-page: e0224453
  issue: 10
  year: 2019
  ident: pone.0259203.ref011
  article-title: A machine learning approach for the prediction of pulmonary hypertension
  publication-title: PloS one
  doi: 10.1371/journal.pone.0224453
– volume: 95
  start-page: 1055
  issue: 6
  year: 2011
  ident: pone.0259203.ref058
  article-title: Pleural effusions
  publication-title: Medical Clinics
– volume: 131
  start-page: 1133
  issue: 4
  year: 2007
  ident: pone.0259203.ref039
  article-title: Diagnostic value of interferon-γ in tuberculous pleurisy: a metaanalysis
  publication-title: Chest
  doi: 10.1378/chest.06-2273
– volume: 34
  start-page: 217
  issue: 4
  year: 2008
  ident: pone.0259203.ref038
  article-title: Evaluation of adenosine deaminase in the diagnosis of pleural tuberculosis: a Brazilian meta-analysis
  publication-title: Jornal Brasileiro de Pneumologia
  doi: 10.1590/S1806-37132008000400006
– volume: 7
  start-page: e38729
  issue: 6
  year: 2012
  ident: pone.0259203.ref008
  article-title: Diagnostic accuracy of adenosine deaminase and lymphocyte proportion in pleural fluid for tuberculous pleurisy in different prevalence scenarios
  publication-title: PloS one
  doi: 10.1371/journal.pone.0038729
– ident: pone.0259203.ref010
– volume: 8
  issue: 8
  year: 2018
  ident: pone.0259203.ref066
  article-title: Xpert® MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance
  publication-title: Cochrane Database of Systematic Reviews
– ident: pone.0259203.ref032
  doi: 10.1183/2312508X.10023819
– volume: 67
  start-page: 822
  issue: 9
  year: 2012
  ident: pone.0259203.ref064
  article-title: Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2011-201363
– volume: 6
  start-page: 259
  issue: 4
  year: 2000
  ident: pone.0259203.ref033
  article-title: The use of adenosine deaminase and adenosine deaminase isoenzymes in the diagnosis of tuberculous pleuritis
  publication-title: Current opinion in pulmonary medicine
  doi: 10.1097/00063198-200007000-00002
– volume: 17
  start-page: 682
  issue: 5
  year: 2013
  ident: pone.0259203.ref061
  article-title: Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients
  publication-title: The International journal of tuberculosis and lung disease
  doi: 10.5588/ijtld.12.0829
– ident: pone.0259203.ref013
– volume: 13
  start-page: e0202481
  issue: 8
  year: 2018
  ident: pone.0259203.ref050
  article-title: Application of Venn’s diagram in the diagnosis of pleural tuberculosis using IFN-γ, IP-10 and adenosine deaminase
  publication-title: PloS one
  doi: 10.1371/journal.pone.0202481
– volume: 22
  start-page: 367
  issue: 4
  year: 2016
  ident: pone.0259203.ref007
  article-title: Pleural fluid tests to diagnose tuberculous pleuritis
  publication-title: Current Opinion in Pulmonary Medicine
  doi: 10.1097/MCP.0000000000000277
– volume: 16
  start-page: 367
  issue: 4
  year: 2010
  ident: pone.0259203.ref047
  article-title: Use of pleural fluid levels of adenosine deaminase and interferon gamma in the diagnosis of tuberculous pleuritis
  publication-title: Current opinion in pulmonary medicine
  doi: 10.1097/MCP.0b013e32833a7154
– volume: 95
  start-page: 469
  year: 2018
  ident: pone.0259203.ref016
  article-title: Diagnostic accuracy of interleukin-27 between tuberculous pleural effusion and malignant pleural effusion: a meta-analysis
  publication-title: Respiration
  doi: 10.1159/000486963
– volume: 7
  start-page: 981
  issue: 6
  year: 2015
  ident: pone.0259203.ref017
  article-title: Tuberculous pleural effusions: advances and controversies
  publication-title: Journal of thoracic disease
– volume: 346
  start-page: 1971
  issue: 25
  year: 2002
  ident: pone.0259203.ref048
  article-title: Pleural effusion
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMcp010731
– volume: 17
  start-page: 787
  issue: 6
  year: 2013
  ident: pone.0259203.ref019
  article-title: Can tuberculous pleural effusions be diagnosed by pleural fluid analysis alone?
  publication-title: The International journal of tuberculosis and lung disease
  doi: 10.5588/ijtld.12.0892
SSID ssj0053866
Score 2.4494739
Snippet To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by...
Objective To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and...
ObjectiveTo analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted...
Objective To analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0259203
SubjectTerms Accuracy
Adenosine
Adenosine deaminase
Adenosine Deaminase - metabolism
Aged
Aged, 80 and over
Algorithms
Analysis
Antimicrobial agents
Biology and Life Sciences
Biomarkers
Chronic illnesses
Classification
Classifiers
Computer and Information Sciences
Diagnosis
Diagnosis, Differential
Drug resistance
Epidemiology
Exudation
Female
Health care
Health services
Health surveillance
Hospitals
Humans
Infections
L-Lactate dehydrogenase
Lactate dehydrogenase
Lactic acid
Learning algorithms
Lymphocytes
Machine Learning
Male
Medical diagnosis
Medical research
Medicine and Health Sciences
Middle Aged
Parameters
Patients
Pleural effusion
Pleural Effusion - diagnosis
Pleural Effusion - epidemiology
Pleural fluid
Population
Prevalence
Preventive medicine
Prospective Studies
Public health
Pulmonology
Sensitivity
Sensitivity and Specificity
Support vector machines
Thoracic surgery
Tuberculosis
Tuberculosis, Pleural - diagnosis
Tuberculosis, Pleural - epidemiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK9uKWAQEnBIu4nzsLktj6ogARJQ1Fvk-FFWCkm02aja38SfZMZxokZUag9c15931_PKOB5_Q8iLheY2NpkOdBxnQWxZGAhhwoDFibVC88JqPNH9_CU9Pok_nSanF1p9YU1YTw_cC-4wFEmU6EJxXeiYw2xpmNCLSItQWZ44JtAFF8Nmqo_B4MVp6i_KsSw89Ho5aOrKHMBTXkRDkyz_IHJ8_WNUnjVl3V6Wcv5bOXmzqxq5PZdleeGxdHSH3Pb5JF3269ghN0x1l-x4j23pK08r_foe-fO-r6oDIJVKdWuptrS2VGrkC4dkk2ojsTCmNRQyWdqUBik56KYrzFp18F9XLV1VVNKyPqfNGnnC8Udoa1zt9Bu6pL9daaahvhfFGR0oyym-73WTs2ALgzC_Hi55UlfUGOBizZo6vtv75OTow493x4Fv1RCoVESbQGaaCbzDqlWmM2WKRaoVD5FOPkkUS5W2sJG0XAkecxmmgLeCs5irKGGyEOwBmVWgnF1C4yjTiyJRwkBupNKoMGFqQ1HIKEsNBIw5YYPecuV5zLGdRpm7w7kM9jO96HPUdu61PSfBOKvpeTyuwL9FkxixyMLtPgDbzL1t5lfZ5pw8RYPK-yutYyzJl0j6xpHRc06eOwQycVRY6nMmu7bNP379eQ3Q928T0EsPsjWIQ0l_vQLWhAxfE-T-BAnxRE2Gd9H8B6m0OQiEJRx5D2Hm4BKXDz8bh_FLsXyvMnXnMJD3hCFL5uRh70GjZBk2v45FOCfZxLcmop-OVKtfjgidJynsjkHMB6MXXku5e_9DuY_IrQjrm_CIId4ns826M48hQd0UT1ws-gt5xJOk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdG9wASQmz8WWGAQUjAQ7omdhIbCaEONg0kBhoM7S1ybKdUCkloGk39THxJfI4TiJhgr_VdW9_5zmf77ncIPZ0qllEdK09RGns0I77HufY9QsMs44qlmYIX3Q_H0dEpfX8Wnm2g464WBtIqO59oHbUqJdyR75kwnYQM0NdeVz886BoFr6tdCw3hWiuoVxZi7AraDAAZa4Q29w-OP510vtlYdxS5AjoS-3tOX5OqLPTE7P486JpnuQ3K4vj33npU5WV9USj6d0bl1aaoxPpc5Pkf29XhTXTDxZl41i6MLbShi210vb2kw23t0TbacpZd4-cOfvrFLfTzbZt9ZxixmXCzFHKNywwLBbjiJijFSgtIoKk1NhEvrnIN0B141aR6KRvz3xc1XhRY4Lw8x9US8MThR3CtbY71SzzD320Kp8auZ8Ucd9DmGO6FLXPsrc2g4S-7YlBskx89mLxeYouLexudHh58eXPkuZYOnox4sPJErAiHWlclYxVLnU4jJZkPsPNhKEkkVWYOnBmTnFEm_MjQZ5wRymQQEpFycgeNCqOsHYRpEKtpGkquTQwloyDVfpT5PBVBHGnjWMaIdHpMpMM7h7YbeWIf8WJz7mlVkYD2E6f9MfJ6rqrF-_gP_T4skZ4W0LrtB-VynjjjT3weBqFKJVOposxYgNCEq2mguC8zFtIxegQLLGlLX3ufk8wAHI4B8ucYPbEUgNhRQErQXDR1nbz7-PUSRJ9PBkTPHFFWGnFI4cowzJwACWxAuTugNH5HDoZ3wBw6qdTJbws1nJ2JXDz8uB-GL4U0v0KXjaUx8ZHvk3CM7rYW1UuWQJNsyv0xige2NhD9cKRYfLOA6SyMzCnaiHnSW-WllHvv3_O4j64FkOEEjwx0F41Wy0Y_MCHqKn3o_M4vzD6WJg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQ7SaOE5vb8qgKEgUBrcoBRY7tlBVLstpsVC0H_hB_kpnEiQgUUQ7cVvFnbzIeT8aZmc-E3BsbkYU2Np4Jw9gLM-Z7UlrfYyHPMmlEmhmM6L7ai3b3w5eH_HCNfGxrYZwEYY84K8o6ko8_itxuO0luI19REz0d-Sz22x6jOYBG8AaXwZjdrxmH8MvYEguQzpD1iIOrPiDr-3tvJh-aSHPgRQB15XR_Gqn3uqpZ_TvbPcA7O8kx_T2_8myVz9XqWM1mP728di6Qb-1jNzkrn0fVMh3pr78wQv43uVwk553bSyfNKBtkzeaXyIYzLCV96NivH10m3581yX8ApErraqH0ihYZVQZpzcEnpsYqzN8pLQWHm85nFplD6LJK7UJXcLvTkk5zquisOKbzBdKZ45_Q0tYp3o_phH6pM0gtdUdmHNGWWZ3iZ-m6c-ytoBH6F20tKq1zLz2Utl3Qmpb3Ctnfef7-6a7nTpTwdCSDpadiwySW2hodm1jbdBwZLXxkvedcs0ibDPa7mdBShEL5EeAzKVgodMCZSiW7SgY5yHOT0DCIzTjlWlpw4XQUpNaPMl-mKogjC3ZtSFirOIl2dOt46scsqWOIMWy7GtEnOEGJm6Ah8bpe84Zu5C_4J6iTHRbJwusLoCGJ04zElzzgJtXCpCYUsACVZdKMAyN9nQkeDslt1OikqbztTF4yQW46gcSjQ3K3RiBhSI4ZSUeqKsvkxeuDU4Deve2BHjhQVoA4tHJVIPBMqMA95FYPCWZP95o3cQW0UikTEAjjAukZoWe7Jk9uvtM146CYZZjboqox4J75PuNDcq1Zwp1kGZ7RHUp_SOLe4u6Jvt-STz_VfO2CR7CJBzGPOjNwqsm9_q8dbpBzAaZcYdQj3CKD5aKyN8FnXqa3nOX7ASlQyjg
  priority: 102
  providerName: Unpaywall
Title Diagnostic accuracy of adenosine deaminase for pleural tuberculosis in a low prevalence setting: A machine learning approach within a 7-year prospective multi-center study
URI https://www.ncbi.nlm.nih.gov/pubmed/34735491
https://www.proquest.com/docview/2593588677
https://www.proquest.com/docview/2594291135
https://pubmed.ncbi.nlm.nih.gov/PMC8568264
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259203&type=printable
https://doaj.org/article/19525dbc8dbd489d8ae39d02d91cf854
http://dx.doi.org/10.1371/journal.pone.0259203
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6PICEEC1HF8piEOJ4yGpz20gIbUtLQWqpCouWp8ixnVIpJOlmo7K_iT_JjHOIiAJ9yUM8zq5nPPbYM_MNIU_HiiWeDpWlPC-0vMS1Lc61bbmenyRcsThR6NE9PAoOpt6HmT9bIa2jvWFgeenRDutJTefp6Mf58g0o_GtTtSG0206jIs_0CPZw7ozdZ8W5haWl0AXb1NlYJeuwfXGs73Doda4GUPggaHLq_vax3p5loP27BXytSPPyMuv0zyDLa1VWiOWFSNPfdrD9W-RmY3rSST1XNsiKzjbJjfrejtbpSJtko1H2kr5oEKlf3iY_39YBedCRCimruZBLmidUKIQaBzuVKi0wpqbUFIxgWqQa0Tzooor1XFbw389KepZRQdP8ghZzhBjHH6GlNmHXr-iEfjdRnZo2ZSxOaYt2TvGq2HQOrSU0Qv-8zQ-lJh7SwsHrOTVQuXfIdH_v8-6B1VR5sGTAnYUlQuVyTH9VMlSh1PE4UJLZiETv-9INpEpAagmTnHlM2AHQJ5y5HpOO74qYu3fJWgbC2iLUc0I1jn3JNZhVMnBibQeJzWPhhIGGtWZA3FaOkWwg0LESRxoZv14IR6FaFBFKP2qkPyBW16uoIUD-Q7-DU6SjRQBv8yKfn0bNehDZ3Hd8FUumYuUxUAqhXa7GjuK2TJjvDcgjnGBRnQ3bLUPRBPHiGIKBDsgTQ4EgHhlGCZ2Kqiyj9x-_XIHo00mP6HlDlOTADimazAwYE4KD9Si3e5SwFMle8xaqQ8uVMgKGuD5DyETo2arI5c2Pu2b8KEb-ZTqvDA2YTLbt-gNyr9aojrMu1s32uD0gYU_Xeqzvt2Rn3wyGOvMDOFgDm0edVl5JuPf_PY4H5LqDQU_od_C2ydpiXumHYLUu4iFZDWchPNmujc_9d0OyvrN3dHwyNPdAQ7Mqwbvp0fHk6y8OIaO9
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigSQrQ8ulCoQSDgkHaTOImNhNBCqVr6QIK26i04tlMqLUnYbLTa34TEb2TGeUBEBb30uh7vrj2ez2N75htCng41T5mJtKMZixyW-q4jhHEdnwVpKjRPUo0vugeH4c4x-3AanC6Qn20uDIZVtphogVrnCu_IN8FN9wOO7Gtviu8OVo3C19W2hEa9LPbMfAZHtvL17hbo95nnbb8_erfjNFUFHBUKb-rISPsC0y21inSkTDIMteIuMp8HgfJDpVM486RcCc64dEOQTwX3GVde4MsEyZcA8q8xH7AE7Cc67Q54gB1h2KTn-ZG72ayGjSLPzAb4FsJrS3M125-tEtDtBYvFOC8vcnT_jtdcqrJCzmdyPP5jM9y-RW42Xiwd1ctumSyYbIXcqK8AaZ3ZtEKWG9wo6YuG3PrlbfJjq47tg45UKlVNpJrTPKVSI2s5uLxUG4nhOaWh4E_TYmyQGIROq8RMVAX__byk5xmVdJzPaDFBtnL8EVoaG8H9io7oNxsgamhTEeOMtsTpFG-dbefImUMj9M_bVFNqQysdHLyZUMu6e4ccX4lq75LFDJS1SijzIj1MAiUMeGgq9BLjhqkrEulFoQHYGhC_1WOsGjZ1LOoxju0TYQSnqloVMWo_brQ_IE7Xq6jZRP4j_xaXSCeLXOD2g3xyFjfQErsi8AKdKK4TzTjYlzS-0ENPC1elPGADso4LLK4TaztEi0dIPceRV3RAnlgJ5APJMODoTFZlGe9-PLmE0OdPPaHnjVCaw3Qo2SR5wJiQZ6wnudaTBFRTveZVNId2Vsr4t_1Dz9ZELm5-3DXjl2IQYWbyysqA9-W6fjAg92qL6mbWxxLcTLgDEvVsrTf1_Zbs_KulY-dBCGd0mOaNziovpdz7_x7HOlnaOTrYj_d3D_cekOsexlLhcwZbI4vTSWUegjM8TR5ZBKLky1VD3i-MBMwN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqIgESQrRculCoQSDgIe0mzsVGQqhQqpZCQUBR34LjS6m0JGGzUbXfxB_wdcwkTiCigr7wuh7vrj2e47E9c4aQ-2PNbWgS7ekwTLzQMt8TwvgeCyNrheaZ1fii-2Y_3jkIXx1GhwvkR5cLg2GVHSY2QK0LhXfkG-Cms4gj-9qGdWER77a2n5XfPKwghS-tXTmNdonsmfkJHN-qp7tboOsHQbD98uOLHc9VGPBULIKZJxPNBKZeapXoRJlsHGvFfWRBjyLFYqUtnH8sV4KHXPoxyFvBWchVEDGZIRETwP-5hDGB4YTJYX_YAxyJY5eqxxJ_w62M9bLIzTr4GSLoynS5rbCpGNDvC4vlpKhOc3r_jN28UOelnJ_IyeS3jXH7CrnsPFq62S7BJbJg8mVyqb0OpG2W0zJZchhS0UeO6PrxVfJ9q43zg45UKlVPpZrTwlKpkcEc3F-qjcRQncpQ8K1pOTFIEkJndWamqob_flzR45xKOilOaDlF5nL8EVqZJpr7Cd2kX5tgUUNddYwj2pGoU7yBbjon3hwaoX_RpZ3SJszSw8GbKW0YeK-Rg_-i2utkMQdlrRAaBokeZ5ESBrw1FQeZ8WPri0wGSWwAwkaEdXpMlWNWxwIfk7R5LkzghNWqIkXtp077I-L1vcqWWeQf8s9xifSyyAvefFBMj1IHM6kvoiDSmeI60yEHW5OGCT0OtPCV5VE4Imu4wNI2ybZHt3QTaeg4coyOyL1GArlBcrSyI1lXVbr79tMZhD68Hwg9dEK2gOlQ0iV8wJiQc2wguTqQBIRTg-YVNIduVqr0FxZAz85ETm--2zfjl2JAYW6KupEBT8z3WTQiN1qL6meWYTnuUPgjkgxsbTD1w5b8-EtDzc6jGM7rMM3rvVWeSbk3_z6ONXIewC59vbu_d4tcDDCsCl82wlWyOJvW5jb4xbPsTgNAlHz-34j3E1Kp0FA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQ7SaOE5vb8qgKEgUBrcoBRY7tlBVLstpsVC0H_hB_kpnEiQgUUQ7cVvFnbzIeT8aZmc-E3BsbkYU2Np4Jw9gLM-Z7UlrfYyHPMmlEmhmM6L7ai3b3w5eH_HCNfGxrYZwEYY84K8o6ko8_itxuO0luI19REz0d-Sz22x6jOYBG8AaXwZjdrxmH8MvYEguQzpD1iIOrPiDr-3tvJh-aSHPgRQB15XR_Gqn3uqpZ_TvbPcA7O8kx_T2_8myVz9XqWM1mP728di6Qb-1jNzkrn0fVMh3pr78wQv43uVwk553bSyfNKBtkzeaXyIYzLCV96NivH10m3581yX8ApErraqH0ihYZVQZpzcEnpsYqzN8pLQWHm85nFplD6LJK7UJXcLvTkk5zquisOKbzBdKZ45_Q0tYp3o_phH6pM0gtdUdmHNGWWZ3iZ-m6c-ytoBH6F20tKq1zLz2Utl3Qmpb3Ctnfef7-6a7nTpTwdCSDpadiwySW2hodm1jbdBwZLXxkvedcs0ibDPa7mdBShEL5EeAzKVgodMCZSiW7SgY5yHOT0DCIzTjlWlpw4XQUpNaPMl-mKogjC3ZtSFirOIl2dOt46scsqWOIMWy7GtEnOEGJm6Ah8bpe84Zu5C_4J6iTHRbJwusLoCGJ04zElzzgJtXCpCYUsACVZdKMAyN9nQkeDslt1OikqbztTF4yQW46gcSjQ3K3RiBhSI4ZSUeqKsvkxeuDU4Deve2BHjhQVoA4tHJVIPBMqMA95FYPCWZP95o3cQW0UikTEAjjAukZoWe7Jk9uvtM146CYZZjboqox4J75PuNDcq1Zwp1kGZ7RHUp_SOLe4u6Jvt-STz_VfO2CR7CJBzGPOjNwqsm9_q8dbpBzAaZcYdQj3CKD5aKyN8FnXqa3nOX7ASlQyjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+adenosine+deaminase+for+pleural+tuberculosis+in+a+low+prevalence+setting%3A+A+machine+learning+approach+within+a+7-year+prospective+multi-center+study&rft.jtitle=PloS+one&rft.au=Garcia-Zamalloa%2C+Alberto&rft.au=Vicente%2C+Diego&rft.au=Arnay%2C+Rafael&rft.au=Arrospide%2C+Arantzazu&rft.date=2021-11-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=16&rft.issue=11&rft.spage=e0259203&rft_id=info:doi/10.1371%2Fjournal.pone.0259203&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon