The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning

To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 10; p. e0237994
Main Authors Yu, Bo, Wang, Zheng, Liu, Shangke, Liu, Xiaomin, Gou, Ruixin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.10.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0237994

Cover

Abstract To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.
AbstractList To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.
To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.
Audience Academic
Author Liu, Shangke
Yu, Bo
Wang, Zheng
Liu, Xiaomin
Gou, Ruixin
AuthorAffiliation University College London, UNITED KINGDOM
State Grid Ningxia Electric Power, Eco-Tech Research Institute, Yinchuan, China
AuthorAffiliation_xml – name: University College London, UNITED KINGDOM
– name: State Grid Ningxia Electric Power, Eco-Tech Research Institute, Yinchuan, China
Author_xml – sequence: 1
  givenname: Bo
  surname: Yu
  fullname: Yu, Bo
– sequence: 2
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
– sequence: 3
  givenname: Shangke
  surname: Liu
  fullname: Liu, Shangke
– sequence: 4
  givenname: Xiaomin
  surname: Liu
  fullname: Liu, Xiaomin
– sequence: 5
  givenname: Ruixin
  orcidid: 0000-0001-7478-9057
  surname: Gou
  fullname: Gou, Ruixin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33027298$$D View this record in MEDLINE/PubMed
BookMark eNqNk11rFDEUhgep2Hb1H4gOCKIXu2aS-YoXQil-LBQKWr0NmeRkJiWbbJOM2gv_u1l3WnZLkZKLmTnzvO_5mjnODqyzkGXPC7QoSFO8u3Sjt9ws1im8QJg0lJaPsqOCEjyvMSIHO_eH2XEIlwhVpK3rJ9khIQg3mLZH2Z-LAXLJI8-lXoEN2iVPHa9zD3IUMT3m3Mq843KiIMI2rG0ek3btnYAQcqfysOI-5r3XMqmFsyH6ySIO3o39kK-4GLSF3AD3Vtv-afZYcRPg2XSdZd8_fbw4_TI_O_-8PD05m4ua4jinBVFUoQoh1LVVS1taSahQRykCwFhVZUfrpmtb1bRNA1hiUZCKcll0ZUnKjsyyl1vftXGBTZMLDJclLSqC05llyy0hHb9ka69TL9fMcc3-BZzvWWpOCwNMKtEVquJNh6oyZaYpixQKA22gpJ1KXtXWa7Rrfv2LG3NrWCC2Wd5NCWyzPDYtL-k-TFWO3QqkABs9N3vF7L-xemC9-8maqkQtRcngzWTg3dUIIbKVDgKM4RbcuO0X1wWtaUJf3UHvn8pE9Tw1rq1yKa_YmLKTmjQ1pZhs6l7cQ6UjYaXTdwBKp_ie4O2eIDERfseejyGw5bevD2fPf-yzr3fYAbiJQ3Bm3HyDYR98sTvp2xHf_BcJKLeA8C4ED-qhG3x_RyZ05Jv0aSLa_F_8F9bUNy4
CitedBy_id crossref_primary_10_1049_rpg2_12846
crossref_primary_10_1109_JESTIE_2024_3352495
crossref_primary_10_1111_jfpe_13982
crossref_primary_10_1371_journal_pone_0319594
crossref_primary_10_1016_j_asoc_2023_109993
Cites_doi 10.1049/iet-com.2017.1000
10.1109/TSG.2016.2596298
10.1109/TCNS.2016.2614099
10.3897/phytokeys.65.8679
10.1049/iet-gtd.2017.1733
10.1016/j.epsr.2016.06.033
10.1109/TII.2017.2656905
10.1109/TSG.2016.2552178
10.1109/TII.2017.2733001
10.1021/acs.jpca.8b00034
10.1109/TPWRS.2018.2818746
10.1049/iet-rpg.2016.0248
10.1049/iet-gtd.2017.0294
10.1109/TPWRS.2018.2871345
10.1016/j.eswa.2017.05.013
10.1099/mic.0.000449
10.1029/RS021i005p00863
10.1049/iet-gtd.2016.1866
10.1155/2019/8936784
10.1007/s10278-017-0033-z
10.3390/en12112209
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Yu et al 2020 Yu et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Yu et al 2020 Yu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0237994
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context : Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate The data dimensionality reduction and bad data detection in the process of smart grid reconstruction
EISSN 1932-6203
ExternalDocumentID 2449153232
oai_doaj_org_article_dfcb1f5a7b0544b991b4dcf2e97e49bf
10.1371/journal.pone.0237994
PMC7540890
A637699234
33027298
10_1371_journal_pone_0237994
Genre Retracted Publication
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c692t-913f9f05000b8589895de50b990ee22f54b967b88f7877e2d2c1359ad1b4434b3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Mon Dec 05 23:08:11 EST 2022
Fri Oct 03 12:52:39 EDT 2025
Sun Oct 26 04:17:20 EDT 2025
Tue Sep 30 16:51:24 EDT 2025
Mon Sep 08 16:32:01 EDT 2025
Tue Oct 07 07:26:21 EDT 2025
Mon Oct 20 21:47:38 EDT 2025
Mon Oct 20 16:04:26 EDT 2025
Thu Oct 16 14:19:04 EDT 2025
Thu Oct 16 14:29:41 EDT 2025
Thu May 22 21:20:27 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Wed Oct 01 04:21:10 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-913f9f05000b8589895de50b990ee22f54b967b88f7877e2d2c1359ad1b4434b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-7478-9057
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0237994
PMID 33027298
PQID 2449153232
PQPubID 1436336
PageCount e0237994
ParticipantIDs plos_journals_2449153232
doaj_primary_oai_doaj_org_article_dfcb1f5a7b0544b991b4dcf2e97e49bf
unpaywall_primary_10_1371_journal_pone_0237994
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540890
proquest_miscellaneous_2449261969
proquest_journals_2449153232
gale_infotracmisc_A637699234
gale_infotracacademiconefile_A637699234
gale_incontextgauss_ISR_A637699234
gale_incontextgauss_IOV_A637699234
gale_healthsolutions_A637699234
pubmed_primary_33027298
crossref_primary_10_1371_journal_pone_0237994
crossref_citationtrail_10_1371_journal_pone_0237994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-07
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References G McMullen J (pone.0237994.ref007) 2017; 163
H Hossein (pone.0237994.ref016) 2018; 35
E Sorrentino (pone.0237994.ref006) 2016; 140
R Moslemi (pone.0237994.ref015) 2018; 12
D Krsman V (pone.0237994.ref005) 2017; 11
J Zhang (pone.0237994.ref021) 2018; 33
S Zhang (pone.0237994.ref025) 2017
A Beg O (pone.0237994.ref013) 2017; 13
F Schneider W (pone.0237994.ref026) 2018; 122
X Li (pone.0237994.ref010) 2018; 11
M Mohammadpourfard (pone.0237994.ref012) 2017; 84
G M Wang (pone.0237994.ref028) 2018
X Wang (pone.0237994.ref019) 2019; 110
F Shang (pone.0237994.ref020) 2019; 2019
Z Zhou (pone.0237994.ref001) 2018; 14
F M P Gonçalves (pone.0237994.ref024) 2016; 65
Q Wang (pone.0237994.ref017) 2019; 104
K Umehara (pone.0237994.ref027) 2018; 31
B Herbst E (pone.0237994.ref009) 2016; 52
J Zhang (pone.0237994.ref008) 2016; 7
P Basart J (pone.0237994.ref011) 2016; 21
A Ashok (pone.0237994.ref004) 2016
H Zhang (pone.0237994.ref002) 2018; 5
L Che (pone.0237994.ref018) 2019; 34
J G Sreenath (pone.0237994.ref022) 2018; 12
E Sorrentino (pone.0237994.ref023) 2016; 140
J Tautz-Weinert (pone.0237994.ref003) 2017; 11
M Ganjkhani (pone.0237994.ref014) 2019; 12
40043008 - PLoS One. 2025 Mar 5;20(3):e0319594. doi: 10.1371/journal.pone.0319594.
References_xml – volume: 11
  start-page: 2800
  issue: 18
  year: 2018
  ident: pone.0237994.ref010
  article-title: Greedy Hybrid Beamforming for Multiuser MmWave MIMO Systems
  publication-title: Iet Communications
  doi: 10.1049/iet-com.2017.1000
– start-page: 1
  issue: 99
  year: 2016
  ident: pone.0237994.ref004
  article-title: Online Detection of Stealthy False Data Injection Attacks in Power System State Estimation
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2596298
– volume: 5
  start-page: 383
  issue: 1
  year: 2018
  ident: pone.0237994.ref002
  article-title: DoS Attack Energy Management Against Remote State Estimation
  publication-title: IEEE Transactions on Control of Network Systems
  doi: 10.1109/TCNS.2016.2614099
– volume: 65
  start-page: 1
  issue: 65
  year: 2016
  ident: pone.0237994.ref024
  article-title: A brief botanical survey into Kumbira forest, an isolated patch of Guineo-Congolian biome
  publication-title: Phytokeys
  doi: 10.3897/phytokeys.65.8679
– volume: 12
  start-page: 2299
  issue: 10
  year: 2018
  ident: pone.0237994.ref022
  article-title: Hierarchical Parallel Dynamic Estimator of States for Interconnected Power System
  publication-title: Iet Generation Transmission & Distribution
  doi: 10.1049/iet-gtd.2017.1733
– volume: 140
  start-page: 116
  year: 2016
  ident: pone.0237994.ref023
  article-title: Measurement of fault resistances in transmission lines by using recorded signals at both line ends
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.06.033
– volume: 13
  start-page: 2693
  issue: 5
  year: 2017
  ident: pone.0237994.ref013
  article-title: Detection of False-Data Injection Attacks in Cyber-Physical DC Microgrids
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2656905
– volume: 7
  start-page: 1
  issue: 4
  year: 2016
  ident: pone.0237994.ref008
  article-title: Physical System Consequences of Unobservable State-and-Topology Cyber-Physical Attacks
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2552178
– volume: 14
  start-page: 768
  issue: 2
  year: 2018
  ident: pone.0237994.ref001
  article-title: Social Big Data based Content Dissemination in Internet of Vehicles
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2733001
– volume: 140
  start-page: 116
  year: 2016
  ident: pone.0237994.ref006
  article-title: Measurement of fault resistances in transmission lines by using recorded signals at both line ends
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.06.033
– volume: 122
  start-page: 879
  issue: 4
  year: 2018
  ident: pone.0237994.ref026
  article-title: Machine Learning
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/acs.jpca.8b00034
– volume: 110
  start-page: 208
  issue: SEP.
  year: 2019
  ident: pone.0237994.ref019
  article-title: Distributed detection and isolation of false data injection attacks in smart grids via nonlinear unknown input observers. International Journal of Electrical Power &
  publication-title: Energy Systems
– volume: 33
  start-page: 4775
  issue: 5
  year: 2018
  ident: pone.0237994.ref021
  article-title: Can Attackers With Limited Information Exploit Historical Data to Mount Successful False Data Injection Attacks on Power Systems?
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2818746
– volume: 11
  start-page: 382
  issue: 4
  year: 2017
  ident: pone.0237994.ref003
  article-title: Using SCADA data for wind turbine condition monitoring—A review
  publication-title: Iet Renewable Power Generation
  doi: 10.1049/iet-rpg.2016.0248
– volume: 12
  start-page: 1263
  issue: 6
  year: 2018
  ident: pone.0237994.ref015
  article-title: Design of robust profitable false data injection attacks in multi-settlement electricity markets
  publication-title: Iet Generation Transmission & Distribution
  doi: 10.1049/iet-gtd.2017.0294
– start-page: 1
  issue: 2
  year: 2018
  ident: pone.0237994.ref028
  article-title: TL-GDBN: Growing Deep Belief Network With Transfer Learning
  publication-title: IEEE Transactions on Automation ence and Engineering
– start-page: 1
  issue: 99
  year: 2017
  ident: pone.0237994.ref025
  article-title: On the Equivalence of HLLE and LTSA
  publication-title: IEEE Transactions on Cybernetics
– volume: 34
  start-page: 1513
  issue: 2
  year: 2019
  ident: pone.0237994.ref018
  article-title: False Data Injection Attacks Induced Sequential Outages in Power Systems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2871345
– volume: 104
  start-page: 169
  issue: JAN.
  year: 2019
  ident: pone.0237994.ref017
  article-title: A two-layer game theoretical attack-defense model for a false data injection attack against power systems. International Journal of Electrical Power &
  publication-title: Energy Systems
– volume: 84
  start-page: 242
  issue: oct.
  year: 2017
  ident: pone.0237994.ref012
  article-title: A Statistical Unsupervised Method Against False Data Injection Attacks: A Visualization-Based Approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.05.013
– volume: 52
  start-page: 1
  issue: 2
  year: 2016
  ident: pone.0237994.ref009
  article-title: The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging
  publication-title: Investigative Radiology
– volume: 35
  start-page: 1
  year: 2018
  ident: pone.0237994.ref016
  article-title: Designing three indicators to detect false data injection attacks on smart grid by dynamic state estimation
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 163
  start-page: 510
  issue: 4
  year: 2017
  ident: pone.0237994.ref007
  article-title: Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts
  publication-title: Microbiology
  doi: 10.1099/mic.0.000449
– volume: 21
  start-page: 863
  issue: 5
  year: 2016
  ident: pone.0237994.ref011
  article-title: Modeling very large array phase data by the Box-Jenkins method
  publication-title: Radio Science
  doi: 10.1029/RS021i005p00863
– volume: 11
  start-page: 2351
  issue: 9
  year: 2017
  ident: pone.0237994.ref005
  article-title: Bad Area Detection and Whitening Transformation-based Identification in Three-Phase Distribution State Estimation
  publication-title: Iet Generation Transmission & Distribution
  doi: 10.1049/iet-gtd.2016.1866
– volume: 2019
  start-page: 1
  year: 2019
  ident: pone.0237994.ref020
  article-title: Multidevice False Data Injection Attack Models of ADS-B Multilateration Systems
  publication-title: Security and Communication Networks
  doi: 10.1155/2019/8936784
– volume: 31
  start-page: 441
  issue: 4
  year: 2018
  ident: pone.0237994.ref027
  article-title: Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-017-0033-z
– volume: 12
  start-page: 2209
  issue: 11
  year: 2019
  ident: pone.0237994.ref014
  article-title: A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation
  publication-title: Energies
  doi: 10.3390/en12112209
– reference: 40043008 - PLoS One. 2025 Mar 5;20(3):e0319594. doi: 10.1371/journal.pone.0319594.
SSID ssj0053866
Score 2.3760872
SecondaryResourceType retracted_publication
Snippet To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0237994
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
China
Computer and Information Sciences
Computer Security
Computer Simulation
Data processing
Databases, Factual
Datasets
Deep learning
Electric power
Electric power grids
Electric Power Supplies - statistics & numerical data
Electricity distribution
Embedding
Engineering and Technology
Feature extraction
Humans
Information management
Injection
Learning algorithms
Machine Learning
Methods
Neural networks
Neural Networks, Computer
Nodes
Physical Sciences
Power grids
Power Plants - statistics & numerical data
Reconstruction
Reduction
Research and Analysis Methods
Safety and security measures
Signal detection (Electronics)
Smart grid
Smart grid technology
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GWjAICTjsNus4dnwsiKogARJQ1Ftkx_ay0jaJml2hHvjvzMTeqBGV2gPXeJIo8_JMZvwNIa-0zq2y2PPEPP664fOphrgfC46aGw57St_y__mLOD7hn07z00ujvrAnLMADB8YdWF-Zuc-1NBBccAPhjOG28swp6bgyHr1vWqhtMhV8MFixEPGgXCbnB1Eus7ap3Qx2KakUH21EPV7_4JUn7arprgo5_-2cvL2pW33xW69Wl7alo3vkbown6WH4jh1yy9X3yU602I6-ibDSbx-QP6ARFBtCqUVE_4DGATE4PUf0VpQP1bWlRttI5dYuXF7WFMJE2oYzBbTxtDsDxtHF-dLSPqMeUGhpnPtDz_omTUfjVIrFQ3Jy9OHH--NpHL4wrYRia6zIe-VTnJdgihyHTObW5SkIIHWOMZ-DLIQ0ReHB5KVjllXzLFfagnx4xk32iExqYPcuoUIXkLIzrPgKbr0yFbeKVamuZKaEsgnJtpIoq4hMjgMyVmVfbpOQoQRmlii_MsovIdPhrjYgc1xD_w6FPNAirnZ_AbStjNpWXqdtCXmOKlKGQ6qDdygPBThqBcEyvOZlT4HYGjU27yz0puvKj19_3oDo-7cR0etI5BtgR6XjgQn4JsTsGlHujSjBQ1Sj5V1U6C1XuhJCOgU7HQTTcOdWya9efjEs40OxIa92zSbQYPItVEIeB5sYOJthLZypIiFyZC0j1o9X6uWvHtpcQgJRqDQhs8GubiTcJ_9DuE_JHYZ_U7A9RO6RCZiO24eQc22e9d7lL7Fngrk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4DLxPha2ACDkIBDu9Zx4viA0IY2DSQKGgztFtmxXSp1Sda0Qhz433kvcQIRE-wav7Ty-3be8-8R8lypyEiDPU_M4acbPhkqyPux4Ki45hBT6pb_D9P45Iy_P4_ON8i0vQuDbZWtT6wdtSky_Ea-D2FIgnVCAvCmvBzi1CisrrYjNJQfrWBe1xBjN8gmQ2SsAdk8PJp-Om19M1h3HPsLdKGY7Ht5jcoityOIXkJK3gtQNY5_560H5aKorkpF_-6ovLnOS_Xju1os_ghXx7fJls8z6UGjGNtkw-Z3yLa35Iq-9HDTr-6Sn6ApFBtFqUGk_walA3JzukRUV5QbVbmhWhlPZVe2eTzPKaSPtGzuGtDC0eoCNJHOlnND65N2h05L_TwgelE3b1rqp1XM7pGz46Mvb0-GfijDMIslW2Gl3kk3xjkKOolw-GRkbDTWENWsZcxFXMtY6CRx4AqEZYZlkzCSykw05yHX4X0yyIHdO4TGKoGjPMNKcMyNkzrjRrJsrDIRyliagIStJNLMI5bj4IxFWpfhBJxcGmamKL_Uyy8gw-6tskHs-A_9IQq5o0W87fpBsZyl3nxT4zI9cZESGlJc2KGE3ZjMMSuF5VK7gDxBFUmby6ud10gPYnDgEpJo-JtnNQVibuTY1DNT66pK3338eg2iz6c9oheeyBXAjkz5ixSwJ8Ty6lHu9SjBc2S95R1U6JYrVfrbxuDNVsmvXn7aLeOPYqNebot1Q4OH8lgG5EFjEx1nQ6yRM5kERPSspcf6_ko-_1ZDngs4WCRyHJBRZ1fXEu7Df-9jl9xi-P0EG0LEHhmAUdhHkGSu9GPvOX4BZlZ_Ag
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESus4cfxYENNA2kBA0XiK7NguFV1aLa0QSPzv3MVutMAQ5TU-J_LZ9-Hc3e8IeaRUaqTBnCfm8NcNH8YK_H4MOCquOdiUJuX_8Cg7GPM3x-nxFnm2roU5G79PxPB54Gh_Ma9sH-yLkJJfINtZCp53j2yPj96NPvvAMYszNkhCddzfpnasTwPS36ri3mI2r8_zM_9Ml7y4qhbq-zc1m52xRftXyOF6FT4F5Wt_tdT98sdvAI-bLvMquRycUjryp2iHbNnqGtkJYl_TJwGb-ul18hOOFcWsUmqwLYCH9ABHnp4iBCxuMlWVoVqZQGWX1j-eVhR8TbrwhQl07mh9AseWTk6nhjbX8hbKlobmQfSkyfS0NLS2mNwg4_1XH18exKGDQ1xmki0xrO-kG2DTBZ2n2KkyNTYdaDCB1jLmUq5lJnSeO9AbwjLDymGSSmWGmvOE6-Qm6VXAkl1CM5XDvZ9h2DjjxkldciNZOVClSGQmTUSS9c4WZYA3xy4bs6KJ2Qm45nhmFsjjIvA4InE7a-HhPf5B_wIPTUuL4NzNA9jMIsh6YVyphy5VQoM_DCuUsBpTOmalsFxqF5H7eOQKX-naqphilIG2l-Bxw2ceNhQI0FFhBtBEreq6eP320wZEH953iB4HIjcHdpQqVF3AmhD4q0O516EENVN2hndRQNZcqQvwCyWYS_DIYeZaaM4fftAO40sxq6-y85WnwRt8JiNyy8tYy9kEA-pM5hERHenrsL47Uk2_NPjoAm4huRxEpN_K6Uabe_t_J9whlxj-fsF8ErFHeiAm9i74qEt9L6imXxQPkaI
  priority: 102
  providerName: Unpaywall
Title The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33027298
https://www.proquest.com/docview/2449153232
https://www.proquest.com/docview/2449261969
https://pubmed.ncbi.nlm.nih.gov/PMC7540890
https://doi.org/10.1371/journal.pone.0237994
https://doaj.org/article/dfcb1f5a7b0544b991b4dcf2e97e49bf
http://dx.doi.org/10.1371/journal.pone.0237994
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6B3hBjK8FRjEICXho1ThOHD8g1E0rA2llGhSVp8iOnVKpS0vTCvbAf-cucSMiiraXPMTnRL4P353vfEfIS6VCIw3mPLEMj26431Fg92PAUXHNQaeUKf9nw-h0xD-Ow_EO2fRsdQgstrp22E9qtJx1f_24egcC_7bs2iD8zaTuYp7bLuggISXfJXugqyQ2czjjdVwBpLuMXqLV0olYL3CX6f73lYayKmv61zt3azGbF9vM0n-zK2-t84W6-qlms79U1-AuueNsTtqvmGSf7Nj8Htl3Ul3Q16709Jv75DdwDcWkUWqw6n9VsQPsdLrECq9IQ6pyQ7UyDsqubPV6mlMwJemiundA5xktLoEr6WQ5NbT0uutKtdT1BqKXZSKnpa5zxeQBGQ1OvhyfdlyDhk4aSbbCqH0msx72VNBxiI0oQ2PDngYNZy1jWci1jISO4wy2BWGZYakfhFIZX3MecB08JK0c0H1AaKRicOsZRoUjbjKpU24kS3sqFYGMpPFIsKFEkrrq5dhEY5aUITkBXkyFzATplzj6eaRTz1pU1TuugT9CItewWHu7fDFfThInyonJUu1noRIazF1YoYTVmDRjVgrLpc488gxZJKkustY7SNKPYDOXYFDDb16UEFh_I8cEn4laF0Xy4dPXGwB9vmgAvXJA2RzQkSp3qQLWhHW9GpCHDUjYRdLG8AEy9AYrRQJmnwRtCAY3zNww-fbh5_UwfhST9nI7X1cw6KBH0iOPKpmoMRtgvJzJ2COiIS0N1DdH8un3svy5ACcjlj2PdGu5uhFxH19LlyfkNsPjFMwPEYekBXJhn4LNudJtsivGAp7xsY_Pwfs22Ts6GZ5ftMtTnHa5zcC70fC8_-0PLoyIPA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCw213HidcHhMqj6tIHErTV3oIdO8tK2yRsdlX1wF_iNzKTOIGICnrpNZ4k8jy-GdvjGUKeKRUYaTDniSW4dcMHXQVxPx44Kq45-JQy5f_gMNw95h_HwXiF_KzvwmBaZY2JJVCbLMY98i1wQxKsEwKAN_n3LnaNwtPVuoVGpRZ79vwMlmzF69F7kO9zxnY-HL3b7bquAt04lGyBR82JTPrYCEAPA-yeGBgb9DXAsrWMJQHXMhR6OExAl4VlhsUDP5DKDDTnPtc-fPcauc59wBKwHzFuFniAHWHoruf5YrDltKGXZ6ntgW8UUvKW-yu7BDS-oJPPsuKiQPfvfM3VZZqr8zM1m_3hDHdukZsuiqXbldqtkRWb3iZrDicK-tIVs351h_wAPaSYhkoN9hGoaoBA5E_nWDMWtYKq1FCtjKOyC1s9nqYUglOaVzcZaJbQ4hT0nE7mU0PLdXxT-5a6bkP0tEwNtdT1wpjcJcdXIpx7pJMCu9cJDdXQaoArwSDqMonUMTeSxX0VC1-G0njEryURxa4eOrblmEXlIZ-AdVHFzAjlFzn5eaTbvJVX9UD-Q_8WhdzQYjXv8kE2n0QOHCKTxHqQBEpoCKBhhhJmY-KEWSkslzrxyCaqSFRdjW0wKdoOwT1ICNHhN09LCqzokWLK0EQtiyIafTq5BNGXzy2iF44oyYAdsXLXNGBOWCmsRbnRogRcilvD66jQNVeK6LcFw5u1kl88_KQZxo9iGmBqs2VFg0v-UHrkfmUTDWd9PIFncugR0bKWFuvbI-n0W1lQXcCyZSj7Huk1dnUp4T749zw2yeru0cF-tD863HtIbjDcqcHUE7FBOmAg9hGEswv9uMQQSr5eNWj9Au2cs38
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCwL-fh-IBQoaxaCgUBRXsLdmwvK22TsNlV1QN_jF_HTOINRFTQS6_xJJE9M9_M2OMZQh5JGWqhMeeJWdy6CYZdCX4_HjjKQAVgU6qU_3cH0e5h8GYcjtfIz9VdGEyrXGFiBdQ6T3GPvA9mSIB2ggPQty4t4sPO6EXxvYsdpPCkddVOoxaRfXNyDOFb-XxvB3j9mLHR68-vdruuw0A3jQRb4LGzFXaATQFUHGInxVCbcKAAoo1hzIaBEhFXcWxBrrlhmqVDPxRSD1UQ-IHy4bsXyEXu-wLTCfm4CfYAR6LIXdXz-bDvJKNX5JnpgZ3kQgQtU1h1DGjsQqeY5eVpTu_fuZuXl1khT47lbPaHYRxdI1edR0u3axFcJ2smu07WHWaU9KkrbP3sBvkBMkkxJZVq7ClQ1wOBKIDOsX4sSgiVmaZKakdlFqZ-PM0oOKq0qG810NzS8ghknk7mU02rmL6pg0td5yF6VKWJGur6YkxuksNzYc4t0slguTcIjWRsFEAXZ-CBaStUGmjB0oFMuS8ioT3irziRpK42OrbomCXVgR-HGKlezAT5lzj-eaTbvFXUtUH-Q_8SmdzQYmXv6kE-nyQOKBJtUzW0oeQKnGmYoYDZ6NQyI7gJhLIe2UIRSeprsg0-JdsRmAoB7jr85mFFgdU9MtSTiVyWZbL3_ssZiD59bBE9cUQ2h-VIpbuyAXPCqmEtys0WJWBU2hreQIFerUqZ_NZmeHMl5KcPP2iG8aOYEpiZfFnTYPgfCY_crnWiWVkfT-OZiD3CW9rSWvr2SDb9VhVX5xDCxGLgkV6jV2di7p1_z2OLXAK4St7uHezfJVcYbtpgFgrfJB3QD3MPPNuFul9BCCVfzxuzfgGfGrfC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESus4cfxYENNA2kBA0XiK7NguFV1aLa0QSPzv3MVutMAQ5TU-J_LZ9-Hc3e8IeaRUaqTBnCfm8NcNH8YK_H4MOCquOdiUJuX_8Cg7GPM3x-nxFnm2roU5G79PxPB54Gh_Ma9sH-yLkJJfINtZCp53j2yPj96NPvvAMYszNkhCddzfpnasTwPS36ri3mI2r8_zM_9Ml7y4qhbq-zc1m52xRftXyOF6FT4F5Wt_tdT98sdvAI-bLvMquRycUjryp2iHbNnqGtkJYl_TJwGb-ul18hOOFcWsUmqwLYCH9ABHnp4iBCxuMlWVoVqZQGWX1j-eVhR8TbrwhQl07mh9AseWTk6nhjbX8hbKlobmQfSkyfS0NLS2mNwg4_1XH18exKGDQ1xmki0xrO-kG2DTBZ2n2KkyNTYdaDCB1jLmUq5lJnSeO9AbwjLDymGSSmWGmvOE6-Qm6VXAkl1CM5XDvZ9h2DjjxkldciNZOVClSGQmTUSS9c4WZYA3xy4bs6KJ2Qm45nhmFsjjIvA4InE7a-HhPf5B_wIPTUuL4NzNA9jMIsh6YVyphy5VQoM_DCuUsBpTOmalsFxqF5H7eOQKX-naqphilIG2l-Bxw2ceNhQI0FFhBtBEreq6eP320wZEH953iB4HIjcHdpQqVF3AmhD4q0O516EENVN2hndRQNZcqQvwCyWYS_DIYeZaaM4fftAO40sxq6-y85WnwRt8JiNyy8tYy9kEA-pM5hERHenrsL47Uk2_NPjoAm4huRxEpN_K6Uabe_t_J9whlxj-fsF8ErFHeiAm9i74qEt9L6imXxQPkaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+data+dimensionality+reduction+and+bad+data+detection+in+the+process+of+smart+grid+reconstruction+through+machine+learning&rft.jtitle=PloS+one&rft.au=Lv%2C+Zhihan&rft.au=Liu%2C+Xiaomin&rft.au=Yu%2C+Bo&rft.au=Wang%2C+Zheng&rft.date=2020-10-07&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=10&rft.spage=e0237994&rft_id=info:doi/10.1371%2Fjournal.pone.0237994&rft.externalDBID=n%2Fa&rft.externalDocID=A637699234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon