The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning
To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explo...
Saved in:
| Published in | PloS one Vol. 15; no. 10; p. e0237994 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.10.2020
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0237994 |
Cover
| Abstract | To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid. |
|---|---|
| AbstractList | To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid. To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid. |
| Audience | Academic |
| Author | Liu, Shangke Yu, Bo Wang, Zheng Liu, Xiaomin Gou, Ruixin |
| AuthorAffiliation | University College London, UNITED KINGDOM State Grid Ningxia Electric Power, Eco-Tech Research Institute, Yinchuan, China |
| AuthorAffiliation_xml | – name: University College London, UNITED KINGDOM – name: State Grid Ningxia Electric Power, Eco-Tech Research Institute, Yinchuan, China |
| Author_xml | – sequence: 1 givenname: Bo surname: Yu fullname: Yu, Bo – sequence: 2 givenname: Zheng surname: Wang fullname: Wang, Zheng – sequence: 3 givenname: Shangke surname: Liu fullname: Liu, Shangke – sequence: 4 givenname: Xiaomin surname: Liu fullname: Liu, Xiaomin – sequence: 5 givenname: Ruixin orcidid: 0000-0001-7478-9057 surname: Gou fullname: Gou, Ruixin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33027298$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11rFDEUhgep2Hb1H4gOCKIXu2aS-YoXQil-LBQKWr0NmeRkJiWbbJOM2gv_u1l3WnZLkZKLmTnzvO_5mjnODqyzkGXPC7QoSFO8u3Sjt9ws1im8QJg0lJaPsqOCEjyvMSIHO_eH2XEIlwhVpK3rJ9khIQg3mLZH2Z-LAXLJI8-lXoEN2iVPHa9zD3IUMT3m3Mq843KiIMI2rG0ek3btnYAQcqfysOI-5r3XMqmFsyH6ySIO3o39kK-4GLSF3AD3Vtv-afZYcRPg2XSdZd8_fbw4_TI_O_-8PD05m4ua4jinBVFUoQoh1LVVS1taSahQRykCwFhVZUfrpmtb1bRNA1hiUZCKcll0ZUnKjsyyl1vftXGBTZMLDJclLSqC05llyy0hHb9ka69TL9fMcc3-BZzvWWpOCwNMKtEVquJNh6oyZaYpixQKA22gpJ1KXtXWa7Rrfv2LG3NrWCC2Wd5NCWyzPDYtL-k-TFWO3QqkABs9N3vF7L-xemC9-8maqkQtRcngzWTg3dUIIbKVDgKM4RbcuO0X1wWtaUJf3UHvn8pE9Tw1rq1yKa_YmLKTmjQ1pZhs6l7cQ6UjYaXTdwBKp_ie4O2eIDERfseejyGw5bevD2fPf-yzr3fYAbiJQ3Bm3HyDYR98sTvp2xHf_BcJKLeA8C4ED-qhG3x_RyZ05Jv0aSLa_F_8F9bUNy4 |
| CitedBy_id | crossref_primary_10_1049_rpg2_12846 crossref_primary_10_1109_JESTIE_2024_3352495 crossref_primary_10_1111_jfpe_13982 crossref_primary_10_1371_journal_pone_0319594 crossref_primary_10_1016_j_asoc_2023_109993 |
| Cites_doi | 10.1049/iet-com.2017.1000 10.1109/TSG.2016.2596298 10.1109/TCNS.2016.2614099 10.3897/phytokeys.65.8679 10.1049/iet-gtd.2017.1733 10.1016/j.epsr.2016.06.033 10.1109/TII.2017.2656905 10.1109/TSG.2016.2552178 10.1109/TII.2017.2733001 10.1021/acs.jpca.8b00034 10.1109/TPWRS.2018.2818746 10.1049/iet-rpg.2016.0248 10.1049/iet-gtd.2017.0294 10.1109/TPWRS.2018.2871345 10.1016/j.eswa.2017.05.013 10.1099/mic.0.000449 10.1029/RS021i005p00863 10.1049/iet-gtd.2016.1866 10.1155/2019/8936784 10.1007/s10278-017-0033-z 10.3390/en12112209 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Yu et al 2020 Yu et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Yu et al 2020 Yu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0237994 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context : Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | The data dimensionality reduction and bad data detection in the process of smart grid reconstruction |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2449153232 oai_doaj_org_article_dfcb1f5a7b0544b991b4dcf2e97e49bf 10.1371/journal.pone.0237994 PMC7540890 A637699234 33027298 10_1371_journal_pone_0237994 |
| Genre | Retracted Publication Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK BBAFP N95 |
| ID | FETCH-LOGICAL-c692t-913f9f05000b8589895de50b990ee22f54b967b88f7877e2d2c1359ad1b4434b3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Mon Dec 05 23:08:11 EST 2022 Fri Oct 03 12:52:39 EDT 2025 Sun Oct 26 04:17:20 EDT 2025 Tue Sep 30 16:51:24 EDT 2025 Mon Sep 08 16:32:01 EDT 2025 Tue Oct 07 07:26:21 EDT 2025 Mon Oct 20 21:47:38 EDT 2025 Mon Oct 20 16:04:26 EDT 2025 Thu Oct 16 14:19:04 EDT 2025 Thu Oct 16 14:29:41 EDT 2025 Thu May 22 21:20:27 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Wed Oct 01 04:21:10 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-913f9f05000b8589895de50b990ee22f54b967b88f7877e2d2c1359ad1b4434b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-7478-9057 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0237994 |
| PMID | 33027298 |
| PQID | 2449153232 |
| PQPubID | 1436336 |
| PageCount | e0237994 |
| ParticipantIDs | plos_journals_2449153232 doaj_primary_oai_doaj_org_article_dfcb1f5a7b0544b991b4dcf2e97e49bf unpaywall_primary_10_1371_journal_pone_0237994 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540890 proquest_miscellaneous_2449261969 proquest_journals_2449153232 gale_infotracmisc_A637699234 gale_infotracacademiconefile_A637699234 gale_incontextgauss_ISR_A637699234 gale_incontextgauss_IOV_A637699234 gale_healthsolutions_A637699234 pubmed_primary_33027298 crossref_primary_10_1371_journal_pone_0237994 crossref_citationtrail_10_1371_journal_pone_0237994 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-07 |
| PublicationDateYYYYMMDD | 2020-10-07 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | G McMullen J (pone.0237994.ref007) 2017; 163 H Hossein (pone.0237994.ref016) 2018; 35 E Sorrentino (pone.0237994.ref006) 2016; 140 R Moslemi (pone.0237994.ref015) 2018; 12 D Krsman V (pone.0237994.ref005) 2017; 11 J Zhang (pone.0237994.ref021) 2018; 33 S Zhang (pone.0237994.ref025) 2017 A Beg O (pone.0237994.ref013) 2017; 13 F Schneider W (pone.0237994.ref026) 2018; 122 X Li (pone.0237994.ref010) 2018; 11 M Mohammadpourfard (pone.0237994.ref012) 2017; 84 G M Wang (pone.0237994.ref028) 2018 X Wang (pone.0237994.ref019) 2019; 110 F Shang (pone.0237994.ref020) 2019; 2019 Z Zhou (pone.0237994.ref001) 2018; 14 F M P Gonçalves (pone.0237994.ref024) 2016; 65 Q Wang (pone.0237994.ref017) 2019; 104 K Umehara (pone.0237994.ref027) 2018; 31 B Herbst E (pone.0237994.ref009) 2016; 52 J Zhang (pone.0237994.ref008) 2016; 7 P Basart J (pone.0237994.ref011) 2016; 21 A Ashok (pone.0237994.ref004) 2016 H Zhang (pone.0237994.ref002) 2018; 5 L Che (pone.0237994.ref018) 2019; 34 J G Sreenath (pone.0237994.ref022) 2018; 12 E Sorrentino (pone.0237994.ref023) 2016; 140 J Tautz-Weinert (pone.0237994.ref003) 2017; 11 M Ganjkhani (pone.0237994.ref014) 2019; 12 40043008 - PLoS One. 2025 Mar 5;20(3):e0319594. doi: 10.1371/journal.pone.0319594. |
| References_xml | – volume: 11 start-page: 2800 issue: 18 year: 2018 ident: pone.0237994.ref010 article-title: Greedy Hybrid Beamforming for Multiuser MmWave MIMO Systems publication-title: Iet Communications doi: 10.1049/iet-com.2017.1000 – start-page: 1 issue: 99 year: 2016 ident: pone.0237994.ref004 article-title: Online Detection of Stealthy False Data Injection Attacks in Power System State Estimation publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2596298 – volume: 5 start-page: 383 issue: 1 year: 2018 ident: pone.0237994.ref002 article-title: DoS Attack Energy Management Against Remote State Estimation publication-title: IEEE Transactions on Control of Network Systems doi: 10.1109/TCNS.2016.2614099 – volume: 65 start-page: 1 issue: 65 year: 2016 ident: pone.0237994.ref024 article-title: A brief botanical survey into Kumbira forest, an isolated patch of Guineo-Congolian biome publication-title: Phytokeys doi: 10.3897/phytokeys.65.8679 – volume: 12 start-page: 2299 issue: 10 year: 2018 ident: pone.0237994.ref022 article-title: Hierarchical Parallel Dynamic Estimator of States for Interconnected Power System publication-title: Iet Generation Transmission & Distribution doi: 10.1049/iet-gtd.2017.1733 – volume: 140 start-page: 116 year: 2016 ident: pone.0237994.ref023 article-title: Measurement of fault resistances in transmission lines by using recorded signals at both line ends publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.06.033 – volume: 13 start-page: 2693 issue: 5 year: 2017 ident: pone.0237994.ref013 article-title: Detection of False-Data Injection Attacks in Cyber-Physical DC Microgrids publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2656905 – volume: 7 start-page: 1 issue: 4 year: 2016 ident: pone.0237994.ref008 article-title: Physical System Consequences of Unobservable State-and-Topology Cyber-Physical Attacks publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2552178 – volume: 14 start-page: 768 issue: 2 year: 2018 ident: pone.0237994.ref001 article-title: Social Big Data based Content Dissemination in Internet of Vehicles publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2733001 – volume: 140 start-page: 116 year: 2016 ident: pone.0237994.ref006 article-title: Measurement of fault resistances in transmission lines by using recorded signals at both line ends publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.06.033 – volume: 122 start-page: 879 issue: 4 year: 2018 ident: pone.0237994.ref026 article-title: Machine Learning publication-title: Journal of Physical Chemistry A doi: 10.1021/acs.jpca.8b00034 – volume: 110 start-page: 208 issue: SEP. year: 2019 ident: pone.0237994.ref019 article-title: Distributed detection and isolation of false data injection attacks in smart grids via nonlinear unknown input observers. International Journal of Electrical Power & publication-title: Energy Systems – volume: 33 start-page: 4775 issue: 5 year: 2018 ident: pone.0237994.ref021 article-title: Can Attackers With Limited Information Exploit Historical Data to Mount Successful False Data Injection Attacks on Power Systems? publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2818746 – volume: 11 start-page: 382 issue: 4 year: 2017 ident: pone.0237994.ref003 article-title: Using SCADA data for wind turbine condition monitoring—A review publication-title: Iet Renewable Power Generation doi: 10.1049/iet-rpg.2016.0248 – volume: 12 start-page: 1263 issue: 6 year: 2018 ident: pone.0237994.ref015 article-title: Design of robust profitable false data injection attacks in multi-settlement electricity markets publication-title: Iet Generation Transmission & Distribution doi: 10.1049/iet-gtd.2017.0294 – start-page: 1 issue: 2 year: 2018 ident: pone.0237994.ref028 article-title: TL-GDBN: Growing Deep Belief Network With Transfer Learning publication-title: IEEE Transactions on Automation ence and Engineering – start-page: 1 issue: 99 year: 2017 ident: pone.0237994.ref025 article-title: On the Equivalence of HLLE and LTSA publication-title: IEEE Transactions on Cybernetics – volume: 34 start-page: 1513 issue: 2 year: 2019 ident: pone.0237994.ref018 article-title: False Data Injection Attacks Induced Sequential Outages in Power Systems publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2871345 – volume: 104 start-page: 169 issue: JAN. year: 2019 ident: pone.0237994.ref017 article-title: A two-layer game theoretical attack-defense model for a false data injection attack against power systems. International Journal of Electrical Power & publication-title: Energy Systems – volume: 84 start-page: 242 issue: oct. year: 2017 ident: pone.0237994.ref012 article-title: A Statistical Unsupervised Method Against False Data Injection Attacks: A Visualization-Based Approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.05.013 – volume: 52 start-page: 1 issue: 2 year: 2016 ident: pone.0237994.ref009 article-title: The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging publication-title: Investigative Radiology – volume: 35 start-page: 1 year: 2018 ident: pone.0237994.ref016 article-title: Designing three indicators to detect false data injection attacks on smart grid by dynamic state estimation publication-title: Journal of Intelligent and Fuzzy Systems – volume: 163 start-page: 510 issue: 4 year: 2017 ident: pone.0237994.ref007 article-title: Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts publication-title: Microbiology doi: 10.1099/mic.0.000449 – volume: 21 start-page: 863 issue: 5 year: 2016 ident: pone.0237994.ref011 article-title: Modeling very large array phase data by the Box-Jenkins method publication-title: Radio Science doi: 10.1029/RS021i005p00863 – volume: 11 start-page: 2351 issue: 9 year: 2017 ident: pone.0237994.ref005 article-title: Bad Area Detection and Whitening Transformation-based Identification in Three-Phase Distribution State Estimation publication-title: Iet Generation Transmission & Distribution doi: 10.1049/iet-gtd.2016.1866 – volume: 2019 start-page: 1 year: 2019 ident: pone.0237994.ref020 article-title: Multidevice False Data Injection Attack Models of ADS-B Multilateration Systems publication-title: Security and Communication Networks doi: 10.1155/2019/8936784 – volume: 31 start-page: 441 issue: 4 year: 2018 ident: pone.0237994.ref027 article-title: Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT publication-title: Journal of Digital Imaging doi: 10.1007/s10278-017-0033-z – volume: 12 start-page: 2209 issue: 11 year: 2019 ident: pone.0237994.ref014 article-title: A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation publication-title: Energies doi: 10.3390/en12112209 – reference: 40043008 - PLoS One. 2025 Mar 5;20(3):e0319594. doi: 10.1371/journal.pone.0319594. |
| SSID | ssj0053866 |
| Score | 2.3760872 |
| SecondaryResourceType | retracted_publication |
| Snippet | To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0237994 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks China Computer and Information Sciences Computer Security Computer Simulation Data processing Databases, Factual Datasets Deep learning Electric power Electric power grids Electric Power Supplies - statistics & numerical data Electricity distribution Embedding Engineering and Technology Feature extraction Humans Information management Injection Learning algorithms Machine Learning Methods Neural networks Neural Networks, Computer Nodes Physical Sciences Power grids Power Plants - statistics & numerical data Reconstruction Reduction Research and Analysis Methods Safety and security measures Signal detection (Electronics) Smart grid Smart grid technology Topology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GWjAICTjsNus4dnwsiKogARJQ1Ftkx_ay0jaJml2hHvjvzMTeqBGV2gPXeJIo8_JMZvwNIa-0zq2y2PPEPP664fOphrgfC46aGw57St_y__mLOD7hn07z00ujvrAnLMADB8YdWF-Zuc-1NBBccAPhjOG28swp6bgyHr1vWqhtMhV8MFixEPGgXCbnB1Eus7ap3Qx2KakUH21EPV7_4JUn7arprgo5_-2cvL2pW33xW69Wl7alo3vkbown6WH4jh1yy9X3yU602I6-ibDSbx-QP6ARFBtCqUVE_4DGATE4PUf0VpQP1bWlRttI5dYuXF7WFMJE2oYzBbTxtDsDxtHF-dLSPqMeUGhpnPtDz_omTUfjVIrFQ3Jy9OHH--NpHL4wrYRia6zIe-VTnJdgihyHTObW5SkIIHWOMZ-DLIQ0ReHB5KVjllXzLFfagnx4xk32iExqYPcuoUIXkLIzrPgKbr0yFbeKVamuZKaEsgnJtpIoq4hMjgMyVmVfbpOQoQRmlii_MsovIdPhrjYgc1xD_w6FPNAirnZ_AbStjNpWXqdtCXmOKlKGQ6qDdygPBThqBcEyvOZlT4HYGjU27yz0puvKj19_3oDo-7cR0etI5BtgR6XjgQn4JsTsGlHujSjBQ1Sj5V1U6C1XuhJCOgU7HQTTcOdWya9efjEs40OxIa92zSbQYPItVEIeB5sYOJthLZypIiFyZC0j1o9X6uWvHtpcQgJRqDQhs8GubiTcJ_9DuE_JHYZ_U7A9RO6RCZiO24eQc22e9d7lL7Fngrk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4DLxPha2ACDkIBDu9Zx4viA0IY2DSQKGgztFtmxXSp1Sda0Qhz433kvcQIRE-wav7Ty-3be8-8R8lypyEiDPU_M4acbPhkqyPux4Ki45hBT6pb_D9P45Iy_P4_ON8i0vQuDbZWtT6wdtSky_Ea-D2FIgnVCAvCmvBzi1CisrrYjNJQfrWBe1xBjN8gmQ2SsAdk8PJp-Om19M1h3HPsLdKGY7Ht5jcoityOIXkJK3gtQNY5_560H5aKorkpF_-6ovLnOS_Xju1os_ghXx7fJls8z6UGjGNtkw-Z3yLa35Iq-9HDTr-6Sn6ApFBtFqUGk_walA3JzukRUV5QbVbmhWhlPZVe2eTzPKaSPtGzuGtDC0eoCNJHOlnND65N2h05L_TwgelE3b1rqp1XM7pGz46Mvb0-GfijDMIslW2Gl3kk3xjkKOolw-GRkbDTWENWsZcxFXMtY6CRx4AqEZYZlkzCSykw05yHX4X0yyIHdO4TGKoGjPMNKcMyNkzrjRrJsrDIRyliagIStJNLMI5bj4IxFWpfhBJxcGmamKL_Uyy8gw-6tskHs-A_9IQq5o0W87fpBsZyl3nxT4zI9cZESGlJc2KGE3ZjMMSuF5VK7gDxBFUmby6ud10gPYnDgEpJo-JtnNQVibuTY1DNT66pK3338eg2iz6c9oheeyBXAjkz5ixSwJ8Ty6lHu9SjBc2S95R1U6JYrVfrbxuDNVsmvXn7aLeOPYqNebot1Q4OH8lgG5EFjEx1nQ6yRM5kERPSspcf6_ko-_1ZDngs4WCRyHJBRZ1fXEu7Df-9jl9xi-P0EG0LEHhmAUdhHkGSu9GPvOX4BZlZ_Ag priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESus4cfxYENNA2kBA0XiK7NguFV1aLa0QSPzv3MVutMAQ5TU-J_LZ9-Hc3e8IeaRUaqTBnCfm8NcNH8YK_H4MOCquOdiUJuX_8Cg7GPM3x-nxFnm2roU5G79PxPB54Gh_Ma9sH-yLkJJfINtZCp53j2yPj96NPvvAMYszNkhCddzfpnasTwPS36ri3mI2r8_zM_9Ml7y4qhbq-zc1m52xRftXyOF6FT4F5Wt_tdT98sdvAI-bLvMquRycUjryp2iHbNnqGtkJYl_TJwGb-ul18hOOFcWsUmqwLYCH9ABHnp4iBCxuMlWVoVqZQGWX1j-eVhR8TbrwhQl07mh9AseWTk6nhjbX8hbKlobmQfSkyfS0NLS2mNwg4_1XH18exKGDQ1xmki0xrO-kG2DTBZ2n2KkyNTYdaDCB1jLmUq5lJnSeO9AbwjLDymGSSmWGmvOE6-Qm6VXAkl1CM5XDvZ9h2DjjxkldciNZOVClSGQmTUSS9c4WZYA3xy4bs6KJ2Qm45nhmFsjjIvA4InE7a-HhPf5B_wIPTUuL4NzNA9jMIsh6YVyphy5VQoM_DCuUsBpTOmalsFxqF5H7eOQKX-naqphilIG2l-Bxw2ceNhQI0FFhBtBEreq6eP320wZEH953iB4HIjcHdpQqVF3AmhD4q0O516EENVN2hndRQNZcqQvwCyWYS_DIYeZaaM4fftAO40sxq6-y85WnwRt8JiNyy8tYy9kEA-pM5hERHenrsL47Uk2_NPjoAm4huRxEpN_K6Uabe_t_J9whlxj-fsF8ErFHeiAm9i74qEt9L6imXxQPkaI priority: 102 providerName: Unpaywall |
| Title | The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33027298 https://www.proquest.com/docview/2449153232 https://www.proquest.com/docview/2449261969 https://pubmed.ncbi.nlm.nih.gov/PMC7540890 https://doi.org/10.1371/journal.pone.0237994 https://doaj.org/article/dfcb1f5a7b0544b991b4dcf2e97e49bf http://dx.doi.org/10.1371/journal.pone.0237994 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6B3hBjK8FRjEICXho1ThOHD8g1E0rA2llGhSVp8iOnVKpS0vTCvbAf-cucSMiiraXPMTnRL4P353vfEfIS6VCIw3mPLEMj26431Fg92PAUXHNQaeUKf9nw-h0xD-Ow_EO2fRsdQgstrp22E9qtJx1f_24egcC_7bs2iD8zaTuYp7bLuggISXfJXugqyQ2czjjdVwBpLuMXqLV0olYL3CX6f73lYayKmv61zt3azGbF9vM0n-zK2-t84W6-qlms79U1-AuueNsTtqvmGSf7Nj8Htl3Ul3Q16709Jv75DdwDcWkUWqw6n9VsQPsdLrECq9IQ6pyQ7UyDsqubPV6mlMwJemiundA5xktLoEr6WQ5NbT0uutKtdT1BqKXZSKnpa5zxeQBGQ1OvhyfdlyDhk4aSbbCqH0msx72VNBxiI0oQ2PDngYNZy1jWci1jISO4wy2BWGZYakfhFIZX3MecB08JK0c0H1AaKRicOsZRoUjbjKpU24kS3sqFYGMpPFIsKFEkrrq5dhEY5aUITkBXkyFzATplzj6eaRTz1pU1TuugT9CItewWHu7fDFfThInyonJUu1noRIazF1YoYTVmDRjVgrLpc488gxZJKkustY7SNKPYDOXYFDDb16UEFh_I8cEn4laF0Xy4dPXGwB9vmgAvXJA2RzQkSp3qQLWhHW9GpCHDUjYRdLG8AEy9AYrRQJmnwRtCAY3zNww-fbh5_UwfhST9nI7X1cw6KBH0iOPKpmoMRtgvJzJ2COiIS0N1DdH8un3svy5ACcjlj2PdGu5uhFxH19LlyfkNsPjFMwPEYekBXJhn4LNudJtsivGAp7xsY_Pwfs22Ts6GZ5ftMtTnHa5zcC70fC8_-0PLoyIPA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCw213HidcHhMqj6tIHErTV3oIdO8tK2yRsdlX1wF_iNzKTOIGICnrpNZ4k8jy-GdvjGUKeKRUYaTDniSW4dcMHXQVxPx44Kq45-JQy5f_gMNw95h_HwXiF_KzvwmBaZY2JJVCbLMY98i1wQxKsEwKAN_n3LnaNwtPVuoVGpRZ79vwMlmzF69F7kO9zxnY-HL3b7bquAt04lGyBR82JTPrYCEAPA-yeGBgb9DXAsrWMJQHXMhR6OExAl4VlhsUDP5DKDDTnPtc-fPcauc59wBKwHzFuFniAHWHoruf5YrDltKGXZ6ntgW8UUvKW-yu7BDS-oJPPsuKiQPfvfM3VZZqr8zM1m_3hDHdukZsuiqXbldqtkRWb3iZrDicK-tIVs351h_wAPaSYhkoN9hGoaoBA5E_nWDMWtYKq1FCtjKOyC1s9nqYUglOaVzcZaJbQ4hT0nE7mU0PLdXxT-5a6bkP0tEwNtdT1wpjcJcdXIpx7pJMCu9cJDdXQaoArwSDqMonUMTeSxX0VC1-G0njEryURxa4eOrblmEXlIZ-AdVHFzAjlFzn5eaTbvJVX9UD-Q_8WhdzQYjXv8kE2n0QOHCKTxHqQBEpoCKBhhhJmY-KEWSkslzrxyCaqSFRdjW0wKdoOwT1ICNHhN09LCqzokWLK0EQtiyIafTq5BNGXzy2iF44oyYAdsXLXNGBOWCmsRbnRogRcilvD66jQNVeK6LcFw5u1kl88_KQZxo9iGmBqs2VFg0v-UHrkfmUTDWd9PIFncugR0bKWFuvbI-n0W1lQXcCyZSj7Huk1dnUp4T749zw2yeru0cF-tD863HtIbjDcqcHUE7FBOmAg9hGEswv9uMQQSr5eNWj9Au2cs38 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCwL-fh-IBQoaxaCgUBRXsLdmwvK22TsNlV1QN_jF_HTOINRFTQS6_xJJE9M9_M2OMZQh5JGWqhMeeJWdy6CYZdCX4_HjjKQAVgU6qU_3cH0e5h8GYcjtfIz9VdGEyrXGFiBdQ6T3GPvA9mSIB2ggPQty4t4sPO6EXxvYsdpPCkddVOoxaRfXNyDOFb-XxvB3j9mLHR68-vdruuw0A3jQRb4LGzFXaATQFUHGInxVCbcKAAoo1hzIaBEhFXcWxBrrlhmqVDPxRSD1UQ-IHy4bsXyEXu-wLTCfm4CfYAR6LIXdXz-bDvJKNX5JnpgZ3kQgQtU1h1DGjsQqeY5eVpTu_fuZuXl1khT47lbPaHYRxdI1edR0u3axFcJ2smu07WHWaU9KkrbP3sBvkBMkkxJZVq7ClQ1wOBKIDOsX4sSgiVmaZKakdlFqZ-PM0oOKq0qG810NzS8ghknk7mU02rmL6pg0td5yF6VKWJGur6YkxuksNzYc4t0slguTcIjWRsFEAXZ-CBaStUGmjB0oFMuS8ioT3irziRpK42OrbomCXVgR-HGKlezAT5lzj-eaTbvFXUtUH-Q_8SmdzQYmXv6kE-nyQOKBJtUzW0oeQKnGmYoYDZ6NQyI7gJhLIe2UIRSeprsg0-JdsRmAoB7jr85mFFgdU9MtSTiVyWZbL3_ssZiD59bBE9cUQ2h-VIpbuyAXPCqmEtys0WJWBU2hreQIFerUqZ_NZmeHMl5KcPP2iG8aOYEpiZfFnTYPgfCY_crnWiWVkfT-OZiD3CW9rSWvr2SDb9VhVX5xDCxGLgkV6jV2di7p1_z2OLXAK4St7uHezfJVcYbtpgFgrfJB3QD3MPPNuFul9BCCVfzxuzfgGfGrfC |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESus4cfxYENNA2kBA0XiK7NguFV1aLa0QSPzv3MVutMAQ5TU-J_LZ9-Hc3e8IeaRUaqTBnCfm8NcNH8YK_H4MOCquOdiUJuX_8Cg7GPM3x-nxFnm2roU5G79PxPB54Gh_Ma9sH-yLkJJfINtZCp53j2yPj96NPvvAMYszNkhCddzfpnasTwPS36ri3mI2r8_zM_9Ml7y4qhbq-zc1m52xRftXyOF6FT4F5Wt_tdT98sdvAI-bLvMquRycUjryp2iHbNnqGtkJYl_TJwGb-ul18hOOFcWsUmqwLYCH9ABHnp4iBCxuMlWVoVqZQGWX1j-eVhR8TbrwhQl07mh9AseWTk6nhjbX8hbKlobmQfSkyfS0NLS2mNwg4_1XH18exKGDQ1xmki0xrO-kG2DTBZ2n2KkyNTYdaDCB1jLmUq5lJnSeO9AbwjLDymGSSmWGmvOE6-Qm6VXAkl1CM5XDvZ9h2DjjxkldciNZOVClSGQmTUSS9c4WZYA3xy4bs6KJ2Qm45nhmFsjjIvA4InE7a-HhPf5B_wIPTUuL4NzNA9jMIsh6YVyphy5VQoM_DCuUsBpTOmalsFxqF5H7eOQKX-naqphilIG2l-Bxw2ceNhQI0FFhBtBEreq6eP320wZEH953iB4HIjcHdpQqVF3AmhD4q0O516EENVN2hndRQNZcqQvwCyWYS_DIYeZaaM4fftAO40sxq6-y85WnwRt8JiNyy8tYy9kEA-pM5hERHenrsL47Uk2_NPjoAm4huRxEpN_K6Uabe_t_J9whlxj-fsF8ErFHeiAm9i74qEt9L6imXxQPkaI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+data+dimensionality+reduction+and+bad+data+detection+in+the+process+of+smart+grid+reconstruction+through+machine+learning&rft.jtitle=PloS+one&rft.au=Lv%2C+Zhihan&rft.au=Liu%2C+Xiaomin&rft.au=Yu%2C+Bo&rft.au=Wang%2C+Zheng&rft.date=2020-10-07&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=10&rft.spage=e0237994&rft_id=info:doi/10.1371%2Fjournal.pone.0237994&rft.externalDBID=n%2Fa&rft.externalDocID=A637699234 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |