Innovative machine learning approach and evaluation campaign for predicting the subjective feeling of work-life balance among employees

At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for individuals, cities and whole nations alike. For example, it has been speculated that the so-called machine learning could soon relieve employees...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 5; p. e0232771
Main Authors Pawlicka, Aleksandra, Pawlicki, Marek, Tomaszewska, Renata, Choraś, Michał, Gerlach, Ryszard
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 15.05.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0232771

Cover

Abstract At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for individuals, cities and whole nations alike. For example, it has been speculated that the so-called machine learning could soon relieve employees of part of the duties, which may improve processes or help to find the most effective ways of performing tasks. Consequently, in the long run, it would help to enhance employees' work-life balance. Thus, workers' overall quality of life would improve, too. However, what would happen if machine learning as such were employed to try and find the ways of achieving work-life balance? This is why the authors of the paper decided to utilize a machine learning tool to search for the factors that influence the subjective feeling of one's work-life balance. The possible results could help to predict and prevent the occurrence of work-life imbalance in the future. In order to do so, the data provided by an exceptionally sizeable group of 800 employees was utilised; it was one of the largest sample groups in similar studies in Poland so far. Additionally, this was one of the first studies where so many employees had been analysed using an artificial neural network. In order to enable replicability of the study, the specific setup of the study and the description of the dataset are provided. Having analysed the data and having conducted several experiments, the correlations between some factors and work-life balance have indeed been identified: it has been found that the most significant was the relation between the feeling of balance and the actual working hours; shifting it resulted in the tool predicting the switch from balance to imbalance, and vice versa. Other factors that proved significant for the predicted WLB are the amount of free time a week the employee has for themselves, working at weekends only, being self-employed and the subjective assessment of one's financial status. In the study the dataset gets balanced, the most important features are selected with the selectKbest algorithm, an artificial neural network of 2 hidden layers with 50 and 25 neurons, ReLU and ADAM is constructed and trained on 90% of the dataset. In tests, it predicts WLB based on the prepared dataset and selected features with 81% accuracy.
AbstractList At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for individuals, cities and whole nations alike. For example, it has been speculated that the so-called machine learning could soon relieve employees of part of the duties, which may improve processes or help to find the most effective ways of performing tasks. Consequently, in the long run, it would help to enhance employees' work-life balance. Thus, workers' overall quality of life would improve, too. However, what would happen if machine learning as such were employed to try and find the ways of achieving work-life balance? This is why the authors of the paper decided to utilize a machine learning tool to search for the factors that influence the subjective feeling of one's work-life balance. The possible results could help to predict and prevent the occurrence of work-life imbalance in the future. In order to do so, the data provided by an exceptionally sizeable group of 800 employees was utilised; it was one of the largest sample groups in similar studies in Poland so far. Additionally, this was one of the first studies where so many employees had been analysed using an artificial neural network. In order to enable replicability of the study, the specific setup of the study and the description of the dataset are provided. Having analysed the data and having conducted several experiments, the correlations between some factors and work-life balance have indeed been identified: it has been found that the most significant was the relation between the feeling of balance and the actual working hours; shifting it resulted in the tool predicting the switch from balance to imbalance, and vice versa. Other factors that proved significant for the predicted WLB are the amount of free time a week the employee has for themselves, working at weekends only, being self-employed and the subjective assessment of one's financial status. In the study the dataset gets balanced, the most important features are selected with the selectKbest algorithm, an artificial neural network of 2 hidden layers with 50 and 25 neurons, ReLU and ADAM is constructed and trained on 90% of the dataset. In tests, it predicts WLB based on the prepared dataset and selected features with 81% accuracy.
At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for individuals, cities and whole nations alike. For example, it has been speculated that the so-called machine learning could soon relieve employees of part of the duties, which may improve processes or help to find the most effective ways of performing tasks. Consequently, in the long run, it would help to enhance employees' work-life balance. Thus, workers' overall quality of life would improve, too. However, what would happen if machine learning as such were employed to try and find the ways of achieving work-life balance? This is why the authors of the paper decided to utilize a machine learning tool to search for the factors that influence the subjective feeling of one's work-life balance. The possible results could help to predict and prevent the occurrence of work-life imbalance in the future. In order to do so, the data provided by an exceptionally sizeable group of 800 employees was utilised; it was one of the largest sample groups in similar studies in Poland so far. Additionally, this was one of the first studies where so many employees had been analysed using an artificial neural network. In order to enable replicability of the study, the specific setup of the study and the description of the dataset are provided. Having analysed the data and having conducted several experiments, the correlations between some factors and work-life balance have indeed been identified: it has been found that the most significant was the relation between the feeling of balance and the actual working hours; shifting it resulted in the tool predicting the switch from balance to imbalance, and vice versa. Other factors that proved significant for the predicted WLB are the amount of free time a week the employee has for themselves, working at weekends only, being self-employed and the subjective assessment of one's financial status. In the study the dataset gets balanced, the most important features are selected with the selectKbest algorithm, an artificial neural network of 2 hidden layers with 50 and 25 neurons, ReLU and ADAM is constructed and trained on 90% of the dataset. In tests, it predicts WLB based on the prepared dataset and selected features with 81% accuracy.At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for individuals, cities and whole nations alike. For example, it has been speculated that the so-called machine learning could soon relieve employees of part of the duties, which may improve processes or help to find the most effective ways of performing tasks. Consequently, in the long run, it would help to enhance employees' work-life balance. Thus, workers' overall quality of life would improve, too. However, what would happen if machine learning as such were employed to try and find the ways of achieving work-life balance? This is why the authors of the paper decided to utilize a machine learning tool to search for the factors that influence the subjective feeling of one's work-life balance. The possible results could help to predict and prevent the occurrence of work-life imbalance in the future. In order to do so, the data provided by an exceptionally sizeable group of 800 employees was utilised; it was one of the largest sample groups in similar studies in Poland so far. Additionally, this was one of the first studies where so many employees had been analysed using an artificial neural network. In order to enable replicability of the study, the specific setup of the study and the description of the dataset are provided. Having analysed the data and having conducted several experiments, the correlations between some factors and work-life balance have indeed been identified: it has been found that the most significant was the relation between the feeling of balance and the actual working hours; shifting it resulted in the tool predicting the switch from balance to imbalance, and vice versa. Other factors that proved significant for the predicted WLB are the amount of free time a week the employee has for themselves, working at weekends only, being self-employed and the subjective assessment of one's financial status. In the study the dataset gets balanced, the most important features are selected with the selectKbest algorithm, an artificial neural network of 2 hidden layers with 50 and 25 neurons, ReLU and ADAM is constructed and trained on 90% of the dataset. In tests, it predicts WLB based on the prepared dataset and selected features with 81% accuracy.
Audience Academic
Author Pawlicka, Aleksandra
Tomaszewska, Renata
Choraś, Michał
Pawlicki, Marek
Gerlach, Ryszard
AuthorAffiliation 1 ITTI, Bydgoszcz, Poland
5 Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
4 UTP University of Science and Technology, Bydgoszcz, Poland
2 UTP University of Science and Technology, Bydgoszcz, Poland
Universitat de Valencia, SPAIN
3 Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
AuthorAffiliation_xml – name: Universitat de Valencia, SPAIN
– name: 1 ITTI, Bydgoszcz, Poland
– name: 2 UTP University of Science and Technology, Bydgoszcz, Poland
– name: 3 Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
– name: 4 UTP University of Science and Technology, Bydgoszcz, Poland
– name: 5 Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
Author_xml – sequence: 1
  givenname: Aleksandra
  orcidid: 0000-0003-4380-014X
  surname: Pawlicka
  fullname: Pawlicka, Aleksandra
– sequence: 2
  givenname: Marek
  surname: Pawlicki
  fullname: Pawlicki, Marek
– sequence: 3
  givenname: Renata
  surname: Tomaszewska
  fullname: Tomaszewska, Renata
– sequence: 4
  givenname: Michał
  surname: Choraś
  fullname: Choraś, Michał
– sequence: 5
  givenname: Ryszard
  surname: Gerlach
  fullname: Gerlach, Ryszard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32413040$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tr2zAUx83oWC_bNxibYTC2h2S6xJa9h0EpuwQKhd1exbF8nCiTJU-y0_UT7GtPTtLSlMKKHmT--p2_zsU6Tg6ss5gkzymZUi7ou5UbvAUz7aI8JYwzIeij5IiWnE1yRvjBre_D5DiEFSEZL_L8SXLI2YxyMiNHyd-5tW4NvV5j2oJaaoupQfBW20UKXeddFFOwdYprMEMEnU0VtB3ohU0b59POY61VP_L9EtMwVCtUG78G0Yyya9JL539NjG4wrcCAVZhC6-IRtp1xV4jhafK4ARPw2W4_SX58-vj97Mvk_OLz_Oz0fKLykvWTQimacyw4IaJRVVGVrERGRZNVLCdQ5GOJNYiyBDargBeKZnVB61LlWVZw5CfJy61vvDfIXQ-DZDPCOWExOhLzLVE7WMnO6xb8lXSg5UZwfiHB91oZlLxROSWqxpqSWc3qimeNEkhZI4pCCBK9sq3XYDu4ugRjbgwpkeMYr1OQ4xjlbowx7sMuy6FqsVZoew9mL5n9E6uXcuHWUjBWUCqiwZudgXe_Bwy9bHVQaGLv0Q2beuMShLGIvrqD3t-VHbWAWLi2jYv3qtFUnuaMl0XG8yxS03uouGpstYoVNjrqewFv9wIi0-OffgFDCHL-7evD2Yuf--zrW-wSwfTL4Mww_r5hH3xxu9M3Lb5-IRF4vwWUdyF4bKTS_eYZxNK0-d8cZ3eCHzT-f29OOkE
CitedBy_id crossref_primary_10_3390_electronics13244994
crossref_primary_10_3389_fpsyg_2025_1494288
crossref_primary_10_1108_TG_05_2022_0073
crossref_primary_10_1371_journal_pone_0276201
crossref_primary_10_17798_bitlisfen_1196174
crossref_primary_10_1109_MIC_2023_3335614
crossref_primary_10_3390_electronics13224489
crossref_primary_10_1109_EMR_2022_3152520
crossref_primary_10_3390_app14209404
crossref_primary_10_3389_fpsyg_2024_1432541
crossref_primary_10_1016_j_heliyon_2024_e24148
crossref_primary_10_55529_jls_32_13_22
Cites_doi 10.5172/jmo.837.14.3.323
10.1016/S0001-8791(02)00042-8
10.1177/0018726700536001
10.30845/jesp.v6n2p6
10.1080/09585190601167441
10.1017/9781108235556.039
10.1504/IJHD.2015.067598
10.4324/9780203451519
10.2307/j.ctv1chs29w.14
10.9790/487X-1433135
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Pawlicka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Pawlicka et al 2020 Pawlicka et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Pawlicka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Pawlicka et al 2020 Pawlicka et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0232771
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




PubMed
Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Machine learning and employees' work-life balance
EISSN 1932-6203
ExternalDocumentID 2403302053
oai_doaj_org_article_3fc610cded104d2db35fc7e12f788770
10.1371/journal.pone.0232771
PMC7228117
A623985365
32413040
10_1371_journal_pone_0232771
Genre Journal Article
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-8cc163e83007fcb8b929e217f5b260a860538da799a24ba38c15d81d9c65583e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:35 EST 2021
Fri Oct 03 12:53:40 EDT 2025
Sun Oct 26 03:08:52 EDT 2025
Tue Sep 30 16:52:54 EDT 2025
Fri Sep 05 09:08:39 EDT 2025
Tue Oct 07 08:04:14 EDT 2025
Mon Oct 20 21:50:05 EDT 2025
Mon Oct 20 16:33:24 EDT 2025
Thu Oct 16 15:04:01 EDT 2025
Thu Oct 16 13:59:29 EDT 2025
Thu May 22 21:21:47 EDT 2025
Wed Feb 19 02:30:28 EST 2025
Thu Apr 24 23:03:35 EDT 2025
Wed Oct 01 03:02:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-8cc163e83007fcb8b929e217f5b260a860538da799a24ba38c15d81d9c65583e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: This affiliation does not alter our adherence to all PLOS ONE policies on sharing data and materials and we have no conflicts of interest to disclose.
ORCID 0000-0003-4380-014X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232771&type=printable
PMID 32413040
PQID 2403302053
PQPubID 1436336
PageCount e0232771
ParticipantIDs plos_journals_2403302053
doaj_primary_oai_doaj_org_article_3fc610cded104d2db35fc7e12f788770
unpaywall_primary_10_1371_journal_pone_0232771
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228117
proquest_miscellaneous_2404047022
proquest_journals_2403302053
gale_infotracmisc_A623985365
gale_infotracacademiconefile_A623985365
gale_incontextgauss_ISR_A623985365
gale_incontextgauss_IOV_A623985365
gale_healthsolutions_A623985365
pubmed_primary_32413040
crossref_citationtrail_10_1371_journal_pone_0232771
crossref_primary_10_1371_journal_pone_0232771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Tomaszewska (pone.0232771.ref005) 2019; 6
JR Kofodimos (pone.0232771.ref016) 1993
J Wilkins (pone.0232771.ref001) 2018
H Kukreja (pone.0232771.ref019) 2016; 1
JH Greenhaus (pone.0232771.ref011) 2003; 63
HR Ramos (pone.0232771.ref018) 2015; 2
GH Greenhaus (pone.0232771.ref013) 2010
M Pawlicki (pone.0232771.ref021) 2019
J Ruževičius (pone.0232771.ref003) 2017; 18
LT Eby (pone.0232771.ref014) 2005; 66
SR Marks (pone.0232771.ref017) 1996
pone.0232771.ref008
SP Meenaksh (pone.0232771.ref007) 2013; 14
K Gurney (pone.0232771.ref020) 1997
R Tomaszewska-Lipiec (pone.0232771.ref025) 2018
AV Devadoss (pone.0232771.ref022) 2014; 5
pone.0232771.ref002
pone.0232771.ref026
S Fleetwood (pone.0232771.ref015) 2007; 18
S Lewis (pone.0232771.ref004) 2018
T Kalliath (pone.0232771.ref006) 2008; 14
Clark Sue Campbell (pone.0232771.ref010) 2000; 53
C Kirchmeyer (pone.0232771.ref012) 2000
D Clutterbuck (pone.0232771.ref009) 2003
V Anand (pone.0232771.ref024) 2016
A Preetha (pone.0232771.ref023) 2015; 18
References_xml – volume-title: Managing Work-life Balance: A Guide for HR in Achieving Organisational and Individual Change
  year: 2003
  ident: pone.0232771.ref009
– volume: 14
  start-page: 323
  year: 2008
  ident: pone.0232771.ref006
  article-title: Work–life balance: A review of themeaning of the balance construct
  publication-title: J Manag Organ
  doi: 10.5172/jmo.837.14.3.323
– ident: pone.0232771.ref008
– year: 1996
  ident: pone.0232771.ref017
  article-title: Multiple Roles and the Self: A Theory of Role Balance
  publication-title: J Marriage Fam
– volume: 63
  start-page: 510
  year: 2003
  ident: pone.0232771.ref011
  article-title: The relation between work-family balance andquality of life
  publication-title: J Vocat Behav
  doi: 10.1016/S0001-8791(02)00042-8
– year: 2018
  ident: pone.0232771.ref001
  article-title: How Industry 4.0 Is Improving Peoples’ Work-Life Balance
  publication-title: IMPO
– volume: 53
  start-page: 747
  year: 2000
  ident: pone.0232771.ref010
  article-title: Work/family border theory: A new theory of work/family balance
  publication-title: Hum Relations
  doi: 10.1177/0018726700536001
– volume: 18
  start-page: 77
  year: 2017
  ident: pone.0232771.ref003
  article-title: Quality of Life and Quality of Work Life Balance: Case Study of Public and Private Sectors of Lithuania
  publication-title: Qual—Access to Success
– volume: 6
  start-page: 42
  year: 2019
  ident: pone.0232771.ref005
  article-title: Work and Life. Balance or Conflict? Theoretical Context vs. Research Results
  publication-title: J Educ Soc Policy
  doi: 10.30845/jesp.v6n2p6
– start-page: 130
  volume-title: Progress in Computer Recognition Systems
  year: 2019
  ident: pone.0232771.ref021
– volume-title: Balancing act
  year: 1993
  ident: pone.0232771.ref016
– volume: 18
  start-page: 387
  year: 2007
  ident: pone.0232771.ref015
  article-title: Why work–life balance now?
  publication-title: Int J Hum Resour Manag
  doi: 10.1080/09585190601167441
– volume: 5
  year: 2014
  ident: pone.0232771.ref022
  article-title: Analyzing the causes of Work Life Imbalance in Working Environment using Induced Fuzzy Cognitive Maps (IFCM)
  publication-title: Int J Sci Eng Res
– volume: 18
  year: 2015
  ident: pone.0232771.ref023
  publication-title: International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
– start-page: 79
  volume-title: Trends inOrganisational Behavior
  year: 2000
  ident: pone.0232771.ref012
– volume: 66
  year: 2005
  ident: pone.0232771.ref014
  article-title: Work and family research in IO/OB: Content analysis and review of the literature (1980–2002)
  publication-title: J Vocat Behav
– volume-title: Dysonans czy synergia?
  year: 2018
  ident: pone.0232771.ref025
– ident: pone.0232771.ref026
– start-page: 720
  volume-title: he Cambridge handbook of the global work-family interface
  year: 2018
  ident: pone.0232771.ref004
  doi: 10.1017/9781108235556.039
– ident: pone.0232771.ref002
– volume: 2
  year: 2015
  ident: pone.0232771.ref018
  article-title: Work life balance and quality of life among employees in Malaysia
  publication-title: Int J Happiness Dev
  doi: 10.1504/IJHD.2015.067598
– volume-title: An introduction to neural networks
  year: 1997
  ident: pone.0232771.ref020
  doi: 10.4324/9780203451519
– start-page: 165
  volume-title: Handbook of occupational health psychology
  year: 2010
  ident: pone.0232771.ref013
  doi: 10.2307/j.ctv1chs29w.14
– volume: 1
  start-page: 27
  year: 2016
  ident: pone.0232771.ref019
  article-title: An Introduction To Artificial Neural Network
  publication-title: Int J Adv Res Innov Ideas Educ
– year: 2016
  ident: pone.0232771.ref024
  article-title: Employee Work-Life Balance–A Study with Special Reference to Rural Employees
  publication-title: Indian J Sci Technol
– volume: 14
  start-page: 31
  year: 2013
  ident: pone.0232771.ref007
  article-title: The Importance of Work-Life-Balance
  publication-title: IOSR J Bus Manag
  doi: 10.9790/487X-1433135
SSID ssj0053866
Score 2.4146073
Snippet At present, many researchers see hope that artificial intelligence, machine learning in particular, will improve several aspects of the everyday life for...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0232771
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Biology and Life Sciences
Cities and towns
Computer and Information Sciences
Datasets
Finance
Health aspects
Learning algorithms
Machine learning
Medicine and Health Sciences
Neural networks
Neurons
Occupational safety and health
Physical Sciences
Quality of life
Research and Analysis Methods
Researchers
Social science research
Social Sciences
Studies
Subjective assessment
Technology application
Time
Work-life balance
Workers
Working hours
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GWjAICThku4njPI4FUbVIgAQU9Rb5uV0UkqjZFPEL-NvMON7QiErtAeUWjyN5ZjyeiWe-IeSF0lGkOeOhFvjrhlkZFhKMoY4WZiEYi0yM9c4fPqaHx8n7E35yodUX5oQN8MAD4_aYVXDCK21gdqJjLRm3KjNRbDEPLnPR-iIvNsHUYINhF6epL5RjWbTn5TJvm9rM4ZSKsyyaHEQOr3-0yrO2arrLXM5_Mydv9nUrfv0UVXXhWDq4Q257f5LuD-vYIjdMfZds-R3b0VceVvr1PfL7yDdAPTf0h0uhNNT3jFjSDbQ4FbWmfxHAqUI8xtWypuDb0vYMb3UwT5qC20i7Xn4fzCW1xpW108ZSTPQKq5U1VGLWpDLU9TOixrcW7u6T44N3X98ehr4NQ6jSIl6HuVLgtJmcgTthlcwleFQGIhnLJQRDIk-R3VpkRSHiRAqWq4hrcIMLlXKeM8MekFkNjN8mdJGaVPAYjH0SJSrSuSosZ6mAI1FJU4iAsI1MSuUxyrFVRlW6i7cMYpWBrSVKsvSSDEg4zmoHjI4r6N-guEdaRNh2L0DvSq935VV6F5CnqCzlUK462olyP0VERVgUD8hzR4EoGzWm8SxF33Xl0adv1yD68nlC9NIT2QbYoYQvnYA1IXrXhHJnQgm2Qk2Gt1G1N1zpSkRjZBAxcAYzN-p--fCzcRg_iql5tWl6RwNPBr5gQB4Ou2PkLHO3tgkwK5vsmwnrpyP16tSBnGdxjDXQAZmPO-xawn30P4T7mNyK8b8KovTyHTJbn_VmF5zPtXzi7Mwf31eF5Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQ7SaO8zgg1KJWLRILKhT1FvmVZdGShM0uiF_A32bGcVIiKqj2Fk9Wyoxn_Nme-YaQp0oHgeaM-1rg0Q0rpJ9JCIY6mJiJYCwwIdY7v53GR6fRmzN-tkGmXS0MplV2MdEGal0pPCPfRd44BtiGs1f1Nx-7RuHtatdCQ7jWCvqlpRi7QjZDZMYakc39g-n7ky42g3fHsSugY0mw6-w1rqvSjGH1CpMkGCxQlse_j9ajelE1F0HRvzMqr67LWvz8IRaLP5arwxvkusOZdK-dGFtkw5Q3yZbz5IY-d3TTL26RX8euMep3Q7_a1EpDXS-JGe0ox6koNT1nBqcKeRrns5IC5qX1Em97MH-aApykzVp-acMoLYwtd6dVQTEBzF_MC0MlZlMqQ22fI2pcy-HmNjk9PPj4-sh37Rl8FWfhyk-VAjBnUgYwo1AylYC0DOxwCi5hkyTSGNWtRZJlIoykYKkKuAZ4nKmY85QZdoeMSlD8NqGT2MSCh7AIREGkAp2qrOAsFrBUKmky4RHW2SRXjrscW2gscnshl8AeplVrjpbMnSU94vdv1S13x3_k99HcvSwyb9sH1XKWO0fOWaEAcSptYDZHOtSS8UIlJggLzMtMJh55hJMlb8tY-_iR78XItAgfxT3yxEog-0aJ6T0zsW6a_Pjdp0sIfTgZCD1zQkUF6lDClVTANyGr10ByZyAJMUQNhrdxandaafJzb4M3u-l-8fDjfhj_FFP2SlOtrQz8EsCIHrnbekevWWZvcyNQVjLwm4HqhyPl_LMlP0_CEGujPTLuPexSxr337--4T66FeJKCvLx8h4xWy7V5AHBzJR-6GPIbBMSDTA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaYIBBiI-HZI1d5-OxIKYNiYGAou0BRbbjlEJJq6UBwQOv_NvcOU4gMMR4QH2p6rNVn-3zne_ud4Tc0XkY5oILP5f4dMML5acKhGEeDs1Qch4ahvnOT_ej3cnoyYE4WCNv2lwYx0GwEeeLynry8cuiNNuOk9uIV9R4T4OQx2HbI1gCUQA3EIvj8K5FHMKXsRUmIJ0i65EAVX1A1if7z8eHjaeZ-REbcpdO96eReteVRfXvZPcA_9lxiunv8ZWn63IpP3-S8_lPl9fOOfK1nXYTs_I-qFcq0F9-QYT8b3w5T846tZeOm1E2yJopL5ANJ1gqet-hXz-4SL7tuTqtHw39YCM9DXWlLaa0RUCnsszpD6ByqhE2cjYtKajgdHmEzicM56ag3dKqVu8aqU4LY7Pv6aKgGI_mz2eFoQqDO7WhtuwSNa4CcnWJTHYev3q067tqEb6OUrbyE61BtzQJB62n0CpRoPgZMLgKocBmkwnYbTzJZZymko2U5IkORQ7aeqojIRJu-GUyKIFXm4QOIxNJweBOGoUjHeaJTgvBIwk3t1YmlR7h7abItINSx4oe88z6B2MwqRq2Zsj8zDHfI37Xa9lAifyF_iHut44WgcDtD7D6mVv1jBcaFGCdGzhco5zliotCxyZkBYaJxkOP3MTdmjVZtZ04y8YRAj_CpIRHblsKBAMpMdpoKuuqyvaevT4B0csXPaJ7jqhYADu0dBkeMCfcnD3KrR4liDTda97E3d1ypcoQNJKDYSM49GzP2_HNt7pmHBQjCEuzqC0NfGJQWT1ypTmeHWe5dS6PgFlx7-D2WN9vKWdvLRZ7zBimansk6I74iRb36r92uEbOMHzqQeBgsUUGq6PaXAd9eKVuOKn2HTYDvKI
  priority: 102
  providerName: Unpaywall
Title Innovative machine learning approach and evaluation campaign for predicting the subjective feeling of work-life balance among employees
URI https://www.ncbi.nlm.nih.gov/pubmed/32413040
https://www.proquest.com/docview/2403302053
https://www.proquest.com/docview/2404047022
https://pubmed.ncbi.nlm.nih.gov/PMC7228117
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232771&type=printable
https://doaj.org/article/3fc610cded104d2db35fc7e12f788770
http://dx.doi.org/10.1371/journal.pone.0232771
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wCgGIQEPqZo4zscDQt20siGtTIOi8RQ5jlOKQlKaFthfwL_NneMEIoo2RcpDfImUO9-H7bvfEfJMpo6TcsbtVODWDcsSO0rAGKbOUA0FY45ysd75ZOIfTb235_x8izQ9Ww0Dq41LO-wnNV3mg5_fLl6Dwr_SXRsCp3lpsCgLNQAf5AZYVL4NvirCZg4nXnuuANqtTy8xarF9d8hMMd3_vtJxVhrTv7XcvUVeVpvC0n-zK6-vi4W4-CHy_C_XNb5FbpqYk47qSbJDtlRxm-wYra7oCwM9_fIO-XVsmqR-V_SrTrNU1PSVmNEGfpyKIqV_UMKpRMzG-aygEP_SxRJPfjCXmkJoSat18qU2qTRTuvSdlhnFZDA7n2eKJphZKRXVPY-oMu2Hq7tkOj78cHBkm1YNtvQjd2WHUkJgp0IGIUcmkzCBqEvBaifjCSyYROgj61MRRJFwvUSwUDo8hVA5kj7nIVPsHukVwPhdQoe-8gV3wSF4jiedNJRRxpkvwG3KREXCIqyRSSwNjjm208hjfTgXwHqmZmuMkoyNJC1it28tahyPS-j3UdwtLaJw6wflchYbpY5ZJiH6lKmCme2lbpownslAOW6GOZrB0CKPcbLEdUlra0vikY-oi_BT3CJPNQUicRSY6jMT66qKj999vALR-7MO0XNDlJXADilMeQX8EyJ8dSj3OpRgT2RneBendsOVKkbERgarCs7gzWa6bx5-0g7jRzF9r1DlWtPAFUC8aJH7tXa0nGX6ZNcDZgUdvemwvjtSzD9rIPTAdbFO2iKDVsOuJNwHl8rlIbnh4sYKwvTyPdJbLdfqEUSfq6RPrgXnAdzDAwfv4zd9sr1_ODk96-v9nL42OPBsOjkdffoNpF6Mkg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UKhBIOCQ7SaO8zggVB7VLn0gQVvtLTi2syxakrDZpeov4N_wG5lJnJSICnqp9rYeR8qMPfPFnvmGkCdSOY7ijNtK4NENSxM7SsAZKmegB4IxR7tY77x_4A-PvPdjPl4hv5paGEyrbHxi5ahVLvGMfAt54xhgG85eFd9t7BqFt6tNC416Wezq0xP4ZCtfjt6CfZ-67s67wzdD23QVsKUfuQs7lBIwiA4ZRMdUJmECAEEDME95AthehIDvWahEEEXC9RLBQulwBagukj7nIdMMnnuFXPVgPnZMCMbtBx7M831TnscCZ8ushn6RZ7oPsdENAqcT_qouAW0s6BWzvDwP6P6dr7m6zApxeiJmsz-C4c4Nct2gWLpdL7s1sqKzm2TN-ImSPjdk1i9ukZ8j03b1h6bfqsRNTU2nigltCM2pyBQ94x2nElkgp5OMAqKmxRzvkjA7mwJYpeUy-Vo7aZrqqpie5inF9DJ7Nk01TTBXU2padVGi2jQ0Lm-To0sx0x3Sy0Dx64QOfO0L7kKI8RxPOiqUUcqZLyAQy0RHwiKssUksDTM6NuiYxdV1XwBfSLVaY7RkbCxpEbudVdTMIP-Rf43mbmWR17v6I59PYuMmYpZKwLNSadgrnnJVwngqA-24KWZ9BgOLbOJiiesi2dY7xds-8jjCS3GLPK4kkNsjw-ShiViWZTz6cHwBoU8fO0LPjFCagzqkMAUb8E7IGdaR3OhIgoeSneF1XNqNVsr4bC_DzGa5nz_8qB3Gh2JCYKbzZSUDvwAQqEXu1ruj1Syr7oo9UFbQ2Tcd1XdHsumXilo9cF2svLZIv91hFzLuvX-_xyZZHR7u78V7o4Pd--Sai2c2yADMN0hvMV_qBwBsF8nDyptQ8vmy3ddvU5m4aQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkYAXxPi3wGAGgYCHtE0c588DQoNRrQwGAob6FhzHKUUlCU3LtE_Ad-LTcec4GRET7GXqW32J5Dv77uf47neEPJCp46SccTsV-OmGZYkdJeAMU2eohoIxR7lY7_xm39898F5N-GSN_GpqYTCtsvGJ2lGnhcRv5APkjWOAbTgbZCYt4t3O6Fn53cYOUnjT2rTTqJfInjo6hONb9XS8A7Z-6Lqjlx9f7Nqmw4At_chd2qGUgEdUyCBSZjIJEwALCkB6xhPA-SIErM_CVARRJFwvESyUDk8B4UXS5zxkisF7z5HzAWMRphMGk_awB8_5vinVY4EzMCujXxa56kOcdIPA6YRC3TGgjQu9cl5UJ4Hev3M3L67yUhwdivn8j8A4ukIuG0RLt-sluE7WVH6VrBufUdHHhtj6yTXyc2xasP5Q9JtO4lTUdK2Y0obcnIo8pccc5FQiI-RsmlNA17Rc4L0SZmpTAK60WiVfa4dNM6UL62mRUUw1s-ezTNEE8zalorqjElWmuXF1nRyciZlukF4Oit8gdOgrX3AXwo3neNJJQxllnPkCgrJMVCQswhqbxNKwpGOzjnmsr_4COC3Vao3RkrGxpEXs9qmyZgn5j_xzNHcrixzf-o9iMY2Ny4hZJgHbylTBvvFSN00Yz2SgHDfDDNBgaJEtXCxxXTDbeqp420dOR5gUt8h9LYE8HznumKlYVVU8fvvpFEIf3neEHhmhrAB1SGGKN2BOyB_WkdzsSIK3kp3hDVzajVaq-Hhfw5PNcj95-F47jC_F5MBcFSstA78A0KhFbta7o9Us0_fGHigr6Oybjuq7I_nsi6ZZD1wXq7At0m932KmMe-vf89giF8Bxxa_H-3u3ySUXP98gGTDfJL3lYqXuAMZdJne1M6Hk81l7r984vrys
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaYIBBiI-HZI1d5-OxIKYNiYGAou0BRbbjlEJJq6UBwQOv_NvcOU4gMMR4QH2p6rNVn-3zne_ud4Tc0XkY5oILP5f4dMML5acKhGEeDs1Qch4ahvnOT_ej3cnoyYE4WCNv2lwYx0GwEeeLynry8cuiNNuOk9uIV9R4T4OQx2HbI1gCUQA3EIvj8K5FHMKXsRUmIJ0i65EAVX1A1if7z8eHjaeZ-REbcpdO96eReteVRfXvZPcA_9lxiunv8ZWn63IpP3-S8_lPl9fOOfK1nXYTs_I-qFcq0F9-QYT8b3w5T846tZeOm1E2yJopL5ANJ1gqet-hXz-4SL7tuTqtHw39YCM9DXWlLaa0RUCnsszpD6ByqhE2cjYtKajgdHmEzicM56ag3dKqVu8aqU4LY7Pv6aKgGI_mz2eFoQqDO7WhtuwSNa4CcnWJTHYev3q067tqEb6OUrbyE61BtzQJB62n0CpRoPgZMLgKocBmkwnYbTzJZZymko2U5IkORQ7aeqojIRJu-GUyKIFXm4QOIxNJweBOGoUjHeaJTgvBIwk3t1YmlR7h7abItINSx4oe88z6B2MwqRq2Zsj8zDHfI37Xa9lAifyF_iHut44WgcDtD7D6mVv1jBcaFGCdGzhco5zliotCxyZkBYaJxkOP3MTdmjVZtZ04y8YRAj_CpIRHblsKBAMpMdpoKuuqyvaevT4B0csXPaJ7jqhYADu0dBkeMCfcnD3KrR4liDTda97E3d1ypcoQNJKDYSM49GzP2_HNt7pmHBQjCEuzqC0NfGJQWT1ypTmeHWe5dS6PgFlx7-D2WN9vKWdvLRZ7zBimansk6I74iRb36r92uEbOMHzqQeBgsUUGq6PaXAd9eKVuOKn2HTYDvKI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+machine+learning+approach+and+evaluation+campaign+for+predicting+the+subjective+feeling+of+work-life+balance+among+employees&rft.jtitle=PloS+one&rft.au=Pawlicki%2C+Marek&rft.au=Choras%2C+Michal&rft.au=Tomaszewska%2C+Renata&rft.au=Useche%2C+Sergio+A&rft.date=2020-05-15&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=5&rft.spage=e0232771&rft_id=info:doi/10.1371%2Fjournal.pone.0232771&rft.externalDBID=n%2Fa&rft.externalDocID=A623985365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon