Relationships between Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes Mellitus

Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control sub...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 2; p. e51648
Main Authors van de Weijer, Tineke, Sparks, Lauren Marie, Phielix, Esther, Meex, Ruth Carla, van Herpen, Noud Antonius, Hesselink, Matthijs Karel C., Schrauwen, Patrick, Schrauwen-Hinderling, Vera Bettina
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.02.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0051648

Cover

More Information
Summary:Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control subjects. 49 non-insulin dependent male T2D patients and 54 male control subjects were enrolled, and a hyperinsulinemic-euglycemic clamp and indirect calorimetry were performed. A muscle biopsy was taken and intramyocellular lipid (IMCL) was measured. In vivo mitochondrial function was measured by PCr recovery in 30 T2D patients and 31 control subjects. Fasting NEFA levels were significantly elevated in T2D patients compared with controls, but IMCL was not different. Mitochondrial function in T2D patients was compromised by 12.5% (p<0.01). Whole body glucose disposal (WGD) was higher at baseline and lower after insulin stimulation. Metabolic flexibility (ΔRER) was lower in the type 2 diabetic patients (0.050±0.033 vs. 0.093±0.050, p<0.01). Mitochondrial function was the sole predictor of basal respiratory exchange ratio (RER) (R(2) = 0.18, p<0.05); whereas WGD predicted both insulin-stimulated RER (R(2) = 0.29, p<0.001) and metabolic flexibility (R(2) = 0.40, p<0.001). These results indicate that defects in skeletal muscle in vivo mitochondrial function in type 2 diabetic patients are only reflected in basal substrate oxidation and highlight the importance of glucose disposal rate as a determinant of substrate utilization in response to insulin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: TW LMS EP RCM NAH MKCH PS VBS. Contributed reagents/materials/analysis tools: MKCH PS VBS. Performed the experiments: EP NAH RCM VBS. Analyzed the data: TW LMS EP RCM NAH MKCH PS VBS. Wrote the paper: TW LMS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0051648