Accelerated linear algebra compiler for computationally efficient numerical models: Success and potential area of improvement

The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) an...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 2; p. e0282265
Main Author He, Xuzhen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.02.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0282265

Cover

Abstract The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined–the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems–the gap is from the overhead cost of Python . Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements–hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.
AbstractList The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined-the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems-the gap is from the overhead cost of Python. Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements-hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.
The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined-the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems-the gap is from the overhead cost of Python. Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements-hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined-the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems-the gap is from the overhead cost of Python. Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements-hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.
The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The accelerated linear algebra (XLA) compiler is one such tool that automatically optimises array operations (mostly fusion to reduce memory operations) and compiles the optimised operations into high-performant programs specific to target computing platforms. Like machine-learning models, numerical models are often expressed in array operations, and thus their performance can be boosted by XLA. This study is the first of its kind to examine the efficiency of XLA for numerical models, and the efficiency is examined stringently by comparing its performance with that of optimal implementations. Two shared-memory computing platforms are examined–the CPU platform and the GPU platform. To obtain optimal implementations, the computing speed and its optimisation are rigorously studied by considering different workloads and the corresponding computer performance. Two simple equations are found to faithfully modell the computing speed of numerical models with very few easily-measureable parameters. Regarding operation optimisation within XLA, results show that models expressed in low-level operations (e.g., slice, concatenation, and arithmetic operations) are successfully fused while high-level operations (e.g., convolution and roll) are not. Regarding compilation within XLA, results show that for the CPU platform of certain computers and certain simple numerical models on the GPU platform, XLA achieves high efficiency (> 80%) for large problems and acceptable efficiency (10%~80%) for medium-size problems–the gap is from the overhead cost of Python . Unsatisfactory performance is found for the CPU platform of other computers (operations are compiled in a non-optimal way) and for high-dimensional complex models for the GPU platform, where each GPU thread in XLA handles 4 (single precision) or 2 (double precision) output elements–hoping to exploit the high-performant instructions that can read/write 4 or 2 floating-point numbers with one instruction. However, these instructions are rarely used in the generated code for complex models and performance is negatively affected. Therefore, flags should be added to control the compilation for these non-optimal scenarios.
Audience Academic
Author He, Xuzhen
AuthorAffiliation Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
Vinnytsia National Technical University, UKRAINE
AuthorAffiliation_xml – name: Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
– name: Vinnytsia National Technical University, UKRAINE
Author_xml – sequence: 1
  givenname: Xuzhen
  orcidid: 0000-0001-5336-3663
  surname: He
  fullname: He, Xuzhen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36827434$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5tydYhF4Ul9BAIBJq2t2JWkjcKsuVKdtpc9N07e0jYDaEEX9geffNr5h_pMNvrQmez7GVZTEvKyw9XYYwd-GmP4WlBBCGsfpIdlJKSCSMF3dv63s8OU7oqipoKxp5l-5QJwitaHWR_Z1pbbyMM1uTedRZiDn5h5xFyHdre4VrehLj6GQcYXMBN_U1um8ZpZ7sh78bWRqfB520w1qfj_GJE0ZRy6EzehwEhh6sQLeShyV3bx3BtWww_z5424JN9sXkfZT8-f_p-8nVydv7l9GR2NtFMkmHCRSUJmZuSG01YU1OQphSGQMMkr6rGmFKWTVVTwwi1VVlzNEgKQUQ550YCPcper3V7H5LaOJcU4VxyIjmrkDhdEybAleqjayHeqABOrQIhLhTEwWlvldaUo33WaKmrGriUtBJ2zgswhmj0-Cir11pj18PNb7TrTrAs1HJ4tyWo5fDUZniY93FT5ThvUR4NiuB3itld6dylWoRrJWXNBC9R4N1GIIZfo02Dal3C8XrobBiX_YqiYIJRguibe-jDrmyoBWDjrmsC7quXomrGqai4qFda0wcofIxtncYOGzxFuwnvdxKQGeyfYQFjSur04tvj2fOfu-zbLfbSgh8uU_Dj8tCmXfDVttN3Ft_eCwSqNaBjSCna5rETPL6Xpt36zqAjzv8_-R81djcN
CitedBy_id crossref_primary_10_1029_2024WR037318
Cites_doi 10.1109/IPDPSW55747.2022.00150
10.1016/j.physa.2006.08.071
ContentType Journal Article
Copyright Copyright: © 2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Xuzhen He 2023 Xuzhen He
2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Xuzhen He 2023 Xuzhen He
– notice: 2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0282265
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (no login required)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
DocumentTitleAlternate XLA for computationally efficient numerical models
EISSN 1932-6203
ExternalDocumentID 2779729764
oai_doaj_org_article_cc37827edc9c45a799348eb70add2c05
10.1371/journal.pone.0282265
PMC9956871
A738478532
36827434
10_1371_journal_pone_0282265
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: ;
  grantid: DE220100763
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-784922bd17dc26f53a9d18d2af69744fdd191f453d623e4157371988281b7d9a3
IEDL.DBID UNPAY
ISSN 1932-6203
IngestDate Sun Jun 04 06:37:12 EDT 2023
Tue Oct 14 19:06:00 EDT 2025
Sun Oct 26 03:56:21 EDT 2025
Tue Sep 30 17:17:07 EDT 2025
Mon Sep 08 03:28:24 EDT 2025
Tue Oct 07 07:44:41 EDT 2025
Mon Oct 20 21:47:02 EDT 2025
Mon Oct 20 16:36:50 EDT 2025
Thu Oct 16 16:20:39 EDT 2025
Thu Oct 16 15:58:18 EDT 2025
Thu May 22 21:24:22 EDT 2025
Wed Feb 19 02:24:37 EST 2025
Thu Apr 24 22:55:05 EDT 2025
Wed Oct 01 04:47:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2023 Xuzhen He. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-784922bd17dc26f53a9d18d2af69744fdd191f453d623e4157371988281b7d9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The author has declared that no competing interests exist.
ORCID 0000-0001-5336-3663
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0282265
PMID 36827434
PQID 2779729764
PQPubID 1436336
PageCount e0282265
ParticipantIDs plos_journals_2779729764
doaj_primary_oai_doaj_org_article_cc37827edc9c45a799348eb70add2c05
unpaywall_primary_10_1371_journal_pone_0282265
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9956871
proquest_miscellaneous_2780068632
proquest_journals_2779729764
gale_infotracmisc_A738478532
gale_infotracacademiconefile_A738478532
gale_incontextgauss_ISR_A738478532
gale_incontextgauss_IOV_A738478532
gale_healthsolutions_A738478532
pubmed_primary_36827434
crossref_primary_10_1371_journal_pone_0282265
crossref_citationtrail_10_1371_journal_pone_0282265
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-24
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J. R. Clausen (pone.0282265.ref024) 2013
H. Rein (pone.0282265.ref007) 2012
A. Sankaran (pone.0282265.ref018) 2022
E. A. Fadlun (pone.0282265.ref022) 2000
X. He (pone.0282265.ref001) 2020
pone.0282265.ref026
pone.0282265.ref027
X. He (pone.0282265.ref002) 2022
C. R. Harris (pone.0282265.ref020) 2020
pone.0282265.ref025
pone.0282265.ref028
pone.0282265.ref029
Y. LI (pone.0282265.ref023) 2004
S. le Grand (pone.0282265.ref009) 2013
F. Arute (pone.0282265.ref012) 2019
T.-H. Shih (pone.0282265.ref003) 1995
A. G. M. Lewis (pone.0282265.ref017) 2022
Á. Cartea (pone.0282265.ref004) 2007
P. R. Amestoy (pone.0282265.ref010) 2000
U. Ghia (pone.0282265.ref021) 1982
pone.0282265.ref030
S. Arora (pone.0282265.ref005) 2009
pone.0282265.ref031
X. He (pone.0282265.ref008) 2020
pone.0282265.ref015
pone.0282265.ref016
pone.0282265.ref013
pone.0282265.ref014
pone.0282265.ref019
A. W. Harrow (pone.0282265.ref011) 2008
J. R. Shewchuk (pone.0282265.ref006) 1994
References_xml – year: 2012
  ident: pone.0282265.ref007
  article-title: REBOUND: an open-source multi-purpose N-body code for collisional dynamics
  publication-title: Astronomy & Astrophysics
– year: 1995
  ident: pone.0282265.ref003
  article-title: A new k-ϵ eddy viscosity model for high reynolds number turbulent flows
  publication-title: Computers & Fluids
– year: 2013
  ident: pone.0282265.ref009
  article-title: SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations
  publication-title: Computer Physics Communications
– year: 2004
  ident: pone.0282265.ref023
  article-title: Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method
  publication-title: Journal of Fluid Mechanics
– ident: pone.0282265.ref016
– ident: pone.0282265.ref014
– year: 1994
  ident: pone.0282265.ref006
  article-title: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
– year: 2019
  ident: pone.0282265.ref012
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
– year: 2022
  ident: pone.0282265.ref018
  article-title: Benchmarking the Linear Algebra Awareness of TensorFlow and PyTorch
  publication-title: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
  doi: 10.1109/IPDPSW55747.2022.00150
– ident: pone.0282265.ref026
– ident: pone.0282265.ref030
– year: 2022
  ident: pone.0282265.ref017
  article-title: Large-scale distributed linear algebra with tensor processing units
  publication-title: Proceedings of the National Academy of Sciences
– ident: pone.0282265.ref028
– year: 2007
  ident: pone.0282265.ref004
  article-title: Fractional diffusion models of option prices in markets with jumps
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2006.08.071
– year: 2008
  ident: pone.0282265.ref011
  article-title: Quantum algorithm for solving linear systems of equations
– year: 2000
  ident: pone.0282265.ref010
  article-title: Multifrontal parallel distributed symmetric and unsymmetric solvers
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: pone.0282265.ref013
– ident: pone.0282265.ref019
– year: 1982
  ident: pone.0282265.ref021
  article-title: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
  publication-title: Journal of Computational Physics
– ident: pone.0282265.ref015
– year: 2020
  ident: pone.0282265.ref008
  article-title: An improved VOF-DEM model for soil-water interaction with particle size scaling
  publication-title: Computers and Geotechnics
– ident: pone.0282265.ref025
– ident: pone.0282265.ref027
– ident: pone.0282265.ref029
– year: 2009
  ident: pone.0282265.ref005
  article-title: Computational Complexity: A Modern Approach
– ident: pone.0282265.ref031
– year: 2022
  ident: pone.0282265.ref002
  article-title: Ready-to-use deep-learning surrogate models for problems with spatially variable inputs and outputs
  publication-title: Acta Geotechnica
– year: 2000
  ident: pone.0282265.ref022
  article-title: Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
  publication-title: Journal of Computational Physics
– year: 2013
  ident: pone.0282265.ref024
  article-title: Entropically damped form of artificial compressibility for explicit simulation of incompressible flow.
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– year: 2020
  ident: pone.0282265.ref020
  article-title: Array programming with NumPy
  publication-title: Nature
– year: 2020
  ident: pone.0282265.ref001
  article-title: Work–energy analysis of granular assemblies validates and calibrates a constitutive model.
  publication-title: Granul Matter.
SSID ssj0053866
Score 2.4271038
Snippet The recent dramatic progress in machine learning is partially attributed to the availability of high-performant computers and development tools. The...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0282265
SubjectTerms Algebra
Algorithms
Analysis
Arrays
Central processing units
Compilers
Computational linguistics
Computer and Information Sciences
Computer Graphics
Computer memory
Computers
CPUs
Efficiency
Engineering and Technology
Floating point arithmetic
Iterative methods
Language processing
Learning algorithms
Linear algebra
Machine learning
Mathematical models
Mathematics
Microprocessors
Modelling
Natural language interfaces
Numerical models
Optimization
Partial differential equations
Physical Sciences
Platforms
Research and Analysis Methods
Software
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (no login required)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QvcALYnztYEBASMBDb9cmbRreDsQ0kACJMbS3KE1SmFS11fUqtAf-d-w0V13FpO2Bx2uc6mI7sZ3aPxPykudWlJLFkdFWRtzmNtK5ZlGcuzTVwoKnhIXCn79kx6f801l6ttPqC3PCBnjggXGHxjAwYsJZIw2H2WBPee4KsYSNmZgBvXSZy20wNZzBsIuzLBTKMREfBrks2qZ2C585icZkxxB5vP7xVJ61VdNd5nL-mzl5s69bffFbV9WOWTq6Q24Hf5KuhnXskRuuvkv2wo7t6OsAK_3mHvmzMgZsDEJDWIrOpV5TbPIB4TLFxHI4HtYUXFj_o9-ES8LqgjqPMgF_hdb98H2nor6BTveWnvS-4SLVtaVts8HUIxjV4InSpqTn_sbCX0DeJ6dHH76_P45C84XIZDLZRCLnMkkKGwtrkqxMmZY2zm2iywxCEF5aC5FeyVNmwYFy4AYIYLQEfx2kK6zU7AGZ1cDufUJ5skw0OF5FygW3aZZLZ7UrbOqWZZGlyZywrSSUCcjk2CCjUv5zm4AIZWCmQvmpIL85icZZ7YDMcQX9OxTySIu42v4BaJsK2qau0rY5eYYqooYi1fF0UCvBwMyD6wOLeeEpEFujxuSdn7rvOvXx649rEJ18mxC9CkRlA-wwOhRMwJoQs2tCeTChhBPCTIb3UaG3XOlUIoSEoEpkHGZulfzy4efjML4UE_Jq1_RIk_vqInz7w2FPjJxlGbCQM5gtJrtlwvrpSH3-y0ObY501hPBzshj31bWE--h_CPcxuQWayjxgAT8gs826d0_A5dwUT_3p8hf0FYKs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZG9wA8IDZ-rDDAICTgIV0bO3GChFCHNg2kFbQxtLfIsZ0xKUpC0wjtgf-dO8cJi5hgj40vUXN3Pn927r4j5CWPtMhiNvOU1LHHdaQ9GUnmzSITBFJoQEpYKHy4CA9O-KfT4HSNLLpaGEyr7GKiDdS6VHhGvuMLEQMQFCF_X_3wsGsUfl3tWmhI11pBv7MUYzfIuo_MWCOyvru3-HLUxWaY3WHoCuiYmO04e02qsjATm1GJi8ylBcry-PfRelTlZX0VFP07o_JmU1Ty4qfM80vL1f5dcsfhTDpvHWODrJlik9w-7Ela602y4eZ1TV878uk398ivuVKwEiGBhKYIQeWSYisQ2FRTTD-HILKkAHTtj2bljhLzC2osFwX8MVo07VegnNo2O_VbetzYtoxUFppW5QoTlGBUAl6lZUbP7bmGPaa8T072975-OPBciwZPhbG_8kTEY99P9Uxo5YdZwGSsZ5H2ZRbCRoVnWsN-MOMB0wCzDIAFAWqPAdWDDwgdS_aAjApQ_hah3J_6EuBZGnDBdRBGsdHSpDow0ywNA39MWGeXRDn-cmyjkSf2o5yAfUyr2gStmThrjonX31W1_B3_kd9Fk_eyyL5tL5TLs8RN5kQpBsBKgLljxcGjAePxyKRiCouFr6bwkGfoMElbytrHkGQuGIABAEjwMi-sBDJwFJjicyabuk4-fv52DaHjo4HQKyeUlaAOJV1ZBbwTMnsNJLcHkhBH1GB4C92700qd_JlxcGfn8lcPP--H8aGYtleYskGZyNYg4dMftjOk1ywLQYWcwd1iMHcGqh-OFOffLQE6VmPDRn9MJv0su5ZxH_37PR6TW-CDzBIW8G0yWi0b8wQg5yp96uLIb-t7hNM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGkWAviPG1wgCDkICHVG3sxDESQgUxDaSBxCjaW-TYzpgUJaVpBH3gf-fOcSIiiph4bH1Om_uwf2ffByFPeGJELtks0MrIgJvEBCpRLJglNoqUMICUMFH4-EN8tODvT6PTHdL1bPUMrLe6dthParEqJj--bV6Bwb90XRvErJs0WValnbi4yDi6RC7DXiWxmcMx7-8VwLrj2CfQ_W3mLrnC4gScNcYHe5Ur6d8v3KNlUdXbUOmfwZVXm3KpNt9VUfy2cx1eJ9c85KTzVkf2yI4tb5A9b9Q1feYrTz-_SX7OtYZtCKtHGIr4U60o9gEBj5pi7DmsICsKKNd9aNb-HLHYUOsKUcBfoWXTXgEV1PXYqV_Qk8b1ZKSqNHRZrTE6CUYVgFVa5fTcHWq4M8pbZHH49vObo8D3Zwh0LMN1IBIuwzAzM2F0GOcRU9LMEhOqPAYvhefGgDOY84gZwFgWkIIAnkuA9KAAwkjFbpNRCZzfJ5SH01ABNssiLriJ4kRao2xmIjvNszgKx4R1kki1L16OPTSK1N3ICXBiWmamKMrUi3JMgn7Wsi3e8Q_61yjknhZLb7svqtVZ6i051ZoBqhIgYKk5qDMAPJ7YTExhpwj1FB7yEFUkbfNY-wUknQsGSADQEbzMY0eB5TdKjO85U01dp-8-frkA0cmnAdFTT5RXwA6tfE4FvBOW9RpQHgwoYRHRg-F9VOiOK3UaCiHB7xIxh5mdkm8fftQP40MxZq-0VYM0iUtAwqffaW2i52xnYWMiBtYyYP1wpDz_6qqfYyo2ePljMunt6kLCvfvfP3WP7IJ6MlfIgB-Q0XrV2PsARdfZA7e6_AJVDIzQ
  priority: 102
  providerName: Scholars Portal
Title Accelerated linear algebra compiler for computationally efficient numerical models: Success and potential area of improvement
URI https://www.ncbi.nlm.nih.gov/pubmed/36827434
https://www.proquest.com/docview/2779729764
https://www.proquest.com/docview/2780068632
https://pubmed.ncbi.nlm.nih.gov/PMC9956871
https://doi.org/10.1371/journal.pone.0282265
https://doaj.org/article/cc37827edc9c45a799348eb70add2c05
http://dx.doi.org/10.1371/journal.pone.0282265
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELa29gFegPFrhVEMQgIkUhrbiRPeumllILVMG0PlKXLsBCaipGoSoSHxv3N23GiBIcpLpNZnSz7f2Z_tu88IPWOB4mlIXUcKFTpMBcoRgaCOGySeJ7gCpKQThWdz_-iMvV94iy30ap0Lc_n-nnL3tdXoaFnkycjEPPreNur7HiDvHuqfzY8nn5uLY-L4ZExtdtzfqnZWH0PS307FvWVWlFfhzD_DJa_V-VJcfBdZdmktmt5Es3UvmhCUb6O6ikfyx28Ej5t28xa6YUEpnjRWtIO2kvw22rFuX-IXlpv65R30cyIlLFSaX0JhjVDFCuuXQmDPjXV0OswxKww42PyoK3vSmF3gxFBVQNdwXjeXRBk2r_CUb_BpbV5txCJXeFlUOn4JSgXAWVyk-Nwce5hTzLvobHr48eDIsS84ONIPSeXwgIWExMrlShI_9agIlRsoIlIf9jEsVQq2iynzqAIUlgCW4KCMEEA_mAhXoaD3UC8HlewizMiYCEBvscc4U54fhIkSSay8ZJzGvkcGiK5HNpKW3ly_spFF5s6OwzanUWakdRxZHQ-Q09ZaNvQe_5Df10bTympybvMHDGZkfT2SkgLu4mAwoWRg8AABWZDEfAxrCZFjaOSxNrmoyXRtp5howilgBcBP0JmnRkITdOQ6AuiLqMsyevfh0wZCpycdoedWKC1AHVLYrAvokyb-6kjudSRhmpGd4l3tIGutlBHhPISdGfcZ1Fw7zdXFT9pi3aiO6suTotYygUlR0q3fb3ys1Sz1QYWMQm3e8b6O6rsl-flXw4-uk7UD7g7QqPXTjQb3wf9WeIiug1VSw3DA9lCvWtXJI8CoVTxE23zB4RscuPo7fTtE_f3D-fHJ0Jz6wHfGgqGdwH4BB5iYmw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigcEC2PLhRqEAg4ZLuJnThBQmh5VLv0gURbtLfg2EmpFCVhs1G1B_4Sv5EZJxsaUUEvPW48tjYz4_E3zjwIecZ9LZKA2ZaSOrC49rUlfcks249dVwoNSAkThfcPvPEx_zR1pyvk1zIXBsMqlzbRGGqdK7wj33aECAAICo-_LX5Y2DUKv64uW2jUarEbL87AZSvfTD6AfJ87zs7Ho_djq-kqYCkvcOaW8HngOJG2hVaOl7hMBtr2tSMTD7A1T7QGFybhLtOADGI43wQT4JmDZ2JHQgeSwbrXyHXOwJbA_hHT1sED2-F5TXoezNlutGFQ5Fk8MPGaeISdO_5Ml4D2LOgVaV5eBHT_jtdcrbJCLs5kmp47DHduk1sNiqWjWu3WyEqcrZOb-20J2HKdrDVWo6Qvm9LWr-6QnyOl4JzD8hSaIsCVM4qNRsBlpxjcDiZqRgFGmx_VvLmoTBc0NpUu4I_RrKq_MaXUNPEpX9PDyjR9pDLTtMjnGP4EoxLQMM0TempuTcwl6F1yfCWiukd6GTB_g1DuDB0J4C9yueDa9fwg1jKOtBsPk8hznT5hS7mEqqmOjk060tB88hPgJdWsDVGaYSPNPrHaWUVdHeQ_9O9Q5C0t1vY2D_LZSdiYilApBrBNgLgDxWG_AILkfhyJIRxFjhrCIluoMGGdKNtaqHAkGEANgF_wMk8NBdb3yDCA6ERWZRlOPn-9BNHhlw7Ri4YoyYEdSjZJG_BOWDesQ7nZoQQrpTrDG6jeS66U4Z_9DDOXKn_x8JN2GBfFoMAsziuk8U2GE65-v94hLWeZByzkDGaLzt7psL47kp1-N-XVMdfbF3afDNpddinhPvj3e2yR1fHR_l64NznYfUhugD4yUxqBb5LefFbFjwDczqPHxqJQ8u2qTdhv5_S5Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkfh4QGx8rDCYQSDgIW0TO3GChFBhTCtjAzGG-hYcOxmTqqQ0jaY-8I_x13HnuGERE-xlj43PVnN3Pv_OuQ9CnvBQiyxirqOkjhyuQ-3IUDLHDVPfl0IDUsJE4b39YOeQvx_74xXya5kLg2GVS5toDLUuFN6R9z0hIgCCIuD9zIZFfNrafj394WAHKfzSumynUavIbro4AfetfDXaAlk_9bztd1_e7ji2w4CjgsibOyLkkecl2hVaeUHmMxlpN9SezALA2TzTGtyZjPtMA0pI4awTTICXDl6KmwgdSQbrXiKXBWMRhhOKcePsgR0JApuqB3P6VjN60yJPeyZ2E4-zU0eh6RjQnAud6aQozwK9f8duXq3yqVycyMnk1MG4fZPcsIiWDmsVXCUrab5Gru815WDLNbJqLUhJn9sy1y9ukZ9DpeDMw1IVmiLYlTOKTUfAfacY6A7makYBUpsf1dxeWk4WNDVVL-CP0byqvzdNqGnoU76kB5VpAEllrum0mGMoFIxKQMa0yOixuUExF6K3yeGFiOoO6eTA_HVCuTfwJADBxOeCaz8Io1TLNNF-OsiSwPe6hC3lEitbKR0bdkxi8_lPgMdUszZGacZWml3iNLOmdaWQ_9C_QZE3tFjn2zwoZkexNRuxUgwgnABxR4rD3gE0ycM0EQM4ljw1gEU2UWHiOmm2sVbxUDCAHQDF4GUeGwqs9ZHjrjmSVVnGo49fz0F08LlF9MwSZQWwQ0mbwAHvhDXEWpQbLUqwWKo1vI7qveRKGf_Z2zBzqfJnDz9qhnFRDBDM06JCmtBkO-Hqd-sd0nCWBcBCzmC2aO2dFuvbI_nxd1NqHfO-Q-F2Sa_ZZecS7r1_v8cmuQLGK_4w2t-9T66BOjJTJYFvkM58VqUPAOfOk4fGoFDy7aIt2G_kR72R
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLy6UMAgJEAiy8bPhNuCqApSC6IsKqfIsRNaNUpWm0SoSPx3xo43aqCI5Zh4bMnjGfuzPfMZoScsMjKPaRhoZeKAmcgEKlI0CKOMcyUNICWbKLx_IPbm7P0RP9pAL1a5MOfv76kMX3qNThZVmU1czKPgl9Cm4IC8R2hzfvBx9rW7OCaBIFPqs-P-VnWw-jiS_n4qHi2Kqr4IZ_4ZLnm5LRfq7LsqinNr0e41tL_qRReCcjppm3Sif_xG8LhuN6-jqx6U4llnRVtoIytvoC3v9jV-5rmpn99EP2daw0Jl-SUMtghVLbF9KQT23NhGp8Mcs8SAg91H2_iTxuIMZ46qArqGy7a7JCqwe4WnfoUPW_dqI1alwYuqsfFLUKoAzuIqxyfu2MOdYt5C8923n9_sBf4Fh0CLmDSBjFhMSGpCaTQROacqNmFkiMoF7GNYbgxsF3PGqQEUlgGWkKCMGEA_mIg0saK30agElWwjzMiUKEBvKWeSGS6iODMqSw3PpnkqOBkjuhrZRHt6c_vKRpG4OzsJ25xOmYnVceJ1PEZBX2vR0Xv8Q_61NZpe1pJzux8wmIn39URrCrhLgsHEmoHBAwRkUZbKKawlRE-hkYfW5JIu07WfYpKZpIAVAD9BZx47CUvQUdoIoG-qrevk3YcvawgdfhoIPfVCeQXq0MpnXUCfLPHXQHJnIAnTjB4Ub1sHWWmlToiUMezMpGBQc-U0Fxc_6ottozaqr8yq1spELkXJtn6n87Fes1SAChmF2nLgfQPVD0vKk2PHj26TtSMZjtGk99O1Bvfu_1a4h66AVVLHcMB20KhZttl9wKhN-sBPTb8A5neSmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+linear+algebra+compiler+for+computationally+efficient+numerical+models%3A+Success+and+potential+area+of+improvement&rft.jtitle=PloS+one&rft.au=He%2C+Xuzhen&rft.date=2023-02-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0282265&rft_id=info%3Apmid%2F36827434&rft.externalDocID=PMC9956871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon