Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 1; p. e53112
Main Authors Abbas, Ahmed, Kong, Xin-Bing, Liu, Zhi, Jing, Bing-Yi, Gao, Xin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.01.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0053112

Cover

Abstract A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
AbstractList A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at
Audience Academic
Author Gao, Xin
Abbas, Ahmed
Kong, Xin-Bing
Liu, Zhi
Jing, Bing-Yi
AuthorAffiliation 2 Department of Statistics, Fudan University, Shanghai, China
4 Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong
University of Rome, Italy
3 Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau
1 Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
AuthorAffiliation_xml – name: 3 Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau
– name: University of Rome, Italy
– name: 2 Department of Statistics, Fudan University, Shanghai, China
– name: 1 Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– name: 4 Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Abbas
  fullname: Abbas, Ahmed
– sequence: 2
  givenname: Xin-Bing
  surname: Kong
  fullname: Kong, Xin-Bing
– sequence: 3
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
– sequence: 4
  givenname: Bing-Yi
  surname: Jing
  fullname: Jing, Bing-Yi
– sequence: 5
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23308147$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9v0zAUxSM0xP7AN0AQCQnBQ4odO3bKA6KbgFWaNMSAV-vGcVIXJy52AvTb49BsaqYJTX6IdfO7x-ce-zg6aG2rougpRjNMOH6ztr1rwcw2oTxDKCMYpw-iIzwnacJSRA729ofRsffrAcoZexQdpoSgHFN-FL1f9J1toNMy_qzgR3yljJKdtm1cbGOIT1W7hka3Ojm3clUoVyen4FUZL0xtne5WzePoYQXGqyfj9yT69vHD17Pz5OLy0_JscZFINk-7hPMKcYkZEEpYBSVjNKUMcJmxIqdU8ooXqMgrIFkeSOA5RYjTknIscZUCOYme73Q3xnoxDu8FTvM5YhxxEojljigtrMXG6QbcVljQ4l_BulqAC4MaJTKGg4c8y3DJqMIwR5IVjJB8zspC8jxoZTutvt3A9jcYcyOIkRjyv7YghvzFmH_oeze67ItGlVK1nQMzMTP90-qVqO0vQYarybIg8GoUcPZnr3wnGu2lMgZaZfthXk4oRRQN6Itb6N2pjFQNYXDdVjacKwdRsaBDyhiTwffsDiqsUjVahgkrHeqThteThsB06k9XQ--9WF59uT97-X3KvtxjVwpMt_LW9MOT9FPw2X7SNxFfP-0A0B0gnfXeqeq-N_j2VpvUHQzHh0S0-X_zXyNoHbA
CitedBy_id crossref_primary_10_1093_bioinformatics_btx653
crossref_primary_10_1002_mgg3_1255
crossref_primary_10_1109_TCBB_2018_2849728
crossref_primary_10_1016_j_genrep_2018_01_002
crossref_primary_10_1186_1471_2105_15_S15_S4
crossref_primary_10_1038_s41598_018_30553_z
crossref_primary_10_1111_sjos_12121
crossref_primary_10_1142_S0219720015500201
crossref_primary_10_1038_s41534_021_00377_3
crossref_primary_10_1089_vim_2018_0137
crossref_primary_10_1016_j_gpb_2012_12_003
crossref_primary_10_1093_bioinformatics_btv318
crossref_primary_10_1007_s10858_014_9828_0
crossref_primary_10_1007_s12253_014_9848_9
crossref_primary_10_3892_ol_2019_10284
crossref_primary_10_1016_j_jmr_2018_11_004
crossref_primary_10_1038_srep08017
crossref_primary_10_1016_j_archoralbio_2016_03_018
crossref_primary_10_3389_fcimb_2021_645951
crossref_primary_10_3390_cimb46070435
crossref_primary_10_1016_j_yexmp_2015_03_028
crossref_primary_10_1109_TCBB_2015_2505286
crossref_primary_10_1177_11779322211067365
crossref_primary_10_3389_fendo_2021_628907
crossref_primary_10_1002_mrc_4272
Cites_doi 10.1017/CBO9780511761362
10.1093/bioinformatics/btn312
10.1023/A:1012982830367
10.1023/A:1011234126930
10.1016/S0893-6080(09)80012-9
10.1016/j.pnmrs.2003.12.002
10.1093/bioinformatics/bts398
10.1051/epn/19861701011
10.1137/1.9781611970104
10.1073/pnas.0737502100
10.1007/BF00211755
10.1142/S0219720011005276
10.1016/j.sbi.2004.09.003
10.1093/bioinformatics/bts078
10.1007/BF00156617
10.1006/jmre.1998.1570
10.1007/978-1-4613-8122-8
10.1007/BF00404272
10.1007/s00249-008-0367-z
10.1093/bioinformatics/btp225
10.1111/j.2517-6161.1995.tb02031.x
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Abbas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2013 Abbas et al 2013 Abbas et al
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Abbas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2013 Abbas et al 2013 Abbas et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0053112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Open Access - DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic


Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
Biology
Computer Science
DocumentTitleAlternate BH Peak Picking
EISSN 1932-6203
ExternalDocumentID 1289067073
oai_doaj_org_article_561fad8551d64e1a90c6b633896dbc78
10.1371/journal.pone.0053112
PMC3538655
2896534641
A478401132
23308147
10_1371_journal_pone_0053112
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PV9
RZL
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-77f07c16a3436fad664246a1d56b844c7f7b0b8fa358f07a7840074d471c1f2a3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:33 EST 2021
Fri Oct 03 12:45:43 EDT 2025
Sun Oct 26 03:58:41 EDT 2025
Tue Sep 30 16:52:32 EDT 2025
Fri Sep 05 11:59:08 EDT 2025
Tue Oct 07 06:18:41 EDT 2025
Mon Oct 20 21:55:03 EDT 2025
Mon Oct 20 16:47:42 EDT 2025
Thu Oct 16 15:02:41 EDT 2025
Thu Oct 16 15:00:45 EDT 2025
Thu May 22 21:19:35 EDT 2025
Mon Jul 21 05:45:21 EDT 2025
Wed Oct 01 03:19:38 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-77f07c16a3436fad664246a1d56b844c7f7b0b8fa358f07a7840074d471c1f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Critical revision of the manuscript: XK ZL. Conceived and designed the experiments: BJ XG. Performed the experiments: AA XG. Analyzed the data: AA BJ XG. Contributed reagents/materials/analysis tools: XK ZL XG. Wrote the paper: AA BJ XG.
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0053112
PMID 23308147
PQID 1289067073
PQPubID 1436336
PageCount e53112
ParticipantIDs plos_journals_1289067073
doaj_primary_oai_doaj_org_article_561fad8551d64e1a90c6b633896dbc78
unpaywall_primary_10_1371_journal_pone_0053112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538655
proquest_miscellaneous_1273440405
proquest_journals_1289067073
gale_infotracmisc_A478401132
gale_infotracacademiconefile_A478401132
gale_incontextgauss_ISR_A478401132
gale_incontextgauss_IOV_A478401132
gale_healthsolutions_A478401132
pubmed_primary_23308147
crossref_primary_10_1371_journal_pone_0053112
crossref_citationtrail_10_1371_journal_pone_0053112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-07
PublicationDateYYYYMMDD 2013-01-07
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Alipanahi (ref9) 2011; 9
E Carrara (ref13) 1993; 6
G Kleywegt (ref10) 1990; 135
S Corne (ref12) 1992; 100
R Koradi (ref17) 1998; 135
D Garret (ref11) 1991; 95
B Johnson (ref15) 1994; 4
C Antz (ref16) 1995; 5
V Orekhov (ref18) 2001; 20
Y Benjamini (ref23) 1995; 57
ref24
X Gao (ref5) 2012; 1
ref25
ref20
ref22
ref21
W Gronwald (ref6) 2003; 44
B Alipanahi (ref2) 2009; 25
ref27
A Rouh (ref14) 1994; 4
D Korzhneva (ref19) 2001; 21
ref4
ref3
A Altieri (ref7) 2004; 14
K Forslund (ref28) 2008; 24
T Güntert (ref8) 2009; 38
L Coin (ref26) 2003; 100
Z Liu (ref1) 2012; 28
MA Messih (ref29) 2012; 28
References_xml – ident: ref22
  doi: 10.1017/CBO9780511761362
– volume: 24
  start-page: 1681
  year: 2008
  ident: ref28
  article-title: Predicting protein function from domain content
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn312
– volume: 21
  start-page: 263
  year: 2001
  ident: ref19
  article-title: MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data
  publication-title: Journal of Biomolecular NMR
  doi: 10.1023/A:1012982830367
– volume: 100
  start-page: 256
  year: 1992
  ident: ref12
  article-title: An artificial neural network for classifying cross peaks in two dimensional NMR spectra
  publication-title: Journal of Magnetic Resonance
– ident: ref24
– ident: ref25
– volume: 20
  start-page: 49
  year: 2001
  ident: ref18
  article-title: MUNIN: a new approach to multi-dimensional NMR spectra interpretation
  publication-title: Journal of Biomolecular NMR
  doi: 10.1023/A:1011234126930
– ident: ref27
– volume: 6
  start-page: 1023
  year: 1993
  ident: ref13
  article-title: Neural networks for the peak-picking of nuclear magnetic resonance spectra
  publication-title: Journal of Neural Networks
  doi: 10.1016/S0893-6080(09)80012-9
– volume: 44
  start-page: 33
  year: 2003
  ident: ref6
  article-title: Automated structure determination of proteins by NMR spectroscopy
  publication-title: Progress in Nuclear Magnetic Resonance
  doi: 10.1016/j.pnmrs.2003.12.002
– volume: 28
  start-page: i444
  year: 2012
  ident: ref29
  article-title: Protein domain recurrence and order can enhance prediction of protein functions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts398
– ident: ref3
  doi: 10.1051/epn/19861701011
– volume: 1
  start-page: 1
  year: 2012
  ident: ref5
  article-title: Mathematical approaches to the NMR peak-picking problem
  publication-title: Journal of Applied and Computational Mathematics
– ident: ref20
  doi: 10.1137/1.9781611970104
– volume: 100
  start-page: 4516
  year: 2003
  ident: ref26
  article-title: Enhanced protein domain discovery by using language modeling techniques from speech recognition
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0737502100
– ident: ref4
– volume: 5
  start-page: 287
  year: 1995
  ident: ref16
  article-title: A general Bayesian method for an automated signal class recognition in 2D NMR spectra combined with a multivariate discriminant analysis
  publication-title: Journal of Biomolecular NMR
  doi: 10.1007/BF00211755
– volume: 95
  start-page: 214
  year: 1991
  ident: ref11
  article-title: A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams
  publication-title: Journal of Magnetic Resonance
– volume: 9
  start-page: 15
  year: 2011
  ident: ref9
  article-title: Error tolerant NMR backbone resonance assignment and automated structure generation
  publication-title: Journal of Bionformatics and Computational Biology
  doi: 10.1142/S0219720011005276
– volume: 14
  start-page: 547
  year: 2004
  ident: ref7
  article-title: Automation of NMR structure determination of proteins
  publication-title: Current Opinions in Structural Biology
  doi: 10.1016/j.sbi.2004.09.003
– volume: 135
  start-page: 288
  year: 1990
  ident: ref10
  article-title: A versatile approach toward the partially automatic recognition of cross peaks in 2D 1H NMR spectra
  publication-title: Journal of Magnetic Resonance
– volume: 28
  start-page: 914
  year: 2012
  ident: ref1
  article-title: WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts078
– volume: 4
  start-page: 505
  year: 1994
  ident: ref14
  article-title: Bayesian signal extraction from noisy FT NMR spectra
  publication-title: Journal of Biomolecular NMR
  doi: 10.1007/BF00156617
– volume: 135
  start-page: 288
  year: 1998
  ident: ref17
  article-title: Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY
  publication-title: Journal of Magnetic Resonance
  doi: 10.1006/jmre.1998.1570
– ident: ref21
  doi: 10.1007/978-1-4613-8122-8
– volume: 4
  start-page: 603
  year: 1994
  ident: ref15
  article-title: NMR View: a computer program for the visualization and analysis of NMR data
  publication-title: Journal of Biomolecular NMR
  doi: 10.1007/BF00404272
– volume: 38
  start-page: 129
  year: 2009
  ident: ref8
  article-title: Automated structure determination from NMR spectra
  publication-title: European Biophysics Journal
  doi: 10.1007/s00249-008-0367-z
– volume: 25
  start-page: i268
  year: 2009
  ident: ref2
  article-title: PICKY: a novel SVD-based NMR spectra peak picking method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp225
– volume: 57
  start-page: 289
  year: 1995
  ident: ref23
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society, Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
SSID ssj0053866
Score 2.2511184
Snippet A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e53112
SubjectTerms Algorithms
Automation
Bioinformatics
Biology
Chemistry
Computation
Computational Biology - methods
Computer applications
Computer Science
Computers
Discriminant analysis
Magnetic resonance
Methods
NMR
Noise
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular - methods
Picking
Protein structure
Proteins
Proteins - chemistry
Science
Software
SummonAdditionalLinks – databaseName: Open Access - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GCgSEBByyTWLH9t7YIqoFCZCAot4sx3G6hZBETVao_54Zxxs1olJ74BqPI3nelme-IeRlysDxcnxhZAJbciSLZK5pJEtuuNWaxQU2J3_6zFdH7ONxdnxh1BfWhA3wwAPj9iG-l7qQENgLzmyiF7HhOYeL1YIXuRGuzTeWi-1lavDBYMWc-0Y5KpJ9L5d529R27vQuSSeByOH1j1551lZNd1nK-W_l5M1N3erzP7qqLoSlwzvkts8nw-Vwjh1yw9Z3yY632C587WGl39wjb5ebvnEArWFr9a-wcxNwQCxhfh7q8MDWPzUCjUSrxqyx6ivCCFeEujppzk779e_75Ojw_fd3q8jPT4gMX6Q9JM5lLEzCNWWUAxM53DUY10mR8VwyZkQp8jiXpaaZBEotJA5JZwXEK5OUqaYPyKwGju2SUDJLC1NYyIYoExnTxlJIFC2VmrE4twGhW2Yq48HFccZFpdyLmYBLxsAPhSJQXgQBicZd7QCucQX9AcpppEVobPcBFEZ5hVFXKUxAnqGU1dBnOhq4WjI8fwK384C8cBQIj1Fj_c2J3nSd-vDlxzWIvn2dEL3yRGUD7DDa9zzAmRB2a0K5N6EEIzeT5V3UyS1XOpXgAzEX4KBh51ZPL19-Pi7jT7GmrrbNBmkERXTIOAvIw0GtR86mlEKuyERAxEThJ6yfrtSna4dOTtH4MvjnfDSNawn30f8Q7mNyK3XzSpIoFntk1p9t7BPIGvv8qXMQfwH1UWit
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMCAgJOCQLokd2z0gaNGmgkRBG0O7RY7ttEBJytoK7b_nPdcJREywa_xLJL8vP8d-v0fI05RB4OV4wsgEluRIFslC0UiWXHOrFIsNFie_n_DxCXt3mp1ukUlTC4PXKpuY6AK1qTX-I99P8ESMC7DIV4sfEXaNwtPVpoWG8q0VzEtHMXaFbKfIjNUj26ODycejJjaDd3PuC-ioSPa9vvqLurJ9Z49J2lmgHI9_G617i3m9vCgV_ftG5dV1tVDnP9V8_sdydXiDXPd5ZjjcGMYO2bLVTbLjPXkZPvd00y9ukdfD9ap2xK0hxMdv4bHrjAPqCovzUIUjW31VSEASjWs9w9tg0QhWPhMO51OQz2r2_TY5OTz49GYc-b4KkeaDdAUJdRkLnXBFGeWlMhz2IIyrxGS8kIxpUYoiLmSpaCYBqYTE5unMwDqmkzJV9A7pVSCxXRJKZqnRxkKWRJnImNKWQgJpqVSMxYUNCG2EmWtPOo69L-a5O0kTsPnYyCNHFeReBQGJ2rcWG9KN_-BHqKcWi5TZ7kF9Ns29B-aQKMJcJZiH4cwmahBrXnDYoQ-4KbSQAXmEWs439aet4-dDhvNPYNcekCcOgbQZFd7Lmar1cpm__fD5EqDjow7omQeVNYhDK18LAXNCOq4Ocq-DBOfXneFdtMlGKsv8t5vAm42dXjz8uB3Gj-Jdu8rWa8QIiqyRcRaQuxuzbiWbUgo5JBMBER2D74i-O1J9mTnWcorOl8E3-61rXEq59_49j_vkWuo6lCRRLPZIb3W2tg8gT1wVD73z_wKRWmZg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFImsSO7d7YRVQLEgVRitoDihzH6ZYuyaqbCJUDv52ZxIkIFFEO3KL1Zycej8fjHc9nQh5FDAwvxwgjE5iSI5knU0U9mXPNjVIsyDA5-c0On-6x1_vx_gr51OXCWAnCHnFeLptIPj6Uhdm0ktxEvqI2euqHVIRdDX8BIL_RqTB63DAO4T9jFSYgXSCrPAZXfURW93bejQ_aSHPk8SigNp3uTy0NlquG1b-33SP8srMc09_PV16si4U6_arm858Wr-0r5HvX7fbMyrFfV6mvv_3CCPnf5HKVXLZurztuW1kjK6a4RtasYVm6Ty379bPr5Pm4rsqGR9YFc33s7jYX9YD2uOmpq9yJKT4r5EPxpqWe4eE0bwILceaO54flyVE1-3KD7G2__PBi6tlrHjzNt6IK_Ps8EDrkijLKc5Vx2BIxrsIs5qlkTItcpEEqc0VjCUglJN7lzjJYVnWYR4reJKMCOrlOXMkMzXRmwGmjTMRMaUPBnzVUKsaC1DiEdqOZaMuBjldxzJMmsCdgL9TKI0GpJVZqDvH6WouWA-Qv-AkqSo9FBu_mBxi2xA5XAn4r9FWCw5pxZkK1FWiecgr-I89SLaRD7qOaJW06bG-HkjHD_ochhdc8bBDI4lHgMaFDVS-Xyau3H88B2n0_AD2xoLwEcWhlUzOgT6hVA-TGAAm2SA-K11EtO6kskxDj2FzAOgI1u4lydvGDvhgbxaN_hSlrxAiKJJZB7JBb7bzqJRtRCi4tEw4Rgxk3EP2wpDiaNSTqoBeYk-0Qv5-b5xrc2_9a4Q65FDVXqIReIDbIqDqpzV1wZKv0njVHPwD4ZJ9u
  priority: 102
  providerName: Unpaywall
Title Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/23308147
https://www.proquest.com/docview/1289067073
https://www.proquest.com/docview/1273440405
https://pubmed.ncbi.nlm.nih.gov/PMC3538655
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053112&type=printable
https://doaj.org/article/561fad8551d64e1a90c6b633896dbc78
http://dx.doi.org/10.1371/journal.pone.0053112
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMEpASMAhVRI7dnpA0E4bBWll2ijqTpHjOO0gJKVpBf3vec9NIyKK6CUH-9mS35ef8-zfI-SFz8DxcswwMoFPckLmhLGkTphyxbWUzE3wcfLZkA9G7OM4GO-RTc3WioHl1qMd1pMazbPOrx-rt2Dwb0zVBuFtBnVmRa47Rquw7PA-7FVdLOZwxuq8Ali3yV5i1OJw36XVY7p_zdLYrAymf-25W7OsKLeFpX_frry5zGdy9VNm2R9b1-kdcruKOe3eWkkOyJ7O75KDyqpL-1UFPf36HnnXWy4KA-Jqg6_8Zl-aKjkgOjte2dLu6_yrRDASZ1CoKd4Mc_qwCyZ2L5sU8-vF9Pt9Mjo9-Xw8cKoaC47iXX8BwXXqCuVxSRnlqUw4nEcYl14S8DhkTIlUxG4cppIGIVBKEWIhdZbAnqa81Jf0AWnlwLFDYodM00QlGiImykTApNIUgklNQ8mYG2uL0A0zI1UBkGMdjCwyWTUBB5E1PyIUQVSJwCJOPWq2BuD4D30f5VTTIny2aSjmk6iyxgiCRlhrCNFiwpn2ZNdVPOZwWu_yJFYitMhTlHK0fotaO4Gox3D9HpzgLfLcUCCERo53dCZyWZbRh09fdiC6vGgQvayI0gLYoWT1LgLWhNBcDcqjBiU4AtXoPkSd3HCljDxMInMBThxGbvR0e_ezuhsnxXt3uS6WSCMoIki6gUUertW65qxPKcSTTFhENBS-wfpmT349NQjmFA0xgDk7tWnsJNxHuzD0Mbnlm5olnuOKI9JazJf6CUSOi7hNboixgG947OH39H2b7PdPhucXbfMvpm2cBbSNhue9q9_f5nBK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYLCAQMBDuiR27PQBQQtMLbsgsQ31LTiO0wIlKUurqX-K38g5zgUiJtjLXuMTRz6Xz8fxuRDyxGcAvBxvGJnAlJyQOWEsqROmXHEtJXMTTE4-OOTDE_Z-HIzXyM86FwbDKmtMNECd5Ar_ke94eCPGBWjkq_kPB7tG4e1q3UKjVIs9vTqDI1vxcvQW5PvU93ffHb8ZOlVXAUfxnr8AdzJ1hfK4pIzyVCYcPHDGpZcEPA4ZUyIVsRuHqaRBCJRShNg6nCWA4spLfUlh3ivkKqOAJWA_Ytwc8AA7OK_S86jwdipt6M7zTHeNtnt-a_szXQKavaAzn-XFeY7u3_Ga68tsLldncjb7YzPcvUGuV16s3S_VboOs6ewm2ahworCfV8WsX9wir_vLRW7KwtqAvt_sI9N3B5TBjle2tAc6-yqxvIkzzNUUY82cAeyrid2fTYD7i-n32-TkUvh7h3Qy4NgmsUOmaaISDT4YZSJgUmkK7qmmoWTMjbVFaM3MSFUlzbGzxiwy93QCjjYlPyIUQVSJwCJO89a8LOnxH_oByqmhxYLc5kF-Ookq-47ADYW1huB_JpxpT_ZcxWMO5_8eT2IlQotso5SjMru1gZWoz3D9nkfhM48NBRblyDDqZyKXRRGNPny6ANHRxxbRs4oozYEdSlaZFrAmLPbVotxqUQK0qNbwJupkzZUi-m2E8Gatp-cPP2qGcVKM5Mt0vkQaQbEmpRtY5G6p1g1nfUrBQ2XCIqKl8C3Wt0eyL1NTE52i8QUwZ7cxjQsJ996_17FN1ofHB_vR_uhw7z655pteKJ7jii3SWZwu9QPwSBfxQwMDNvl82bjzCyGXm1s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYbCAQMBD2iR27PQBQcuoWgYDbQz1LTiO0wIlKUurqf8afx13iROImGAve60vrnx3_vmX-D4IeeQxAF6ON4xMYEpOwOwgktQOEq64lpI5MSYnv9vnoyP2ZuJPNsjPKhcGwyorTCyAOs4UfiPvungjxgV4ZDcxYREfdocvFj9s7CCFN61VO43SRfb0-gRe3_Ln412w9WPPG77--Gpkmw4DtuI9bwnUMnGEcrmkjPJExhzYOOPSjX0eBYwpkYjIiYJEUj8ASSkCbCPOYkB05SaepDDvBXJRUNrDcEIxqV_2AEc4N6l6VLhd4xmdRZbqTuH5rtc4CouOAfW50FrMs_w00vt37OblVbqQ6xM5n_9xMA6vkauG0Vr90gU3yYZOr5NNgxm59dQUtn52g7zsr5ZZUSLWAiT-Zh0WPXjAMaxobUlroNOvEkud2KNMzTDuzB7AGRtb_fkUtL-cfb9Jjs5Fv7dIKwWNbRErYJrGKtbAxygTPpNKU6CqmgaSMSfSbUIrZYbKlDfHLhvzsLizE_CaU-ojRBOExgRtYtdPLcryHv-RH6Cdalkszl38kB1PQ7PXQ6CksNYAuGjMmXZlz1E84hSoIY8jJYI22UErh2Wmaw0xYZ_h-l2Xwt88LCSwQEeKrj6VqzwPx-8_nUHo8KAh9MQIJRmoQ0mTdQFrwsJfDcnthiTAjGoMb6FPVlrJw98bEp6s_PT04Qf1ME6KUX2pzlYoIyjWp3T8NrldunWtWY9SYKtMtIloOHxD9c2R9MusqI9OcfP5MGen3hpnMu6df69jh1wCxAnfjvf37pIrXtEWxbUdsU1ay-OVvgfkdBndL1DAIp_PG3Z-Aduxn54
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFImsSO7d7YRVQLEgVRitoDihzH6ZYuyaqbCJUDv52ZxIkIFFEO3KL1Zycej8fjHc9nQh5FDAwvxwgjE5iSI5knU0U9mXPNjVIsyDA5-c0On-6x1_vx_gr51OXCWAnCHnFeLptIPj6Uhdm0ktxEvqI2euqHVIRdDX8BIL_RqTB63DAO4T9jFSYgXSCrPAZXfURW93bejQ_aSHPk8SigNp3uTy0NlquG1b-33SP8srMc09_PV16si4U6_arm858Wr-0r5HvX7fbMyrFfV6mvv_3CCPnf5HKVXLZurztuW1kjK6a4RtasYVm6Ty379bPr5Pm4rsqGR9YFc33s7jYX9YD2uOmpq9yJKT4r5EPxpqWe4eE0bwILceaO54flyVE1-3KD7G2__PBi6tlrHjzNt6IK_Ps8EDrkijLKc5Vx2BIxrsIs5qlkTItcpEEqc0VjCUglJN7lzjJYVnWYR4reJKMCOrlOXMkMzXRmwGmjTMRMaUPBnzVUKsaC1DiEdqOZaMuBjldxzJMmsCdgL9TKI0GpJVZqDvH6WouWA-Qv-AkqSo9FBu_mBxi2xA5XAn4r9FWCw5pxZkK1FWiecgr-I89SLaRD7qOaJW06bG-HkjHD_ochhdc8bBDI4lHgMaFDVS-Xyau3H88B2n0_AD2xoLwEcWhlUzOgT6hVA-TGAAm2SA-K11EtO6kskxDj2FzAOgI1u4lydvGDvhgbxaN_hSlrxAiKJJZB7JBb7bzqJRtRCi4tEw4Rgxk3EP2wpDiaNSTqoBeYk-0Qv5-b5xrc2_9a4Q65FDVXqIReIDbIqDqpzV1wZKv0njVHPwD4ZJ9u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Peak+Selection+by+a+Benjamini-Hochberg-Based+Algorithm&rft.jtitle=PloS+one&rft.au=Abbas%2C+Ahmed&rft.au=Kong%2C+Xin-Bing&rft.au=Liu%2C+Zhi&rft.au=Jing%2C+Bing-Yi&rft.date=2013-01-07&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=1&rft.spage=e53112&rft_id=info:doi/10.1371%2Fjournal.pone.0053112&rft.externalDBID=ISR&rft.externalDocID=A478401132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon