Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high...
        Saved in:
      
    
          | Published in | PloS one Vol. 8; no. 1; p. e53112 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        07.01.2013
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0053112 | 
Cover
| Abstract | A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. | 
    
|---|---|
| AbstractList | A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at  | 
    
| Audience | Academic | 
    
| Author | Gao, Xin Abbas, Ahmed Kong, Xin-Bing Liu, Zhi Jing, Bing-Yi  | 
    
| AuthorAffiliation | 2 Department of Statistics, Fudan University, Shanghai, China 4 Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong University of Rome, Italy 3 Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau 1 Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia  | 
    
| AuthorAffiliation_xml | – name: 3 Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau – name: University of Rome, Italy – name: 2 Department of Statistics, Fudan University, Shanghai, China – name: 1 Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – name: 4 Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong  | 
    
| Author_xml | – sequence: 1 givenname: Ahmed surname: Abbas fullname: Abbas, Ahmed – sequence: 2 givenname: Xin-Bing surname: Kong fullname: Kong, Xin-Bing – sequence: 3 givenname: Zhi surname: Liu fullname: Liu, Zhi – sequence: 4 givenname: Bing-Yi surname: Jing fullname: Jing, Bing-Yi – sequence: 5 givenname: Xin surname: Gao fullname: Gao, Xin  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23308147$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkl9v0zAUxSM0xP7AN0AQCQnBQ4odO3bKA6KbgFWaNMSAV-vGcVIXJy52AvTb49BsaqYJTX6IdfO7x-ce-zg6aG2rougpRjNMOH6ztr1rwcw2oTxDKCMYpw-iIzwnacJSRA729ofRsffrAcoZexQdpoSgHFN-FL1f9J1toNMy_qzgR3yljJKdtm1cbGOIT1W7hka3Ojm3clUoVyen4FUZL0xtne5WzePoYQXGqyfj9yT69vHD17Pz5OLy0_JscZFINk-7hPMKcYkZEEpYBSVjNKUMcJmxIqdU8ooXqMgrIFkeSOA5RYjTknIscZUCOYme73Q3xnoxDu8FTvM5YhxxEojljigtrMXG6QbcVljQ4l_BulqAC4MaJTKGg4c8y3DJqMIwR5IVjJB8zspC8jxoZTutvt3A9jcYcyOIkRjyv7YghvzFmH_oeze67ItGlVK1nQMzMTP90-qVqO0vQYarybIg8GoUcPZnr3wnGu2lMgZaZfthXk4oRRQN6Itb6N2pjFQNYXDdVjacKwdRsaBDyhiTwffsDiqsUjVahgkrHeqThteThsB06k9XQ--9WF59uT97-X3KvtxjVwpMt_LW9MOT9FPw2X7SNxFfP-0A0B0gnfXeqeq-N_j2VpvUHQzHh0S0-X_zXyNoHbA | 
    
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btx653 crossref_primary_10_1002_mgg3_1255 crossref_primary_10_1109_TCBB_2018_2849728 crossref_primary_10_1016_j_genrep_2018_01_002 crossref_primary_10_1186_1471_2105_15_S15_S4 crossref_primary_10_1038_s41598_018_30553_z crossref_primary_10_1111_sjos_12121 crossref_primary_10_1142_S0219720015500201 crossref_primary_10_1038_s41534_021_00377_3 crossref_primary_10_1089_vim_2018_0137 crossref_primary_10_1016_j_gpb_2012_12_003 crossref_primary_10_1093_bioinformatics_btv318 crossref_primary_10_1007_s10858_014_9828_0 crossref_primary_10_1007_s12253_014_9848_9 crossref_primary_10_3892_ol_2019_10284 crossref_primary_10_1016_j_jmr_2018_11_004 crossref_primary_10_1038_srep08017 crossref_primary_10_1016_j_archoralbio_2016_03_018 crossref_primary_10_3389_fcimb_2021_645951 crossref_primary_10_3390_cimb46070435 crossref_primary_10_1016_j_yexmp_2015_03_028 crossref_primary_10_1109_TCBB_2015_2505286 crossref_primary_10_1177_11779322211067365 crossref_primary_10_3389_fendo_2021_628907 crossref_primary_10_1002_mrc_4272  | 
    
| Cites_doi | 10.1017/CBO9780511761362 10.1093/bioinformatics/btn312 10.1023/A:1012982830367 10.1023/A:1011234126930 10.1016/S0893-6080(09)80012-9 10.1016/j.pnmrs.2003.12.002 10.1093/bioinformatics/bts398 10.1051/epn/19861701011 10.1137/1.9781611970104 10.1073/pnas.0737502100 10.1007/BF00211755 10.1142/S0219720011005276 10.1016/j.sbi.2004.09.003 10.1093/bioinformatics/bts078 10.1007/BF00156617 10.1006/jmre.1998.1570 10.1007/978-1-4613-8122-8 10.1007/BF00404272 10.1007/s00249-008-0367-z 10.1093/bioinformatics/btp225 10.1111/j.2517-6161.1995.tb02031.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2013 Public Library of Science 2013 Abbas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Abbas et al 2013 Abbas et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Abbas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Abbas et al 2013 Abbas et al  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0053112 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Open Access - DOAJ  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Chemistry Biology Computer Science  | 
    
| DocumentTitleAlternate | BH Peak Picking | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 1289067073 oai_doaj_org_article_561fad8551d64e1a90c6b633896dbc78 10.1371/journal.pone.0053112 PMC3538655 2896534641 A478401132 23308147 10_1371_journal_pone_0053112  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM PV9 RZL BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c692t-77f07c16a3436fad664246a1d56b844c7f7b0b8fa358f07a7840074d471c1f2a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:12:33 EST 2021 Fri Oct 03 12:45:43 EDT 2025 Sun Oct 26 03:58:41 EDT 2025 Tue Sep 30 16:52:32 EDT 2025 Fri Sep 05 11:59:08 EDT 2025 Tue Oct 07 06:18:41 EDT 2025 Mon Oct 20 21:55:03 EDT 2025 Mon Oct 20 16:47:42 EDT 2025 Thu Oct 16 15:02:41 EDT 2025 Thu Oct 16 15:00:45 EDT 2025 Thu May 22 21:19:35 EDT 2025 Mon Jul 21 05:45:21 EDT 2025 Wed Oct 01 03:19:38 EDT 2025 Thu Apr 24 23:06:21 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c692t-77f07c16a3436fad664246a1d56b844c7f7b0b8fa358f07a7840074d471c1f2a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Critical revision of the manuscript: XK ZL. Conceived and designed the experiments: BJ XG. Performed the experiments: AA XG. Analyzed the data: AA BJ XG. Contributed reagents/materials/analysis tools: XK ZL XG. Wrote the paper: AA BJ XG. Competing Interests: The authors have declared that no competing interests exist.  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0053112 | 
    
| PMID | 23308147 | 
    
| PQID | 1289067073 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e53112 | 
    
| ParticipantIDs | plos_journals_1289067073 doaj_primary_oai_doaj_org_article_561fad8551d64e1a90c6b633896dbc78 unpaywall_primary_10_1371_journal_pone_0053112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538655 proquest_miscellaneous_1273440405 proquest_journals_1289067073 gale_infotracmisc_A478401132 gale_infotracacademiconefile_A478401132 gale_incontextgauss_ISR_A478401132 gale_incontextgauss_IOV_A478401132 gale_healthsolutions_A478401132 pubmed_primary_23308147 crossref_primary_10_1371_journal_pone_0053112 crossref_citationtrail_10_1371_journal_pone_0053112  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-01-07 | 
    
| PublicationDateYYYYMMDD | 2013-01-07 | 
    
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-07 day: 07  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2013 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | B Alipanahi (ref9) 2011; 9 E Carrara (ref13) 1993; 6 G Kleywegt (ref10) 1990; 135 S Corne (ref12) 1992; 100 R Koradi (ref17) 1998; 135 D Garret (ref11) 1991; 95 B Johnson (ref15) 1994; 4 C Antz (ref16) 1995; 5 V Orekhov (ref18) 2001; 20 Y Benjamini (ref23) 1995; 57 ref24 X Gao (ref5) 2012; 1 ref25 ref20 ref22 ref21 W Gronwald (ref6) 2003; 44 B Alipanahi (ref2) 2009; 25 ref27 A Rouh (ref14) 1994; 4 D Korzhneva (ref19) 2001; 21 ref4 ref3 A Altieri (ref7) 2004; 14 K Forslund (ref28) 2008; 24 T Güntert (ref8) 2009; 38 L Coin (ref26) 2003; 100 Z Liu (ref1) 2012; 28 MA Messih (ref29) 2012; 28  | 
    
| References_xml | – ident: ref22 doi: 10.1017/CBO9780511761362 – volume: 24 start-page: 1681 year: 2008 ident: ref28 article-title: Predicting protein function from domain content publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn312 – volume: 21 start-page: 263 year: 2001 ident: ref19 article-title: MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data publication-title: Journal of Biomolecular NMR doi: 10.1023/A:1012982830367 – volume: 100 start-page: 256 year: 1992 ident: ref12 article-title: An artificial neural network for classifying cross peaks in two dimensional NMR spectra publication-title: Journal of Magnetic Resonance – ident: ref24 – ident: ref25 – volume: 20 start-page: 49 year: 2001 ident: ref18 article-title: MUNIN: a new approach to multi-dimensional NMR spectra interpretation publication-title: Journal of Biomolecular NMR doi: 10.1023/A:1011234126930 – ident: ref27 – volume: 6 start-page: 1023 year: 1993 ident: ref13 article-title: Neural networks for the peak-picking of nuclear magnetic resonance spectra publication-title: Journal of Neural Networks doi: 10.1016/S0893-6080(09)80012-9 – volume: 44 start-page: 33 year: 2003 ident: ref6 article-title: Automated structure determination of proteins by NMR spectroscopy publication-title: Progress in Nuclear Magnetic Resonance doi: 10.1016/j.pnmrs.2003.12.002 – volume: 28 start-page: i444 year: 2012 ident: ref29 article-title: Protein domain recurrence and order can enhance prediction of protein functions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts398 – ident: ref3 doi: 10.1051/epn/19861701011 – volume: 1 start-page: 1 year: 2012 ident: ref5 article-title: Mathematical approaches to the NMR peak-picking problem publication-title: Journal of Applied and Computational Mathematics – ident: ref20 doi: 10.1137/1.9781611970104 – volume: 100 start-page: 4516 year: 2003 ident: ref26 article-title: Enhanced protein domain discovery by using language modeling techniques from speech recognition publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0737502100 – ident: ref4 – volume: 5 start-page: 287 year: 1995 ident: ref16 article-title: A general Bayesian method for an automated signal class recognition in 2D NMR spectra combined with a multivariate discriminant analysis publication-title: Journal of Biomolecular NMR doi: 10.1007/BF00211755 – volume: 95 start-page: 214 year: 1991 ident: ref11 article-title: A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams publication-title: Journal of Magnetic Resonance – volume: 9 start-page: 15 year: 2011 ident: ref9 article-title: Error tolerant NMR backbone resonance assignment and automated structure generation publication-title: Journal of Bionformatics and Computational Biology doi: 10.1142/S0219720011005276 – volume: 14 start-page: 547 year: 2004 ident: ref7 article-title: Automation of NMR structure determination of proteins publication-title: Current Opinions in Structural Biology doi: 10.1016/j.sbi.2004.09.003 – volume: 135 start-page: 288 year: 1990 ident: ref10 article-title: A versatile approach toward the partially automatic recognition of cross peaks in 2D 1H NMR spectra publication-title: Journal of Magnetic Resonance – volume: 28 start-page: 914 year: 2012 ident: ref1 article-title: WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts078 – volume: 4 start-page: 505 year: 1994 ident: ref14 article-title: Bayesian signal extraction from noisy FT NMR spectra publication-title: Journal of Biomolecular NMR doi: 10.1007/BF00156617 – volume: 135 start-page: 288 year: 1998 ident: ref17 article-title: Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY publication-title: Journal of Magnetic Resonance doi: 10.1006/jmre.1998.1570 – ident: ref21 doi: 10.1007/978-1-4613-8122-8 – volume: 4 start-page: 603 year: 1994 ident: ref15 article-title: NMR View: a computer program for the visualization and analysis of NMR data publication-title: Journal of Biomolecular NMR doi: 10.1007/BF00404272 – volume: 38 start-page: 129 year: 2009 ident: ref8 article-title: Automated structure determination from NMR spectra publication-title: European Biophysics Journal doi: 10.1007/s00249-008-0367-z – volume: 25 start-page: i268 year: 2009 ident: ref2 article-title: PICKY: a novel SVD-based NMR spectra peak picking method publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp225 – volume: 57 start-page: 289 year: 1995 ident: ref23 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society, Series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.2511184 | 
    
| Snippet | A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e53112 | 
    
| SubjectTerms | Algorithms Automation Bioinformatics Biology Chemistry Computation Computational Biology - methods Computer applications Computer Science Computers Discriminant analysis Magnetic resonance Methods NMR Noise Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular - methods Picking Protein structure Proteins Proteins - chemistry Science Software  | 
    
| SummonAdditionalLinks | – databaseName: Open Access - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GCgSEBByyTWLH9t7YIqoFCZCAot4sx3G6hZBETVao_54Zxxs1olJ74BqPI3nelme-IeRlysDxcnxhZAJbciSLZK5pJEtuuNWaxQU2J3_6zFdH7ONxdnxh1BfWhA3wwAPj9iG-l7qQENgLzmyiF7HhOYeL1YIXuRGuzTeWi-1lavDBYMWc-0Y5KpJ9L5d529R27vQuSSeByOH1j1551lZNd1nK-W_l5M1N3erzP7qqLoSlwzvkts8nw-Vwjh1yw9Z3yY632C587WGl39wjb5ebvnEArWFr9a-wcxNwQCxhfh7q8MDWPzUCjUSrxqyx6ivCCFeEujppzk779e_75Ojw_fd3q8jPT4gMX6Q9JM5lLEzCNWWUAxM53DUY10mR8VwyZkQp8jiXpaaZBEotJA5JZwXEK5OUqaYPyKwGju2SUDJLC1NYyIYoExnTxlJIFC2VmrE4twGhW2Yq48HFccZFpdyLmYBLxsAPhSJQXgQBicZd7QCucQX9AcpppEVobPcBFEZ5hVFXKUxAnqGU1dBnOhq4WjI8fwK384C8cBQIj1Fj_c2J3nSd-vDlxzWIvn2dEL3yRGUD7DDa9zzAmRB2a0K5N6EEIzeT5V3UyS1XOpXgAzEX4KBh51ZPL19-Pi7jT7GmrrbNBmkERXTIOAvIw0GtR86mlEKuyERAxEThJ6yfrtSna4dOTtH4MvjnfDSNawn30f8Q7mNyK3XzSpIoFntk1p9t7BPIGvv8qXMQfwH1UWit priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMCAgJOCQLokd2z0gaNGmgkRBG0O7RY7ttEBJytoK7b_nPdcJREywa_xLJL8vP8d-v0fI05RB4OV4wsgEluRIFslC0UiWXHOrFIsNFie_n_DxCXt3mp1ukUlTC4PXKpuY6AK1qTX-I99P8ESMC7DIV4sfEXaNwtPVpoWG8q0VzEtHMXaFbKfIjNUj26ODycejJjaDd3PuC-ioSPa9vvqLurJ9Z49J2lmgHI9_G617i3m9vCgV_ftG5dV1tVDnP9V8_sdydXiDXPd5ZjjcGMYO2bLVTbLjPXkZPvd00y9ukdfD9ap2xK0hxMdv4bHrjAPqCovzUIUjW31VSEASjWs9w9tg0QhWPhMO51OQz2r2_TY5OTz49GYc-b4KkeaDdAUJdRkLnXBFGeWlMhz2IIyrxGS8kIxpUYoiLmSpaCYBqYTE5unMwDqmkzJV9A7pVSCxXRJKZqnRxkKWRJnImNKWQgJpqVSMxYUNCG2EmWtPOo69L-a5O0kTsPnYyCNHFeReBQGJ2rcWG9KN_-BHqKcWi5TZ7kF9Ns29B-aQKMJcJZiH4cwmahBrXnDYoQ-4KbSQAXmEWs439aet4-dDhvNPYNcekCcOgbQZFd7Lmar1cpm__fD5EqDjow7omQeVNYhDK18LAXNCOq4Ocq-DBOfXneFdtMlGKsv8t5vAm42dXjz8uB3Gj-Jdu8rWa8QIiqyRcRaQuxuzbiWbUgo5JBMBER2D74i-O1J9mTnWcorOl8E3-61rXEq59_49j_vkWuo6lCRRLPZIb3W2tg8gT1wVD73z_wKRWmZg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFImsSO7d7YRVQLEgVRitoDihzH6ZYuyaqbCJUDv52ZxIkIFFEO3KL1Zycej8fjHc9nQh5FDAwvxwgjE5iSI5knU0U9mXPNjVIsyDA5-c0On-6x1_vx_gr51OXCWAnCHnFeLptIPj6Uhdm0ktxEvqI2euqHVIRdDX8BIL_RqTB63DAO4T9jFSYgXSCrPAZXfURW93bejQ_aSHPk8SigNp3uTy0NlquG1b-33SP8srMc09_PV16si4U6_arm858Wr-0r5HvX7fbMyrFfV6mvv_3CCPnf5HKVXLZurztuW1kjK6a4RtasYVm6Ty379bPr5Pm4rsqGR9YFc33s7jYX9YD2uOmpq9yJKT4r5EPxpqWe4eE0bwILceaO54flyVE1-3KD7G2__PBi6tlrHjzNt6IK_Ps8EDrkijLKc5Vx2BIxrsIs5qlkTItcpEEqc0VjCUglJN7lzjJYVnWYR4reJKMCOrlOXMkMzXRmwGmjTMRMaUPBnzVUKsaC1DiEdqOZaMuBjldxzJMmsCdgL9TKI0GpJVZqDvH6WouWA-Qv-AkqSo9FBu_mBxi2xA5XAn4r9FWCw5pxZkK1FWiecgr-I89SLaRD7qOaJW06bG-HkjHD_ochhdc8bBDI4lHgMaFDVS-Xyau3H88B2n0_AD2xoLwEcWhlUzOgT6hVA-TGAAm2SA-K11EtO6kskxDj2FzAOgI1u4lydvGDvhgbxaN_hSlrxAiKJJZB7JBb7bzqJRtRCi4tEw4Rgxk3EP2wpDiaNSTqoBeYk-0Qv5-b5xrc2_9a4Q65FDVXqIReIDbIqDqpzV1wZKv0njVHPwD4ZJ9u priority: 102 providerName: Unpaywall  | 
    
| Title | Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23308147 https://www.proquest.com/docview/1289067073 https://www.proquest.com/docview/1273440405 https://pubmed.ncbi.nlm.nih.gov/PMC3538655 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053112&type=printable https://doaj.org/article/561fad8551d64e1a90c6b633896dbc78 http://dx.doi.org/10.1371/journal.pone.0053112  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMEpASMAhVRI7dnpA0E4bBWll2ijqTpHjOO0gJKVpBf3vec9NIyKK6CUH-9mS35ef8-zfI-SFz8DxcswwMoFPckLmhLGkTphyxbWUzE3wcfLZkA9G7OM4GO-RTc3WioHl1qMd1pMazbPOrx-rt2Dwb0zVBuFtBnVmRa47Rquw7PA-7FVdLOZwxuq8Ali3yV5i1OJw36XVY7p_zdLYrAymf-25W7OsKLeFpX_frry5zGdy9VNm2R9b1-kdcruKOe3eWkkOyJ7O75KDyqpL-1UFPf36HnnXWy4KA-Jqg6_8Zl-aKjkgOjte2dLu6_yrRDASZ1CoKd4Mc_qwCyZ2L5sU8-vF9Pt9Mjo9-Xw8cKoaC47iXX8BwXXqCuVxSRnlqUw4nEcYl14S8DhkTIlUxG4cppIGIVBKEWIhdZbAnqa81Jf0AWnlwLFDYodM00QlGiImykTApNIUgklNQ8mYG2uL0A0zI1UBkGMdjCwyWTUBB5E1PyIUQVSJwCJOPWq2BuD4D30f5VTTIny2aSjmk6iyxgiCRlhrCNFiwpn2ZNdVPOZwWu_yJFYitMhTlHK0fotaO4Gox3D9HpzgLfLcUCCERo53dCZyWZbRh09fdiC6vGgQvayI0gLYoWT1LgLWhNBcDcqjBiU4AtXoPkSd3HCljDxMInMBThxGbvR0e_ezuhsnxXt3uS6WSCMoIki6gUUertW65qxPKcSTTFhENBS-wfpmT349NQjmFA0xgDk7tWnsJNxHuzD0Mbnlm5olnuOKI9JazJf6CUSOi7hNboixgG947OH39H2b7PdPhucXbfMvpm2cBbSNhue9q9_f5nBK | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYLCAQMBDuiR27PQBQQtMLbsgsQ31LTiO0wIlKUurqX-K38g5zgUiJtjLXuMTRz6Xz8fxuRDyxGcAvBxvGJnAlJyQOWEsqROmXHEtJXMTTE4-OOTDE_Z-HIzXyM86FwbDKmtMNECd5Ar_ke94eCPGBWjkq_kPB7tG4e1q3UKjVIs9vTqDI1vxcvQW5PvU93ffHb8ZOlVXAUfxnr8AdzJ1hfK4pIzyVCYcPHDGpZcEPA4ZUyIVsRuHqaRBCJRShNg6nCWA4spLfUlh3ivkKqOAJWA_Ytwc8AA7OK_S86jwdipt6M7zTHeNtnt-a_szXQKavaAzn-XFeY7u3_Ga68tsLldncjb7YzPcvUGuV16s3S_VboOs6ewm2ahworCfV8WsX9wir_vLRW7KwtqAvt_sI9N3B5TBjle2tAc6-yqxvIkzzNUUY82cAeyrid2fTYD7i-n32-TkUvh7h3Qy4NgmsUOmaaISDT4YZSJgUmkK7qmmoWTMjbVFaM3MSFUlzbGzxiwy93QCjjYlPyIUQVSJwCJO89a8LOnxH_oByqmhxYLc5kF-Ookq-47ADYW1huB_JpxpT_ZcxWMO5_8eT2IlQotso5SjMru1gZWoz3D9nkfhM48NBRblyDDqZyKXRRGNPny6ANHRxxbRs4oozYEdSlaZFrAmLPbVotxqUQK0qNbwJupkzZUi-m2E8Gatp-cPP2qGcVKM5Mt0vkQaQbEmpRtY5G6p1g1nfUrBQ2XCIqKl8C3Wt0eyL1NTE52i8QUwZ7cxjQsJ996_17FN1ofHB_vR_uhw7z655pteKJ7jii3SWZwu9QPwSBfxQwMDNvl82bjzCyGXm1s | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYbCAQMBD2iR27PQBQcuoWgYDbQz1LTiO0wIlKUurqf8afx13iROImGAve60vrnx3_vmX-D4IeeQxAF6ON4xMYEpOwOwgktQOEq64lpI5MSYnv9vnoyP2ZuJPNsjPKhcGwyorTCyAOs4UfiPvungjxgV4ZDcxYREfdocvFj9s7CCFN61VO43SRfb0-gRe3_Ln412w9WPPG77--Gpkmw4DtuI9bwnUMnGEcrmkjPJExhzYOOPSjX0eBYwpkYjIiYJEUj8ASSkCbCPOYkB05SaepDDvBXJRUNrDcEIxqV_2AEc4N6l6VLhd4xmdRZbqTuH5rtc4CouOAfW50FrMs_w00vt37OblVbqQ6xM5n_9xMA6vkauG0Vr90gU3yYZOr5NNgxm59dQUtn52g7zsr5ZZUSLWAiT-Zh0WPXjAMaxobUlroNOvEkud2KNMzTDuzB7AGRtb_fkUtL-cfb9Jjs5Fv7dIKwWNbRErYJrGKtbAxygTPpNKU6CqmgaSMSfSbUIrZYbKlDfHLhvzsLizE_CaU-ojRBOExgRtYtdPLcryHv-RH6Cdalkszl38kB1PQ7PXQ6CksNYAuGjMmXZlz1E84hSoIY8jJYI22UErh2Wmaw0xYZ_h-l2Xwt88LCSwQEeKrj6VqzwPx-8_nUHo8KAh9MQIJRmoQ0mTdQFrwsJfDcnthiTAjGoMb6FPVlrJw98bEp6s_PT04Qf1ME6KUX2pzlYoIyjWp3T8NrldunWtWY9SYKtMtIloOHxD9c2R9MusqI9OcfP5MGen3hpnMu6df69jh1wCxAnfjvf37pIrXtEWxbUdsU1ay-OVvgfkdBndL1DAIp_PG3Z-Aduxn54 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFImsSO7d7YRVQLEgVRitoDihzH6ZYuyaqbCJUDv52ZxIkIFFEO3KL1Zycej8fjHc9nQh5FDAwvxwgjE5iSI5knU0U9mXPNjVIsyDA5-c0On-6x1_vx_gr51OXCWAnCHnFeLptIPj6Uhdm0ktxEvqI2euqHVIRdDX8BIL_RqTB63DAO4T9jFSYgXSCrPAZXfURW93bejQ_aSHPk8SigNp3uTy0NlquG1b-33SP8srMc09_PV16si4U6_arm858Wr-0r5HvX7fbMyrFfV6mvv_3CCPnf5HKVXLZurztuW1kjK6a4RtasYVm6Ty379bPr5Pm4rsqGR9YFc33s7jYX9YD2uOmpq9yJKT4r5EPxpqWe4eE0bwILceaO54flyVE1-3KD7G2__PBi6tlrHjzNt6IK_Ps8EDrkijLKc5Vx2BIxrsIs5qlkTItcpEEqc0VjCUglJN7lzjJYVnWYR4reJKMCOrlOXMkMzXRmwGmjTMRMaUPBnzVUKsaC1DiEdqOZaMuBjldxzJMmsCdgL9TKI0GpJVZqDvH6WouWA-Qv-AkqSo9FBu_mBxi2xA5XAn4r9FWCw5pxZkK1FWiecgr-I89SLaRD7qOaJW06bG-HkjHD_ochhdc8bBDI4lHgMaFDVS-Xyau3H88B2n0_AD2xoLwEcWhlUzOgT6hVA-TGAAm2SA-K11EtO6kskxDj2FzAOgI1u4lydvGDvhgbxaN_hSlrxAiKJJZB7JBb7bzqJRtRCi4tEw4Rgxk3EP2wpDiaNSTqoBeYk-0Qv5-b5xrc2_9a4Q65FDVXqIReIDbIqDqpzV1wZKv0njVHPwD4ZJ9u | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Peak+Selection+by+a+Benjamini-Hochberg-Based+Algorithm&rft.jtitle=PloS+one&rft.au=Abbas%2C+Ahmed&rft.au=Kong%2C+Xin-Bing&rft.au=Liu%2C+Zhi&rft.au=Jing%2C+Bing-Yi&rft.date=2013-01-07&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=1&rft.spage=e53112&rft_id=info:doi/10.1371%2Fjournal.pone.0053112&rft.externalDBID=ISR&rft.externalDocID=A478401132 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |