Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the stand...
Saved in:
Published in | PloS one Vol. 13; no. 4; p. e0194770 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.04.2018
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0194770 |
Cover
Abstract | Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. |
---|---|
AbstractList | Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. |
Audience | Academic |
Author | Tiun, Sabrina AL-Dhief, Fahad Taha Sammour, Mahmoud A. M. Albadr, Musatafa Abbas Abbood |
AuthorAffiliation | Northeast Normal University, CHINA 3 Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 2 Faculty of Electrical Engineering, Department of Communication Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia |
AuthorAffiliation_xml | – name: 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia – name: 2 Faculty of Electrical Engineering, Department of Communication Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia – name: Northeast Normal University, CHINA – name: 3 Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka, Melaka, Malaysia |
Author_xml | – sequence: 1 givenname: Musatafa Abbas Abbood orcidid: 0000-0003-2062-688X surname: Albadr fullname: Albadr, Musatafa Abbas Abbood – sequence: 2 givenname: Sabrina surname: Tiun fullname: Tiun, Sabrina – sequence: 3 givenname: Fahad Taha surname: AL-Dhief fullname: AL-Dhief, Fahad Taha – sequence: 4 givenname: Mahmoud A. M. surname: Sammour fullname: Sammour, Mahmoud A. M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29672546$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk22L1DAQx4uceA_6DUQLguiLXZOmTVtfCMfhw8HBgae-DdN00mZNk9q06n170929Y_c45OiLTqa_mcz8Z3ocHVhnMYqeU7KkLKfvVm4aLJhlH9xLQss0z8mj6IiWLFnwhLCDHfswOvZ-RUjGCs6fRIdJyfMkS_lRhFe9-4k2NmCbCRqMdY121EpLGLWzcQUe6zgYY4sx2hasDGePRi2gXk1-1LaJ8e84YIexQRjs7OhAttpiDH0_uGA_jR4rMB6fbd8n0fdPH7-dfVlcXH4-Pzu9WEheJuMip6QmObBEyZKUoKqapmlRl1QWeVayqi5yEqrmAFVRZAVXrFa0yqlM6nBiBTuJXm7y9sZ5sVXIi4QkOWeM5SwQ5xuidrAS_aA7GK6FAy3WDjc0AoZRS4OiIpRVmKU5gTJVkkPQj6KSiqeK0jIJubJNrsn2cP0HjLlNSImYh3RTgpiHJLZDCnEftlVOVYe1DIIPYPaK2f9idSsa91tkQRWezE282SYY3K8J_Sg67SWaMER007rfogwXFXONr-6g96uypRoIjWurXLhXzknFacaywPAkDdTyHio8NXZahg6VDv69gLd7AYEZw640MHkvzq--Ppy9_LHPvt5hWwQztt6Zad5Yvw--2FX6VuKb_Q9AugHk4LwfUD10gu_vhEk9rn-YoIg2_w_-B3jTLWI |
CitedBy_id | crossref_primary_10_1016_j_apacoust_2021_108141 crossref_primary_10_1007_s11042_024_20108_y crossref_primary_10_1007_s12559_021_09914_w crossref_primary_10_1016_j_specom_2024_103100 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1371_journal_pone_0242899 crossref_primary_10_3389_fpubh_2022_925901 crossref_primary_10_1109_ACCESS_2021_3082565 crossref_primary_10_3390_sym12111758 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_1007_s10115_023_01972_w crossref_primary_10_1007_s11042_022_12747_w crossref_primary_10_1007_s13369_020_04430_9 crossref_primary_10_1007_s12559_022_10063_x crossref_primary_10_1109_ACCESS_2020_3047933 crossref_primary_10_3390_sci6010002 crossref_primary_10_1007_s00034_020_01388_9 crossref_primary_10_1109_ACCESS_2024_3424791 crossref_primary_10_1016_j_specom_2024_103092 crossref_primary_10_1007_s00500_022_07202_9 crossref_primary_10_1109_ACCESS_2021_3081629 crossref_primary_10_1007_s11042_024_19788_3 crossref_primary_10_1007_s10772_023_10057_6 crossref_primary_10_1007_s11042_021_11439_1 crossref_primary_10_3390_s23031096 crossref_primary_10_1007_s10772_019_09621_w crossref_primary_10_1007_s11042_024_19515_y |
Cites_doi | 10.1007/s11432-014-5269-3 10.1109/TNN.2006.880583 10.1109/TCYB.2014.2307349 10.21437/Interspeech.2014-57 10.1186/s13636-015-0066-5 10.1007/s00521-015-2010-0 10.1109/TNN.2006.875977 10.1007/s00521-011-0522-9 10.1016/j.neucom.2010.11.030 10.1016/j.patcog.2011.03.013 10.1016/j.neucom.2013.12.065 10.1016/j.neucom.2005.12.126 10.1007/s12559-014-9255-2 10.1007/s00521-014-1777-8 10.1109/TSMCB.2011.2168604 10.1371/journal.pone.0100795 10.1007/s11571-015-9358-9 10.1109/MCAS.2011.941081 10.1007/s00521-012-0946-x 10.1016/j.neucom.2010.01.020 10.1016/j.cad.2010.12.015 10.1109/TCYB.2015.2401973 10.1007/s11063-016-9496-z 10.1080/2150704X.2013.805279 10.1007/s00530-012-0266-0 10.1016/j.neucom.2014.01.072 10.1371/journal.pone.0146917 10.1016/j.csl.2016.03.001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Public Library of Science 2018 Albadr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Albadr et al 2018 Albadr et al |
Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Albadr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Albadr et al 2018 Albadr et al |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1371/journal.pone.0194770 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
DocumentTitleAlternate | LID based on ESA-ELM approach |
EISSN | 1932-6203 |
ExternalDocumentID | 2027633373 oai_doaj_org_article_b013be5470a94fc6a0051efcf64f1192 10.1371/journal.pone.0194770 PMC5909623 A535337624 29672546 10_1371_journal_pone_0194770 |
Genre | Journal Article |
GeographicLocations | Selangor Malaysia Malaysia |
GeographicLocations_xml | – name: Malaysia – name: Selangor Malaysia |
GrantInformation_xml | – fundername: ; grantid: FRGS/1/2016/ICT02/UKM/02/14 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c692t-710d07a32fc909afbd1448d91c87593bd8705466aab88586f3df1b71c2d586383 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:42 EST 2021 Wed Aug 27 01:15:29 EDT 2025 Wed Oct 01 15:28:17 EDT 2025 Tue Sep 30 16:57:49 EDT 2025 Wed Oct 01 13:25:45 EDT 2025 Fri Jul 25 10:22:29 EDT 2025 Tue Jun 17 21:13:38 EDT 2025 Tue Jun 10 20:33:46 EDT 2025 Fri Jun 27 04:44:45 EDT 2025 Fri Jun 27 04:20:19 EDT 2025 Thu May 22 21:21:15 EDT 2025 Thu Apr 03 07:01:43 EDT 2025 Wed Oct 01 04:04:07 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-710d07a32fc909afbd1448d91c87593bd8705466aab88586f3df1b71c2d586383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist in this paper. |
ORCID | 0000-0003-2062-688X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194770&type=printable |
PMID | 29672546 |
PQID | 2027633373 |
PQPubID | 1436336 |
PageCount | e0194770 |
ParticipantIDs | plos_journals_2027633373 doaj_primary_oai_doaj_org_article_b013be5470a94fc6a0051efcf64f1192 unpaywall_primary_10_1371_journal_pone_0194770 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909623 proquest_miscellaneous_2028970382 proquest_journals_2027633373 gale_infotracmisc_A535337624 gale_infotracacademiconefile_A535337624 gale_incontextgauss_ISR_A535337624 gale_incontextgauss_IOV_A535337624 gale_healthsolutions_A535337624 pubmed_primary_29672546 crossref_primary_10_1371_journal_pone_0194770 crossref_citationtrail_10_1371_journal_pone_0194770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-19 |
PublicationDateYYYYMMDD | 2018-04-19 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2018 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Lopez-Moreno (ref7) 2016; 40 N-Y Liang (ref16) 2006; 17 M Sokolova (ref36) 2006 J Xiang (ref23) 2014 K Lee (ref1) 2016 P Nayak (ref13) 2016; 27 B Liu (ref26) 2016; 27 ref10 C Pan (ref20) 2012; 21 Y Lan (ref31) 2013; 22 K Han (ref32) 2014 M Pal (ref17) 2013; 4 A Iosifidis (ref24) 2016; 46 G-B Huang (ref29) 2006; 17 E Ambikairajah (ref6) 2011; 11 G-B Huang (ref27) 2012; 42 G-B Huang (ref28) 2014; 6 Z Yang (ref14) 2016; 10 R Zazo (ref2) 2016; 11 A Garg (ref3) 2014; 6 R Minhas (ref18) 2010; 73 V Bhasin (ref19) 2013 Y Peng (ref22) 2015; 149 B Jiang (ref8) 2014; 9 J Xu (ref30) 2015; 2015 C Deng (ref9) 2015; 58 RP Hafen (ref5) 2012; 18 RV Rao (ref35) 2011; 43 J Li (ref4) 2015 AA Mohammed (ref21) 2011; 44 G-B Huang (ref12) 2006; 70 MAA Albadra (ref34) 2017; 12 H Muthusamy (ref33) 2015 Y Wang (ref11) 2011; 74 P Niu (ref15) 2016; 44 G Huang (ref25) 2014; 44 17131657 - IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23 26824467 - PLoS One. 2016 Jan 29;11(1):e0146917 25415946 - IEEE Trans Cybern. 2014 Dec;44(12):2405-17 21984515 - IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29 25751883 - IEEE Trans Cybern. 2016 Jan;46(1):311-24 26834862 - Cogn Neurodyn. 2016 Feb;10 (1):73-83 16856652 - IEEE Trans Neural Netw. 2006 Jul;17(4):879-92 24983963 - PLoS One. 2014 Jul 01;9(7):e100795 |
References_xml | – volume: 58 start-page: 1 year: 2015 ident: ref9 article-title: Extreme learning machines: new trends and applications publication-title: Science China Information Sciences doi: 10.1007/s11432-014-5269-3 – volume: 17 start-page: 1411 year: 2006 ident: ref16 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on neural networks doi: 10.1109/TNN.2006.880583 – volume: 44 start-page: 2405 year: 2014 ident: ref25 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2014.2307349 – year: 2014 ident: ref32 article-title: Speech emotion recognition using deep neural network and extreme learning machine doi: 10.21437/Interspeech.2014-57 – volume: 2015 start-page: 22 year: 2015 ident: ref30 article-title: Regularized minimum class variance extreme learning machine for language recognition publication-title: EURASIP Journal on Audio, Speech, and Music Processing doi: 10.1186/s13636-015-0066-5 – volume: 27 start-page: 2107 year: 2016 ident: ref13 article-title: Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-2010-0 – volume: 17 start-page: 879 year: 2006 ident: ref29 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 21 start-page: 1217 year: 2012 ident: ref20 article-title: Leukocyte image segmentation by visual attention and extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-011-0522-9 – year: 2015 ident: ref33 article-title: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals publication-title: Mathematical Problems in Engineering 2015 – volume: 74 start-page: 2483 year: 2011 ident: ref11 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – start-page: 3211 year: 2016 ident: ref1 article-title: The 2015 NIST language recognition evaluation: the shared view of I2R – start-page: 1948 year: 2013 ident: ref19 – volume: 6 start-page: 388 year: 2014 ident: ref3 article-title: A survey of language identification techniques and applications publication-title: Journal of Emerging Technologies in Web Intelligence – volume: 44 start-page: 2588 year: 2011 ident: ref21 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.03.013 – volume: 149 start-page: 340 year: 2015 ident: ref22 article-title: Discriminative graph regularized extreme learning machine and its application to face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.065 – volume: 70 start-page: 489 year: 2006 ident: ref12 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 6 start-page: 376 year: 2014 ident: ref28 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognitive Computation doi: 10.1007/s12559-014-9255-2 – volume: 27 start-page: 255 year: 2016 ident: ref26 article-title: Manifold regularized extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1777-8 – volume: 42 start-page: 513 year: 2012 ident: ref27 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – start-page: 73 year: 2014 ident: ref23 – volume: 9 start-page: e100795 year: 2014 ident: ref8 article-title: Deep bottleneck features for spoken language identification publication-title: PloS one doi: 10.1371/journal.pone.0100795 – volume: 10 start-page: 73 year: 2016 ident: ref14 article-title: A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training publication-title: Cognitive neurodynamics doi: 10.1007/s11571-015-9358-9 – volume: 11 start-page: 82 year: 2011 ident: ref6 article-title: Language identification: A tutorial publication-title: IEEE Circuits and Systems Magazine doi: 10.1109/MCAS.2011.941081 – volume: 22 start-page: 417 year: 2013 ident: ref31 article-title: An extreme learning machine approach for speaker recognition publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0946-x – volume: 73 start-page: 1906 year: 2010 ident: ref18 article-title: Human action recognition using extreme learning machine based on visual vocabularies publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.020 – volume: 43 start-page: 303 year: 2011 ident: ref35 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – start-page: 1015 year: 2006 ident: ref36 article-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation – volume: 46 start-page: 311 year: 2016 ident: ref24 article-title: Graph embedded extreme learning machine publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2015.2401973 – start-page: 187 year: 2015 ident: ref4 – volume: 44 start-page: 813 year: 2016 ident: ref15 article-title: A kind of parameters self-adjusting extreme learning machine publication-title: Neural Processing Letters doi: 10.1007/s11063-016-9496-z – volume: 4 start-page: 853 year: 2013 ident: ref17 article-title: Kernel-based extreme learning machine for remote-sensing image classification publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2013.805279 – volume: 18 start-page: 499 year: 2012 ident: ref5 article-title: Speech information retrieval: a review publication-title: Multimedia systems doi: 10.1007/s00530-012-0266-0 – volume: 12 start-page: 4610 year: 2017 ident: ref34 article-title: Extreme Learning Machine: A Review publication-title: International Journal of Applied Engineering Research – ident: ref10 doi: 10.1016/j.neucom.2014.01.072 – volume: 11 start-page: e0146917 year: 2016 ident: ref2 article-title: Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks publication-title: PloS one doi: 10.1371/journal.pone.0146917 – volume: 40 start-page: 46 year: 2016 ident: ref7 article-title: On the use of deep feedforward neural networks for automatic language identification publication-title: Computer Speech & Language doi: 10.1016/j.csl.2016.03.001 – reference: 16856652 - IEEE Trans Neural Netw. 2006 Jul;17(4):879-92 – reference: 25415946 - IEEE Trans Cybern. 2014 Dec;44(12):2405-17 – reference: 25751883 - IEEE Trans Cybern. 2016 Jan;46(1):311-24 – reference: 21984515 - IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29 – reference: 24983963 - PLoS One. 2014 Jul 01;9(7):e100795 – reference: 26834862 - Cogn Neurodyn. 2016 Feb;10 (1):73-83 – reference: 17131657 - IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23 – reference: 26824467 - PLoS One. 2016 Jan 29;11(1):e0146917 |
SSID | ssj0053866 |
Score | 2.404903 |
Snippet | Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be... |
SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0194770 |
SubjectTerms | Accuracy Adjustment Analysis Artificial neural networks Biology and Life Sciences Classification Computer and Information Sciences Datasets Design optimization Engineering Feature extraction Identification Information science Language Learning Learning algorithms Machine learning Mathematical problems Methods Natural language processing Neural networks Optimization People and Places Physical Sciences Regression analysis Research and Analysis Methods Social Sciences Speech |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QvcALYnytY0BASMBDb9cmTdrHgZgGEiAxhvZWpfm4DUqvondC_PfYaVpdxaTtgbde7Z5U27F_Th2bkBdM2koDro4XjOuYoxnnsnCxyl2WOm5YxvFw8sdP4viUfzjLzrZGfWFNWN8euBfcAe7TVTbjcqEK7rRQaEbWaSe4SwCeoPeFMDYkU70PhlUsRDgox2RyEPQyb1eNnQOo4RKHE28FIt-vf_TKs7ZedZdBzn8rJ29umlb9-a3qeissHd0htwOepIf9e-yQG7a5S3bCiu3oq9BW-vU9Yk_a1Q_b0GGHkl6YUCnklUMxnhkKFwAJqW3OfWkA7WwNIjXfcehXs6TgynFDkYZhE0v60xdjWjr0Jr9PTo_efX17HIchC7EWRbrGWkyzkIqlTheLQrnKQIqVmyLRkMkUrDKwoDMuhFJVnme5cMy4pJKJTg38gvz2AZk1INZdQhVAAci_AMTlGnBOVUFUNDoziQBUp4yNCBskXurQgRwHYdSl_6wmIRPphVainsqgp4jE41Nt34HjCv43qMyRF_tn-xtgVWWwqvIqq4rIUzSFsj-MOnqB8jBjgI8hgPCIPPcc2EOjwSKdpdp0Xfn-87drMJ18mTC9DExuBeLQKhyMgHfC3lwTzv0JJ3gCPSHvouEOUulK3NgSDIgMnhyM-XLys5GMf4qFd41dbTxPXkBUyEEkD3vbHyWbFkLiOIWIyMmqmIh-Smkuzn0L8wxsDYB3RObj-rmWcvf-h3IfkVsAe3P8JpgU-2S2_rWxjwFarqsn3ov8BWIkd0c priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegPAAPiI2PBQYYhAQ8pDRxYidPaCDKQAIkxtDeIscf3SAkYWmF-O-5c53QiAn21taXSrnP39nnO0IeM2FKBbg6nLFEhQmqcSZyG8rMprFNNEsTvJz8_gPfP0zeHaVHfsOt82WVvU90jlo3CvfIXZLOGWOCvWh_hDg1Ck9X_QiNi-RSFIMm4U3x-ZveE4Mtc-6vyzERPffSmbZNbaYAbRKBI4o3wpHr2j_45klbNd1ZwPPv-snLq7qVv37KqtoITvPr5JpHlXRvrQZb5IKpt8nVjV6D22TLW3FHn_pW089uEHPQNt9MTftdS3qiffWQExjFGKcpfACYSE197MoFaGcqYLP-ioPA6gUF946bjNQPoFjQ765A09C-X_lNcjh__fnVfugHL4SK5_ES6zP1TEgWW5XPcmlLDWlXpvNIQXaTs1KDkacJ51KWWZZm3DJto1JEKtbwDXLeW2RSA5N3CJUADyAnA2CXKcA-ZQmRUqtURxyQntQmIKznf6F8V3IcjlEV7qhNQHayZmGBUiu81AISDk-1664c_6F_iaIdaLGntvuhOV0U3kQL3BEuTZqImcwTq7hEh2WssjyxEQDhgDxAxSjWF1QHz1DspQwwMwSVJCCPHAX21aixcGchV11XvP345RxEB59GRE88kW2AHUr6yxLwTtiva0S5O6IE76BGyzuoxj1XuuKPHcGTvWqfvfxwWMY_xWK82jQrR5PlECkyYMnttSUMnI1zLnDEQkDEyEZGrB-v1CfHrq15CroGYDwg08GaziXcO_9-j7vkCoDcDE8Ao3yXTJanK3MPgOSyvO-8xW_8JHNJ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSOkxwXRFWQKIiyqD2gyPFjW7pkV2RXCA78dmYSJyJQRDlwy67HVjIez3zjGY8JecBSUyrA1X7IuPI5inGW5taXmU1iyzVLOB5OfrUndif85UFysEY-dGdhHAfBR5zN6yaSjw_zymw7Tm5jvaI2ehpELI26HsECiAIALDxNw4dNxSHcGVviAaRzZF1g_GlE1id7b8aHbaQ59kUcMnec7k8jDcxVU9W_190jfLPTgOnv-ZXnV9VCfv0iZ7OfjNfOJfK9--w2Z-UkWC3LQH37pSLkf-PLZXLRwV46bkfZIGumukI2nGKp6WNX_frJVWL2F_MTU9FuI5Uea5fQ1MgQRbOrKTwAcqWmOmoyGGhtZjDz-iPeTVZNKVgc3Pek7k6MKf3U5Iwa2pVQv0YmO8_fPdv13V0QvhJ5vMSUUR2mksVW5WEubanBE8x0HilwuHJWatA7CRdCyjLLkkxYpm1UppGKNfwCN_w6GVXAiU1CJSAWcBMBa2YK4FhZgvHWKtGRAPAptfEI66a8UK5QOt7XMSua6F8KDlPLtAJZWzjWesTvey3aQiF_oX-K0tTTYpnv5g-Y28LNaYGb1KVJeBrKnFslJOpQY5UV3EaAzT1yF2WxaM_M9sqqGCcMYDzYOe6R-w0FlvqoMJdoKld1Xbx4_f4MRPtvB0SPHJGdAzuUdOc34JtQ9AaUWwNKUFhq0LyJsttxpS5w_00waGTQs1tNpzff65txUMwPrMx81dBkORivDFhyo118PWfjXKR464NH0sGyHLB-2FIdHzWV1hOQNfAPPBL0C_hMk3vzXzvcIhcAiWcYpozyLTJafl6Z24B2l-Udp7N-AKy2ros priority: 102 providerName: Unpaywall |
Title | Spoken language identification based on the enhanced self-adjusting extreme learning machine approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29672546 https://www.proquest.com/docview/2027633373 https://www.proquest.com/docview/2028970382 https://pubmed.ncbi.nlm.nih.gov/PMC5909623 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194770&type=printable https://doaj.org/article/b013be5470a94fc6a0051efcf64f1192 http://dx.doi.org/10.1371/journal.pone.0194770 |
UnpaywallVersion | publishedVersion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHnVUMKCkICDo_i59gGhtGooSA1VS1B6stb7SAvGCXEi6L9nZrO2sAhqL1biHVvyPHa-2Z2dIeRVwFQuAFe7_SAUbohqnLBUuzzRka9DGUQhHk4-HsVH4_DTJJpskbpnq2VgtTG0w35S40XR-_3z6j0Y_DvTtYF59UO9-axUPYAsIWMQxG-Db_JRz4_DZl8BrNvsXiJqcWO_H9jDdP97S8tZmZr-zczdmRezahMs_Te78vaqnPOrX7wo_nJdw3vkrsWcdLBWkh2ypcr7ZMdadUXf2NLTbx8QdTaffVclrVcx6aW02URGgBR9nqTwA2AjVeWFSR-glSqA7fIbNgYrpxSme1x0pLYhxZT-MAmbitb1yx-S8fDwy8GRaxsxuCJO_SXma8o-44GvRdpPuc4lhGGJTD0B0U4a5BKMPgrjmPM8SaIk1oHUXs484Uv4BzHwI9Ipga27hHKACxCjAdBLBGChPAfPKUUkvRiQH5fKIUHN8UzYKuXYLKPIzNYbg2hlzbQM5ZRZOTnEbZ6ar6t0XEO_j8JsaLHGtrkxW0wza7IZrhDnKgpZn6ehFjHHCUxpoeNQewCMHfIcVSFbH1htZopsEAWAocHJhA55aSiwzkaJiTxTvqqq7OPnrzcgOjttEb22RHoG7BDcHp6Ab8L6XS3KvRYlzBaiNbyLiltzpcpw8SsOYDCAJ2tl3jz8ohnGl2JyXqlmK0OTpOA5EmDJ47XuN5z105hhywWHsJZVtFjfHikvL0yZ8wh0DcC5Q3qN_dxIuE-ulctTcgdwb4Kbgl66RzrLxUo9A2y5zLvkFpswuCYHHl6HH7pke_9wdHLaNas1XTOdwL3x6GRw_gehJX51 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigcEC2PBgo1CAQ9ZNnEzuuAUHlUu_SBRFu0t-DYzrawJKHZVdU_xW9kJnHCRlTQS29JPImUmfHMN_Z4hpBnLNCJBFxtDxiXNkc1DoMotUWYem7KFfM4Hk7e2_eHR_zj2BsvkV_NWRhMq2xsYmWoVS5xjbwK0n3GWMDeFD9t7BqFu6tNC41aLXb0-RmEbOXr0XuQ73PX3f5w-G5om64CtvQjd4bJh2oQCOamMhpEIk0UxBShihwJ0D1iiQIN9rjvC5GEoRf6KVOpkwSOdBXcQUAH371GrnM24FirPxi3AR7YDt83x_NY4Lwy2tAv8kz3AUrxAFsiL7i_qktA6wt6xTQvLwK6f-drLs-zQpyfiel0wRlu3ya3DIqlW7XarZAlna2Smwu1DVfJirEaJX1pSltv3iH6oMi_64w2q6T0RJlspUpBKPpUReECYCnV2XGVnkBLPQWxqm_YeCybUHAnuKhJTcOLCf1RJYRq2tRHv0uOrkQk90gvAyavESoAjkAMCEAylIC1kgQ8s5KecnxAlkJpi7CG_7E0VdCxGcc0rrb2AoiGahbGKLXYSM0idvtWUVcB-Q_9WxRtS4s1vKsH-ekkNiYhxhXoRHs8GIiIp9IXaCB1KlOfpw4Ab4tsoGLE9YHY1hLFWx4DjA5OjFvkaUWBdTwyTBSaiHlZxqNPXy5BdPC5Q_TCEKU5sEMKczgD_gnrg3Uo1zuUYI1kZ3gN1bjhShn_mbfwZqPaFw8_aYfxo5j8l-l8XtGEEXimEFhyv54JLWfdyA-wpYNFgs4c6bC-O5KdHFdl1D3QNQD_Fum3s-lSwn3w7__YIMvDw73deHe0v_OQ3ACAHeLuoxOtk97sdK4fAYidJY8ry0HJ16s2Vb8Bsu-vAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIPE4IFoeDRS6IBBwcBp7ba99QKhQooZCQS1FuZn1PtJCsEOdqOpf49cxY69NLCropTfbO7bkmdmZb3ZnZwh5wrhOJeBqp8986fioxhGPjSMiE3jGVyzw8XDyh91w-8B_NwpGS-RXfRYG0yprm1gaapVLXCMvg_SQMcbZhrFpEZ-2Bq-mPx3sIIU7rXU7jUpFdvTpCYRvxcvhFsj6qecN3n5-s-3YDgOODGNvhomIqs8F84yM-7EwqYL4IlKxKwHGxyxVoM2BH4ZCpFEURKFhyrgpd6Wn4A6CO_juJXKZM59hOhkfNcEe2JEwtEf1GHc3rGb0pnmmewCrfI7tkRdcYdkxoPELnekkL84CvX_nbl6dZ1NxeiImkwXHOLhJblhESzcrFVwmSzpbIdcX6hyukGVrQQr63Ja5fnGL6P1p_l1ntF4xpUfKZi6VykLRvyoKFwBRqc4Oy1QFWugJiFh9wyZk2ZiCfHCBk9rmF2P6o0wO1bSulX6bHFyISO6QTgZMXiVUADSBeBBAZSQBd6UpeGklA-WGgDKF0l3Cav4n0lZEx8Yck6Tc5uMQGVUsTFBqiZValzjNW9OqIsh_6F-jaBtarOddPsiPx4k1DwmuRqc68HlfxL6RoUBjqY00oW9cAOFdso6KkVSHYxurlGwGDPA6ODS_Sx6XFFjTI8PZMRbzokiGH7-cg2h_r0X0zBKZHNghhT2oAf-EtcJalGstSrBMsjW8impcc6VI_sxheLNW7bOHHzXD-FFMBMx0Pi9pohi8VAQsuVvNhIazXhxybO_QJbw1R1qsb49kR4dlSfUAdA0CgS7pNbPpXMK99-__WCdXwEgl74e7O_fJNcDaEW5EuvEa6cyO5_oB4NlZ-rA0HJR8vWhL9RscG7M8 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSOkxwXRFWQKIiyqD2gyPFjW7pkV2RXCA78dmYSJyJQRDlwy67HVjIez3zjGY8JecBSUyrA1X7IuPI5inGW5taXmU1iyzVLOB5OfrUndif85UFysEY-dGdhHAfBR5zN6yaSjw_zymw7Tm5jvaI2ehpELI26HsECiAIALDxNw4dNxSHcGVviAaRzZF1g_GlE1id7b8aHbaQ59kUcMnec7k8jDcxVU9W_190jfLPTgOnv-ZXnV9VCfv0iZ7OfjNfOJfK9--w2Z-UkWC3LQH37pSLkf-PLZXLRwV46bkfZIGumukI2nGKp6WNX_frJVWL2F_MTU9FuI5Uea5fQ1MgQRbOrKTwAcqWmOmoyGGhtZjDz-iPeTVZNKVgc3Pek7k6MKf3U5Iwa2pVQv0YmO8_fPdv13V0QvhJ5vMSUUR2mksVW5WEubanBE8x0HilwuHJWatA7CRdCyjLLkkxYpm1UppGKNfwCN_w6GVXAiU1CJSAWcBMBa2YK4FhZgvHWKtGRAPAptfEI66a8UK5QOt7XMSua6F8KDlPLtAJZWzjWesTvey3aQiF_oX-K0tTTYpnv5g-Y28LNaYGb1KVJeBrKnFslJOpQY5UV3EaAzT1yF2WxaM_M9sqqGCcMYDzYOe6R-w0FlvqoMJdoKld1Xbx4_f4MRPtvB0SPHJGdAzuUdOc34JtQ9AaUWwNKUFhq0LyJsttxpS5w_00waGTQs1tNpzff65txUMwPrMx81dBkORivDFhyo118PWfjXKR464NH0sGyHLB-2FIdHzWV1hOQNfAPPBL0C_hMk3vzXzvcIhcAiWcYpozyLTJafl6Z24B2l-Udp7N-AKy2ros |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+language+identification+based+on+the+enhanced+self-adjusting+extreme+learning+machine+approach&rft.jtitle=PloS+one&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Sammour%2C+Mahmoud+A.+M&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2018-04-19&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft.spage=e0194770&rft_id=info:doi/10.1371%2Fjournal.pone.0194770&rft.externalDBID=n%2Fa&rft.externalDocID=A535337624 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |