Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the stand...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 4; p. e0194770
Main Authors Albadr, Musatafa Abbas Abbood, Tiun, Sabrina, AL-Dhief, Fahad Taha, Sammour, Mahmoud A. M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.04.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0194770

Cover

Abstract Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
AbstractList Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
Audience Academic
Author Tiun, Sabrina
AL-Dhief, Fahad Taha
Sammour, Mahmoud A. M.
Albadr, Musatafa Abbas Abbood
AuthorAffiliation Northeast Normal University, CHINA
3 Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
2 Faculty of Electrical Engineering, Department of Communication Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
AuthorAffiliation_xml – name: 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
– name: 2 Faculty of Electrical Engineering, Department of Communication Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
– name: Northeast Normal University, CHINA
– name: 3 Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
Author_xml – sequence: 1
  givenname: Musatafa Abbas Abbood
  orcidid: 0000-0003-2062-688X
  surname: Albadr
  fullname: Albadr, Musatafa Abbas Abbood
– sequence: 2
  givenname: Sabrina
  surname: Tiun
  fullname: Tiun, Sabrina
– sequence: 3
  givenname: Fahad Taha
  surname: AL-Dhief
  fullname: AL-Dhief, Fahad Taha
– sequence: 4
  givenname: Mahmoud A. M.
  surname: Sammour
  fullname: Sammour, Mahmoud A. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29672546$$D View this record in MEDLINE/PubMed
BookMark eNqNk22L1DAQx4uceA_6DUQLguiLXZOmTVtfCMfhw8HBgae-DdN00mZNk9q06n170929Y_c45OiLTqa_mcz8Z3ocHVhnMYqeU7KkLKfvVm4aLJhlH9xLQss0z8mj6IiWLFnwhLCDHfswOvZ-RUjGCs6fRIdJyfMkS_lRhFe9-4k2NmCbCRqMdY121EpLGLWzcQUe6zgYY4sx2hasDGePRi2gXk1-1LaJ8e84YIexQRjs7OhAttpiDH0_uGA_jR4rMB6fbd8n0fdPH7-dfVlcXH4-Pzu9WEheJuMip6QmObBEyZKUoKqapmlRl1QWeVayqi5yEqrmAFVRZAVXrFa0yqlM6nBiBTuJXm7y9sZ5sVXIi4QkOWeM5SwQ5xuidrAS_aA7GK6FAy3WDjc0AoZRS4OiIpRVmKU5gTJVkkPQj6KSiqeK0jIJubJNrsn2cP0HjLlNSImYh3RTgpiHJLZDCnEftlVOVYe1DIIPYPaK2f9idSsa91tkQRWezE282SYY3K8J_Sg67SWaMER007rfogwXFXONr-6g96uypRoIjWurXLhXzknFacaywPAkDdTyHio8NXZahg6VDv69gLd7AYEZw640MHkvzq--Ppy9_LHPvt5hWwQztt6Zad5Yvw--2FX6VuKb_Q9AugHk4LwfUD10gu_vhEk9rn-YoIg2_w_-B3jTLWI
CitedBy_id crossref_primary_10_1016_j_apacoust_2021_108141
crossref_primary_10_1007_s11042_024_20108_y
crossref_primary_10_1007_s12559_021_09914_w
crossref_primary_10_1016_j_specom_2024_103100
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1371_journal_pone_0242899
crossref_primary_10_3389_fpubh_2022_925901
crossref_primary_10_1109_ACCESS_2021_3082565
crossref_primary_10_3390_sym12111758
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_1007_s10115_023_01972_w
crossref_primary_10_1007_s11042_022_12747_w
crossref_primary_10_1007_s13369_020_04430_9
crossref_primary_10_1007_s12559_022_10063_x
crossref_primary_10_1109_ACCESS_2020_3047933
crossref_primary_10_3390_sci6010002
crossref_primary_10_1007_s00034_020_01388_9
crossref_primary_10_1109_ACCESS_2024_3424791
crossref_primary_10_1016_j_specom_2024_103092
crossref_primary_10_1007_s00500_022_07202_9
crossref_primary_10_1109_ACCESS_2021_3081629
crossref_primary_10_1007_s11042_024_19788_3
crossref_primary_10_1007_s10772_023_10057_6
crossref_primary_10_1007_s11042_021_11439_1
crossref_primary_10_3390_s23031096
crossref_primary_10_1007_s10772_019_09621_w
crossref_primary_10_1007_s11042_024_19515_y
Cites_doi 10.1007/s11432-014-5269-3
10.1109/TNN.2006.880583
10.1109/TCYB.2014.2307349
10.21437/Interspeech.2014-57
10.1186/s13636-015-0066-5
10.1007/s00521-015-2010-0
10.1109/TNN.2006.875977
10.1007/s00521-011-0522-9
10.1016/j.neucom.2010.11.030
10.1016/j.patcog.2011.03.013
10.1016/j.neucom.2013.12.065
10.1016/j.neucom.2005.12.126
10.1007/s12559-014-9255-2
10.1007/s00521-014-1777-8
10.1109/TSMCB.2011.2168604
10.1371/journal.pone.0100795
10.1007/s11571-015-9358-9
10.1109/MCAS.2011.941081
10.1007/s00521-012-0946-x
10.1016/j.neucom.2010.01.020
10.1016/j.cad.2010.12.015
10.1109/TCYB.2015.2401973
10.1007/s11063-016-9496-z
10.1080/2150704X.2013.805279
10.1007/s00530-012-0266-0
10.1016/j.neucom.2014.01.072
10.1371/journal.pone.0146917
10.1016/j.csl.2016.03.001
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Albadr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Albadr et al 2018 Albadr et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Albadr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Albadr et al 2018 Albadr et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0194770
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database



PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate LID based on ESA-ELM approach
EISSN 1932-6203
ExternalDocumentID 2027633373
oai_doaj_org_article_b013be5470a94fc6a0051efcf64f1192
10.1371/journal.pone.0194770
PMC5909623
A535337624
29672546
10_1371_journal_pone_0194770
Genre Journal Article
GeographicLocations Selangor Malaysia
Malaysia
GeographicLocations_xml – name: Malaysia
– name: Selangor Malaysia
GrantInformation_xml – fundername: ;
  grantid: FRGS/1/2016/ICT02/UKM/02/14
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-710d07a32fc909afbd1448d91c87593bd8705466aab88586f3df1b71c2d586383
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:42 EST 2021
Wed Aug 27 01:15:29 EDT 2025
Wed Oct 01 15:28:17 EDT 2025
Tue Sep 30 16:57:49 EDT 2025
Wed Oct 01 13:25:45 EDT 2025
Fri Jul 25 10:22:29 EDT 2025
Tue Jun 17 21:13:38 EDT 2025
Tue Jun 10 20:33:46 EDT 2025
Fri Jun 27 04:44:45 EDT 2025
Fri Jun 27 04:20:19 EDT 2025
Thu May 22 21:21:15 EDT 2025
Thu Apr 03 07:01:43 EDT 2025
Wed Oct 01 04:04:07 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-710d07a32fc909afbd1448d91c87593bd8705466aab88586f3df1b71c2d586383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist in this paper.
ORCID 0000-0003-2062-688X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194770&type=printable
PMID 29672546
PQID 2027633373
PQPubID 1436336
PageCount e0194770
ParticipantIDs plos_journals_2027633373
doaj_primary_oai_doaj_org_article_b013be5470a94fc6a0051efcf64f1192
unpaywall_primary_10_1371_journal_pone_0194770
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909623
proquest_miscellaneous_2028970382
proquest_journals_2027633373
gale_infotracmisc_A535337624
gale_infotracacademiconefile_A535337624
gale_incontextgauss_ISR_A535337624
gale_incontextgauss_IOV_A535337624
gale_healthsolutions_A535337624
pubmed_primary_29672546
crossref_primary_10_1371_journal_pone_0194770
crossref_citationtrail_10_1371_journal_pone_0194770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-19
PublicationDateYYYYMMDD 2018-04-19
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Lopez-Moreno (ref7) 2016; 40
N-Y Liang (ref16) 2006; 17
M Sokolova (ref36) 2006
J Xiang (ref23) 2014
K Lee (ref1) 2016
P Nayak (ref13) 2016; 27
B Liu (ref26) 2016; 27
ref10
C Pan (ref20) 2012; 21
Y Lan (ref31) 2013; 22
K Han (ref32) 2014
M Pal (ref17) 2013; 4
A Iosifidis (ref24) 2016; 46
G-B Huang (ref29) 2006; 17
E Ambikairajah (ref6) 2011; 11
G-B Huang (ref27) 2012; 42
G-B Huang (ref28) 2014; 6
Z Yang (ref14) 2016; 10
R Zazo (ref2) 2016; 11
A Garg (ref3) 2014; 6
R Minhas (ref18) 2010; 73
V Bhasin (ref19) 2013
Y Peng (ref22) 2015; 149
B Jiang (ref8) 2014; 9
J Xu (ref30) 2015; 2015
C Deng (ref9) 2015; 58
RP Hafen (ref5) 2012; 18
RV Rao (ref35) 2011; 43
J Li (ref4) 2015
AA Mohammed (ref21) 2011; 44
G-B Huang (ref12) 2006; 70
MAA Albadra (ref34) 2017; 12
H Muthusamy (ref33) 2015
Y Wang (ref11) 2011; 74
P Niu (ref15) 2016; 44
G Huang (ref25) 2014; 44
17131657 - IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23
26824467 - PLoS One. 2016 Jan 29;11(1):e0146917
25415946 - IEEE Trans Cybern. 2014 Dec;44(12):2405-17
21984515 - IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29
25751883 - IEEE Trans Cybern. 2016 Jan;46(1):311-24
26834862 - Cogn Neurodyn. 2016 Feb;10 (1):73-83
16856652 - IEEE Trans Neural Netw. 2006 Jul;17(4):879-92
24983963 - PLoS One. 2014 Jul 01;9(7):e100795
References_xml – volume: 58
  start-page: 1
  year: 2015
  ident: ref9
  article-title: Extreme learning machines: new trends and applications
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-014-5269-3
– volume: 17
  start-page: 1411
  year: 2006
  ident: ref16
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Transactions on neural networks
  doi: 10.1109/TNN.2006.880583
– volume: 44
  start-page: 2405
  year: 2014
  ident: ref25
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2014.2307349
– year: 2014
  ident: ref32
  article-title: Speech emotion recognition using deep neural network and extreme learning machine
  doi: 10.21437/Interspeech.2014-57
– volume: 2015
  start-page: 22
  year: 2015
  ident: ref30
  article-title: Regularized minimum class variance extreme learning machine for language recognition
  publication-title: EURASIP Journal on Audio, Speech, and Music Processing
  doi: 10.1186/s13636-015-0066-5
– volume: 27
  start-page: 2107
  year: 2016
  ident: ref13
  article-title: Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2010-0
– volume: 17
  start-page: 879
  year: 2006
  ident: ref29
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 21
  start-page: 1217
  year: 2012
  ident: ref20
  article-title: Leukocyte image segmentation by visual attention and extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-011-0522-9
– year: 2015
  ident: ref33
  article-title: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals
  publication-title: Mathematical Problems in Engineering 2015
– volume: 74
  start-page: 2483
  year: 2011
  ident: ref11
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– start-page: 3211
  year: 2016
  ident: ref1
  article-title: The 2015 NIST language recognition evaluation: the shared view of I2R
– start-page: 1948
  year: 2013
  ident: ref19
– volume: 6
  start-page: 388
  year: 2014
  ident: ref3
  article-title: A survey of language identification techniques and applications
  publication-title: Journal of Emerging Technologies in Web Intelligence
– volume: 44
  start-page: 2588
  year: 2011
  ident: ref21
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.03.013
– volume: 149
  start-page: 340
  year: 2015
  ident: ref22
  article-title: Discriminative graph regularized extreme learning machine and its application to face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.065
– volume: 70
  start-page: 489
  year: 2006
  ident: ref12
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 6
  start-page: 376
  year: 2014
  ident: ref28
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-014-9255-2
– volume: 27
  start-page: 255
  year: 2016
  ident: ref26
  article-title: Manifold regularized extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1777-8
– volume: 42
  start-page: 513
  year: 2012
  ident: ref27
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– start-page: 73
  year: 2014
  ident: ref23
– volume: 9
  start-page: e100795
  year: 2014
  ident: ref8
  article-title: Deep bottleneck features for spoken language identification
  publication-title: PloS one
  doi: 10.1371/journal.pone.0100795
– volume: 10
  start-page: 73
  year: 2016
  ident: ref14
  article-title: A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training
  publication-title: Cognitive neurodynamics
  doi: 10.1007/s11571-015-9358-9
– volume: 11
  start-page: 82
  year: 2011
  ident: ref6
  article-title: Language identification: A tutorial
  publication-title: IEEE Circuits and Systems Magazine
  doi: 10.1109/MCAS.2011.941081
– volume: 22
  start-page: 417
  year: 2013
  ident: ref31
  article-title: An extreme learning machine approach for speaker recognition
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0946-x
– volume: 73
  start-page: 1906
  year: 2010
  ident: ref18
  article-title: Human action recognition using extreme learning machine based on visual vocabularies
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.020
– volume: 43
  start-page: 303
  year: 2011
  ident: ref35
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– start-page: 1015
  year: 2006
  ident: ref36
  article-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation
– volume: 46
  start-page: 311
  year: 2016
  ident: ref24
  article-title: Graph embedded extreme learning machine
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2015.2401973
– start-page: 187
  year: 2015
  ident: ref4
– volume: 44
  start-page: 813
  year: 2016
  ident: ref15
  article-title: A kind of parameters self-adjusting extreme learning machine
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-016-9496-z
– volume: 4
  start-page: 853
  year: 2013
  ident: ref17
  article-title: Kernel-based extreme learning machine for remote-sensing image classification
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2013.805279
– volume: 18
  start-page: 499
  year: 2012
  ident: ref5
  article-title: Speech information retrieval: a review
  publication-title: Multimedia systems
  doi: 10.1007/s00530-012-0266-0
– volume: 12
  start-page: 4610
  year: 2017
  ident: ref34
  article-title: Extreme Learning Machine: A Review
  publication-title: International Journal of Applied Engineering Research
– ident: ref10
  doi: 10.1016/j.neucom.2014.01.072
– volume: 11
  start-page: e0146917
  year: 2016
  ident: ref2
  article-title: Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks
  publication-title: PloS one
  doi: 10.1371/journal.pone.0146917
– volume: 40
  start-page: 46
  year: 2016
  ident: ref7
  article-title: On the use of deep feedforward neural networks for automatic language identification
  publication-title: Computer Speech & Language
  doi: 10.1016/j.csl.2016.03.001
– reference: 16856652 - IEEE Trans Neural Netw. 2006 Jul;17(4):879-92
– reference: 25415946 - IEEE Trans Cybern. 2014 Dec;44(12):2405-17
– reference: 25751883 - IEEE Trans Cybern. 2016 Jan;46(1):311-24
– reference: 21984515 - IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29
– reference: 24983963 - PLoS One. 2014 Jul 01;9(7):e100795
– reference: 26834862 - Cogn Neurodyn. 2016 Feb;10 (1):73-83
– reference: 17131657 - IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23
– reference: 26824467 - PLoS One. 2016 Jan 29;11(1):e0146917
SSID ssj0053866
Score 2.404903
Snippet Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0194770
SubjectTerms Accuracy
Adjustment
Analysis
Artificial neural networks
Biology and Life Sciences
Classification
Computer and Information Sciences
Datasets
Design optimization
Engineering
Feature extraction
Identification
Information science
Language
Learning
Learning algorithms
Machine learning
Mathematical problems
Methods
Natural language processing
Neural networks
Optimization
People and Places
Physical Sciences
Regression analysis
Research and Analysis Methods
Social Sciences
Speech
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QvcALYnytY0BASMBDb9cmTdrHgZgGEiAxhvZWpfm4DUqvondC_PfYaVpdxaTtgbde7Z5U27F_Th2bkBdM2koDro4XjOuYoxnnsnCxyl2WOm5YxvFw8sdP4viUfzjLzrZGfWFNWN8euBfcAe7TVTbjcqEK7rRQaEbWaSe4SwCeoPeFMDYkU70PhlUsRDgox2RyEPQyb1eNnQOo4RKHE28FIt-vf_TKs7ZedZdBzn8rJ29umlb9-a3qeissHd0htwOepIf9e-yQG7a5S3bCiu3oq9BW-vU9Yk_a1Q_b0GGHkl6YUCnklUMxnhkKFwAJqW3OfWkA7WwNIjXfcehXs6TgynFDkYZhE0v60xdjWjr0Jr9PTo_efX17HIchC7EWRbrGWkyzkIqlTheLQrnKQIqVmyLRkMkUrDKwoDMuhFJVnme5cMy4pJKJTg38gvz2AZk1INZdQhVAAci_AMTlGnBOVUFUNDoziQBUp4yNCBskXurQgRwHYdSl_6wmIRPphVainsqgp4jE41Nt34HjCv43qMyRF_tn-xtgVWWwqvIqq4rIUzSFsj-MOnqB8jBjgI8hgPCIPPcc2EOjwSKdpdp0Xfn-87drMJ18mTC9DExuBeLQKhyMgHfC3lwTzv0JJ3gCPSHvouEOUulK3NgSDIgMnhyM-XLys5GMf4qFd41dbTxPXkBUyEEkD3vbHyWbFkLiOIWIyMmqmIh-Smkuzn0L8wxsDYB3RObj-rmWcvf-h3IfkVsAe3P8JpgU-2S2_rWxjwFarqsn3ov8BWIkd0c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegPAAPiI2PBQYYhAQ8pDRxYidPaCDKQAIkxtDeIscf3SAkYWmF-O-5c53QiAn21taXSrnP39nnO0IeM2FKBbg6nLFEhQmqcSZyG8rMprFNNEsTvJz8_gPfP0zeHaVHfsOt82WVvU90jlo3CvfIXZLOGWOCvWh_hDg1Ck9X_QiNi-RSFIMm4U3x-ZveE4Mtc-6vyzERPffSmbZNbaYAbRKBI4o3wpHr2j_45klbNd1ZwPPv-snLq7qVv37KqtoITvPr5JpHlXRvrQZb5IKpt8nVjV6D22TLW3FHn_pW089uEHPQNt9MTftdS3qiffWQExjFGKcpfACYSE197MoFaGcqYLP-ioPA6gUF946bjNQPoFjQ765A09C-X_lNcjh__fnVfugHL4SK5_ES6zP1TEgWW5XPcmlLDWlXpvNIQXaTs1KDkacJ51KWWZZm3DJto1JEKtbwDXLeW2RSA5N3CJUADyAnA2CXKcA-ZQmRUqtURxyQntQmIKznf6F8V3IcjlEV7qhNQHayZmGBUiu81AISDk-1664c_6F_iaIdaLGntvuhOV0U3kQL3BEuTZqImcwTq7hEh2WssjyxEQDhgDxAxSjWF1QHz1DspQwwMwSVJCCPHAX21aixcGchV11XvP345RxEB59GRE88kW2AHUr6yxLwTtiva0S5O6IE76BGyzuoxj1XuuKPHcGTvWqfvfxwWMY_xWK82jQrR5PlECkyYMnttSUMnI1zLnDEQkDEyEZGrB-v1CfHrq15CroGYDwg08GaziXcO_9-j7vkCoDcDE8Ao3yXTJanK3MPgOSyvO-8xW_8JHNJ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSOkxwXRFWQKIiyqD2gyPFjW7pkV2RXCA78dmYSJyJQRDlwy67HVjIez3zjGY8JecBSUyrA1X7IuPI5inGW5taXmU1iyzVLOB5OfrUndif85UFysEY-dGdhHAfBR5zN6yaSjw_zymw7Tm5jvaI2ehpELI26HsECiAIALDxNw4dNxSHcGVviAaRzZF1g_GlE1id7b8aHbaQ59kUcMnec7k8jDcxVU9W_190jfLPTgOnv-ZXnV9VCfv0iZ7OfjNfOJfK9--w2Z-UkWC3LQH37pSLkf-PLZXLRwV46bkfZIGumukI2nGKp6WNX_frJVWL2F_MTU9FuI5Uea5fQ1MgQRbOrKTwAcqWmOmoyGGhtZjDz-iPeTVZNKVgc3Pek7k6MKf3U5Iwa2pVQv0YmO8_fPdv13V0QvhJ5vMSUUR2mksVW5WEubanBE8x0HilwuHJWatA7CRdCyjLLkkxYpm1UppGKNfwCN_w6GVXAiU1CJSAWcBMBa2YK4FhZgvHWKtGRAPAptfEI66a8UK5QOt7XMSua6F8KDlPLtAJZWzjWesTvey3aQiF_oX-K0tTTYpnv5g-Y28LNaYGb1KVJeBrKnFslJOpQY5UV3EaAzT1yF2WxaM_M9sqqGCcMYDzYOe6R-w0FlvqoMJdoKld1Xbx4_f4MRPtvB0SPHJGdAzuUdOc34JtQ9AaUWwNKUFhq0LyJsttxpS5w_00waGTQs1tNpzff65txUMwPrMx81dBkORivDFhyo118PWfjXKR464NH0sGyHLB-2FIdHzWV1hOQNfAPPBL0C_hMk3vzXzvcIhcAiWcYpozyLTJafl6Z24B2l-Udp7N-AKy2ros
  priority: 102
  providerName: Unpaywall
Title Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
URI https://www.ncbi.nlm.nih.gov/pubmed/29672546
https://www.proquest.com/docview/2027633373
https://www.proquest.com/docview/2028970382
https://pubmed.ncbi.nlm.nih.gov/PMC5909623
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194770&type=printable
https://doaj.org/article/b013be5470a94fc6a0051efcf64f1192
http://dx.doi.org/10.1371/journal.pone.0194770
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHnVUMKCkICDo_i59gGhtGooSA1VS1B6stb7SAvGCXEi6L9nZrO2sAhqL1biHVvyPHa-2Z2dIeRVwFQuAFe7_SAUbohqnLBUuzzRka9DGUQhHk4-HsVH4_DTJJpskbpnq2VgtTG0w35S40XR-_3z6j0Y_DvTtYF59UO9-axUPYAsIWMQxG-Db_JRz4_DZl8BrNvsXiJqcWO_H9jDdP97S8tZmZr-zczdmRezahMs_Te78vaqnPOrX7wo_nJdw3vkrsWcdLBWkh2ypcr7ZMdadUXf2NLTbx8QdTaffVclrVcx6aW02URGgBR9nqTwA2AjVeWFSR-glSqA7fIbNgYrpxSme1x0pLYhxZT-MAmbitb1yx-S8fDwy8GRaxsxuCJO_SXma8o-44GvRdpPuc4lhGGJTD0B0U4a5BKMPgrjmPM8SaIk1oHUXs484Uv4BzHwI9Ipga27hHKACxCjAdBLBGChPAfPKUUkvRiQH5fKIUHN8UzYKuXYLKPIzNYbg2hlzbQM5ZRZOTnEbZ6ar6t0XEO_j8JsaLHGtrkxW0wza7IZrhDnKgpZn6ehFjHHCUxpoeNQewCMHfIcVSFbH1htZopsEAWAocHJhA55aSiwzkaJiTxTvqqq7OPnrzcgOjttEb22RHoG7BDcHp6Ab8L6XS3KvRYlzBaiNbyLiltzpcpw8SsOYDCAJ2tl3jz8ohnGl2JyXqlmK0OTpOA5EmDJ47XuN5z105hhywWHsJZVtFjfHikvL0yZ8wh0DcC5Q3qN_dxIuE-ulctTcgdwb4Kbgl66RzrLxUo9A2y5zLvkFpswuCYHHl6HH7pke_9wdHLaNas1XTOdwL3x6GRw_gehJX51
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigcEC2PBgo1CAQ9ZNnEzuuAUHlUu_SBRFu0t-DYzrawJKHZVdU_xW9kJnHCRlTQS29JPImUmfHMN_Z4hpBnLNCJBFxtDxiXNkc1DoMotUWYem7KFfM4Hk7e2_eHR_zj2BsvkV_NWRhMq2xsYmWoVS5xjbwK0n3GWMDeFD9t7BqFu6tNC41aLXb0-RmEbOXr0XuQ73PX3f5w-G5om64CtvQjd4bJh2oQCOamMhpEIk0UxBShihwJ0D1iiQIN9rjvC5GEoRf6KVOpkwSOdBXcQUAH371GrnM24FirPxi3AR7YDt83x_NY4Lwy2tAv8kz3AUrxAFsiL7i_qktA6wt6xTQvLwK6f-drLs-zQpyfiel0wRlu3ya3DIqlW7XarZAlna2Smwu1DVfJirEaJX1pSltv3iH6oMi_64w2q6T0RJlspUpBKPpUReECYCnV2XGVnkBLPQWxqm_YeCybUHAnuKhJTcOLCf1RJYRq2tRHv0uOrkQk90gvAyavESoAjkAMCEAylIC1kgQ8s5KecnxAlkJpi7CG_7E0VdCxGcc0rrb2AoiGahbGKLXYSM0idvtWUVcB-Q_9WxRtS4s1vKsH-ekkNiYhxhXoRHs8GIiIp9IXaCB1KlOfpw4Ab4tsoGLE9YHY1hLFWx4DjA5OjFvkaUWBdTwyTBSaiHlZxqNPXy5BdPC5Q_TCEKU5sEMKczgD_gnrg3Uo1zuUYI1kZ3gN1bjhShn_mbfwZqPaFw8_aYfxo5j8l-l8XtGEEXimEFhyv54JLWfdyA-wpYNFgs4c6bC-O5KdHFdl1D3QNQD_Fum3s-lSwn3w7__YIMvDw73deHe0v_OQ3ACAHeLuoxOtk97sdK4fAYidJY8ry0HJ16s2Vb8Bsu-vAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIPE4IFoeDRS6IBBwcBp7ba99QKhQooZCQS1FuZn1PtJCsEOdqOpf49cxY69NLCropTfbO7bkmdmZb3ZnZwh5wrhOJeBqp8986fioxhGPjSMiE3jGVyzw8XDyh91w-8B_NwpGS-RXfRYG0yprm1gaapVLXCMvg_SQMcbZhrFpEZ-2Bq-mPx3sIIU7rXU7jUpFdvTpCYRvxcvhFsj6qecN3n5-s-3YDgOODGNvhomIqs8F84yM-7EwqYL4IlKxKwHGxyxVoM2BH4ZCpFEURKFhyrgpd6Wn4A6CO_juJXKZM59hOhkfNcEe2JEwtEf1GHc3rGb0pnmmewCrfI7tkRdcYdkxoPELnekkL84CvX_nbl6dZ1NxeiImkwXHOLhJblhESzcrFVwmSzpbIdcX6hyukGVrQQr63Ja5fnGL6P1p_l1ntF4xpUfKZi6VykLRvyoKFwBRqc4Oy1QFWugJiFh9wyZk2ZiCfHCBk9rmF2P6o0wO1bSulX6bHFyISO6QTgZMXiVUADSBeBBAZSQBd6UpeGklA-WGgDKF0l3Cav4n0lZEx8Yck6Tc5uMQGVUsTFBqiZValzjNW9OqIsh_6F-jaBtarOddPsiPx4k1DwmuRqc68HlfxL6RoUBjqY00oW9cAOFdso6KkVSHYxurlGwGDPA6ODS_Sx6XFFjTI8PZMRbzokiGH7-cg2h_r0X0zBKZHNghhT2oAf-EtcJalGstSrBMsjW8impcc6VI_sxheLNW7bOHHzXD-FFMBMx0Pi9pohi8VAQsuVvNhIazXhxybO_QJbw1R1qsb49kR4dlSfUAdA0CgS7pNbPpXMK99-__WCdXwEgl74e7O_fJNcDaEW5EuvEa6cyO5_oB4NlZ-rA0HJR8vWhL9RscG7M8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSOkxwXRFWQKIiyqD2gyPFjW7pkV2RXCA78dmYSJyJQRDlwy67HVjIez3zjGY8JecBSUyrA1X7IuPI5inGW5taXmU1iyzVLOB5OfrUndif85UFysEY-dGdhHAfBR5zN6yaSjw_zymw7Tm5jvaI2ehpELI26HsECiAIALDxNw4dNxSHcGVviAaRzZF1g_GlE1id7b8aHbaQ59kUcMnec7k8jDcxVU9W_190jfLPTgOnv-ZXnV9VCfv0iZ7OfjNfOJfK9--w2Z-UkWC3LQH37pSLkf-PLZXLRwV46bkfZIGumukI2nGKp6WNX_frJVWL2F_MTU9FuI5Uea5fQ1MgQRbOrKTwAcqWmOmoyGGhtZjDz-iPeTVZNKVgc3Pek7k6MKf3U5Iwa2pVQv0YmO8_fPdv13V0QvhJ5vMSUUR2mksVW5WEubanBE8x0HilwuHJWatA7CRdCyjLLkkxYpm1UppGKNfwCN_w6GVXAiU1CJSAWcBMBa2YK4FhZgvHWKtGRAPAptfEI66a8UK5QOt7XMSua6F8KDlPLtAJZWzjWesTvey3aQiF_oX-K0tTTYpnv5g-Y28LNaYGb1KVJeBrKnFslJOpQY5UV3EaAzT1yF2WxaM_M9sqqGCcMYDzYOe6R-w0FlvqoMJdoKld1Xbx4_f4MRPtvB0SPHJGdAzuUdOc34JtQ9AaUWwNKUFhq0LyJsttxpS5w_00waGTQs1tNpzff65txUMwPrMx81dBkORivDFhyo118PWfjXKR464NH0sGyHLB-2FIdHzWV1hOQNfAPPBL0C_hMk3vzXzvcIhcAiWcYpozyLTJafl6Z24B2l-Udp7N-AKy2ros
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+language+identification+based+on+the+enhanced+self-adjusting+extreme+learning+machine+approach&rft.jtitle=PloS+one&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Sammour%2C+Mahmoud+A.+M&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2018-04-19&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=4&rft.spage=e0194770&rft_id=info:doi/10.1371%2Fjournal.pone.0194770&rft.externalDBID=n%2Fa&rft.externalDocID=A535337624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon