Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective
Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learni...
        Saved in:
      
    
          | Published in | PloS one Vol. 14; no. 3; p. e0214436 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        26.03.2019
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0214436 | 
Cover
| Abstract | Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches.
Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2).
EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate.
A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions. | 
    
|---|---|
| AbstractList | BACKGROUND & AIMS:Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. METHODS:Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). RESULTS:EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. CONCLUSIONS:A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions. Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches.BACKGROUND & AIMSCurrent non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches.Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2).METHODSNon-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2).EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate.RESULTSEFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate.A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.CONCLUSIONSA newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions. Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Methods Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). Results EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. Conclusions A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions. Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Methods Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m.sup.2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m.sup.2). Results EFS identified age, [gamma]GT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS[less than or equal to]4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. Conclusions A newly developed model ( Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m.sup.2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m.sup.2). EFS identified age, [gamma]GT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS[less than or equal to]4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions. Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.  | 
    
| Audience | Academic | 
    
| Author | Baba, Hideo A. Heider, Dominik Rau, Monika Sowa, Jan-Peter Geier, Andreas Canbay, Ali Kälsch, Julia Neumann, Ursula Hohenester, Simon Rust, Christian  | 
    
| AuthorAffiliation | 4 Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany 2 Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany 5 Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany 1 Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany 6 Department of Medicine II, University Hospital, LMU Munich, Munich, Germany 7 Center for Nutritional Medicine and Prevention, Department of Medicine I, Hospital Barmherzige Brüder, Munich, Germany Medizinische Fakultat der RWTH Aachen, GERMANY 3 Institute for Pathology, University Hospital, University Duisburg-Essen, Essen, Germany  | 
    
| AuthorAffiliation_xml | – name: Medizinische Fakultat der RWTH Aachen, GERMANY – name: 2 Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany – name: 5 Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany – name: 7 Center for Nutritional Medicine and Prevention, Department of Medicine I, Hospital Barmherzige Brüder, Munich, Germany – name: 3 Institute for Pathology, University Hospital, University Duisburg-Essen, Essen, Germany – name: 1 Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany – name: 6 Department of Medicine II, University Hospital, LMU Munich, Munich, Germany – name: 4 Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany  | 
    
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-6069-7899 surname: Canbay fullname: Canbay, Ali – sequence: 2 givenname: Julia surname: Kälsch fullname: Kälsch, Julia – sequence: 3 givenname: Ursula surname: Neumann fullname: Neumann, Ursula – sequence: 4 givenname: Monika surname: Rau fullname: Rau, Monika – sequence: 5 givenname: Simon surname: Hohenester fullname: Hohenester, Simon – sequence: 6 givenname: Hideo A. surname: Baba fullname: Baba, Hideo A. – sequence: 7 givenname: Christian surname: Rust fullname: Rust, Christian – sequence: 8 givenname: Andreas surname: Geier fullname: Geier, Andreas – sequence: 9 givenname: Dominik surname: Heider fullname: Heider, Dominik – sequence: 10 givenname: Jan-Peter surname: Sowa fullname: Sowa, Jan-Peter  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30913263$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkt9u0zAUxiM0xP7AGyCIhITgosWO7cTmAqkaDCpVmwSMW8t1TlpXrt3FSaF3PARPyJPgrtnUTJOYfBHr5Hc-n_Odc5wcOO8gSZ5jNMSkwO8Wvq2dssNVDA9Rhikl-aPkCAuSDfIMkYO9-2FyHMICIUZ4nj9JDgkSmGQ5OUouz70bGLdWwawhVSFACEtwTeqr9Hx0NvkYY2nYhAaWRqelCaAC_P39Z5QulZ4bB6kFVTvjZukK6rAC3UShp8njStkAz7rvSXJ59un76ZfB5OLz-HQ0GehcZM2gQAVHWmSgKkqAUV7lqCxpoQtWIF0JhETBCROcs0qVfJpVU8qzrMQ6ixl6Sk6SlzvdlfVBdo4EmWEhaI4x45EY74jSq4Vc1Wap6o30ysjrgK9nUtWN0RYkFUAUibogKMVYc4CKoSLXOdOkKHDUYjut1q3U5qey9lYQI7kdyk0JcjsU2Q0l5n3oqmynSyh1tLdWtldM_48zcznza5lTwjBlUeBNJ1D7qxZCI5cmaLBWOfDtdb-csUKILKKv7qD3u9JRMxUbN67y8V29FZUjxhHm20WJ1PAeKp5yuwyxw8rEeC_hbS8hMg38amaqDUGOv319OHvxo8--3mPnoGwzD962jfEu9MEX-07fWnyz7xF4vwN07UOooZLaNGqrE1sz9n9zpHeSHzT-f0iHJ-g | 
    
| CitedBy_id | crossref_primary_10_1093_jamia_ocab003 crossref_primary_10_3350_cmh_2022_0426 crossref_primary_10_1016_j_metabol_2022_155179 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_1007_s11428_020_00648_1 crossref_primary_10_1038_s41366_021_00881_8 crossref_primary_10_1038_s41598_024_51741_0 crossref_primary_10_1136_bmjhci_2021_100510 crossref_primary_10_4254_wjh_v13_i10_1417 crossref_primary_10_1007_s11154_021_09681_x crossref_primary_10_1371_journal_pone_0238717 crossref_primary_10_35712_aig_v3_i3_80 crossref_primary_10_1155_2019_8742075 crossref_primary_10_1166_jmihi_2021_3343 crossref_primary_10_1016_j_jhep_2020_10_030 crossref_primary_10_1055_s_0041_1730924 crossref_primary_10_3748_wjg_v27_i37_6191 crossref_primary_10_1371_journal_pone_0299487 crossref_primary_10_1177_0272989X20940672 crossref_primary_10_1159_000510600 crossref_primary_10_1055_a_1880_2283 crossref_primary_10_1186_s43066_022_00224_w crossref_primary_10_1016_j_gastha_2023_09_004 crossref_primary_10_1016_j_heliyon_2024_e28468 crossref_primary_10_1371_journal_pone_0240867 crossref_primary_10_3390_metabo12020130 crossref_primary_10_1016_j_hbpd_2023_03_009 crossref_primary_10_3390_cells8080845 crossref_primary_10_1016_j_cyto_2025_156882 crossref_primary_10_1016_j_xhgg_2021_100056 crossref_primary_10_1007_s12664_022_01263_2 crossref_primary_10_1093_advances_nmac103 crossref_primary_10_3390_jpm14050492 crossref_primary_10_1007_s15036_023_3265_4 crossref_primary_10_1007_s11901_021_00577_7 crossref_primary_10_1038_s41598_021_99400_y crossref_primary_10_1111_jgh_15415 crossref_primary_10_1371_journal_pmed_1003149 crossref_primary_10_1016_j_bbalip_2019_158519 crossref_primary_10_1055_a_1955_5297 crossref_primary_10_3390_app10155135 crossref_primary_10_1016_j_cmpb_2023_107932 crossref_primary_10_1055_a_1880_2388 crossref_primary_10_1080_10255842_2023_2217978 crossref_primary_10_1111_apt_17891 crossref_primary_10_21015_vtse_v10i1_826 crossref_primary_10_1159_000519317 crossref_primary_10_22246_jikm_2022_43_4_680 crossref_primary_10_3389_fmed_2021_774079  | 
    
| Cites_doi | 10.1002/hep.21496 10.3949/ccjm.75.10.721 10.1371/journal.pone.0180947 10.1016/j.cld.2015.10.010 10.1006/bbrc.1999.0255 10.1155/2011/369168 10.1038/90992 10.1136/gut.2007.146019 10.1016/j.cld.2015.10.011 10.1055/s-0042-121899 10.1002/hep.20701 10.1038/nrgastro.2013.41 10.1186/1471-2105-12-77 10.1002/hep.23594 10.1371/journal.pone.0030325 10.1038/srep13058 10.1007/s00535-010-0305-6 10.1152/ajpgi.00044.2018 10.1002/hep.21984 10.1016/j.metabol.2014.09.001 10.1056/NEJMra1610570 10.1002/hep.28431 10.1186/s13040-017-0142-8 10.1053/j.gastro.2013.08.036 10.1016/j.diabet.2013.11.004 10.1053/j.gastro.2005.03.084 10.1111/j.1572-0241.2006.01041.x 10.1053/jhep.2003.50346 10.1136/bmjdrc-2017-000415 10.1016/j.cgh.2009.05.033 10.1053/j.gastro.2015.04.043 10.1371/journal.pone.0147237 10.1002/hep.29080 10.1186/s13040-016-0114-4 10.1053/j.gastro.2016.12.013 10.1002/hep.24734 10.1016/j.jhep.2014.12.012 10.1111/j.1478-3231.2005.01209.x 10.1007/s11695-010-0204-1 10.1002/hep.25889 10.1016/j.metabol.2016.01.013 10.1053/gast.2002.35354 10.1016/j.jhep.2012.11.021 10.1002/hep.22742  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Canbay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Canbay et al 2019 Canbay et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Canbay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Canbay et al 2019 Canbay et al  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0214436 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Medicine Computer Science  | 
    
| DocumentTitleAlternate | Non-invasive assessment of NAFLD | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 2199461158 oai_doaj_org_article_49e3a3f4ce94411c8eef5076c65c3771 10.1371/journal.pone.0214436 PMC6435145 A580185386 30913263 10_1371_journal_pone_0214436  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Germany | 
    
| GeographicLocations_xml | – name: Germany | 
    
| GrantInformation_xml | – fundername: ; grantid: RU 742/6-1 – fundername: ; grantid: FöFoLe #905 – fundername: ; grantid: IFORES  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c692t-70780c92eaf43e548f60dd47c7570cf900978359885fad8b2fb4822d1c2af4cb3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:13:37 EST 2021 Fri Oct 03 12:53:28 EDT 2025 Sun Oct 26 02:50:59 EDT 2025 Tue Sep 30 16:56:11 EDT 2025 Sun Sep 28 11:11:39 EDT 2025 Tue Oct 07 07:47:23 EDT 2025 Mon Oct 20 21:57:15 EDT 2025 Mon Oct 20 16:25:57 EDT 2025 Thu Oct 16 14:21:09 EDT 2025 Thu Oct 16 15:02:21 EDT 2025 Thu May 22 21:24:25 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Thu Apr 24 23:06:17 EDT 2025 Wed Oct 01 03:33:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c692t-70780c92eaf43e548f60dd47c7570cf900978359885fad8b2fb4822d1c2af4cb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: JK, UN, MR, SH, HAB, CR, AG, and DH state that there are no conflicts of interest to declare. JPS and AC state that they received royalties for a scientific lecture, which was in part supported by TECOmedical group. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.  | 
    
| ORCID | 0000-0001-6069-7899 | 
    
| OpenAccessLink | https://doaj.org/article/49e3a3f4ce94411c8eef5076c65c3771 | 
    
| PMID | 30913263 | 
    
| PQID | 2199461158 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0214436 | 
    
| ParticipantIDs | plos_journals_2199461158 doaj_primary_oai_doaj_org_article_49e3a3f4ce94411c8eef5076c65c3771 unpaywall_primary_10_1371_journal_pone_0214436 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6435145 proquest_miscellaneous_2198557992 proquest_journals_2199461158 gale_infotracmisc_A580185386 gale_infotracacademiconefile_A580185386 gale_incontextgauss_ISR_A580185386 gale_incontextgauss_IOV_A580185386 gale_healthsolutions_A580185386 pubmed_primary_30913263 crossref_citationtrail_10_1371_journal_pone_0214436 crossref_primary_10_1371_journal_pone_0214436  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-03-26 | 
    
| PublicationDateYYYYMMDD | 2019-03-26 | 
    
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-26 day: 26  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2019 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | AH Berg (ref43) 2001; 7 TE Silva (ref45) 2014; 40 PM Gholam (ref15) 2007; 102 EB Tapper (ref33) 2017; 377 P Bedossa (ref11) 2012; 56 X Robin (ref30) 2011; 12 IN Guha (ref39) 2008; 47 J Kälsch (ref10) 2016; 54 A Marengo (ref4) 2016; 20 T Karlas (ref38) 2017; 152 ref32 I Owei (ref48) 2017; 5 A Wree (ref42) 2014; 63 DC Rockey (ref36) 2009; 49 Y Sumida (ref18) 2011; 46 P Angulo (ref40) 2015; 149 D Joka (ref27) 2012; 55 S Hohenester (ref28) 2018; 315 C-T Wai (ref20) 2003; 38 SA Harrison (ref16) 2008; 57 MV Machado (ref22) 2013; 58 QM Anstee (ref8) 2013; 10 NA Palekar (ref13) 2006; 26 V Ratziu (ref35) 2005; 128 DE Kleiner (ref41) 2016; 20 ZM Younossi (ref23) 2017 S Saadeh (ref12) 2002; 123 U Neumann (ref25) 2017; 10 P Angulo (ref14) 2007; 45 EB Tapper (ref37) 2016; 11 Y Arita (ref44) 1999; 257 AG Shah (ref17) 2009; 7 J Bissonnette (ref26) 2017; 66 CH Kim (ref2) 2008; 75 CD Byrne (ref3) 2015; 62 A Dechêne (ref31) 2014 DE Kleiner (ref24) 2005; 41 S Graßmann (ref46) 2017 J Kälsch (ref9) 2015; 5 T Poynard (ref19) 2012; 7 U Neumann (ref29) 2016; 9 N Alkhouri (ref34) 2016; 65 VG de Abreu (ref47) 2017; 12 J Kälsch (ref5) 2011; 2011 MS Siddiqui (ref7) 2013; 145 ZM Younossi (ref1) 2016; 64 BQ Starley (ref6) 2010; 51 ZM Younossi (ref21) 2011; 21  | 
    
| References_xml | – volume: 45 start-page: 846 year: 2007 ident: ref14 article-title: The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD publication-title: Hepatology doi: 10.1002/hep.21496 – volume: 75 start-page: 721 year: 2008 ident: ref2 article-title: Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome publication-title: Cleve Clin J Med doi: 10.3949/ccjm.75.10.721 – volume: 12 start-page: e0180947 year: 2017 ident: ref47 article-title: High-molecular weight adiponectin/HOMA-IR ratio as a biomarker of metabolic syndrome in urban multiethnic Brazilian subjects publication-title: PloS One doi: 10.1371/journal.pone.0180947 – volume: 20 start-page: 313 year: 2016 ident: ref4 article-title: Progression and Natural History of Nonalcoholic Fatty Liver Disease in Adults publication-title: Clin Liver Dis doi: 10.1016/j.cld.2015.10.010 – volume: 257 start-page: 79 year: 1999 ident: ref44 article-title: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.0255 – volume: 2011 start-page: 369168 year: 2011 ident: ref5 article-title: Evaluation of Biomarkers of NAFLD in a Cohort of Morbidly Obese Patients publication-title: J Nutr Metab doi: 10.1155/2011/369168 – volume: 7 start-page: 947 year: 2001 ident: ref43 article-title: The adipocyte-secreted protein Acrp30 enhances hepatic insulin action publication-title: Nat Med doi: 10.1038/90992 – volume: 57 start-page: 1441 year: 2008 ident: ref16 article-title: Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease publication-title: Gut doi: 10.1136/gut.2007.146019 – volume: 20 start-page: 293 year: 2016 ident: ref41 article-title: Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children publication-title: Clin Liver Dis doi: 10.1016/j.cld.2015.10.011 – volume: 54 start-page: 1312 year: 2016 ident: ref10 article-title: Patients with ultrasound diagnosis of hepatic steatosis are at high metabolic risk publication-title: Z Für Gastroenterol doi: 10.1055/s-0042-121899 – volume: 41 start-page: 1313 year: 2005 ident: ref24 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 – year: 2014 ident: ref31 article-title: Endoscopic management is the treatment of choice for bile leaks after liver resection publication-title: Gastrointest Endosc – volume: 10 start-page: 330 year: 2013 ident: ref8 article-title: Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2013.41 – volume: 12 start-page: 77 year: 2011 ident: ref30 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 51 start-page: 1820 year: 2010 ident: ref6 article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection publication-title: Hepatology doi: 10.1002/hep.23594 – volume: 7 start-page: e30325 year: 2012 ident: ref19 article-title: Performance of biomarkers FibroTest, ActiTest, SteatoTest, and NashTest in patients with severe obesity: meta analysis of individual patient data publication-title: PloS One doi: 10.1371/journal.pone.0030325 – volume: 5 start-page: 13058 year: 2015 ident: ref9 article-title: Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort publication-title: Sci Rep doi: 10.1038/srep13058 – volume: 46 start-page: 257 year: 2011 ident: ref18 article-title: A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease publication-title: J Gastroenterol doi: 10.1007/s00535-010-0305-6 – year: 2017 ident: ref23 article-title: Diagnostic Modalities for Non-alcoholic Fatty Liver Disease (NAFLD), Non-alcoholic Steatohepatitis (NASH) and Associated Fibrosis publication-title: Hepatology – ident: ref32 – volume: 315 start-page: G329 year: 2018 ident: ref28 article-title: Lifestyle intervention for morbid obesity: effects on liver steatosis, inflammation, and fibrosis publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00044.2018 – volume: 47 start-page: 455 year: 2008 ident: ref39 article-title: Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers publication-title: Hepatology doi: 10.1002/hep.21984 – volume: 63 start-page: 1542 year: 2014 ident: ref42 article-title: Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients publication-title: Metabolism doi: 10.1016/j.metabol.2014.09.001 – volume: 377 start-page: 756 year: 2017 ident: ref33 article-title: Use of Liver Imaging and Biopsy in Clinical Practice publication-title: N Engl J Med doi: 10.1056/NEJMra1610570 – year: 2017 ident: ref46 article-title: Association Between Peripheral Adipokines and Inflammation Markers: A Systematic Review and Meta-Analysis publication-title: Obesity – volume: 64 start-page: 73 year: 2016 ident: ref1 article-title: Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology doi: 10.1002/hep.28431 – volume: 10 start-page: 21 year: 2017 ident: ref25 article-title: EFS: an ensemble feature selection tool implemented as R-package and web-application publication-title: BioData Min doi: 10.1186/s13040-017-0142-8 – volume: 145 start-page: 1271 year: 2013 ident: ref7 article-title: Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.08.036 – volume: 40 start-page: 95 year: 2014 ident: ref45 article-title: Adiponectin: A multitasking player in the field of liver diseases publication-title: Diabetes Metab doi: 10.1016/j.diabet.2013.11.004 – volume: 128 start-page: 1898 year: 2005 ident: ref35 article-title: Sampling variability of liver biopsy in nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2005.03.084 – volume: 102 start-page: 399 year: 2007 ident: ref15 article-title: Nonalcoholic fatty liver disease in severely obese subjects publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2006.01041.x – volume: 38 start-page: 518 year: 2003 ident: ref20 article-title: A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C publication-title: Hepatology doi: 10.1053/jhep.2003.50346 – volume: 5 start-page: e000415 year: 2017 ident: ref48 article-title: Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2017-000415 – volume: 7 start-page: 1104 year: 2009 ident: ref17 article-title: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2009.05.033 – volume: 149 start-page: 389 year: 2015 ident: ref40 article-title: Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.04.043 – volume: 11 start-page: e0147237 year: 2016 ident: ref37 article-title: Cost-Effectiveness Analysis: Risk Stratification of Nonalcoholic Fatty Liver Disease (NAFLD) by the Primary Care Physician Using the NAFLD Fibrosis Score publication-title: PloS One doi: 10.1371/journal.pone.0147237 – volume: 66 start-page: 555 year: 2017 ident: ref26 article-title: A prospective study of the utility of plasma biomarkers to diagnose alcoholic hepatitis publication-title: Hepatology doi: 10.1002/hep.29080 – volume: 9 start-page: 36 year: 2016 ident: ref29 article-title: Compensation of feature selection biases accompanied with improved predictive performance for binary classification by using a novel ensemble feature selection approach publication-title: BioData Min doi: 10.1186/s13040-016-0114-4 – volume: 152 start-page: 479 year: 2017 ident: ref38 article-title: Collaboration, Not Competition: The Role of Magnetic Resonance, Transient Elastography, and Liver Biopsy in the Diagnosis of Nonalcoholic Fatty Liver Disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.12.013 – volume: 55 start-page: 455 year: 2012 ident: ref27 article-title: Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.24734 – volume: 62 start-page: S47 year: 2015 ident: ref3 article-title: NAFLD: a multisystem disease publication-title: J Hepatol doi: 10.1016/j.jhep.2014.12.012 – volume: 26 start-page: 151 year: 2006 ident: ref13 article-title: Clinical model for distinguishing nonalcoholic steatohepatitis from simple steatosis in patients with nonalcoholic fatty liver disease publication-title: Liver Int doi: 10.1111/j.1478-3231.2005.01209.x – volume: 21 start-page: 431 year: 2011 ident: ref21 article-title: A biomarker panel for non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis publication-title: Obes Surg doi: 10.1007/s11695-010-0204-1 – volume: 56 start-page: 1751 year: 2012 ident: ref11 article-title: Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients publication-title: Hepatology doi: 10.1002/hep.25889 – volume: 65 start-page: 1087 year: 2016 ident: ref34 article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease: Are we there yet? publication-title: Metabolism doi: 10.1016/j.metabol.2016.01.013 – volume: 123 start-page: 745 year: 2002 ident: ref12 article-title: The utility of radiological imaging in nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/gast.2002.35354 – volume: 58 start-page: 1007 year: 2013 ident: ref22 article-title: Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal publication-title: J Hepatol doi: 10.1016/j.jhep.2012.11.021 – volume: 49 start-page: 1017 year: 2009 ident: ref36 article-title: Liver biopsy publication-title: Hepatology doi: 10.1002/hep.22742  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.537094 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic... Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with... BACKGROUND & AIMS:Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with... Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with...  | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0214436 | 
    
| SubjectTerms | Adipocytes Adiponectin Adult Age Apoptosis Biology and Life Sciences Biomarkers Biomarkers - metabolism Body mass Body Weight Cohort Studies Computational Biology - methods Computer science Correlation coefficient Correlation coefficients Development and progression Diabetes Fatty liver Female Funding Gastroenterology Gastrointestinal surgery Glycosylated hemoglobin Health aspects Hepatology Histology Hospitals Humans Infectious diseases Inflammation Insulin Internal medicine Intervention Learning algorithms Liver Liver diseases Machine Learning Male Mathematical models Medicine Medicine and Health Sciences Metabolic rate Metabolic syndrome Middle Aged Mortality Non-alcoholic Fatty Liver Disease - complications Non-alcoholic Fatty Liver Disease - diagnosis Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Novels Obesity Obesity - complications Patients Research and Analysis Methods Review boards Software Systematic review Systemic diseases Training Weight loss Weight reduction  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBjK8FNjAICTika-zYsY_loxoIisQY2i1yXu1RqSTV2oL473l23GwRk7YD1_g5Ut6H38_xez8T8oJh1uc5c6mzhU1zluVpJQpIHWdGM6HAhv8dn6fy8Dj_eCJOLlz15WvCWnrgVnEHubbccJeD1Zi5M1DWOsQwEqQAXoTucTZSeruZatdgjGIpY6McL7KDaJfhsqntMLCEBUrm80QU-Pq7VXmwXDSryyDnv5WTNzf10vz5bRaLC2lpcofcjniSjtvv2CE3bH2X7MSIXdFXkVb69T1yNG3qdF7_Mr5gnZqOkZM2jk7Hk0_v8BltiZ3nQOPBTTqmP0O5paXxfolTujzvz7xPjifvv709TOOVCilIzdap5_YZgWbWuJxb3K04OZrN8gIKUYzA6batQ2ilhDMzVTFX5QghZhkwnAEVf0AGNSpxl1C0a2aVlRKMyQ0o7RA5OBAVgMd4IiF8q98SIt-4v_ZiUYZDtAL3Ha2KSm-VMlolIWk3a9nybVwh_8abrpP1bNnhAfpQGX2ovMqHEvLUG75sW0-7mC_HAvO38s6UkOdBwjNm1L4k59RsVqvyw5fv1xA6-toTehmFXIPqABPbIPCbPBNXT3KvJ4lxD73hXe-mW62sSuZpniUifIUzt657-fCzbti_1JfZ1bbZBBklRKE1S8jD1tM7zXLPIMskT0jRi4Ge6vsj9fxHICxH1Iu4HD1i2EXLtYz76H8Y9zG5hSBX-7pBJvfIYH22sfsIJNfVk7Bm_AUXAXB6 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdGJwEvwMqfBQYYhAQ8pGuc2E4eEOpg00CsoEHR3iLHsUulkoS1BfHGh-AT8kk4O05KxAR7tc9Vc747_xLf_Q6hRwRO_TAi2teKKz8iQeRnlEtfh0QkhMZS2e8dR2N2OIlen9CTDTRuamFMWmUTE22gzktpvpHvEkNiywC_xM-rL77pGmVuV5sWGsK1VsifWYqxC2iTGGasHtrc2x-_O25iM3g3Y66ALuTBrtuvQVUWamDZwyxV8_qAsjz-bbTuVfNycRYU_Tuj8tKqqMT3b2I-_-O4OriGrjiciUe1YWyhDVX00dWmhwN2Lt1HF4_c5XofbbnBBX7iyKifXkeTcVn4s-KrMGnuWLQ8nrjUeDw6ePMSxnBNBz2T2F33_Prxc4Q_2zRNhV1fiimu1nWdN9DkYP_Di0PftWLwJUvI0jecQEOZECV0FCp4y9FsmOcRl5zyodRJXQ5CkzimWuRxRnQWAfTIA0lghczCm6hXgJK3EQZ7CFSsGJNCRELGiQbEoSXNpDTYkHoobPSfSsdTbtplzFN7-cbhfaVWYWp2LXW75iG_XVXVPB3_kd8zW9vKGpZtO1CeTlPntGmUqFCE8P9VAqgxkLFSGvAzk4zKkPPAQ_eNYaR1yWobK9IRhXM_NsbmoYdWwjBtFCaVZypWi0X66u3Hcwi9P-4IPXZCugR1SOHKJ-CZDINXR3KnIwnxQnamt40ZN1pZpGvPgpWNaZ89_aCdNj9q0vMKVa6sTEwpTxLioVu1J7SaDQ3zLGGhh3jHRzqq784Us0-W6BzQMuB5sIhB603n2tzb_36OO-gywN7EZBIStoN6y9OVugvQcpndc_HiN8rkegM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawgIGIR6HZBs7tuNjeawWBAUBRcsBRY5rLxUlqWgLggPiR_AL-SWMHScQWMRy4FbFYzcej-1v4pnPCF0jsOvTlNjIGmGilCRpVDChI0uJkoRl2vjvHY9GfHecPthje2voVZMLEzQIPuKsWviTfPejKs120OS24yuqT0_jhIqkqRHPQSj2DGCUX_eMQ-7L2NIlIB1B65wBVO-h9fHoyfBlfdJMIk4GNKTT_amlznblWf3btbvn3uwgYPp7fOXRVTlXHz-o2eynzWvnBPrcdLuOWXkTr5ZFrD_9wgj53_RyEh0PsBcP61Y20JopT6GNsLAs8M3Afn3rNBqPqjKalu-Vi6vHqiUOxZXFo-HOw7vwDNf801ONw_nSty9fh_itjws1OFyEsY_nPxJJz6Dxzr3nd3ajcPdDpLkky8iREA20JEbZlBpwqywfTCap0IKJgbayzj9hMsuYVZOsILZIAetMEk2ghi7oWdQroeebCIMBJiYznGulUqUzaQHiWM0KrR0YZX1EmyHOdSBGd_dzzHJ_2ifAQaqVlDtV5kGVfRS1teY1Mchf5G8762llHa23fwBjmYcxzFNpqKLw_kYCTE10ZowFwM41Z5oKkfTRZWd7eZ0j2y5O-ZAB0ADglcHfXPUSjtqjdLFD-2q1WOT3H784hNCzpx2hG0HIVqAOrUK-BvTJmVpHcqsjCQuU7hRvOltttLLIieOj5uCKZFCzmT0HF19pi12jLh6wNNXKy2SMCSlJH52rJ1urWeqobgmnfSQ607Cj-m5JOX3tmdUBnoMDARYRtxP2UIN7_l8rXEDHAHlLF8xI-BbqLd-tzEVAt8viUlijvgOzsame priority: 102 providerName: Unpaywall  | 
    
| Title | Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30913263 https://www.proquest.com/docview/2199461158 https://www.proquest.com/docview/2198557992 https://pubmed.ncbi.nlm.nih.gov/PMC6435145 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214436&type=printable https://doaj.org/article/49e3a3f4ce94411c8eef5076c65c3771 http://dx.doi.org/10.1371/journal.pone.0214436  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9MwFLe27gAXxPi3wCgBIQGHVI0d28kBoW6sDMTKNOhUTpHj2qVSSUrTArvxIfiEfBKeHTcQMcS45GA_R-37Y_8cP_8eQg8xrPokwjrQiqsgwmEUZJTLQBMsEkxjqez3jqMBOxxGr0Z0tIHWNVudAstzt3amntRwMet8_XT2DAL-qa3awMP1oM68yFXHcoARtom2YK1KTDGHo6g-V4DotqeXBrUEDHeJu0z3t7c0FivL6V_P3K35rCjPg6V_ZldeWuVzcfZFzGa_LV39q-iKw5x-r3KSbbSh8mto20V16T921NNPrqPhoMiDaf5ZmKR2X9SsnX6h_UGv__o5tPkV-fNU-u5w58e37z3_o03KVL6rQjHx579ucd5Aw_7Bu_3DwBVeCCRL8DIwDEBdmWAldEQU7Gk0647HEZec8q7USXX5gyZxTLUYxxnWWQRAYxxKDCNkRm6iVg5q3EE-WD9UsWJMChEJGSca8IWWNJPSIEHqIbLWcCodK7kpjjFL7VEbh91JpaTU2CV1dvFQUI-aV6wc_5DfM8arZQ2ntm0oFpPUhWgaJYoIAr9fJYARQxkrpQEtM8moJJyHHrpnTJ9WF1TrmSHtUVjlY-NaHnpgJQyvRm4SdyZiVZbpyzenFxB6e9IQeuSEdAHqkMJdloD_ZPi6GpK7DUmYHWSje8c46lorZYoNGTSDfUAMI9fOe373_brbvNQk4-WqWFmZmFKeJNhDtypfrzVLDM8sZsRDvBEFDdU3e_LpB0trDtgY0Dt4RKeOlwsZ9_Z_OsMddBlQb2ISCTHbRa3lYqXuArJcZm20yUccnvF-aJ79F220tXcwOD5p2281bTuZQNtwcNx7_xO9jH6m | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkRgvwMqfBQYzCAQ8pGvtJE4eECqMqmNtkWBFfQuOa5dKJQlLy7Q3PgSfgw_FJ-GcOCkRE-xlr_Y5Ss7n88_x3e8Qekxg16cOUbaSTNoO6Th25DJhK0p4QFxfyPx_x3Dk9cfO24k72UA_y1wYHVZZ-sTcUU8Tof-R7xFNYusBfvFfpl9tXTVK366WJTQKsziUpydwZMteHOzD_D4hpPfm6HXfNlUFbOEFZGlrepu2CIjkyqESALvy2tOpwwRzWVuooMhscAPfdxWf-hFRkQO76LQjCIwQEYXnXkKXHQq-BNYPm1QHPPAdnmfS8yjr7BlraKVJLFs5N1lOBL3e_vIqAdVe0EgXSXYW0P07XnNzFaf89IQvFn9shr0b6JpBsbhbmN0W2pBxE10vK0Rg4zCa6MrQXN030ZZpzPAzQ3X9_CYaj5LYnsffuA6ix7xiCcWJwqNub7APbbggm54LbC6Tfn3_0cVf8iBQiU3VixlO11mjt9D4QqbkNmrEoORthMHaOtKXnic4d7jwAwV4Rgk3EkIjT9dCtNR_KAwLui7GsQjzqz0Gp6FChaGetdDMmoXsalRasID8R_6VntpKVnN45w3J8Sw0LiF0Akk5hfeXAWDSjvClVIDOPeG5gjLWsdCuNoywSIitPFHYdQFV-NrYLPQol9A8HrEOFJrxVZaFB-8-nkPow_ua0FMjpBJQh-AmOQO-SfOD1SR3apLgjUSte1ubcamVLFyvWxhZmvbZ3Q-rbv1QHfwXy2SVy_iuy4KAWOhOsRIqzVLNa0s8aiFWWyM11dd74vnnnEYdsDicFsAiWtVqOtfk3v33d-yizf7RcBAODkaH99BVANiBjlkk3g5qLI9X8j6A2GX0IPccGH26aFf1G90Pr-4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkQYvwMqfBQYzCAQ8pG3sJE4eECqUamVbQUBR34Lr2qVSScLSMu2ND8Gn4ePwSTgnTkrEBHvZq32OkvP5_HN89zuEHhLY9alLlK0kk7ZLHNeeeEzYihIeEi8QMv_fcTj090bu67E33kA_y1wYHVZZ-sTcUU8Tof-Rt4kmsfUBvwRtZcIi3vb6z9Ovtq4gpW9ay3IahYnsy5NjOL5lzwY9mOtHhPRffXi5Z5sKA7bwQ7K0NdVNR4REcuVSCeBd-Z3p1GWCeawjVFhkOXhhEHiKT4MJURMXdtSpIwiMEBMKz72ALjJKQx1OyMbVYQ_8iO-bVD3KnLaxjFaaxLKV85TlpNDrrTCvGFDtC410kWSngd6_YzcvreKUnxzzxeKPjbF_DV0xiBZ3CxPcQhsybqKrZbUIbJxHE20emmv8JtoyjRl-Ymivn15Ho2ES2_P4G9cB9ZhXjKE4UXjY7R_0oA0XxNNzgc3F0q_vP7r4Sx4QKrGpgDHD6TqD9AYancuU3ESNGJS8jTBYniMD6fuCc5eLIFSAbZTwJkJoFOpZiJb6j4RhRNeFORZRfs3H4GRUqDDSsxaZWbOQXY1KC0aQ_8i_0FNbyWo-77whOZpFxj1Ebigpp_D-MgR86ohASgVI3Re-JyhjjoV2tWFERXJs5ZWirgcII9DGZqEHuYTm9Ij16pjxVZZFgzcfzyD0_l1N6LERUgmoQ3CTqAHfpLnCapI7NUnwTKLWva3NuNRKFq3XMIwsTfv07vtVt36oDgSMZbLKZQLPY2FILHSrWAmVZqnmuCU-tRCrrZGa6us98fxzTqkOuBxODmARrWo1nWlyb__7O3bRJjip6GAw3L-DLgPWDnX4IvF3UGN5tJJ3Ac8uJ_dyx4HRp_P2VL8Bakq0MQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawgIGIR6HZBs7tuNjeawWBAUBRcsBRY5rLxUlqWgLggPiR_AL-SWMHScQWMRy4FbFYzcej-1v4pnPCF0jsOvTlNjIGmGilCRpVDChI0uJkoRl2vjvHY9GfHecPthje2voVZMLEzQIPuKsWviTfPejKs120OS24yuqT0_jhIqkqRHPQSj2DGCUX_eMQ-7L2NIlIB1B65wBVO-h9fHoyfBlfdJMIk4GNKTT_amlznblWf3btbvn3uwgYPp7fOXRVTlXHz-o2eynzWvnBPrcdLuOWXkTr5ZFrD_9wgj53_RyEh0PsBcP61Y20JopT6GNsLAs8M3Afn3rNBqPqjKalu-Vi6vHqiUOxZXFo-HOw7vwDNf801ONw_nSty9fh_itjws1OFyEsY_nPxJJz6Dxzr3nd3ajcPdDpLkky8iREA20JEbZlBpwqywfTCap0IKJgbayzj9hMsuYVZOsILZIAetMEk2ghi7oWdQroeebCIMBJiYznGulUqUzaQHiWM0KrR0YZX1EmyHOdSBGd_dzzHJ_2ifAQaqVlDtV5kGVfRS1teY1Mchf5G8762llHa23fwBjmYcxzFNpqKLw_kYCTE10ZowFwM41Z5oKkfTRZWd7eZ0j2y5O-ZAB0ADglcHfXPUSjtqjdLFD-2q1WOT3H784hNCzpx2hG0HIVqAOrUK-BvTJmVpHcqsjCQuU7hRvOltttLLIieOj5uCKZFCzmT0HF19pi12jLh6wNNXKy2SMCSlJH52rJ1urWeqobgmnfSQ607Cj-m5JOX3tmdUBnoMDARYRtxP2UIN7_l8rXEDHAHlLF8xI-BbqLd-tzEVAt8viUlijvgOzsame | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+assessment+of+NAFLD+as+systemic+disease%E2%80%94A+machine+learning+perspective&rft.jtitle=PloS+one&rft.au=Canbay%2C+Ali&rft.au=K%C3%A4lsch%2C+Julia&rft.au=Neumann%2C+Ursula&rft.au=Rau%2C+Monika&rft.date=2019-03-26&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0214436&rft_id=info:doi/10.1371%2Fjournal.pone.0214436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0214436 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |