Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective

Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learni...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 3; p. e0214436
Main Authors Canbay, Ali, Kälsch, Julia, Neumann, Ursula, Rau, Monika, Hohenester, Simon, Baba, Hideo A., Rust, Christian, Geier, Andreas, Heider, Dominik, Sowa, Jan-Peter
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.03.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0214436

Cover

Abstract Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
AbstractList BACKGROUND & AIMS:Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. METHODS:Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). RESULTS:EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. CONCLUSIONS:A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches.BACKGROUND & AIMSCurrent non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches.Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2).METHODSNon-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2).EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate.RESULTSEFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate.A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.CONCLUSIONSA newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Methods Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). Results EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. Conclusions A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Methods Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m.sup.2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m.sup.2). Results EFS identified age, [gamma]GT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS[less than or equal to]4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. Conclusions A newly developed model (
Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m.sup.2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m.sup.2). EFS identified age, [gamma]GT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS[less than or equal to]4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic steatohepatitis (NASH) have insufficient performance to be included in clinical routine. In the current study, we developed a novel machine learning approach to overcome the caveats of existing approaches. Non-invasive parameters were selected by an ensemble feature selection (EFS) from a retrospectively collected training cohort of 164 obese individuals (age: 43.5±10.3y; BMI: 54.1±10.1kg/m2) to develop a model able to predict the histological assessed NAFLD activity score (NAS). The model was evaluated in an independent validation cohort (122 patients, age: 45.2±11.75y, BMI: 50.8±8.61kg/m2). EFS identified age, γGT, HbA1c, adiponectin, and M30 as being highly associated with NAFLD. The model reached a Spearman correlation coefficient with the NAS of 0.46 in the training cohort and was able to differentiate between NAFL (NAS≤4) and NASH (NAS>4) with an AUC of 0.73. In the independent validation cohort, an AUC of 0.7 was achieved for this separation. We further analyzed the potential of the new model for disease monitoring in an obese cohort of 38 patients under lifestyle intervention for one year. While all patients lost weight under intervention, increasing scores were observed in 15 patients. Increasing scores were associated with significantly lower absolute weight loss, lower reduction of waist circumference and basal metabolic rate. A newly developed model (http://CHek.heiderlab.de) can predict presence or absence of NASH with reasonable performance. The new score could be used to detect NASH and monitor disease progression or therapy response to weight loss interventions.
Audience Academic
Author Baba, Hideo A.
Heider, Dominik
Rau, Monika
Sowa, Jan-Peter
Geier, Andreas
Canbay, Ali
Kälsch, Julia
Neumann, Ursula
Hohenester, Simon
Rust, Christian
AuthorAffiliation 4 Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
2 Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
5 Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
1 Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
6 Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
7 Center for Nutritional Medicine and Prevention, Department of Medicine I, Hospital Barmherzige Brüder, Munich, Germany
Medizinische Fakultat der RWTH Aachen, GERMANY
3 Institute for Pathology, University Hospital, University Duisburg-Essen, Essen, Germany
AuthorAffiliation_xml – name: Medizinische Fakultat der RWTH Aachen, GERMANY
– name: 2 Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
– name: 5 Division of Hepatology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
– name: 7 Center for Nutritional Medicine and Prevention, Department of Medicine I, Hospital Barmherzige Brüder, Munich, Germany
– name: 3 Institute for Pathology, University Hospital, University Duisburg-Essen, Essen, Germany
– name: 1 Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
– name: 6 Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
– name: 4 Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-6069-7899
  surname: Canbay
  fullname: Canbay, Ali
– sequence: 2
  givenname: Julia
  surname: Kälsch
  fullname: Kälsch, Julia
– sequence: 3
  givenname: Ursula
  surname: Neumann
  fullname: Neumann, Ursula
– sequence: 4
  givenname: Monika
  surname: Rau
  fullname: Rau, Monika
– sequence: 5
  givenname: Simon
  surname: Hohenester
  fullname: Hohenester, Simon
– sequence: 6
  givenname: Hideo A.
  surname: Baba
  fullname: Baba, Hideo A.
– sequence: 7
  givenname: Christian
  surname: Rust
  fullname: Rust, Christian
– sequence: 8
  givenname: Andreas
  surname: Geier
  fullname: Geier, Andreas
– sequence: 9
  givenname: Dominik
  surname: Heider
  fullname: Heider, Dominik
– sequence: 10
  givenname: Jan-Peter
  surname: Sowa
  fullname: Sowa, Jan-Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30913263$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9u0zAUxiM0xP7AGyCIhITgosWO7cTmAqkaDCpVmwSMW8t1TlpXrt3FSaF3PARPyJPgrtnUTJOYfBHr5Hc-n_Odc5wcOO8gSZ5jNMSkwO8Wvq2dssNVDA9Rhikl-aPkCAuSDfIMkYO9-2FyHMICIUZ4nj9JDgkSmGQ5OUouz70bGLdWwawhVSFACEtwTeqr9Hx0NvkYY2nYhAaWRqelCaAC_P39Z5QulZ4bB6kFVTvjZukK6rAC3UShp8njStkAz7rvSXJ59un76ZfB5OLz-HQ0GehcZM2gQAVHWmSgKkqAUV7lqCxpoQtWIF0JhETBCROcs0qVfJpVU8qzrMQ6ixl6Sk6SlzvdlfVBdo4EmWEhaI4x45EY74jSq4Vc1Wap6o30ysjrgK9nUtWN0RYkFUAUibogKMVYc4CKoSLXOdOkKHDUYjut1q3U5qey9lYQI7kdyk0JcjsU2Q0l5n3oqmynSyh1tLdWtldM_48zcznza5lTwjBlUeBNJ1D7qxZCI5cmaLBWOfDtdb-csUKILKKv7qD3u9JRMxUbN67y8V29FZUjxhHm20WJ1PAeKp5yuwyxw8rEeC_hbS8hMg38amaqDUGOv319OHvxo8--3mPnoGwzD962jfEu9MEX-07fWnyz7xF4vwN07UOooZLaNGqrE1sz9n9zpHeSHzT-f0iHJ-g
CitedBy_id crossref_primary_10_1093_jamia_ocab003
crossref_primary_10_3350_cmh_2022_0426
crossref_primary_10_1016_j_metabol_2022_155179
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1007_s11428_020_00648_1
crossref_primary_10_1038_s41366_021_00881_8
crossref_primary_10_1038_s41598_024_51741_0
crossref_primary_10_1136_bmjhci_2021_100510
crossref_primary_10_4254_wjh_v13_i10_1417
crossref_primary_10_1007_s11154_021_09681_x
crossref_primary_10_1371_journal_pone_0238717
crossref_primary_10_35712_aig_v3_i3_80
crossref_primary_10_1155_2019_8742075
crossref_primary_10_1166_jmihi_2021_3343
crossref_primary_10_1016_j_jhep_2020_10_030
crossref_primary_10_1055_s_0041_1730924
crossref_primary_10_3748_wjg_v27_i37_6191
crossref_primary_10_1371_journal_pone_0299487
crossref_primary_10_1177_0272989X20940672
crossref_primary_10_1159_000510600
crossref_primary_10_1055_a_1880_2283
crossref_primary_10_1186_s43066_022_00224_w
crossref_primary_10_1016_j_gastha_2023_09_004
crossref_primary_10_1016_j_heliyon_2024_e28468
crossref_primary_10_1371_journal_pone_0240867
crossref_primary_10_3390_metabo12020130
crossref_primary_10_1016_j_hbpd_2023_03_009
crossref_primary_10_3390_cells8080845
crossref_primary_10_1016_j_cyto_2025_156882
crossref_primary_10_1016_j_xhgg_2021_100056
crossref_primary_10_1007_s12664_022_01263_2
crossref_primary_10_1093_advances_nmac103
crossref_primary_10_3390_jpm14050492
crossref_primary_10_1007_s15036_023_3265_4
crossref_primary_10_1007_s11901_021_00577_7
crossref_primary_10_1038_s41598_021_99400_y
crossref_primary_10_1111_jgh_15415
crossref_primary_10_1371_journal_pmed_1003149
crossref_primary_10_1016_j_bbalip_2019_158519
crossref_primary_10_1055_a_1955_5297
crossref_primary_10_3390_app10155135
crossref_primary_10_1016_j_cmpb_2023_107932
crossref_primary_10_1055_a_1880_2388
crossref_primary_10_1080_10255842_2023_2217978
crossref_primary_10_1111_apt_17891
crossref_primary_10_21015_vtse_v10i1_826
crossref_primary_10_1159_000519317
crossref_primary_10_22246_jikm_2022_43_4_680
crossref_primary_10_3389_fmed_2021_774079
Cites_doi 10.1002/hep.21496
10.3949/ccjm.75.10.721
10.1371/journal.pone.0180947
10.1016/j.cld.2015.10.010
10.1006/bbrc.1999.0255
10.1155/2011/369168
10.1038/90992
10.1136/gut.2007.146019
10.1016/j.cld.2015.10.011
10.1055/s-0042-121899
10.1002/hep.20701
10.1038/nrgastro.2013.41
10.1186/1471-2105-12-77
10.1002/hep.23594
10.1371/journal.pone.0030325
10.1038/srep13058
10.1007/s00535-010-0305-6
10.1152/ajpgi.00044.2018
10.1002/hep.21984
10.1016/j.metabol.2014.09.001
10.1056/NEJMra1610570
10.1002/hep.28431
10.1186/s13040-017-0142-8
10.1053/j.gastro.2013.08.036
10.1016/j.diabet.2013.11.004
10.1053/j.gastro.2005.03.084
10.1111/j.1572-0241.2006.01041.x
10.1053/jhep.2003.50346
10.1136/bmjdrc-2017-000415
10.1016/j.cgh.2009.05.033
10.1053/j.gastro.2015.04.043
10.1371/journal.pone.0147237
10.1002/hep.29080
10.1186/s13040-016-0114-4
10.1053/j.gastro.2016.12.013
10.1002/hep.24734
10.1016/j.jhep.2014.12.012
10.1111/j.1478-3231.2005.01209.x
10.1007/s11695-010-0204-1
10.1002/hep.25889
10.1016/j.metabol.2016.01.013
10.1053/gast.2002.35354
10.1016/j.jhep.2012.11.021
10.1002/hep.22742
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Canbay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Canbay et al 2019 Canbay et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Canbay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Canbay et al 2019 Canbay et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0214436
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




MEDLINE
Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Computer Science
DocumentTitleAlternate Non-invasive assessment of NAFLD
EISSN 1932-6203
ExternalDocumentID 2199461158
oai_doaj_org_article_49e3a3f4ce94411c8eef5076c65c3771
10.1371/journal.pone.0214436
PMC6435145
A580185386
30913263
10_1371_journal_pone_0214436
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
  grantid: RU 742/6-1
– fundername: ;
  grantid: FöFoLe #905
– fundername: ;
  grantid: IFORES
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-70780c92eaf43e548f60dd47c7570cf900978359885fad8b2fb4822d1c2af4cb3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:37 EST 2021
Fri Oct 03 12:53:28 EDT 2025
Sun Oct 26 02:50:59 EDT 2025
Tue Sep 30 16:56:11 EDT 2025
Sun Sep 28 11:11:39 EDT 2025
Tue Oct 07 07:47:23 EDT 2025
Mon Oct 20 21:57:15 EDT 2025
Mon Oct 20 16:25:57 EDT 2025
Thu Oct 16 14:21:09 EDT 2025
Thu Oct 16 15:02:21 EDT 2025
Thu May 22 21:24:25 EDT 2025
Wed Feb 19 02:30:58 EST 2025
Thu Apr 24 23:06:17 EDT 2025
Wed Oct 01 03:33:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-70780c92eaf43e548f60dd47c7570cf900978359885fad8b2fb4822d1c2af4cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: JK, UN, MR, SH, HAB, CR, AG, and DH state that there are no conflicts of interest to declare. JPS and AC state that they received royalties for a scientific lecture, which was in part supported by TECOmedical group. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0001-6069-7899
OpenAccessLink https://doaj.org/article/49e3a3f4ce94411c8eef5076c65c3771
PMID 30913263
PQID 2199461158
PQPubID 1436336
PageCount e0214436
ParticipantIDs plos_journals_2199461158
doaj_primary_oai_doaj_org_article_49e3a3f4ce94411c8eef5076c65c3771
unpaywall_primary_10_1371_journal_pone_0214436
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6435145
proquest_miscellaneous_2198557992
proquest_journals_2199461158
gale_infotracmisc_A580185386
gale_infotracacademiconefile_A580185386
gale_incontextgauss_ISR_A580185386
gale_incontextgauss_IOV_A580185386
gale_healthsolutions_A580185386
pubmed_primary_30913263
crossref_citationtrail_10_1371_journal_pone_0214436
crossref_primary_10_1371_journal_pone_0214436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-26
PublicationDateYYYYMMDD 2019-03-26
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AH Berg (ref43) 2001; 7
TE Silva (ref45) 2014; 40
PM Gholam (ref15) 2007; 102
EB Tapper (ref33) 2017; 377
P Bedossa (ref11) 2012; 56
X Robin (ref30) 2011; 12
IN Guha (ref39) 2008; 47
J Kälsch (ref10) 2016; 54
A Marengo (ref4) 2016; 20
T Karlas (ref38) 2017; 152
ref32
I Owei (ref48) 2017; 5
A Wree (ref42) 2014; 63
DC Rockey (ref36) 2009; 49
Y Sumida (ref18) 2011; 46
P Angulo (ref40) 2015; 149
D Joka (ref27) 2012; 55
S Hohenester (ref28) 2018; 315
C-T Wai (ref20) 2003; 38
SA Harrison (ref16) 2008; 57
MV Machado (ref22) 2013; 58
QM Anstee (ref8) 2013; 10
NA Palekar (ref13) 2006; 26
V Ratziu (ref35) 2005; 128
DE Kleiner (ref41) 2016; 20
ZM Younossi (ref23) 2017
S Saadeh (ref12) 2002; 123
U Neumann (ref25) 2017; 10
P Angulo (ref14) 2007; 45
EB Tapper (ref37) 2016; 11
Y Arita (ref44) 1999; 257
AG Shah (ref17) 2009; 7
J Bissonnette (ref26) 2017; 66
CH Kim (ref2) 2008; 75
CD Byrne (ref3) 2015; 62
A Dechêne (ref31) 2014
DE Kleiner (ref24) 2005; 41
S Graßmann (ref46) 2017
J Kälsch (ref9) 2015; 5
T Poynard (ref19) 2012; 7
U Neumann (ref29) 2016; 9
N Alkhouri (ref34) 2016; 65
VG de Abreu (ref47) 2017; 12
J Kälsch (ref5) 2011; 2011
MS Siddiqui (ref7) 2013; 145
ZM Younossi (ref1) 2016; 64
BQ Starley (ref6) 2010; 51
ZM Younossi (ref21) 2011; 21
References_xml – volume: 45
  start-page: 846
  year: 2007
  ident: ref14
  article-title: The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD
  publication-title: Hepatology
  doi: 10.1002/hep.21496
– volume: 75
  start-page: 721
  year: 2008
  ident: ref2
  article-title: Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome
  publication-title: Cleve Clin J Med
  doi: 10.3949/ccjm.75.10.721
– volume: 12
  start-page: e0180947
  year: 2017
  ident: ref47
  article-title: High-molecular weight adiponectin/HOMA-IR ratio as a biomarker of metabolic syndrome in urban multiethnic Brazilian subjects
  publication-title: PloS One
  doi: 10.1371/journal.pone.0180947
– volume: 20
  start-page: 313
  year: 2016
  ident: ref4
  article-title: Progression and Natural History of Nonalcoholic Fatty Liver Disease in Adults
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2015.10.010
– volume: 257
  start-page: 79
  year: 1999
  ident: ref44
  article-title: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.0255
– volume: 2011
  start-page: 369168
  year: 2011
  ident: ref5
  article-title: Evaluation of Biomarkers of NAFLD in a Cohort of Morbidly Obese Patients
  publication-title: J Nutr Metab
  doi: 10.1155/2011/369168
– volume: 7
  start-page: 947
  year: 2001
  ident: ref43
  article-title: The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
  publication-title: Nat Med
  doi: 10.1038/90992
– volume: 57
  start-page: 1441
  year: 2008
  ident: ref16
  article-title: Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease
  publication-title: Gut
  doi: 10.1136/gut.2007.146019
– volume: 20
  start-page: 293
  year: 2016
  ident: ref41
  article-title: Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2015.10.011
– volume: 54
  start-page: 1312
  year: 2016
  ident: ref10
  article-title: Patients with ultrasound diagnosis of hepatic steatosis are at high metabolic risk
  publication-title: Z Für Gastroenterol
  doi: 10.1055/s-0042-121899
– volume: 41
  start-page: 1313
  year: 2005
  ident: ref24
  article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.20701
– year: 2014
  ident: ref31
  article-title: Endoscopic management is the treatment of choice for bile leaks after liver resection
  publication-title: Gastrointest Endosc
– volume: 10
  start-page: 330
  year: 2013
  ident: ref8
  article-title: Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2013.41
– volume: 12
  start-page: 77
  year: 2011
  ident: ref30
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 51
  start-page: 1820
  year: 2010
  ident: ref6
  article-title: Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection
  publication-title: Hepatology
  doi: 10.1002/hep.23594
– volume: 7
  start-page: e30325
  year: 2012
  ident: ref19
  article-title: Performance of biomarkers FibroTest, ActiTest, SteatoTest, and NashTest in patients with severe obesity: meta analysis of individual patient data
  publication-title: PloS One
  doi: 10.1371/journal.pone.0030325
– volume: 5
  start-page: 13058
  year: 2015
  ident: ref9
  article-title: Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort
  publication-title: Sci Rep
  doi: 10.1038/srep13058
– volume: 46
  start-page: 257
  year: 2011
  ident: ref18
  article-title: A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-010-0305-6
– year: 2017
  ident: ref23
  article-title: Diagnostic Modalities for Non-alcoholic Fatty Liver Disease (NAFLD), Non-alcoholic Steatohepatitis (NASH) and Associated Fibrosis
  publication-title: Hepatology
– ident: ref32
– volume: 315
  start-page: G329
  year: 2018
  ident: ref28
  article-title: Lifestyle intervention for morbid obesity: effects on liver steatosis, inflammation, and fibrosis
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00044.2018
– volume: 47
  start-page: 455
  year: 2008
  ident: ref39
  article-title: Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers
  publication-title: Hepatology
  doi: 10.1002/hep.21984
– volume: 63
  start-page: 1542
  year: 2014
  ident: ref42
  article-title: Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.09.001
– volume: 377
  start-page: 756
  year: 2017
  ident: ref33
  article-title: Use of Liver Imaging and Biopsy in Clinical Practice
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1610570
– year: 2017
  ident: ref46
  article-title: Association Between Peripheral Adipokines and Inflammation Markers: A Systematic Review and Meta-Analysis
  publication-title: Obesity
– volume: 64
  start-page: 73
  year: 2016
  ident: ref1
  article-title: Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology
  doi: 10.1002/hep.28431
– volume: 10
  start-page: 21
  year: 2017
  ident: ref25
  article-title: EFS: an ensemble feature selection tool implemented as R-package and web-application
  publication-title: BioData Min
  doi: 10.1186/s13040-017-0142-8
– volume: 145
  start-page: 1271
  year: 2013
  ident: ref7
  article-title: Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.08.036
– volume: 40
  start-page: 95
  year: 2014
  ident: ref45
  article-title: Adiponectin: A multitasking player in the field of liver diseases
  publication-title: Diabetes Metab
  doi: 10.1016/j.diabet.2013.11.004
– volume: 128
  start-page: 1898
  year: 2005
  ident: ref35
  article-title: Sampling variability of liver biopsy in nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2005.03.084
– volume: 102
  start-page: 399
  year: 2007
  ident: ref15
  article-title: Nonalcoholic fatty liver disease in severely obese subjects
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2006.01041.x
– volume: 38
  start-page: 518
  year: 2003
  ident: ref20
  article-title: A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C
  publication-title: Hepatology
  doi: 10.1053/jhep.2003.50346
– volume: 5
  start-page: e000415
  year: 2017
  ident: ref48
  article-title: Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2017-000415
– volume: 7
  start-page: 1104
  year: 2009
  ident: ref17
  article-title: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2009.05.033
– volume: 149
  start-page: 389
  year: 2015
  ident: ref40
  article-title: Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.04.043
– volume: 11
  start-page: e0147237
  year: 2016
  ident: ref37
  article-title: Cost-Effectiveness Analysis: Risk Stratification of Nonalcoholic Fatty Liver Disease (NAFLD) by the Primary Care Physician Using the NAFLD Fibrosis Score
  publication-title: PloS One
  doi: 10.1371/journal.pone.0147237
– volume: 66
  start-page: 555
  year: 2017
  ident: ref26
  article-title: A prospective study of the utility of plasma biomarkers to diagnose alcoholic hepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.29080
– volume: 9
  start-page: 36
  year: 2016
  ident: ref29
  article-title: Compensation of feature selection biases accompanied with improved predictive performance for binary classification by using a novel ensemble feature selection approach
  publication-title: BioData Min
  doi: 10.1186/s13040-016-0114-4
– volume: 152
  start-page: 479
  year: 2017
  ident: ref38
  article-title: Collaboration, Not Competition: The Role of Magnetic Resonance, Transient Elastography, and Liver Biopsy in the Diagnosis of Nonalcoholic Fatty Liver Disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.12.013
– volume: 55
  start-page: 455
  year: 2012
  ident: ref27
  article-title: Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.24734
– volume: 62
  start-page: S47
  year: 2015
  ident: ref3
  article-title: NAFLD: a multisystem disease
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2014.12.012
– volume: 26
  start-page: 151
  year: 2006
  ident: ref13
  article-title: Clinical model for distinguishing nonalcoholic steatohepatitis from simple steatosis in patients with nonalcoholic fatty liver disease
  publication-title: Liver Int
  doi: 10.1111/j.1478-3231.2005.01209.x
– volume: 21
  start-page: 431
  year: 2011
  ident: ref21
  article-title: A biomarker panel for non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis
  publication-title: Obes Surg
  doi: 10.1007/s11695-010-0204-1
– volume: 56
  start-page: 1751
  year: 2012
  ident: ref11
  article-title: Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients
  publication-title: Hepatology
  doi: 10.1002/hep.25889
– volume: 65
  start-page: 1087
  year: 2016
  ident: ref34
  article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease: Are we there yet?
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.01.013
– volume: 123
  start-page: 745
  year: 2002
  ident: ref12
  article-title: The utility of radiological imaging in nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/gast.2002.35354
– volume: 58
  start-page: 1007
  year: 2013
  ident: ref22
  article-title: Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.11.021
– volume: 49
  start-page: 1017
  year: 2009
  ident: ref36
  article-title: Liver biopsy
  publication-title: Hepatology
  doi: 10.1002/hep.22742
SSID ssj0053866
Score 2.537094
SecondaryResourceType review_article
Snippet Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with non-alcoholic...
Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with...
BACKGROUND & AIMS:Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with...
Background & aims Current non-invasive scores for the assessment of severity of non-alcoholic fatty liver disease (NAFLD) and identification of patients with...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0214436
SubjectTerms Adipocytes
Adiponectin
Adult
Age
Apoptosis
Biology and Life Sciences
Biomarkers
Biomarkers - metabolism
Body mass
Body Weight
Cohort Studies
Computational Biology - methods
Computer science
Correlation coefficient
Correlation coefficients
Development and progression
Diabetes
Fatty liver
Female
Funding
Gastroenterology
Gastrointestinal surgery
Glycosylated hemoglobin
Health aspects
Hepatology
Histology
Hospitals
Humans
Infectious diseases
Inflammation
Insulin
Internal medicine
Intervention
Learning algorithms
Liver
Liver diseases
Machine Learning
Male
Mathematical models
Medicine
Medicine and Health Sciences
Metabolic rate
Metabolic syndrome
Middle Aged
Mortality
Non-alcoholic Fatty Liver Disease - complications
Non-alcoholic Fatty Liver Disease - diagnosis
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Novels
Obesity
Obesity - complications
Patients
Research and Analysis Methods
Review boards
Software
Systematic review
Systemic diseases
Training
Weight loss
Weight reduction
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBjK8FNjAICTika-zYsY_loxoIisQY2i1yXu1RqSTV2oL473l23GwRk7YD1_g5Ut6H38_xez8T8oJh1uc5c6mzhU1zluVpJQpIHWdGM6HAhv8dn6fy8Dj_eCJOLlz15WvCWnrgVnEHubbccJeD1Zi5M1DWOsQwEqQAXoTucTZSeruZatdgjGIpY6McL7KDaJfhsqntMLCEBUrm80QU-Pq7VXmwXDSryyDnv5WTNzf10vz5bRaLC2lpcofcjniSjtvv2CE3bH2X7MSIXdFXkVb69T1yNG3qdF7_Mr5gnZqOkZM2jk7Hk0_v8BltiZ3nQOPBTTqmP0O5paXxfolTujzvz7xPjifvv709TOOVCilIzdap5_YZgWbWuJxb3K04OZrN8gIKUYzA6batQ2ilhDMzVTFX5QghZhkwnAEVf0AGNSpxl1C0a2aVlRKMyQ0o7RA5OBAVgMd4IiF8q98SIt-4v_ZiUYZDtAL3Ha2KSm-VMlolIWk3a9nybVwh_8abrpP1bNnhAfpQGX2ovMqHEvLUG75sW0-7mC_HAvO38s6UkOdBwjNm1L4k59RsVqvyw5fv1xA6-toTehmFXIPqABPbIPCbPBNXT3KvJ4lxD73hXe-mW62sSuZpniUifIUzt657-fCzbti_1JfZ1bbZBBklRKE1S8jD1tM7zXLPIMskT0jRi4Ge6vsj9fxHICxH1Iu4HD1i2EXLtYz76H8Y9zG5hSBX-7pBJvfIYH22sfsIJNfVk7Bm_AUXAXB6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdGJwEvwMqfBQYYhAQ8pGuc2E4eEOpg00CsoEHR3iLHsUulkoS1BfHGh-AT8kk4O05KxAR7tc9Vc747_xLf_Q6hRwRO_TAi2teKKz8iQeRnlEtfh0QkhMZS2e8dR2N2OIlen9CTDTRuamFMWmUTE22gzktpvpHvEkNiywC_xM-rL77pGmVuV5sWGsK1VsifWYqxC2iTGGasHtrc2x-_O25iM3g3Y66ALuTBrtuvQVUWamDZwyxV8_qAsjz-bbTuVfNycRYU_Tuj8tKqqMT3b2I-_-O4OriGrjiciUe1YWyhDVX00dWmhwN2Lt1HF4_c5XofbbnBBX7iyKifXkeTcVn4s-KrMGnuWLQ8nrjUeDw6ePMSxnBNBz2T2F33_Prxc4Q_2zRNhV1fiimu1nWdN9DkYP_Di0PftWLwJUvI0jecQEOZECV0FCp4y9FsmOcRl5zyodRJXQ5CkzimWuRxRnQWAfTIA0lghczCm6hXgJK3EQZ7CFSsGJNCRELGiQbEoSXNpDTYkHoobPSfSsdTbtplzFN7-cbhfaVWYWp2LXW75iG_XVXVPB3_kd8zW9vKGpZtO1CeTlPntGmUqFCE8P9VAqgxkLFSGvAzk4zKkPPAQ_eNYaR1yWobK9IRhXM_NsbmoYdWwjBtFCaVZypWi0X66u3Hcwi9P-4IPXZCugR1SOHKJ-CZDINXR3KnIwnxQnamt40ZN1pZpGvPgpWNaZ89_aCdNj9q0vMKVa6sTEwpTxLioVu1J7SaDQ3zLGGhh3jHRzqq784Us0-W6BzQMuB5sIhB603n2tzb_36OO-gywN7EZBIStoN6y9OVugvQcpndc_HiN8rkegM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawgIGIR6HZBs7tuNjeawWBAUBRcsBRY5rLxUlqWgLggPiR_AL-SWMHScQWMRy4FbFYzcej-1v4pnPCF0jsOvTlNjIGmGilCRpVDChI0uJkoRl2vjvHY9GfHecPthje2voVZMLEzQIPuKsWviTfPejKs120OS24yuqT0_jhIqkqRHPQSj2DGCUX_eMQ-7L2NIlIB1B65wBVO-h9fHoyfBlfdJMIk4GNKTT_amlznblWf3btbvn3uwgYPp7fOXRVTlXHz-o2eynzWvnBPrcdLuOWXkTr5ZFrD_9wgj53_RyEh0PsBcP61Y20JopT6GNsLAs8M3Afn3rNBqPqjKalu-Vi6vHqiUOxZXFo-HOw7vwDNf801ONw_nSty9fh_itjws1OFyEsY_nPxJJz6Dxzr3nd3ajcPdDpLkky8iREA20JEbZlBpwqywfTCap0IKJgbayzj9hMsuYVZOsILZIAetMEk2ghi7oWdQroeebCIMBJiYznGulUqUzaQHiWM0KrR0YZX1EmyHOdSBGd_dzzHJ_2ifAQaqVlDtV5kGVfRS1teY1Mchf5G8762llHa23fwBjmYcxzFNpqKLw_kYCTE10ZowFwM41Z5oKkfTRZWd7eZ0j2y5O-ZAB0ADglcHfXPUSjtqjdLFD-2q1WOT3H784hNCzpx2hG0HIVqAOrUK-BvTJmVpHcqsjCQuU7hRvOltttLLIieOj5uCKZFCzmT0HF19pi12jLh6wNNXKy2SMCSlJH52rJ1urWeqobgmnfSQ607Cj-m5JOX3tmdUBnoMDARYRtxP2UIN7_l8rXEDHAHlLF8xI-BbqLd-tzEVAt8viUlijvgOzsame
  priority: 102
  providerName: Unpaywall
Title Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/30913263
https://www.proquest.com/docview/2199461158
https://www.proquest.com/docview/2198557992
https://pubmed.ncbi.nlm.nih.gov/PMC6435145
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214436&type=printable
https://doaj.org/article/49e3a3f4ce94411c8eef5076c65c3771
http://dx.doi.org/10.1371/journal.pone.0214436
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9MwFLe27gAXxPi3wCgBIQGHVI0d28kBoW6sDMTKNOhUTpHj2qVSSUrTArvxIfiEfBKeHTcQMcS45GA_R-37Y_8cP_8eQg8xrPokwjrQiqsgwmEUZJTLQBMsEkxjqez3jqMBOxxGr0Z0tIHWNVudAstzt3amntRwMet8_XT2DAL-qa3awMP1oM68yFXHcoARtom2YK1KTDGHo6g-V4DotqeXBrUEDHeJu0z3t7c0FivL6V_P3K35rCjPg6V_ZldeWuVzcfZFzGa_LV39q-iKw5x-r3KSbbSh8mto20V16T921NNPrqPhoMiDaf5ZmKR2X9SsnX6h_UGv__o5tPkV-fNU-u5w58e37z3_o03KVL6rQjHx579ucd5Aw_7Bu_3DwBVeCCRL8DIwDEBdmWAldEQU7Gk0647HEZec8q7USXX5gyZxTLUYxxnWWQRAYxxKDCNkRm6iVg5q3EE-WD9UsWJMChEJGSca8IWWNJPSIEHqIbLWcCodK7kpjjFL7VEbh91JpaTU2CV1dvFQUI-aV6wc_5DfM8arZQ2ntm0oFpPUhWgaJYoIAr9fJYARQxkrpQEtM8moJJyHHrpnTJ9WF1TrmSHtUVjlY-NaHnpgJQyvRm4SdyZiVZbpyzenFxB6e9IQeuSEdAHqkMJdloD_ZPi6GpK7DUmYHWSje8c46lorZYoNGTSDfUAMI9fOe373_brbvNQk4-WqWFmZmFKeJNhDtypfrzVLDM8sZsRDvBEFDdU3e_LpB0trDtgY0Dt4RKeOlwsZ9_Z_OsMddBlQb2ISCTHbRa3lYqXuArJcZm20yUccnvF-aJ79F220tXcwOD5p2281bTuZQNtwcNx7_xO9jH6m
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkRgvwMqfBQYzCAQ8pGvtJE4eECqMqmNtkWBFfQuOa5dKJQlLy7Q3PgSfgw_FJ-GcOCkRE-xlr_Y5Ss7n88_x3e8Qekxg16cOUbaSTNoO6Th25DJhK0p4QFxfyPx_x3Dk9cfO24k72UA_y1wYHVZZ-sTcUU8Tof-R7xFNYusBfvFfpl9tXTVK366WJTQKsziUpydwZMteHOzD_D4hpPfm6HXfNlUFbOEFZGlrepu2CIjkyqESALvy2tOpwwRzWVuooMhscAPfdxWf-hFRkQO76LQjCIwQEYXnXkKXHQq-BNYPm1QHPPAdnmfS8yjr7BlraKVJLFs5N1lOBL3e_vIqAdVe0EgXSXYW0P07XnNzFaf89IQvFn9shr0b6JpBsbhbmN0W2pBxE10vK0Rg4zCa6MrQXN030ZZpzPAzQ3X9_CYaj5LYnsffuA6ix7xiCcWJwqNub7APbbggm54LbC6Tfn3_0cVf8iBQiU3VixlO11mjt9D4QqbkNmrEoORthMHaOtKXnic4d7jwAwV4Rgk3EkIjT9dCtNR_KAwLui7GsQjzqz0Gp6FChaGetdDMmoXsalRasID8R_6VntpKVnN45w3J8Sw0LiF0Akk5hfeXAWDSjvClVIDOPeG5gjLWsdCuNoywSIitPFHYdQFV-NrYLPQol9A8HrEOFJrxVZaFB-8-nkPow_ua0FMjpBJQh-AmOQO-SfOD1SR3apLgjUSte1ubcamVLFyvWxhZmvbZ3Q-rbv1QHfwXy2SVy_iuy4KAWOhOsRIqzVLNa0s8aiFWWyM11dd74vnnnEYdsDicFsAiWtVqOtfk3v33d-yizf7RcBAODkaH99BVANiBjlkk3g5qLI9X8j6A2GX0IPccGH26aFf1G90Pr-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkQYvwMqfBQYzCAQ8pG3sJE4eECqUamVbQUBR34Lr2qVSScLSMu2ND8Gn4ePwSTgnTkrEBHvZq32OkvP5_HN89zuEHhLY9alLlK0kk7ZLHNeeeEzYihIeEi8QMv_fcTj090bu67E33kA_y1wYHVZZ-sTcUU8Tof-Rt4kmsfUBvwRtZcIi3vb6z9Ovtq4gpW9ay3IahYnsy5NjOL5lzwY9mOtHhPRffXi5Z5sKA7bwQ7K0NdVNR4REcuVSCeBd-Z3p1GWCeawjVFhkOXhhEHiKT4MJURMXdtSpIwiMEBMKz72ALjJKQx1OyMbVYQ_8iO-bVD3KnLaxjFaaxLKV85TlpNDrrTCvGFDtC410kWSngd6_YzcvreKUnxzzxeKPjbF_DV0xiBZ3CxPcQhsybqKrZbUIbJxHE20emmv8JtoyjRl-Ymivn15Ho2ES2_P4G9cB9ZhXjKE4UXjY7R_0oA0XxNNzgc3F0q_vP7r4Sx4QKrGpgDHD6TqD9AYancuU3ESNGJS8jTBYniMD6fuCc5eLIFSAbZTwJkJoFOpZiJb6j4RhRNeFORZRfs3H4GRUqDDSsxaZWbOQXY1KC0aQ_8i_0FNbyWo-77whOZpFxj1Ebigpp_D-MgR86ohASgVI3Re-JyhjjoV2tWFERXJs5ZWirgcII9DGZqEHuYTm9Ij16pjxVZZFgzcfzyD0_l1N6LERUgmoQ3CTqAHfpLnCapI7NUnwTKLWva3NuNRKFq3XMIwsTfv07vtVt36oDgSMZbLKZQLPY2FILHSrWAmVZqnmuCU-tRCrrZGa6us98fxzTqkOuBxODmARrWo1nWlyb__7O3bRJjip6GAw3L-DLgPWDnX4IvF3UGN5tJJ3Ac8uJ_dyx4HRp_P2VL8Bakq0MQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawgIGIR6HZBs7tuNjeawWBAUBRcsBRY5rLxUlqWgLggPiR_AL-SWMHScQWMRy4FbFYzcej-1v4pnPCF0jsOvTlNjIGmGilCRpVDChI0uJkoRl2vjvHY9GfHecPthje2voVZMLEzQIPuKsWviTfPejKs120OS24yuqT0_jhIqkqRHPQSj2DGCUX_eMQ-7L2NIlIB1B65wBVO-h9fHoyfBlfdJMIk4GNKTT_amlznblWf3btbvn3uwgYPp7fOXRVTlXHz-o2eynzWvnBPrcdLuOWXkTr5ZFrD_9wgj53_RyEh0PsBcP61Y20JopT6GNsLAs8M3Afn3rNBqPqjKalu-Vi6vHqiUOxZXFo-HOw7vwDNf801ONw_nSty9fh_itjws1OFyEsY_nPxJJz6Dxzr3nd3ajcPdDpLkky8iREA20JEbZlBpwqywfTCap0IKJgbayzj9hMsuYVZOsILZIAetMEk2ghi7oWdQroeebCIMBJiYznGulUqUzaQHiWM0KrR0YZX1EmyHOdSBGd_dzzHJ_2ifAQaqVlDtV5kGVfRS1teY1Mchf5G8762llHa23fwBjmYcxzFNpqKLw_kYCTE10ZowFwM41Z5oKkfTRZWd7eZ0j2y5O-ZAB0ADglcHfXPUSjtqjdLFD-2q1WOT3H784hNCzpx2hG0HIVqAOrUK-BvTJmVpHcqsjCQuU7hRvOltttLLIieOj5uCKZFCzmT0HF19pi12jLh6wNNXKy2SMCSlJH52rJ1urWeqobgmnfSQ607Cj-m5JOX3tmdUBnoMDARYRtxP2UIN7_l8rXEDHAHlLF8xI-BbqLd-tzEVAt8viUlijvgOzsame
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+assessment+of+NAFLD+as+systemic+disease%E2%80%94A+machine+learning+perspective&rft.jtitle=PloS+one&rft.au=Canbay%2C+Ali&rft.au=K%C3%A4lsch%2C+Julia&rft.au=Neumann%2C+Ursula&rft.au=Rau%2C+Monika&rft.date=2019-03-26&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0214436&rft_id=info:doi/10.1371%2Fjournal.pone.0214436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0214436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon