Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic pro...
        Saved in:
      
    
          | Published in | PloS one Vol. 9; no. 2; p. e88499 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        13.02.2014
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0088499 | 
Cover
| Abstract | The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. | 
    
|---|---|
| AbstractList | The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the .sup.1 H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the .sup.1 H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.  | 
    
| Audience | Academic | 
    
| Author | Latino, Diogo A. R. S. Aires-de-Sousa, João  | 
    
| AuthorAffiliation | 1 CQFB, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal University of Sydney, Australia 2 CCMM, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal  | 
    
| AuthorAffiliation_xml | – name: 1 CQFB, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal – name: University of Sydney, Australia – name: 2 CCMM, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal  | 
    
| Author_xml | – sequence: 1 givenname: Diogo A. R. S. surname: Latino fullname: Latino, Diogo A. R. S. – sequence: 2 givenname: João surname: Aires-de-Sousa fullname: Aires-de-Sousa, João  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24551112$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk11v0zAUhiM0xD7gHyCIhITgIsXfjXeBVCo-Km1UKoNby3Xs1pUblziB9d_jtFnVTBOachHn-DlvfN5zfJ6clL7USfISggHEQ_hh5ZuqlG6wieEBAHlOOH-SnEGOUcYQwCdH69PkPIQVABTnjD1LThGhFEKIzhI1amq_lrVV6ffrWfZJBl2kk0KXtTVWxbgvU2_S8VKv46dLZ1qqXfBmu9EhtWV6bW_rporrFvPZVKmmqmy5OKDhefLUSBf0i-59kfz88vlm_C27mn6djEdXmWIc1RnTDEPCSIEkZwXDADEEUcENB0VhJJvnEDODETVScjCkYGgMIHyoOZ6jHBp8kbze626cD6LzJwjIc0xixSCPxGRPFF6uxKaya1lthZdW7AK-WghZRS-cFlQTbGIFnNKCYBqtBIrkRlM8l3Gj1aJ7rabcyO1f6dxBEALRtujuCKJtkehaFPM-dqds5mtdqGh1JV3vMP2d0i7Fwv8RmCOcAxAF3nUClf_d6FCLtQ1KOydL7ZtYLwVgCDCkJKJv7qEPu9JRCxkLt6Xx8b-qFRUjMsxzEIelpQYPUPEp2tGIFRob472E972EyNT6tl7IJgQx-TF7PDv91WffHrFLLV29DN41u1nrg6-OnT5YfDf9ESB7QFU-hEqbx3bw8l6asvXuqkRHrPt_8j8-aytx | 
    
| CitedBy_id | crossref_primary_10_1016_j_jpba_2018_11_009 | 
    
| Cites_doi | 10.1007/978-3-662-00784-6 10.1016/j.eswa.2007.08.050 10.1016/j.molcatb.2004.09.002 10.1021/cc020031l 10.1021/ac060979s 10.1002/mrc.2610 10.1021/pr0703021 10.1016/j.pnmrs.2011.04.003 10.1002/nbm.1123 10.1021/ci034228s 10.1155/2011/158094 10.1039/b924936b 10.1021/ci034229k 10.1002/nbm.797 10.1021/ac9020566 10.1021/jo201212p 10.1002/mrc.2007 10.1021/ci034160g 10.1016/j.chemolab.2009.06.002 10.1016/S0169-7439(01)00171-X 10.1016/S0040-4039(02)00061-8 10.1016/j.egypro.2011.01.054 10.1023/A:1010933404324 10.1021/om900919f  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2014 Public Library of Science 2014 Latino, Aires-de-Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 Latino, Aires-de-Sousa 2014 Latino, Aires-de-Sousa  | 
    
| Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Latino, Aires-de-Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 Latino, Aires-de-Sousa 2014 Latino, Aires-de-Sousa  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0088499 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Chemistry Computer Science  | 
    
| DocumentTitleAlternate | Automatic NMR-Based Analysis of Reaction Mixtures | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 1983424508 oai_doaj_org_article_5e43feac955d4351930c48fe53ba3fe8 10.1371/journal.pone.0088499 PMC3923800 A478805518 24551112 10_1371_journal_pone_0088499  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF IPNFZ NPM PV9 RIG RZL BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c692t-6e631464d2a96d63026212d9f90ddfa6b8136f325faa907507ff0497e93b281f3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:14:13 EST 2021 Tue Oct 14 18:47:43 EDT 2025 Sun Oct 26 03:50:59 EDT 2025 Tue Sep 30 16:48:16 EDT 2025 Sun Sep 28 10:15:00 EDT 2025 Tue Oct 07 07:44:47 EDT 2025 Mon Oct 20 22:09:20 EDT 2025 Mon Oct 20 16:37:03 EDT 2025 Thu Oct 16 14:37:53 EDT 2025 Thu Oct 16 14:35:37 EDT 2025 Thu May 22 21:16:27 EDT 2025 Mon Jul 21 06:02:42 EDT 2025 Thu Apr 24 23:14:41 EDT 2025 Wed Oct 01 02:06:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c692t-6e631464d2a96d63026212d9f90ddfa6b8136f325faa907507ff0497e93b281f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: DARSL JAS. Performed the experiments: DARSL. Analyzed the data: DARSL JAS. Wrote the paper: DARSL JAS. Competing Interests: The authors have declared that no competing interests exist.  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0088499 | 
    
| PMID | 24551112 | 
    
| PQID | 1983424508 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e88499 | 
    
| ParticipantIDs | plos_journals_1983424508 doaj_primary_oai_doaj_org_article_5e43feac955d4351930c48fe53ba3fe8 unpaywall_primary_10_1371_journal_pone_0088499 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3923800 proquest_miscellaneous_1500703154 proquest_journals_1983424508 gale_infotracmisc_A478805518 gale_infotracacademiconefile_A478805518 gale_incontextgauss_ISR_A478805518 gale_incontextgauss_IOV_A478805518 gale_healthsolutions_A478805518 pubmed_primary_24551112 crossref_primary_10_1371_journal_pone_0088499 crossref_citationtrail_10_1371_journal_pone_0088499  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-02-13 | 
    
| PublicationDateYYYYMMDD | 2014-02-13 | 
    
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-13 day: 13  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2014 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | T Suna (ref8) 2007; 20 A Mix (ref19) 2010; 29 M Khajeh (ref17) 2010; 48 DA Foley (ref20) 2011; 76 ref31 MA Bernstein (ref16) 2007; 45 ref30 Y Binev (ref23) 2004; 44 K Wongravee (ref5) 2010; 82 I Vallikivi (ref11) 2004; 32 TMD Ebbels (ref12) 2007; 6 S Kalelkar (ref15) 2002; 4 RM Alonso-Salces (ref9) 2010; 118 J-Y Shey (ref14) 2002; 43 ref24 ref26 Y Binev (ref22) 2004; 44 ref25 V Svetnik (ref29) 2003; 43 J Aires-de-Sousa (ref27) 2002; 61 M Ballard (ref13) 2011; 4 M Aursand (ref10) 2007; 55 DARSL Latino (ref21) 2007; 79 JS McKenzie (ref1) 2011; 59 L Breiman (ref28) 2001; 45 ref3 GV Lloyd (ref4) 2009; 98 H-W Cho (ref6) 2008; 35 MV Gomez (ref18) 2010; 46 BD Sykes (ref2) 2011; 49 O Beckonert (ref7) 2003; 16 17915905 - J Proteome Res. 2007 Nov;6(11):4407-22 12425607 - J Comb Chem. 2002 Nov-Dec;4(6):622-9 17212341 - NMR Biomed. 2007 Nov;20(7):658-72 21340669 - J Biomol NMR. 2011 Apr;49(3-4):163-4 22029382 - J Org Chem. 2011 Dec 2;76(23):9630-40 21472035 - Expert Syst Appl. 2008 Oct 1;35(3):967-975 15154761 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):946-9 20535780 - Magn Reson Chem. 2010 Jul;48(7):516-22 20038089 - Anal Chem. 2010 Jan 15;82(2):628-38 22027342 - Prog Nucl Magn Reson Spectrosc. 2011 Nov;59(4):336-59 14632445 - J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58 17199311 - J Agric Food Chem. 2007 Jan 10;55(1):38-47 15154760 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):940-5 17534884 - Magn Reson Chem. 2007 Jul;45(7):564-71 20886062 - J Biomed Biotechnol. 2011;2011:158094 20498914 - Chem Commun (Camb). 2010 Jul 7;46(25):4514-6 12577292 - NMR Biomed. 2003 Feb;16(1):1-11  | 
    
| References_xml | – ident: ref25 doi: 10.1007/978-3-662-00784-6 – volume: 35 start-page: 967 year: 2008 ident: ref6 article-title: Genetic algorithm-based feature selection in high-resolution NMR spectra publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.050 – volume: 32 start-page: 15 year: 2004 ident: ref11 article-title: NMR monitoring of lipase-catalyzed reactions of prostaglandins: preliminary estimation of reaction velocities publication-title: J Mol Catal B: Enzym doi: 10.1016/j.molcatb.2004.09.002 – volume: 4 start-page: 622 year: 2002 ident: ref15 article-title: Automated Analysis of Proton NMR Spectra from Combinatorial Rapid Parallel Synthesis Using Self-Organizing Maps publication-title: J Comb Chem doi: 10.1021/cc020031l – volume: 55 start-page: 38 year: 2007 ident: ref10 article-title: High-Resolution 13C Nuclear Magnetic Resonance Spectroscopy Pattern Recognition of Fish Oil Capsules, J Agric Food Chem – ident: ref24 – volume: 79 start-page: 854 year: 2007 ident: ref21 article-title: Linking databases of chemical reactions to NMR data: An exploration of 1H NMR-based reaction classification publication-title: Anal Chem doi: 10.1021/ac060979s – volume: 48 start-page: 516 year: 2010 ident: ref17 article-title: A simple flowcell for reaction monitoring by NMR publication-title: Magn Reson Chem doi: 10.1002/mrc.2610 – volume: 6 start-page: 4407 year: 2007 ident: ref12 article-title: Prediction and Classification of Drug Toxicity Using Probabilistic Modeling of Temporal Metabolic Data: The Consortium on Metabonomic Toxicology Screening Approach publication-title: J Proteome Res doi: 10.1021/pr0703021 – volume: 59 start-page: 336 year: 2011 ident: ref1 article-title: Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics publication-title: Prog Nucl Magn Reson Spectrosc doi: 10.1016/j.pnmrs.2011.04.003 – volume: 20 start-page: 658 year: 2007 ident: ref8 article-title: 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps publication-title: NMR Biomed doi: 10.1002/nbm.1123 – volume: 44 start-page: 940 year: 2004 ident: ref22 article-title: Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034228s – ident: ref3 doi: 10.1155/2011/158094 – volume: 46 start-page: 4514 year: 2010 ident: ref18 article-title: On-line monitoring of a microwave-assisted chemical reaction by nanolitre NMR-spectroscopy publication-title: Chem Commun doi: 10.1039/b924936b – volume: 44 start-page: 946 year: 2004 ident: ref23 article-title: The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034229k – ident: ref30 – volume: 16 start-page: 1 year: 2003 ident: ref7 article-title: Visualizing metabolic changes in breast cancer tissue using 1H NMR spectroscopy and self-Organizing maps publication-title: NMR Biomed doi: 10.1002/nbm.797 – volume: 118 start-page: 956 year: 2010 ident: ref9 article-title: Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes, Food Chem – volume: 82 start-page: 628 year: 2010 ident: ref5 article-title: Supervised Self Organizing Maps for Classification and Determination of Potentially Discriminatory Variables: Illustrated by Application to Nuclear Magnetic Resonance Metabolomic Profiling publication-title: Anal Chem doi: 10.1021/ac9020566 – volume: 76 start-page: 9630 year: 2011 ident: ref20 article-title: ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-β-chloroacrylamides publication-title: J Org Chem doi: 10.1021/jo201212p – ident: ref26 – volume: 45 start-page: 564 year: 2007 ident: ref16 article-title: Optimising reaction performance in the pharmaceutical industry by monitoring with NMR publication-title: Magn Reson Chem doi: 10.1002/mrc.2007 – volume: 43 start-page: 1947 year: 2003 ident: ref29 article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034160g – volume: 98 start-page: 49 year: 2009 ident: ref4 article-title: Self Organising Maps for variable selection: Application to human saliva analysed by nuclear magnetic resonance spectroscopy to investigate the effect of an oral healthcare product publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2009.06.002 – volume: 61 start-page: 167 year: 2002 ident: ref27 article-title: JATOON: Java tools for neural networks publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(01)00171-X – volume: 43 start-page: 1725 year: 2002 ident: ref14 article-title: Liquid-phase combinatorial reaction monitoring by conventional 1H NMR spectroscopy publication-title: Tetrahedron Lett doi: 10.1016/S0040-4039(02)00061-8 – volume: 4 start-page: 291 year: 2011 ident: ref13 article-title: NMR studies of mixed amines publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.01.054 – volume: 45 start-page: 5 year: 2001 ident: ref28 article-title: Random forests publication-title: Machine Learn doi: 10.1023/A:1010933404324 – volume: 49 start-page: 163 year: 2011 ident: ref2 article-title: Editorial J Biomol NMR – volume: 29 start-page: 442 year: 2010 ident: ref19 article-title: A Simple Double-Chamber NMR Tube for the Monitoring of Chemical Reactions by NMR Spectroscopy publication-title: Organometallics doi: 10.1021/om900919f – ident: ref31 – reference: 22029382 - J Org Chem. 2011 Dec 2;76(23):9630-40 – reference: 17915905 - J Proteome Res. 2007 Nov;6(11):4407-22 – reference: 14632445 - J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58 – reference: 17534884 - Magn Reson Chem. 2007 Jul;45(7):564-71 – reference: 20886062 - J Biomed Biotechnol. 2011;2011:158094 – reference: 22027342 - Prog Nucl Magn Reson Spectrosc. 2011 Nov;59(4):336-59 – reference: 12577292 - NMR Biomed. 2003 Feb;16(1):1-11 – reference: 21340669 - J Biomol NMR. 2011 Apr;49(3-4):163-4 – reference: 20535780 - Magn Reson Chem. 2010 Jul;48(7):516-22 – reference: 17199311 - J Agric Food Chem. 2007 Jan 10;55(1):38-47 – reference: 12425607 - J Comb Chem. 2002 Nov-Dec;4(6):622-9 – reference: 21472035 - Expert Syst Appl. 2008 Oct 1;35(3):967-975 – reference: 15154761 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):946-9 – reference: 15154760 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):940-5 – reference: 20498914 - Chem Commun (Camb). 2010 Jul 7;46(25):4514-6 – reference: 20038089 - Anal Chem. 2010 Jan 15;82(2):628-38 – reference: 17212341 - NMR Biomed. 2007 Nov;20(7):658-72  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.111137 | 
    
| Snippet | The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e88499 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Automatic control Azirines - chemistry Chemical reactions Chemistry Classification Clustering Coding Computer Science Cycloaddition Reaction Cycloparaffins - chemistry Data processing Identification methods Information management Learning algorithms Machine learning Magnetic Resonance Spectroscopy - statistics & numerical data Metabolism Metabolites Molecular structure Neural networks NMR Nuclear magnetic resonance Photochemical Processes Pyridazines - chemistry Quality control Reproducibility of Results Self organizing maps Teaching methods Test sets  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBBzSJvEj8bEgqoLUIhWKerMcxy4rLcmK7Ar498w43tCISu2B6_rzSpkZj8f2zDeEvDSZML6wmCWumpQXmU0hjqtTWysJ3rA2TmC989GxPDzlH8_E2YVWX5gTNtADD4LbE44zD95BCdFw7CbHMssr7wSrDQyEMt-sUpvD1OCDYRVLGQvlWJnvRb3sLrvWIaFpxQPX69-NKPD1j155tlx0_WUh57-ZkzfX7dL8_mkWiwvb0sEdcjvGk3R_-I4tcsO1d8lWXLE9fR1ppd_cI3gb1gWCVnp8dJLi9tXQeROzhYKCaOepjQwCFKLJUPNA8Za2p_OWfp__wveGPsC6tLMW7w_b8xHa3yenB--_vDtMY4uF1EpVrFLpJANfyZvCKNlIBicy2Msa5VXWNN7IusqZ9KwQ3hiF0UXpPZwpSqdYXVS5Zw_IrAWhbhMKgYhUWFZrueB1nSsjWGFL4a2TjZJ5QthG3tpG_nFsg7HQ4VGthHPIIDKNWtJRSwlJx1nLgX_jCvxbVOWIRfbs8APYlI42pa-yqYQ8Q0PQQynq6AP0PvYayJDDLiEvAgIZNFpM0Tk3677XHz59vQbo88kE9CqCfAfisCaWRcA3ITPXBLkzQYIfsJPhbTTbjVR6nauK4bt2hjM3pnz58PNxGP8U0-5a160BI7LQ4EDwhDwcLH-ULEyFYD0vElJO1sRE9NORdv4tEJhDTM7goJKQ3XH1XEu5j_6Hch-TWxD0csy8z9kOma1-rN0TCCxX9dPgQ_4A3lh3eA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QFeJsbXCgMKQgIeurVNkzYPCO3QpoF0BzoY2luV5mOcdGqP652A_x67TTsqJthr41StYzt2Yv9MyAsZMmljhVniQgdJHKoA_LgiUIXgYA0LaRjWO0-m_PQs-XDOzrfItKuFwbTKziY2hlpXCs_IDyE4pnhLF2Zvl98D7BqFt6tdCw3pWivoNw3E2A2yHSMy1ohsj4-nn2adbQbt5twV0NE0OnTrdbCsSoNAp1nSYMBeblANjn9vrUfLRVVf5Yr-nVF5c1Mu5a8fcrH4Y7s6uU12nJ_pH7WCsUu2THmH7DpNrv1XDm769V2Cp2RVA9zqTyezYAzbmvbb-l3rDvT8yvodsoA_M20thI8hbO3PS38y_4n3EHVDVgUIXLzC48KetL5Hzk6Ov7w7DVzrhUBxEa8DbjgFG5roWAquOYVIDRiqhRWh1lbyIosotzRmVkqBXkdqLcQaqRG0iLPI0vtkVAJT94gPDgoXWG6rEpYURSQko7FKmVWGa8Ejj9CO37lyuOTYHmORN5dtKcQnLctyXKXcrZJHgn7WssXl-A_9GJeyp0VU7eZBtbrInZLmzCTUAmcEYzrBzoUUPjqzhtFCwkDmkacoCHlbotrbhvwIexCEKHgeed5QILJGiak7F3JT1_n7j1-vQfR5NiB66YhsBexQ0pVLwD8hYteAcn9ACfZBDYb3UGw7rtT5pSbBzE6Urx5-1g_jSzEdrzTVBmhY2DQ-YIlHHrSS33MWpoITH8UeSQc6MWD9cKScf2uAzcFXpxDAeOSg155rLe7Df__HI3IL3NwEc-0juk9G69XGPAZXcl08cfbhN0fwc9M priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZJM4duJjF7FakFpQoWg5oMhxbKiokmrTiseB385M4kQEFrEcuFX15yj5bI9nbM9nQh7IgEkTKTwlLgovjgLlgR-XeyoXHKxhLjXDfOfJlB_N4xfH7HiLvO9yYSyDECMuq7rZyccfVan3LZP7qFfU7p76IU3Croa_AhCKlabgwz9sFIdwZWyNCUjnyDZn4KqPyPZ8-mr8rt1pjjweBdSm0_3pSYPpqlH17233CN_sNMf09_OV5zflSn79LJfLnyavw0vke_fZ7ZmVT_5mnfvq2y-KkP-Nl8vkonV73XH7lB2ypcsrZMcaltp9bNWvn1wluGhXNTqy7nQy8w5gli3cNp3Y2PVFtzJuJ3TgznSbmuFiRF27i9KdLL7gtkjdwCoPdZRPcPWyh9bXyPzw2ZunR569CcJTXERrj2tOwaTHRSQFLziFwBGm3EIYERSFkTxPQ8oNjZiRUqATlBgDoU-iBc2jNDT0OhmVwMMuccFf4gKzf1XM4jwPhWQ0UgkzSvNC8NAhtGvwTFmZdLytY5k1e38JhEstZRkSm1liHeL1tVatTMhf8AfYl3osinw3f0DLZrZFM6ZjaoAZwVgR40WKFF46NZrRXEJB6pC72BOzNmO2N1XZGK9ECFBqzyH3GwQKfZR4kuiD3NR19vzl2zOAXs8GoEcWZCqgQ0mbvQHfhB1vgNwbIMFcqUHxLvbcjpU6C0VKcfs9wJrdWDq9-F5fjA_F04GlrjaAYUFzDwOLHXKjHXo9s1AVYoowckgyGJQD6ocl5eJjo7MOoQOFeMohfj98z9S4N_-1wi1yAfzwGJMBQrpHRuuTjb4Nvu46v2Mt1g-AEK0t priority: 102 providerName: Unpaywall  | 
    
| Title | Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24551112 https://www.proquest.com/docview/1983424508 https://www.proquest.com/docview/1500703154 https://pubmed.ncbi.nlm.nih.gov/PMC3923800 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088499&type=printable https://doaj.org/article/5e43feac955d4351930c48fe53ba3fe8 http://dx.doi.org/10.1371/journal.pone.0088499  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVECQgIeUiVx7MQPCLXTykBqmQpF3VPkfHhUqpLStGL777lz3IiIIvqSh_gctWff-Xe273eEvJYuk8pP8Za4yJzAd1MHcFzipIng4A0TmTPMdx6N-cU0-DxjswOyrdlqFFjtDO2wntR0tejd_Lz9AAb_XldtCL1tp96yLHKkK40AxR-SI1irBBZzGAXNuQJYtz69RNTicN-lJpnuX19pLVaa07_x3J3loqx2wdK_b1fe2RRLeftLLhZ_LF3D--SewZx2v54kx-QgLx6QY2PVlf3WUE-_e0hwx6zUJK72eDRxBrDEZXady6vM5p5dKnvLMmBP8jovwsZwtrLnhT2a3-CZRKXFSgdJjFe4ddiIVo_IdHj-7ezCMWUYnJQLf-3wnFPwp0HmS8EzTiFqg_UuE0q4WaYkTyKPckV9pqQUiEBCpSDuCHNBEz_yFH1MOgUo9YTYAFa4wNTbNGBBknhCMuqnIVNpzjPBPYvQrb7j1HCUY6mMRawP3kKIVWqVxThKsRklizhNr2XN0fEf-QEOZSOLDNv6Rbm6jo3BxiwPqALNCMayAKsYUvjRkcoZTSQ0RBZ5gRMhrtNVGz8R97EegYs8dxZ5pSWQZaPAazzXclNV8acv3_cQ-jppCb0xQqoEdaTSpE7Af0L2rpbkaUsSfEXaaj7BabvVShV7IqJ49u1iz-1U3t38smnGj-LVvCIvNyDDXF0EgQUWeVLP_Eaz0BUAvedbJGzZREv17ZZi_kOTnANupxDMWKTXWM9eg_t0H4U-I3cB-AZ4-96jp6SzXm3y5wAu10mXHIazEJ7RmYfP4ccuORqcjy8nXb1d09X-BN5Nx5f9q9-aRn3l | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHbEkcO_EDQhswtWwtUtlQ34KT2KNSlZSm1dg_xd_IXb5GxAR72Wt9iZrz-ec7--53hLxQDlfGSzBLXKa27zmJDX5cbCexFICGsdIc652HI9E_8T9N-GSN_GpqYTCtssHEEqjTPMEz8l0Ijhne0jnhu_kPG7tG4e1q00KjMotDfX4GIVvxdvAB5vel5x18PH7ft-uuAnYipLe0hRYM4MFPPSVFKhgEIQDfqTTSSVOjRBy6TBjmcaOUxA01MAbc6EBLFnuhaxi89wa56TPAElg_waQN8AA7hKjL81jg7tbWsDPPM400qqFfMsxebH9ll4B2L-jNZ3lxmaP7d77m-iqbq_MzNZv9sRke3CG3ay-W7lVmt0HWdHaXbNQ4UdDXNZn1m3sEz-DykhaWjoZjex82zZRW1cGmPi6kuaENbwEd66rSgmKAXNBpRofTn3jLUZRiuY20yAs8jGxFi_vk5Fqm4AHpZaDUTULB_RESi3kTn_tx7ErFmZcE3CRapFK4FmGNvqOkZj3H5huzqLzKCyD6qVQW4SxF9SxZxG6fmlesH_-R38epbGWRs7v8IV-cRjUERFz7zIBmJOepj30RGfzp0GjOYgUDoUW20RCiqgC2RZ5oDzscOMicZ5HnpQTydmSYGHSqVkURDT5_vYLQl3FH6FUtZHJQR6LqYgz4JuQD60hudSQBfZLO8CaabaOVIrpYp_BkY8qXDz9rh_GlmOyX6XwFMtwp2ypw3yIPK8tvNQuPQojgehYJOmuio_ruSDb9XtKmQyTAIDyyyE67eq40uY_-_R3bZL1_PDyKjgajw8fkFjjUPmb1u2yL9JaLlX4CTusyfloiBSXfrhuafgNkbaiI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGABgYCHrEkcO_EDQhujWhktaDDUt-Ak9qhUJaVpNfav8ddxlzgZERPsZa_1JWrO58939t13hDyTLpPaTzFLXGRO4LupA35c4qSJ4ICGiVQM651HY75_FLyfsMka-dXUwmBaZYOJFVBnRYpn5H0Ijine0rlRX5u0iE97gzfzHw52kMKb1qadRm0iB-r0BMK38vVwD-b6ue8P3n15u--YDgNOyoW_dLjiFKAiyHwpeMYpBCQA5ZnQws0yLXkSeZRr6jMtpcDNNdQaXOpQCZr4kacpvPcKuRpSKjCdMJy0wR7gCOemVI-GXt9Yxva8yBVSqkZBxTZ7thVWHQPafaE3nxXleU7v37mb11f5XJ6eyNnsj41xcIvcNB6tvVOb4DpZU_ltsm4wo7RfGmLrV3cInscVFUWsPR4dOruwgWZ2XSmszdGhXWi74TCwD1VddWFjsFza09weTX_ijUdZiRUOUiQv8GCyFS3vkqNLmYJ7pJeDUjeIDa4QF1jYmwYsSBJPSEb9NGQ6VTwT3LMIbfQdp4YBHRtxzOLqWi-ESKhWWYyzFJtZsojTPjWvGUD-I7-LU9nKIn939UOxOI4NHMRMBVSDZgRjWYA9Ein86UgrRhMJA5FFttAQ4roYtkWheAe7HbjIomeRp5UEcnjkuBqO5aos4-HHrxcQ-nzYEXphhHQB6kilKcyAb0JusI7kZkcSkCjtDG-g2TZaKeOzNQtPNqZ8_vCTdhhfiol_uSpWIMPcqsUCCyxyv7b8VrPwKIQLnm-RsLMmOqrvjuTT7xWFOkQFFEIli2y3q-dCk_vg39-xRa4BKMUfhuODh-QG-NYBJvh7dJP0louVegT-6zJ5XAGFTb5dNjL9BrSmrMs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZJM4duJjF7FakFpQoWg5oMhxbKiokmrTiseB385M4kQEFrEcuFX15yj5bI9nbM9nQh7IgEkTKTwlLgovjgLlgR-XeyoXHKxhLjXDfOfJlB_N4xfH7HiLvO9yYSyDECMuq7rZyccfVan3LZP7qFfU7p76IU3Croa_AhCKlabgwz9sFIdwZWyNCUjnyDZn4KqPyPZ8-mr8rt1pjjweBdSm0_3pSYPpqlH17233CN_sNMf09_OV5zflSn79LJfLnyavw0vke_fZ7ZmVT_5mnfvq2y-KkP-Nl8vkonV73XH7lB2ypcsrZMcaltp9bNWvn1wluGhXNTqy7nQy8w5gli3cNp3Y2PVFtzJuJ3TgznSbmuFiRF27i9KdLL7gtkjdwCoPdZRPcPWyh9bXyPzw2ZunR569CcJTXERrj2tOwaTHRSQFLziFwBGm3EIYERSFkTxPQ8oNjZiRUqATlBgDoU-iBc2jNDT0OhmVwMMuccFf4gKzf1XM4jwPhWQ0UgkzSvNC8NAhtGvwTFmZdLytY5k1e38JhEstZRkSm1liHeL1tVatTMhf8AfYl3osinw3f0DLZrZFM6ZjaoAZwVgR40WKFF46NZrRXEJB6pC72BOzNmO2N1XZGK9ECFBqzyH3GwQKfZR4kuiD3NR19vzl2zOAXs8GoEcWZCqgQ0mbvQHfhB1vgNwbIMFcqUHxLvbcjpU6C0VKcfs9wJrdWDq9-F5fjA_F04GlrjaAYUFzDwOLHXKjHXo9s1AVYoowckgyGJQD6ocl5eJjo7MOoQOFeMohfj98z9S4N_-1wi1yAfzwGJMBQrpHRuuTjb4Nvu46v2Mt1g-AEK0t | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+NMR-Based+Identification+of+Chemical+Reaction+Types+in+Mixtures+of+Co-Occurring+Reactions&rft.jtitle=PloS+one&rft.au=Latino%2C+Diogo+A.+R.+S&rft.au=Aires-de-Sousa%2C+Jo%C3%A3o&rft.date=2014-02-13&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=9&rft.issue=2&rft.spage=e88499&rft_id=info:doi/10.1371%2Fjournal.pone.0088499&rft.externalDBID=ISR&rft.externalDocID=A478805518 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |