Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic pro...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 2; p. e88499
Main Authors Latino, Diogo A. R. S., Aires-de-Sousa, João
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0088499

Cover

Abstract The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
AbstractList The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the .sup.1 H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the .sup.1 H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
Audience Academic
Author Latino, Diogo A. R. S.
Aires-de-Sousa, João
AuthorAffiliation 1 CQFB, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
University of Sydney, Australia
2 CCMM, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
AuthorAffiliation_xml – name: 1 CQFB, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
– name: University of Sydney, Australia
– name: 2 CCMM, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
Author_xml – sequence: 1
  givenname: Diogo A. R. S.
  surname: Latino
  fullname: Latino, Diogo A. R. S.
– sequence: 2
  givenname: João
  surname: Aires-de-Sousa
  fullname: Aires-de-Sousa, João
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24551112$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhITgIsXfjXeBVCo-Km1UKoNby3Xs1pUblziB9d_jtFnVTBOachHn-DlvfN5zfJ6clL7USfISggHEQ_hh5ZuqlG6wieEBAHlOOH-SnEGOUcYQwCdH69PkPIQVABTnjD1LThGhFEKIzhI1amq_lrVV6ffrWfZJBl2kk0KXtTVWxbgvU2_S8VKv46dLZ1qqXfBmu9EhtWV6bW_rporrFvPZVKmmqmy5OKDhefLUSBf0i-59kfz88vlm_C27mn6djEdXmWIc1RnTDEPCSIEkZwXDADEEUcENB0VhJJvnEDODETVScjCkYGgMIHyoOZ6jHBp8kbze626cD6LzJwjIc0xixSCPxGRPFF6uxKaya1lthZdW7AK-WghZRS-cFlQTbGIFnNKCYBqtBIrkRlM8l3Gj1aJ7rabcyO1f6dxBEALRtujuCKJtkehaFPM-dqds5mtdqGh1JV3vMP2d0i7Fwv8RmCOcAxAF3nUClf_d6FCLtQ1KOydL7ZtYLwVgCDCkJKJv7qEPu9JRCxkLt6Xx8b-qFRUjMsxzEIelpQYPUPEp2tGIFRob472E972EyNT6tl7IJgQx-TF7PDv91WffHrFLLV29DN41u1nrg6-OnT5YfDf9ESB7QFU-hEqbx3bw8l6asvXuqkRHrPt_8j8-aytx
CitedBy_id crossref_primary_10_1016_j_jpba_2018_11_009
Cites_doi 10.1007/978-3-662-00784-6
10.1016/j.eswa.2007.08.050
10.1016/j.molcatb.2004.09.002
10.1021/cc020031l
10.1021/ac060979s
10.1002/mrc.2610
10.1021/pr0703021
10.1016/j.pnmrs.2011.04.003
10.1002/nbm.1123
10.1021/ci034228s
10.1155/2011/158094
10.1039/b924936b
10.1021/ci034229k
10.1002/nbm.797
10.1021/ac9020566
10.1021/jo201212p
10.1002/mrc.2007
10.1021/ci034160g
10.1016/j.chemolab.2009.06.002
10.1016/S0169-7439(01)00171-X
10.1016/S0040-4039(02)00061-8
10.1016/j.egypro.2011.01.054
10.1023/A:1010933404324
10.1021/om900919f
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Latino, Aires-de-Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2014 Latino, Aires-de-Sousa 2014 Latino, Aires-de-Sousa
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Latino, Aires-de-Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2014 Latino, Aires-de-Sousa 2014 Latino, Aires-de-Sousa
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0088499
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Agricultural Science Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
Computer Science
DocumentTitleAlternate Automatic NMR-Based Analysis of Reaction Mixtures
EISSN 1932-6203
ExternalDocumentID 1983424508
oai_doaj_org_article_5e43feac955d4351930c48fe53ba3fe8
10.1371/journal.pone.0088499
PMC3923800
A478805518
24551112
10_1371_journal_pone_0088499
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PV9
RIG
RZL
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-6e631464d2a96d63026212d9f90ddfa6b8136f325faa907507ff0497e93b281f3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:13 EST 2021
Tue Oct 14 18:47:43 EDT 2025
Sun Oct 26 03:50:59 EDT 2025
Tue Sep 30 16:48:16 EDT 2025
Sun Sep 28 10:15:00 EDT 2025
Tue Oct 07 07:44:47 EDT 2025
Mon Oct 20 22:09:20 EDT 2025
Mon Oct 20 16:37:03 EDT 2025
Thu Oct 16 14:37:53 EDT 2025
Thu Oct 16 14:35:37 EDT 2025
Thu May 22 21:16:27 EDT 2025
Mon Jul 21 06:02:42 EDT 2025
Thu Apr 24 23:14:41 EDT 2025
Wed Oct 01 02:06:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-6e631464d2a96d63026212d9f90ddfa6b8136f325faa907507ff0497e93b281f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: DARSL JAS. Performed the experiments: DARSL. Analyzed the data: DARSL JAS. Wrote the paper: DARSL JAS.
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0088499
PMID 24551112
PQID 1983424508
PQPubID 1436336
PageCount e88499
ParticipantIDs plos_journals_1983424508
doaj_primary_oai_doaj_org_article_5e43feac955d4351930c48fe53ba3fe8
unpaywall_primary_10_1371_journal_pone_0088499
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3923800
proquest_miscellaneous_1500703154
proquest_journals_1983424508
gale_infotracmisc_A478805518
gale_infotracacademiconefile_A478805518
gale_incontextgauss_ISR_A478805518
gale_incontextgauss_IOV_A478805518
gale_healthsolutions_A478805518
pubmed_primary_24551112
crossref_primary_10_1371_journal_pone_0088499
crossref_citationtrail_10_1371_journal_pone_0088499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-13
PublicationDateYYYYMMDD 2014-02-13
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T Suna (ref8) 2007; 20
A Mix (ref19) 2010; 29
M Khajeh (ref17) 2010; 48
DA Foley (ref20) 2011; 76
ref31
MA Bernstein (ref16) 2007; 45
ref30
Y Binev (ref23) 2004; 44
K Wongravee (ref5) 2010; 82
I Vallikivi (ref11) 2004; 32
TMD Ebbels (ref12) 2007; 6
S Kalelkar (ref15) 2002; 4
RM Alonso-Salces (ref9) 2010; 118
J-Y Shey (ref14) 2002; 43
ref24
ref26
Y Binev (ref22) 2004; 44
ref25
V Svetnik (ref29) 2003; 43
J Aires-de-Sousa (ref27) 2002; 61
M Ballard (ref13) 2011; 4
M Aursand (ref10) 2007; 55
DARSL Latino (ref21) 2007; 79
JS McKenzie (ref1) 2011; 59
L Breiman (ref28) 2001; 45
ref3
GV Lloyd (ref4) 2009; 98
H-W Cho (ref6) 2008; 35
MV Gomez (ref18) 2010; 46
BD Sykes (ref2) 2011; 49
O Beckonert (ref7) 2003; 16
17915905 - J Proteome Res. 2007 Nov;6(11):4407-22
12425607 - J Comb Chem. 2002 Nov-Dec;4(6):622-9
17212341 - NMR Biomed. 2007 Nov;20(7):658-72
21340669 - J Biomol NMR. 2011 Apr;49(3-4):163-4
22029382 - J Org Chem. 2011 Dec 2;76(23):9630-40
21472035 - Expert Syst Appl. 2008 Oct 1;35(3):967-975
15154761 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):946-9
20535780 - Magn Reson Chem. 2010 Jul;48(7):516-22
20038089 - Anal Chem. 2010 Jan 15;82(2):628-38
22027342 - Prog Nucl Magn Reson Spectrosc. 2011 Nov;59(4):336-59
14632445 - J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58
17199311 - J Agric Food Chem. 2007 Jan 10;55(1):38-47
15154760 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):940-5
17534884 - Magn Reson Chem. 2007 Jul;45(7):564-71
20886062 - J Biomed Biotechnol. 2011;2011:158094
20498914 - Chem Commun (Camb). 2010 Jul 7;46(25):4514-6
12577292 - NMR Biomed. 2003 Feb;16(1):1-11
References_xml – ident: ref25
  doi: 10.1007/978-3-662-00784-6
– volume: 35
  start-page: 967
  year: 2008
  ident: ref6
  article-title: Genetic algorithm-based feature selection in high-resolution NMR spectra
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.050
– volume: 32
  start-page: 15
  year: 2004
  ident: ref11
  article-title: NMR monitoring of lipase-catalyzed reactions of prostaglandins: preliminary estimation of reaction velocities
  publication-title: J Mol Catal B: Enzym
  doi: 10.1016/j.molcatb.2004.09.002
– volume: 4
  start-page: 622
  year: 2002
  ident: ref15
  article-title: Automated Analysis of Proton NMR Spectra from Combinatorial Rapid Parallel Synthesis Using Self-Organizing Maps
  publication-title: J Comb Chem
  doi: 10.1021/cc020031l
– volume: 55
  start-page: 38
  year: 2007
  ident: ref10
  article-title: High-Resolution 13C Nuclear Magnetic Resonance Spectroscopy Pattern Recognition of Fish Oil Capsules, J Agric Food Chem
– ident: ref24
– volume: 79
  start-page: 854
  year: 2007
  ident: ref21
  article-title: Linking databases of chemical reactions to NMR data: An exploration of 1H NMR-based reaction classification
  publication-title: Anal Chem
  doi: 10.1021/ac060979s
– volume: 48
  start-page: 516
  year: 2010
  ident: ref17
  article-title: A simple flowcell for reaction monitoring by NMR
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.2610
– volume: 6
  start-page: 4407
  year: 2007
  ident: ref12
  article-title: Prediction and Classification of Drug Toxicity Using Probabilistic Modeling of Temporal Metabolic Data: The Consortium on Metabonomic Toxicology Screening Approach
  publication-title: J Proteome Res
  doi: 10.1021/pr0703021
– volume: 59
  start-page: 336
  year: 2011
  ident: ref1
  article-title: Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics
  publication-title: Prog Nucl Magn Reson Spectrosc
  doi: 10.1016/j.pnmrs.2011.04.003
– volume: 20
  start-page: 658
  year: 2007
  ident: ref8
  article-title: 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1123
– volume: 44
  start-page: 940
  year: 2004
  ident: ref22
  article-title: Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034228s
– ident: ref3
  doi: 10.1155/2011/158094
– volume: 46
  start-page: 4514
  year: 2010
  ident: ref18
  article-title: On-line monitoring of a microwave-assisted chemical reaction by nanolitre NMR-spectroscopy
  publication-title: Chem Commun
  doi: 10.1039/b924936b
– volume: 44
  start-page: 946
  year: 2004
  ident: ref23
  article-title: The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034229k
– ident: ref30
– volume: 16
  start-page: 1
  year: 2003
  ident: ref7
  article-title: Visualizing metabolic changes in breast cancer tissue using 1H NMR spectroscopy and self-Organizing maps
  publication-title: NMR Biomed
  doi: 10.1002/nbm.797
– volume: 118
  start-page: 956
  year: 2010
  ident: ref9
  article-title: Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes, Food Chem
– volume: 82
  start-page: 628
  year: 2010
  ident: ref5
  article-title: Supervised Self Organizing Maps for Classification and Determination of Potentially Discriminatory Variables: Illustrated by Application to Nuclear Magnetic Resonance Metabolomic Profiling
  publication-title: Anal Chem
  doi: 10.1021/ac9020566
– volume: 76
  start-page: 9630
  year: 2011
  ident: ref20
  article-title: ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-β-chloroacrylamides
  publication-title: J Org Chem
  doi: 10.1021/jo201212p
– ident: ref26
– volume: 45
  start-page: 564
  year: 2007
  ident: ref16
  article-title: Optimising reaction performance in the pharmaceutical industry by monitoring with NMR
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.2007
– volume: 43
  start-page: 1947
  year: 2003
  ident: ref29
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
– volume: 98
  start-page: 49
  year: 2009
  ident: ref4
  article-title: Self Organising Maps for variable selection: Application to human saliva analysed by nuclear magnetic resonance spectroscopy to investigate the effect of an oral healthcare product
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2009.06.002
– volume: 61
  start-page: 167
  year: 2002
  ident: ref27
  article-title: JATOON: Java tools for neural networks
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(01)00171-X
– volume: 43
  start-page: 1725
  year: 2002
  ident: ref14
  article-title: Liquid-phase combinatorial reaction monitoring by conventional 1H NMR spectroscopy
  publication-title: Tetrahedron Lett
  doi: 10.1016/S0040-4039(02)00061-8
– volume: 4
  start-page: 291
  year: 2011
  ident: ref13
  article-title: NMR studies of mixed amines
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.01.054
– volume: 45
  start-page: 5
  year: 2001
  ident: ref28
  article-title: Random forests
  publication-title: Machine Learn
  doi: 10.1023/A:1010933404324
– volume: 49
  start-page: 163
  year: 2011
  ident: ref2
  article-title: Editorial J Biomol NMR
– volume: 29
  start-page: 442
  year: 2010
  ident: ref19
  article-title: A Simple Double-Chamber NMR Tube for the Monitoring of Chemical Reactions by NMR Spectroscopy
  publication-title: Organometallics
  doi: 10.1021/om900919f
– ident: ref31
– reference: 22029382 - J Org Chem. 2011 Dec 2;76(23):9630-40
– reference: 17915905 - J Proteome Res. 2007 Nov;6(11):4407-22
– reference: 14632445 - J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58
– reference: 17534884 - Magn Reson Chem. 2007 Jul;45(7):564-71
– reference: 20886062 - J Biomed Biotechnol. 2011;2011:158094
– reference: 22027342 - Prog Nucl Magn Reson Spectrosc. 2011 Nov;59(4):336-59
– reference: 12577292 - NMR Biomed. 2003 Feb;16(1):1-11
– reference: 21340669 - J Biomol NMR. 2011 Apr;49(3-4):163-4
– reference: 20535780 - Magn Reson Chem. 2010 Jul;48(7):516-22
– reference: 17199311 - J Agric Food Chem. 2007 Jan 10;55(1):38-47
– reference: 12425607 - J Comb Chem. 2002 Nov-Dec;4(6):622-9
– reference: 21472035 - Expert Syst Appl. 2008 Oct 1;35(3):967-975
– reference: 15154761 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):946-9
– reference: 15154760 - J Chem Inf Comput Sci. 2004 May-Jun;44(3):940-5
– reference: 20498914 - Chem Commun (Camb). 2010 Jul 7;46(25):4514-6
– reference: 20038089 - Anal Chem. 2010 Jan 15;82(2):628-38
– reference: 17212341 - NMR Biomed. 2007 Nov;20(7):658-72
SSID ssj0053866
Score 2.111137
Snippet The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e88499
SubjectTerms Algorithms
Artificial Intelligence
Automatic control
Azirines - chemistry
Chemical reactions
Chemistry
Classification
Clustering
Coding
Computer Science
Cycloaddition Reaction
Cycloparaffins - chemistry
Data processing
Identification methods
Information management
Learning algorithms
Machine learning
Magnetic Resonance Spectroscopy - statistics & numerical data
Metabolism
Metabolites
Molecular structure
Neural networks
NMR
Nuclear magnetic resonance
Photochemical Processes
Pyridazines - chemistry
Quality control
Reproducibility of Results
Self organizing maps
Teaching methods
Test sets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBBzSJvEj8bEgqoLUIhWKerMcxy4rLcmK7Ar498w43tCISu2B6_rzSpkZj8f2zDeEvDSZML6wmCWumpQXmU0hjqtTWysJ3rA2TmC989GxPDzlH8_E2YVWX5gTNtADD4LbE44zD95BCdFw7CbHMssr7wSrDQyEMt-sUpvD1OCDYRVLGQvlWJnvRb3sLrvWIaFpxQPX69-NKPD1j155tlx0_WUh57-ZkzfX7dL8_mkWiwvb0sEdcjvGk3R_-I4tcsO1d8lWXLE9fR1ppd_cI3gb1gWCVnp8dJLi9tXQeROzhYKCaOepjQwCFKLJUPNA8Za2p_OWfp__wveGPsC6tLMW7w_b8xHa3yenB--_vDtMY4uF1EpVrFLpJANfyZvCKNlIBicy2Msa5VXWNN7IusqZ9KwQ3hiF0UXpPZwpSqdYXVS5Zw_IrAWhbhMKgYhUWFZrueB1nSsjWGFL4a2TjZJ5QthG3tpG_nFsg7HQ4VGthHPIIDKNWtJRSwlJx1nLgX_jCvxbVOWIRfbs8APYlI42pa-yqYQ8Q0PQQynq6AP0PvYayJDDLiEvAgIZNFpM0Tk3677XHz59vQbo88kE9CqCfAfisCaWRcA3ITPXBLkzQYIfsJPhbTTbjVR6nauK4bt2hjM3pnz58PNxGP8U0-5a160BI7LQ4EDwhDwcLH-ULEyFYD0vElJO1sRE9NORdv4tEJhDTM7goJKQ3XH1XEu5j_6Hch-TWxD0csy8z9kOma1-rN0TCCxX9dPgQ_4A3lh3eA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QFeJsbXCgMKQgIeurVNkzYPCO3QpoF0BzoY2luV5mOcdGqP652A_x67TTsqJthr41StYzt2Yv9MyAsZMmljhVniQgdJHKoA_LgiUIXgYA0LaRjWO0-m_PQs-XDOzrfItKuFwbTKziY2hlpXCs_IDyE4pnhLF2Zvl98D7BqFt6tdCw3pWivoNw3E2A2yHSMy1ohsj4-nn2adbQbt5twV0NE0OnTrdbCsSoNAp1nSYMBeblANjn9vrUfLRVVf5Yr-nVF5c1Mu5a8fcrH4Y7s6uU12nJ_pH7WCsUu2THmH7DpNrv1XDm769V2Cp2RVA9zqTyezYAzbmvbb-l3rDvT8yvodsoA_M20thI8hbO3PS38y_4n3EHVDVgUIXLzC48KetL5Hzk6Ov7w7DVzrhUBxEa8DbjgFG5roWAquOYVIDRiqhRWh1lbyIosotzRmVkqBXkdqLcQaqRG0iLPI0vtkVAJT94gPDgoXWG6rEpYURSQko7FKmVWGa8Ejj9CO37lyuOTYHmORN5dtKcQnLctyXKXcrZJHgn7WssXl-A_9GJeyp0VU7eZBtbrInZLmzCTUAmcEYzrBzoUUPjqzhtFCwkDmkacoCHlbotrbhvwIexCEKHgeed5QILJGiak7F3JT1_n7j1-vQfR5NiB66YhsBexQ0pVLwD8hYteAcn9ACfZBDYb3UGw7rtT5pSbBzE6Urx5-1g_jSzEdrzTVBmhY2DQ-YIlHHrSS33MWpoITH8UeSQc6MWD9cKScf2uAzcFXpxDAeOSg155rLe7Df__HI3IL3NwEc-0juk9G69XGPAZXcl08cfbhN0fwc9M
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZJM4duJjF7FakFpQoWg5oMhxbKiokmrTiseB385M4kQEFrEcuFX15yj5bI9nbM9nQh7IgEkTKTwlLgovjgLlgR-XeyoXHKxhLjXDfOfJlB_N4xfH7HiLvO9yYSyDECMuq7rZyccfVan3LZP7qFfU7p76IU3Croa_AhCKlabgwz9sFIdwZWyNCUjnyDZn4KqPyPZ8-mr8rt1pjjweBdSm0_3pSYPpqlH17233CN_sNMf09_OV5zflSn79LJfLnyavw0vke_fZ7ZmVT_5mnfvq2y-KkP-Nl8vkonV73XH7lB2ypcsrZMcaltp9bNWvn1wluGhXNTqy7nQy8w5gli3cNp3Y2PVFtzJuJ3TgznSbmuFiRF27i9KdLL7gtkjdwCoPdZRPcPWyh9bXyPzw2ZunR569CcJTXERrj2tOwaTHRSQFLziFwBGm3EIYERSFkTxPQ8oNjZiRUqATlBgDoU-iBc2jNDT0OhmVwMMuccFf4gKzf1XM4jwPhWQ0UgkzSvNC8NAhtGvwTFmZdLytY5k1e38JhEstZRkSm1liHeL1tVatTMhf8AfYl3osinw3f0DLZrZFM6ZjaoAZwVgR40WKFF46NZrRXEJB6pC72BOzNmO2N1XZGK9ECFBqzyH3GwQKfZR4kuiD3NR19vzl2zOAXs8GoEcWZCqgQ0mbvQHfhB1vgNwbIMFcqUHxLvbcjpU6C0VKcfs9wJrdWDq9-F5fjA_F04GlrjaAYUFzDwOLHXKjHXo9s1AVYoowckgyGJQD6ocl5eJjo7MOoQOFeMohfj98z9S4N_-1wi1yAfzwGJMBQrpHRuuTjb4Nvu46v2Mt1g-AEK0t
  priority: 102
  providerName: Unpaywall
Title Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions
URI https://www.ncbi.nlm.nih.gov/pubmed/24551112
https://www.proquest.com/docview/1983424508
https://www.proquest.com/docview/1500703154
https://pubmed.ncbi.nlm.nih.gov/PMC3923800
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088499&type=printable
https://doaj.org/article/5e43feac955d4351930c48fe53ba3fe8
http://dx.doi.org/10.1371/journal.pone.0088499
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVECQgIeUiVx7MQPCLXTykBqmQpF3VPkfHhUqpLStGL777lz3IiIIvqSh_gctWff-Xe273eEvJYuk8pP8Za4yJzAd1MHcFzipIng4A0TmTPMdx6N-cU0-DxjswOyrdlqFFjtDO2wntR0tejd_Lz9AAb_XldtCL1tp96yLHKkK40AxR-SI1irBBZzGAXNuQJYtz69RNTicN-lJpnuX19pLVaa07_x3J3loqx2wdK_b1fe2RRLeftLLhZ_LF3D--SewZx2v54kx-QgLx6QY2PVlf3WUE-_e0hwx6zUJK72eDRxBrDEZXady6vM5p5dKnvLMmBP8jovwsZwtrLnhT2a3-CZRKXFSgdJjFe4ddiIVo_IdHj-7ezCMWUYnJQLf-3wnFPwp0HmS8EzTiFqg_UuE0q4WaYkTyKPckV9pqQUiEBCpSDuCHNBEz_yFH1MOgUo9YTYAFa4wNTbNGBBknhCMuqnIVNpzjPBPYvQrb7j1HCUY6mMRawP3kKIVWqVxThKsRklizhNr2XN0fEf-QEOZSOLDNv6Rbm6jo3BxiwPqALNCMayAKsYUvjRkcoZTSQ0RBZ5gRMhrtNVGz8R97EegYs8dxZ5pSWQZaPAazzXclNV8acv3_cQ-jppCb0xQqoEdaTSpE7Af0L2rpbkaUsSfEXaaj7BabvVShV7IqJ49u1iz-1U3t38smnGj-LVvCIvNyDDXF0EgQUWeVLP_Eaz0BUAvedbJGzZREv17ZZi_kOTnANupxDMWKTXWM9eg_t0H4U-I3cB-AZ4-96jp6SzXm3y5wAu10mXHIazEJ7RmYfP4ccuORqcjy8nXb1d09X-BN5Nx5f9q9-aRn3l
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHbEkcO_EDQhswtWwtUtlQ34KT2KNSlZSm1dg_xd_IXb5GxAR72Wt9iZrz-ec7--53hLxQDlfGSzBLXKa27zmJDX5cbCexFICGsdIc652HI9E_8T9N-GSN_GpqYTCtssHEEqjTPMEz8l0Ijhne0jnhu_kPG7tG4e1q00KjMotDfX4GIVvxdvAB5vel5x18PH7ft-uuAnYipLe0hRYM4MFPPSVFKhgEIQDfqTTSSVOjRBy6TBjmcaOUxA01MAbc6EBLFnuhaxi89wa56TPAElg_waQN8AA7hKjL81jg7tbWsDPPM400qqFfMsxebH9ll4B2L-jNZ3lxmaP7d77m-iqbq_MzNZv9sRke3CG3ay-W7lVmt0HWdHaXbNQ4UdDXNZn1m3sEz-DykhaWjoZjex82zZRW1cGmPi6kuaENbwEd66rSgmKAXNBpRofTn3jLUZRiuY20yAs8jGxFi_vk5Fqm4AHpZaDUTULB_RESi3kTn_tx7ErFmZcE3CRapFK4FmGNvqOkZj3H5huzqLzKCyD6qVQW4SxF9SxZxG6fmlesH_-R38epbGWRs7v8IV-cRjUERFz7zIBmJOepj30RGfzp0GjOYgUDoUW20RCiqgC2RZ5oDzscOMicZ5HnpQTydmSYGHSqVkURDT5_vYLQl3FH6FUtZHJQR6LqYgz4JuQD60hudSQBfZLO8CaabaOVIrpYp_BkY8qXDz9rh_GlmOyX6XwFMtwp2ypw3yIPK8tvNQuPQojgehYJOmuio_ruSDb9XtKmQyTAIDyyyE67eq40uY_-_R3bZL1_PDyKjgajw8fkFjjUPmb1u2yL9JaLlX4CTusyfloiBSXfrhuafgNkbaiI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGABgYCHrEkcO_EDQhujWhktaDDUt-Ak9qhUJaVpNfav8ddxlzgZERPsZa_1JWrO58939t13hDyTLpPaTzFLXGRO4LupA35c4qSJ4ICGiVQM651HY75_FLyfsMka-dXUwmBaZYOJFVBnRYpn5H0Ijine0rlRX5u0iE97gzfzHw52kMKb1qadRm0iB-r0BMK38vVwD-b6ue8P3n15u--YDgNOyoW_dLjiFKAiyHwpeMYpBCQA5ZnQws0yLXkSeZRr6jMtpcDNNdQaXOpQCZr4kacpvPcKuRpSKjCdMJy0wR7gCOemVI-GXt9Yxva8yBVSqkZBxTZ7thVWHQPafaE3nxXleU7v37mb11f5XJ6eyNnsj41xcIvcNB6tvVOb4DpZU_ltsm4wo7RfGmLrV3cInscVFUWsPR4dOruwgWZ2XSmszdGhXWi74TCwD1VddWFjsFza09weTX_ijUdZiRUOUiQv8GCyFS3vkqNLmYJ7pJeDUjeIDa4QF1jYmwYsSBJPSEb9NGQ6VTwT3LMIbfQdp4YBHRtxzOLqWi-ESKhWWYyzFJtZsojTPjWvGUD-I7-LU9nKIn939UOxOI4NHMRMBVSDZgRjWYA9Ein86UgrRhMJA5FFttAQ4roYtkWheAe7HbjIomeRp5UEcnjkuBqO5aos4-HHrxcQ-nzYEXphhHQB6kilKcyAb0JusI7kZkcSkCjtDG-g2TZaKeOzNQtPNqZ8_vCTdhhfiol_uSpWIMPcqsUCCyxyv7b8VrPwKIQLnm-RsLMmOqrvjuTT7xWFOkQFFEIli2y3q-dCk_vg39-xRa4BKMUfhuODh-QG-NYBJvh7dJP0louVegT-6zJ5XAGFTb5dNjL9BrSmrMs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIBIR6HZJM4duJjF7FakFpQoWg5oMhxbKiokmrTiseB385M4kQEFrEcuFX15yj5bI9nbM9nQh7IgEkTKTwlLgovjgLlgR-XeyoXHKxhLjXDfOfJlB_N4xfH7HiLvO9yYSyDECMuq7rZyccfVan3LZP7qFfU7p76IU3Croa_AhCKlabgwz9sFIdwZWyNCUjnyDZn4KqPyPZ8-mr8rt1pjjweBdSm0_3pSYPpqlH17233CN_sNMf09_OV5zflSn79LJfLnyavw0vke_fZ7ZmVT_5mnfvq2y-KkP-Nl8vkonV73XH7lB2ypcsrZMcaltp9bNWvn1wluGhXNTqy7nQy8w5gli3cNp3Y2PVFtzJuJ3TgznSbmuFiRF27i9KdLL7gtkjdwCoPdZRPcPWyh9bXyPzw2ZunR569CcJTXERrj2tOwaTHRSQFLziFwBGm3EIYERSFkTxPQ8oNjZiRUqATlBgDoU-iBc2jNDT0OhmVwMMuccFf4gKzf1XM4jwPhWQ0UgkzSvNC8NAhtGvwTFmZdLytY5k1e38JhEstZRkSm1liHeL1tVatTMhf8AfYl3osinw3f0DLZrZFM6ZjaoAZwVgR40WKFF46NZrRXEJB6pC72BOzNmO2N1XZGK9ECFBqzyH3GwQKfZR4kuiD3NR19vzl2zOAXs8GoEcWZCqgQ0mbvQHfhB1vgNwbIMFcqUHxLvbcjpU6C0VKcfs9wJrdWDq9-F5fjA_F04GlrjaAYUFzDwOLHXKjHXo9s1AVYoowckgyGJQD6ocl5eJjo7MOoQOFeMohfj98z9S4N_-1wi1yAfzwGJMBQrpHRuuTjb4Nvu46v2Mt1g-AEK0t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+NMR-Based+Identification+of+Chemical+Reaction+Types+in+Mixtures+of+Co-Occurring+Reactions&rft.jtitle=PloS+one&rft.au=Latino%2C+Diogo+A.+R.+S&rft.au=Aires-de-Sousa%2C+Jo%C3%A3o&rft.date=2014-02-13&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=9&rft.issue=2&rft.spage=e88499&rft_id=info:doi/10.1371%2Fjournal.pone.0088499&rft.externalDBID=ISR&rft.externalDocID=A478805518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon