Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison

Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID control...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 12; p. e0243320
Main Authors Günther, Johannes, Reichensdörfer, Elias, Pilarski, Patrick M., Diepold, Klaus
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.12.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0243320

Cover

Abstract Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks—–namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.
AbstractList Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.
Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.
Audience Academic
Author Reichensdörfer, Elias
Diepold, Klaus
Pilarski, Patrick M.
Günther, Johannes
AuthorAffiliation 1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
3 Department of Electrical and Computer Engineering, Technische Universität München, Munich, Bavaria, Germany
2 Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada
National Huaqiao University, CHINA
AuthorAffiliation_xml – name: 1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
– name: 2 Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada
– name: National Huaqiao University, CHINA
– name: 3 Department of Electrical and Computer Engineering, Technische Universität München, Munich, Bavaria, Germany
Author_xml – sequence: 1
  givenname: Johannes
  orcidid: 0000-0003-4926-312X
  surname: Günther
  fullname: Günther, Johannes
– sequence: 2
  givenname: Elias
  surname: Reichensdörfer
  fullname: Reichensdörfer, Elias
– sequence: 3
  givenname: Patrick M.
  surname: Pilarski
  fullname: Pilarski, Patrick M.
– sequence: 4
  givenname: Klaus
  surname: Diepold
  fullname: Diepold, Klaus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33301494$$D View this record in MEDLINE/PubMed
BookMark eNqNk21r2zAQx83oWB-2bzA2Q2FsL5LJlizZfTEI3VOg0LGnt-KinB1lspRJdrt8-8lLWpJSWDH44fy7v-_-dz5ODqyzmCTPMzLOqMjeLl3vLZjxKobHJGeU5uRRcpRVNB_xnNCDnfvD5DiEJSEFLTl_khxSSknGKnaUrKe2Q7_y2MHMYPpl-j5dgYcWYzTteqttk9bOp8rZzjuTom20RfRDvA_DuUGLHkw6X1totUot9sOjxe7a-V_hLJ3YFP90aIO-wqjTRn0dnH2aPK7BBHy2vZ4kPz5--H7-eXRx-Wl6PrkYKV7l3aioGaCgTJWiJqAUyWYcxCwnKMpaQDHHWpW5KKqc8bwUiivGSV6xigBnM1bSk-TlRndlXJBb14KMeEUKzrMiEtMNMXewlCuvW_Br6UDLfwHnGwm-08qgLMqsIJlSvFDRP1rEolAxWoqZIlDlg1ax0ertCtbXYMytYEbkMLibEuQwOLkdXMx7t62yn7U4VxjtBrNXzP4bqxeycVdSiLzMBIsCr7cC3v3uMXSy1UGhMWDR9UO_gpRVycoqoqd30Ptd2VINxMa1rV38rhpE5YQzVmSM8YEa30PFY45xGWKHtY7xvYQ3ewnDYsX1aKAPQU6_fX04e_lzn321wy4QTLcIzvSddjbsgy92nb61-OafiMDZBlDeheCxlkp3MOjE1rT53xzZneQHjf8vc5c0vw
CitedBy_id crossref_primary_10_1007_s11063_022_10989_1
crossref_primary_10_1002_acs_3628
crossref_primary_10_3390_s22207773
crossref_primary_10_1016_j_applthermaleng_2024_125008
crossref_primary_10_1007_s00521_021_06740_x
crossref_primary_10_1016_j_clineuro_2022_107481
crossref_primary_10_1016_j_ifacol_2024_08_031
Cites_doi 10.1109/JAS.2020.1003213
10.1109/TCST.2005.847331
10.1016/j.simpat.2010.08.003
10.1016/S0947-3580(00)70906-X
10.1016/j.asoc.2017.04.056
10.1109/9.940937
10.1109/ICMLC.2006.258357
10.1137/0111030
10.1109/TNNLS.2020.3007259
10.1109/CDC.2001.914683
10.3182/20110828-6-IT-1002.01502
10.1109/NEUREL.2008.4685619
10.1016/j.cirp.2012.05.001
10.1017/S0022112092003501
10.3182/20020721-6-ES-1901.00728
10.1016/j.compchemeng.2008.09.002
10.1109/CCDC.2013.6561509
10.1109/TNN.2006.882371
10.1109/ICAMechS.2014.6911660
10.1142/S0218127499000973
10.23919/ECC.2003.7085293
10.1016/j.conengprac.2003.12.019
10.1016/j.neucom.2016.09.101
10.1080/21693277.2016.1192517
10.1109/TCST.2009.2028549
10.1109/TMECH.2017.2767085
10.1109/CONTROL.2012.6334628
10.1016/0005-1098(71)90059-8
10.1016/j.sysconle.2005.09.019
10.1109/IHMSC.2010.123
10.1109/IJCNN.1992.227257
10.1017/S0022112075000171
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Günther et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Günther et al 2020 Günther et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Günther et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Günther et al 2020 Günther et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0243320
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Agricultural Science Database

CrossRef




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Interpretable PID parameter tuning for control engineering using general dynamic neural networks
EISSN 1932-6203
ExternalDocumentID 2469056615
oai_doaj_org_article_581501cc65c1493587fec4387bc0a925
10.1371/journal.pone.0243320
PMC7728174
A644514465
33301494
10_1371_journal_pone_0243320
Genre Journal Article
GeographicLocations Canada
Bavaria Germany
Edmonton Alberta Canada
Germany
GeographicLocations_xml – name: Canada
– name: Bavaria Germany
– name: Germany
– name: Edmonton Alberta Canada
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-5f4ae734c87f0acc01b6a7b20e78f7a5defc82759246287c6c46029490a64b483
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Dec 05 00:11:35 EST 2021
Fri Oct 03 12:45:19 EDT 2025
Sun Oct 26 04:08:16 EDT 2025
Tue Sep 30 16:58:16 EDT 2025
Fri Sep 05 08:36:04 EDT 2025
Tue Oct 07 09:07:49 EDT 2025
Mon Oct 20 22:23:33 EDT 2025
Mon Oct 20 16:36:46 EDT 2025
Thu Oct 16 14:30:51 EDT 2025
Thu Oct 16 15:23:56 EDT 2025
Thu May 22 21:20:37 EDT 2025
Wed Feb 19 02:29:44 EST 2025
Thu Apr 24 23:00:49 EDT 2025
Wed Oct 01 03:11:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-5f4ae734c87f0acc01b6a7b20e78f7a5defc82759246287c6c46029490a64b483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4926-312X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243320&type=printable
PMID 33301494
PQID 2469056615
PQPubID 1436336
PageCount e0243320
ParticipantIDs plos_journals_2469056615
doaj_primary_oai_doaj_org_article_581501cc65c1493587fec4387bc0a925
unpaywall_primary_10_1371_journal_pone_0243320
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7728174
proquest_miscellaneous_2470898489
proquest_journals_2469056615
gale_infotracmisc_A644514465
gale_infotracacademiconefile_A644514465
gale_incontextgauss_ISR_A644514465
gale_incontextgauss_IOV_A644514465
gale_healthsolutions_A644514465
pubmed_primary_33301494
crossref_citationtrail_10_1371_journal_pone_0243320
crossref_primary_10_1371_journal_pone_0243320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0243320.ref032
C Sandner (pone.0243320.ref022) 2017
pone.0243320.ref033
K Pirabakaran (pone.0243320.ref011) 2002; 35
L Lui (pone.0243320.ref043) 2020; 7
pone.0243320.ref031
pone.0243320.ref034
pone.0243320.ref013
pone.0243320.ref019
pone.0243320.ref016
pone.0243320.ref038
pone.0243320.ref017
KJ Åström (pone.0243320.ref002) 2000; 6
S Kim (pone.0243320.ref030) 2017; 22
J de Jesús Rubio (pone.0243320.ref007) 2018; 68
KH Ang (pone.0243320.ref005) 2005; 13
S Mascolo (pone.0243320.ref042) 1999; 9
OJM Smith (pone.0243320.ref041) 1957; 53
M Deflorian (pone.0243320.ref023) 2011; 44
DW Marquardt (pone.0243320.ref020) 1963; 11
MR Stojic (pone.0243320.ref035) 2001; 46
H Liang (pone.0243320.ref044) 2020
J Bergstra (pone.0243320.ref010) 2013
W ElMaraghy (pone.0243320.ref001) 2012; 61
H Creveling (pone.0243320.ref036) 1975; 67
R Vazquez (pone.0243320.ref040) 2010; 18
N Leveson (pone.0243320.ref012) 2003
DE Rumelhart (pone.0243320.ref018) 1995
pone.0243320.ref024
KU Klatt (pone.0243320.ref003) 2009; 33
pone.0243320.ref008
pone.0243320.ref027
pone.0243320.ref028
JJ Wang (pone.0243320.ref029) 2011; 19
pone.0243320.ref009
F Berkenkamp (pone.0243320.ref015) 2017
KJ Åström (pone.0243320.ref025) 1971; 7
J de Jesús Rubio (pone.0243320.ref006) 2017; 227
AW Yu (pone.0243320.ref014) 2014
H Pan (pone.0243320.ref026) 2005; 13
T Wuest (pone.0243320.ref004) 2016; 4
R Vazquez (pone.0243320.ref039) 2006; 55
O De Jesus (pone.0243320.ref021) 2007; 18
Y Wang (pone.0243320.ref037) 1992; 237
References_xml – year: 2017
  ident: pone.0243320.ref022
  article-title: Automated optimization of dynamic neural network structure using genetic algorithms
  publication-title: Technical Report
– start-page: 1350
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: pone.0243320.ref014
– volume: 7
  start-page: 1335
  issue: 05
  year: 2020
  ident: pone.0243320.ref043
  article-title: Time-varying asymmetrical BLFs based adaptive finite-time neural control of nonlinear systems with full state constraints
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003213
– volume: 13
  start-page: 559
  issue: 4
  year: 2005
  ident: pone.0243320.ref005
  article-title: PID control system analysis, design, and technology
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2005.847331
– volume: 19
  start-page: 440
  issue: 1
  year: 2011
  ident: pone.0243320.ref029
  article-title: Simulation studies of inverted pendulum based on PID controllers
  publication-title: Simulation Modelling Practice and Theory
  doi: 10.1016/j.simpat.2010.08.003
– volume: 6
  start-page: 2
  issue: 1
  year: 2000
  ident: pone.0243320.ref002
  article-title: Limitations on control system performance
  publication-title: European Journal of Control
  doi: 10.1016/S0947-3580(00)70906-X
– start-page: 16
  year: 2003
  ident: pone.0243320.ref012
  article-title: A systems theoretic approach to safety engineering
  publication-title: Dept of Aeronautics and Astronautics, Massachusetts Inst of Technology, Cambridge
– ident: pone.0243320.ref019
– year: 2020
  ident: pone.0243320.ref044
  article-title: Event-Triggered Fuzzy Bipartite Tracking Control for Network Systems Based on Distributed Reduced-Order Observers (Revised manuscript of TFS-2019-1049)
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 68
  start-page: 821
  year: 2018
  ident: pone.0243320.ref007
  article-title: Discrete time control based in neural networks for pendulums
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.04.056
– volume: 46
  start-page: 1293
  issue: 8
  year: 2001
  ident: pone.0243320.ref035
  article-title: A robust Smith predictor modified by internal models for integrating process with dead time
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.940937
– ident: pone.0243320.ref031
– ident: pone.0243320.ref008
  doi: 10.1109/ICMLC.2006.258357
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: pone.0243320.ref020
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: Journal of the society for Industrial and Applied Mathematics
  doi: 10.1137/0111030
– ident: pone.0243320.ref013
  doi: 10.1109/TNNLS.2020.3007259
– ident: pone.0243320.ref038
  doi: 10.1109/CDC.2001.914683
– volume: 44
  start-page: 13179
  issue: 1
  year: 2011
  ident: pone.0243320.ref023
  article-title: Design of experiments for nonlinear dynamic system identification
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20110828-6-IT-1002.01502
– ident: pone.0243320.ref027
  doi: 10.1109/NEUREL.2008.4685619
– volume: 61
  start-page: 793
  issue: 2
  year: 2012
  ident: pone.0243320.ref001
  article-title: Complexity in engineering design and manufacturing
  publication-title: CIRP annals
  doi: 10.1016/j.cirp.2012.05.001
– start-page: 908
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: pone.0243320.ref015
  article-title: Safe model-based reinforcement learning with stability guarantees
– volume: 237
  start-page: 479
  year: 1992
  ident: pone.0243320.ref037
  article-title: Controlling chaos in a thermal convection loop
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112092003501
– volume: 35
  start-page: 451
  issue: 1
  year: 2002
  ident: pone.0243320.ref011
  article-title: PID autotuning using neural networks and model reference adaptive control
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20020721-6-ES-1901.00728
– volume: 33
  start-page: 536
  issue: 3
  year: 2009
  ident: pone.0243320.ref003
  article-title: Perspectives for process systems engineering—Personal views from academia and industry
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2008.09.002
– year: 2013
  ident: pone.0243320.ref010
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: JMLR
– ident: pone.0243320.ref033
  doi: 10.1109/CCDC.2013.6561509
– ident: pone.0243320.ref024
– volume: 18
  start-page: 14
  issue: 1
  year: 2007
  ident: pone.0243320.ref021
  article-title: Backpropagation algorithms for a broad class of dynamic networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.882371
– ident: pone.0243320.ref028
  doi: 10.1109/ICAMechS.2014.6911660
– volume: 9
  start-page: 1425
  issue: 07
  year: 1999
  ident: pone.0243320.ref042
  article-title: Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit
  publication-title: International Journal of Bifurcation and Chaos
  doi: 10.1142/S0218127499000973
– ident: pone.0243320.ref034
  doi: 10.23919/ECC.2003.7085293
– ident: pone.0243320.ref016
– volume: 53
  start-page: 217
  issue: 5
  year: 1957
  ident: pone.0243320.ref041
  article-title: Closed control of loops with dead time
  publication-title: Chemical Engineering Progress
– volume: 13
  start-page: 27
  issue: 1
  year: 2005
  ident: pone.0243320.ref026
  article-title: Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2003.12.019
– volume: 227
  start-page: 113
  year: 2017
  ident: pone.0243320.ref006
  article-title: Modeling and control with neural networks for a magnetic levitation system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.101
– volume: 4
  start-page: 23
  issue: 1
  year: 2016
  ident: pone.0243320.ref004
  article-title: Machine learning in manufacturing: advantages, challenges, and applications
  publication-title: Production & Manufacturing Research
  doi: 10.1080/21693277.2016.1192517
– volume: 18
  start-page: 789
  issue: 4
  year: 2010
  ident: pone.0243320.ref040
  article-title: Boundary Observer for Output-Feedback Stabilization of Thermal-Fluid Convection Loop
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2009.2028549
– volume: 22
  start-page: 2803
  issue: 6
  year: 2017
  ident: pone.0243320.ref030
  article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2767085
– ident: pone.0243320.ref032
  doi: 10.1109/CONTROL.2012.6334628
– volume: 7
  start-page: 123
  issue: 2
  year: 1971
  ident: pone.0243320.ref025
  article-title: System identification—a survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(71)90059-8
– volume: 55
  start-page: 624
  issue: 8
  year: 2006
  ident: pone.0243320.ref039
  article-title: Explicit integral operator feedback for local stabilization of nonlinear thermal convection loop PDEs
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2005.09.019
– ident: pone.0243320.ref009
  doi: 10.1109/IHMSC.2010.123
– ident: pone.0243320.ref017
  doi: 10.1109/IJCNN.1992.227257
– start-page: 1
  volume-title: Backpropagation: Theory, architectures and applications
  year: 1995
  ident: pone.0243320.ref018
– volume: 67
  start-page: 65
  issue: 1
  year: 1975
  ident: pone.0243320.ref036
  article-title: Stability characteristics of a single-phase free convection loop
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112075000171
SSID ssj0053866
Score 2.3980315
Snippet Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations....
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0243320
SubjectTerms Artificial intelligence
Artificial neural networks
Automation
Benchmarks
Biology and Life Sciences
Closed loops
Computer and Information Sciences
Computer engineering
Computer Simulation
Control engineering
Control stability
Control systems
Controllers
Design
Design and construction
Engineering
Engineering and Technology
Engineers
Evaluation
Feedback control systems
Learning algorithms
Linear control
Linear systems
Machine learning
Methods
Models, Theoretical
Neural networks
Neural Networks, Computer
Parameters
Process engineering
Proportional integral derivative
Recurrent neural networks
Research and Analysis Methods
Robust control
Stability analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4fjB7flUbVIPAQU9WY5jrMgheyK7Ar13zMTe9ONqNQeOCaeWMo8nBnn8zeEPHM2raqsSmOnnIxZWvFYSlPGrKpMlZS5cj1PwYeP_OiEvT8tTrdafSEmzNMDe8UdFBJSltRaXlhI5vNCitpZlktR2sSorGcvTaTaFFN-DYYo5jwclMtFehDsMl0uWjdFDr4c-3tvfYh6vv5hVZ4sm0V3Ucr5L3Ly-rpdmrM_pmm2PkuHt8jNkE_SmX-PHXLNtbfJTojYjr4ItNIv75Czc3xh2Tj6-fgtRd7vX4iHoas17o9QyGBpAK9Td85USBEdP6dzPxetfBd7ilyYcNl6JHn3is5a2m-qIySe2qHD4V1ycvju25ujODReiC1X2SouamacyJkFZSfG2iQtuRFlljgha2GKytVWZqKA2o1DxWW5ZTzJFFOJ4axkMr9HJi2oepdQJLwvC8jCZG2YgnlNUUtmbAUmKExaRyTfWEHbwEqOzTEa3f9qE1CdeEVqtJ0OtotIPDy19Kwcl8i_RgMPssip3d8AT9PB0_RlnhaRx-ge2h9QHVYGPeNI8obEcxF52ksgr0aLwJ25WXedPv70_QpCX7-MhJ4HoXoB6rAmHJaAd0K-rpHk_kgSVgc7Gt5FZ95opdMZ7odADp_ikxsHv3j4yTCMkyIYr3WLNcoIiDjJpIrIfR8Pg2bzHGt0xSIiRpEyUv14pP35o6c1hzpPQn0ckekQU1cy7t7_MO4DciPDnZQ0g8Rkn0xWv9fuIaSbq_JRv7L8BUmTfzY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdPmwHQcJoQ42bUiMabBpb5FjOwWpJGVphfbfc5c46SIm2GPriyXf-S53zs-_I-Sl1aExkQl9m1rps9AIX0qV-8wYZYI8Tm3DU_D5UOyfsE9n_GyNHHZ3YRBW2cXEJlCbSuMZ-XaEdRzkHiF_P__lY9co_LratdBQrrWCeddQjN0g6xEyY43I-s7u4dFxF5vBu4VwF-jiJNx29hrPq9KOkZsvxr7fl15QDY9_H61H81lVX5WK_o2ovLks5-rit5rNLr2u9u6Q2y7PpJN2Y2yQNVveJRvOk2v62tFNv7lHLla4w3xm6dHBR4p84D8RJ0MXSzw3oZDZUgdqp3bFYEgRNT-l03Yuatru9hQ5MuFn2SLM67d0UtLmsB2h8lT3nQ_vk5O93W8f9n3XkMHXIo0WPi-YsknMtEyKAFQehLlQSR4FNpFForixhZZRwqGmE1CJaaGZCKKUpYESLGcyfkBGJah6k1Akws85ZGeyUCyFeRUvJFPagAm4CguPxJ0VMu3YyrFpxixrPsElULW0iszQdpmznUf8_ql5y9bxH_kdNHAvi1zbzR_V-TRzrptxCUlzqLXgGsrJmMPirWaxTHIdqDTiHnmG2yNrL672ESObCCR_Q0I6j7xoJJBvo0RAz1Qt6zo7-HJ6DaGvxwOhV06oqEAdWrlLFLAm5PEaSG4NJCFq6MHwJm7mTit1tvIveLLb4FcPP--HcVIE6ZW2WqJMEshUMpl65GHrD71m4xhr95R5JBl4ykD1w5Hyx_eG7hzqPwl1s0fGvU9dy7iP_r2Ox-RWhGcnYQSpyBYZLc6X9gkkmIv8qYsafwCAc345
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImjiO43BbHlWLRKmAVuWAIsdxloptdsUmQsuB385M4qQEiigHbtl4bK0_PzIznvlMyAOjgzxneeCaxEiXB7lwpVSZy_Nc5X4WJqbhKXi9K7b3-avD6HCFfOxyYSyCYCNOZ4vmJB8fZqXZtEhuIl9Re3rqBWEcdDW8OQh5yK8XMv9hwziEnrEKE5DOkVURgao-Iqv7u3vjD-1JM3MF80ObTvenlgafq4bVv9-7R_jPTlNMf4-vPF-Xc7X8qqbTnz5eW5fI967bbczKZ6-uMk9_-4UR8r_hcplctGovHbetrJEVU14ha3ZjWdDHlv36yVWyPAmDhLp0b-cFRXryYwzboVWNbhwKija1MfbUnBAqUgzin9BJ2xbNl6U6PtIUKTvhZ9kGvC-e0nFJG98_Ru5T3V_EeI3sb718_3zbtfdDuFokrHKjgisTh1zLuPCV1n6QCRVnzDexLGIV5abQksURmJgCDEMtNBc-S3jiK8EzLsPrZFQCOuuEIi9_FoGyKAvFE2hXRYXkSueAWqSCwiFhNw1SbcnT8Q6PadqcCMZgRLVApgh3auF2iNvXmrfkIX-Rf4YzrJdF6u_mBYx3asc5jSTo8IHWItJg3YYRdN5oHso4075KWOSQuzg_0zaPtt_A0rFALjrkx3PI_UYC6T9KjC-aqHqxSHfeHJxB6N3bgdAjK1TMAA6tbE4H9Amn40ByYyAJm5geFK_jfO5QWaQM3TZgagRYs1thpxff64uxUYwZLM2sRpnYl4nkMnHIjXZB9siGIboSEu6QeLBUB9APS8qjTw37OpijEsx4h3j9oj7T4N781wq3yAWGzp2Aga60QUbVl9rcBg24yu7YfewHRAa3Sw
  priority: 102
  providerName: Unpaywall
Title Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison
URI https://www.ncbi.nlm.nih.gov/pubmed/33301494
https://www.proquest.com/docview/2469056615
https://www.proquest.com/docview/2470898489
https://pubmed.ncbi.nlm.nih.gov/PMC7728174
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243320&type=printable
https://doaj.org/article/581501cc65c1493587fec4387bc0a925
http://dx.doi.org/10.1371/journal.pone.0243320
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wCgGIQEPqfLhxA4SQt1Y2ZBWqkFReYocxylIIS1NK-h_z13iZkQU0ZdIic-Wcuez787n3xHyTCs3Tb3UtXWkhc3cNLSFkInN0lSmTuJHusIpuBiGZ2P2fhJM9simZqthYLnVtcN6UuNF3vv1Y_0GFP51VbWBu5tOvfms0D1E2PM9cOL3Ya-KsJjDBWvOFUC7q9NLtFrs0HN8c5nuX6O0NqsK079ZuTvzfFZuM0v_zq68virmcv1T5vkfW9fgFrlpbE7aryfJAdnTxW1yYLS6pC8M9PTLO2R9lYOY5JqOzt9SxAb_jjkzdLnCGAoFK5eaBHeqr9AMKWbQT-m0HoumdaV7iniZ8FrU2eblK9ovaBV4x7R5qpoqiHfJeHD66eTMNsUZbBVG3tIOMiY195kSPHOkUo6bhJInnqO5yLgMUp0p4fEA_LsQvDIVKhY6XsQiR4YsYcK_RzoFsPqQUATFTwKw1EQmWQTjyiATTKoURBBIN7OIv5FCrAxyORbQyOPqOI6DB1MzMkbZxUZ2FrGbXvMaueM_9Mco4IYWcberD7PFNDZqHAcCDGhXqTBQ4Fr6Afy8VswXPFGOjLzAIo9xesT1JdZm9Yj7IQLBITidRZ5WFIi9UWByz1SuyjI-__B5B6KPly2i54YomwE7lDQXKuCfENOrRXnUooQVRLWaD3Eyb7hSxh7GTMDOd7HnZoJvb37SNOOgmLBX6NkKabgjIsFEZJH7tT40nPV99OMjZhHe0pQW69stxbevFfQ5-IICfGiL9Bqd2km4D3bh-kNyw8NoiuuBcXJEOsvFSj8Ck3OZdMk1PuHwFCcuPgfvumT_-HQ4uuxWQZxutcrAt_Fw1P_yG2BkiCw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHdPlwYgcJocKYWvYBYhvqW3Acp0zqkrK0mvpP8Tdyl7jpIibYyx4TXyz57ny-u5x_R8gLrdw09VLX1pEWNnPT0BZCJjZLU5k6iR_pCqdg_yDsH7PPw2C4Qn4v7sJgWeXCJlaGOi0U5si3PIzjwPdwg_eTXzZ2jcK_q4sWGrVa7Or5OYRs5bvBNsj3peftfDr62LdNVwFbhZE3tYOMSc19pgTPHKmU4yah5InnaC4yLoNUZ0p4PIDAJIRwQoWKhY4XsciRIUuY8GHeG-Qm88GWwP7hwybAA9sRhuZ6ns_dLaMN3UmR6y4i__nYVfzC8Vd1CWjOgs5kXJSXObp_12uuzvKJnJ_L8fjCYbhzh9w2Xizt1Wq3RlZ0fpesGTtR0tcGzPrNPTJfVjUmY02_DrYpoo2fYhUOnc4wK0PBb6amZJ7qJT4ixZr8ER3Vc9F0nsvTE0URgRMe87p-vXxLezmtUvlYiE9V01fxPjm-FsE8IJ0cWL1OKMLsJwH4fiKTLIJ5ZZAJJlUKIgikm1nEX0ghVgYLHVtyjOPqBx-HmKhmZIyyi43sLGI3X01qLJD_0H9AATe0iORdvSjORrExDHEgwCV3lQoDBcGqH8DitWK-4IlyZOQFFtlE9Yjra7GNPYp7IULLIdydRZ5XFIjmkWO50EjOyjIefPl-BaLDby2iV4YoK4AdSporGrAmRAlrUW60KMEmqdbwOirzgitlvNy98OVCwS8fftYM46RYApjrYoY03BGRYCKyyMN6PzSc9X3MDETMIry1U1qsb4_kJz8rMHWILgVE5RbpNnvqSsJ99O91bJLV_tH-Xrw3ONh9TG55mKVxPXB6NkhnejbTT8CVnSZPK_tByY_rNlh_AJ9Gs7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2nw4sYOEUGFUK4MxDYb6FhzHKZO6tCytpv5r_HXcJU66iAn2ssfWF0u5O5_vnJ9_R8gzrdw09VLX1pEWNnPT0BZCJjZLU5k6iR_pkqfg8164c8g-joLRGvld34VBWGUdE8tAnU4VnpH3PKzjIPdwg15mYBH724O3s182dpDCL611O43KRXb18hTKt-LNcBts_dzzBh--vd-xTYcBW4WRN7eDjEnNfaYEzxyplOMmoeSJ52guMi6DVGdKeDyAIiWE0kKFioWOF7HIkSFLmPBh3ivkKvf9COGEfNQUexBHwtBc1fO52zOe0Z1Nc91FFkAfO4yf2QrLjgHNvtCZTabFeUnv39jN64t8JpencjI5szEObpGbJqOl_coF18mazm-TdRMzCvrSEFu_ukOWK4RjMtF0f7hNkXn8GBE5dL7AExoKOTQ18HmqV1yJFPH5Yzqu5qLpMpfHR4oiGyf8zCsse_Ga9nNaHusjKJ-qpsfiXXJ4KYa5Rzo5qHqDUKTcTwLIA0UmWQTzyiATTKoUTBBIN7OIX1shVoYXHdtzTOLyYx-H-qhSZIy2i43tLGI3T80qXpD_yL9DAzeyyOpd_jE9GccmSMSBgPTcVSoMFBSufgAvrxXzBU-UIyMvsMgWukdcXZFtYlPcD5FmDqnvLPK0lEBmjxzXyFguiiIefvl-AaGvBy2hF0Yom4I6lDTXNeCdkDGsJbnZkoT4pFrDG-jMtVaKeLWS4cnawc8fftIM46QIB8z1dIEy3BGRYCKyyP1qPTSa9X08JYiYRXhrpbRU3x7Jj36WxOpQaQqo0C3SbdbUhYz74N_vsUWuQaiKPw33dh-SGx4e2Lge5D-bpDM_WehHkNXOk8dl-KDkx2XHqz9R6rf3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImjiO43BbHlWLRKmAVuWAIsdxloptdsUmQsuB385M4qQEiigHbtl4bK0_PzIznvlMyAOjgzxneeCaxEiXB7lwpVSZy_Nc5X4WJqbhKXi9K7b3-avD6HCFfOxyYSyCYCNOZ4vmJB8fZqXZtEhuIl9Re3rqBWEcdDW8OQh5yK8XMv9hwziEnrEKE5DOkVURgao-Iqv7u3vjD-1JM3MF80ObTvenlgafq4bVv9-7R_jPTlNMf4-vPF-Xc7X8qqbTnz5eW5fI967bbczKZ6-uMk9_-4UR8r_hcplctGovHbetrJEVU14ha3ZjWdDHlv36yVWyPAmDhLp0b-cFRXryYwzboVWNbhwKija1MfbUnBAqUgzin9BJ2xbNl6U6PtIUKTvhZ9kGvC-e0nFJG98_Ru5T3V_EeI3sb718_3zbtfdDuFokrHKjgisTh1zLuPCV1n6QCRVnzDexLGIV5abQksURmJgCDEMtNBc-S3jiK8EzLsPrZFQCOuuEIi9_FoGyKAvFE2hXRYXkSueAWqSCwiFhNw1SbcnT8Q6PadqcCMZgRLVApgh3auF2iNvXmrfkIX-Rf4YzrJdF6u_mBYx3asc5jSTo8IHWItJg3YYRdN5oHso4075KWOSQuzg_0zaPtt_A0rFALjrkx3PI_UYC6T9KjC-aqHqxSHfeHJxB6N3bgdAjK1TMAA6tbE4H9Amn40ByYyAJm5geFK_jfO5QWaQM3TZgagRYs1thpxff64uxUYwZLM2sRpnYl4nkMnHIjXZB9siGIboSEu6QeLBUB9APS8qjTw37OpijEsx4h3j9oj7T4N781wq3yAWGzp2Aga60QUbVl9rcBg24yu7YfewHRAa3Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+PID+parameter+tuning+for+control+engineering+using+general+dynamic+neural+networks%3A+An+extensive+comparison&rft.jtitle=PloS+one&rft.au=G%C3%BCnther%2C+Johannes&rft.au=Reichensd%C3%B6rfer%2C+Elias&rft.au=Pilarski%2C+Patrick+M&rft.au=Diepold%2C+Klaus&rft.date=2020-12-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0243320&rft_id=info:doi/10.1371%2Fjournal.pone.0243320&rft.externalDBID=IOV&rft.externalDocID=A644514465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon