Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison
Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID control...
        Saved in:
      
    
          | Published in | PloS one Vol. 15; no. 12; p. e0243320 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        10.12.2020
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0243320 | 
Cover
| Abstract | Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks—–namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence. | 
    
|---|---|
| AbstractList | Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence. Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID controllers perform well on linear and near-linear systems but their simplicity is at odds with the robustness required to reliably control complex processes. Modern machine learning techniques offer a way to extend PID controllers beyond their linear control capabilities by using neural networks. However, such an extension comes at the cost of losing stability guarantees and controller interpretability. In this paper, we examine the utility of extending PID controllers with recurrent neural networks--namely, General Dynamic Neural Networks (GDNN); we show that GDNN (neural) PID controllers perform well on a range of complex control systems and highlight how they can be a scalable and interpretable option for modern control systems. To do so, we provide an extensive study using four benchmark systems that represent the most common control engineering benchmarks. All control environments are evaluated with and without noise as well as with and without disturbances. The neural PID controller performs better than standard PID control in 15 of 16 tasks and better than model-based control in 13 of 16 tasks. As a second contribution, we address the lack of interpretability that prevents neural networks from being used in real-world control processes. We use bounded-input bounded-output stability analysis to evaluate the parameters suggested by the neural network, making them understandable for engineers. This combination of rigorous evaluation paired with better interpretability is an important step towards the acceptance of neural-network-based control approaches for real-world systems. It is furthermore an important step towards interpretable and safely applied artificial intelligence.  | 
    
| Audience | Academic | 
    
| Author | Reichensdörfer, Elias Diepold, Klaus Pilarski, Patrick M. Günther, Johannes  | 
    
| AuthorAffiliation | 1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada 3 Department of Electrical and Computer Engineering, Technische Universität München, Munich, Bavaria, Germany 2 Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada National Huaqiao University, CHINA  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada – name: 2 Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada – name: National Huaqiao University, CHINA – name: 3 Department of Electrical and Computer Engineering, Technische Universität München, Munich, Bavaria, Germany  | 
    
| Author_xml | – sequence: 1 givenname: Johannes orcidid: 0000-0003-4926-312X surname: Günther fullname: Günther, Johannes – sequence: 2 givenname: Elias surname: Reichensdörfer fullname: Reichensdörfer, Elias – sequence: 3 givenname: Patrick M. surname: Pilarski fullname: Pilarski, Patrick M. – sequence: 4 givenname: Klaus surname: Diepold fullname: Diepold, Klaus  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33301494$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk21r2zAQx83oWB-2bzA2Q2FsL5LJlizZfTEI3VOg0LGnt-KinB1lspRJdrt8-8lLWpJSWDH44fy7v-_-dz5ODqyzmCTPMzLOqMjeLl3vLZjxKobHJGeU5uRRcpRVNB_xnNCDnfvD5DiEJSEFLTl_khxSSknGKnaUrKe2Q7_y2MHMYPpl-j5dgYcWYzTteqttk9bOp8rZzjuTom20RfRDvA_DuUGLHkw6X1totUot9sOjxe7a-V_hLJ3YFP90aIO-wqjTRn0dnH2aPK7BBHy2vZ4kPz5--H7-eXRx-Wl6PrkYKV7l3aioGaCgTJWiJqAUyWYcxCwnKMpaQDHHWpW5KKqc8bwUiivGSV6xigBnM1bSk-TlRndlXJBb14KMeEUKzrMiEtMNMXewlCuvW_Br6UDLfwHnGwm-08qgLMqsIJlSvFDRP1rEolAxWoqZIlDlg1ax0ertCtbXYMytYEbkMLibEuQwOLkdXMx7t62yn7U4VxjtBrNXzP4bqxeycVdSiLzMBIsCr7cC3v3uMXSy1UGhMWDR9UO_gpRVycoqoqd30Ptd2VINxMa1rV38rhpE5YQzVmSM8YEa30PFY45xGWKHtY7xvYQ3ewnDYsX1aKAPQU6_fX04e_lzn321wy4QTLcIzvSddjbsgy92nb61-OafiMDZBlDeheCxlkp3MOjE1rT53xzZneQHjf8vc5c0vw | 
    
| CitedBy_id | crossref_primary_10_1007_s11063_022_10989_1 crossref_primary_10_1002_acs_3628 crossref_primary_10_3390_s22207773 crossref_primary_10_1016_j_applthermaleng_2024_125008 crossref_primary_10_1007_s00521_021_06740_x crossref_primary_10_1016_j_clineuro_2022_107481 crossref_primary_10_1016_j_ifacol_2024_08_031  | 
    
| Cites_doi | 10.1109/JAS.2020.1003213 10.1109/TCST.2005.847331 10.1016/j.simpat.2010.08.003 10.1016/S0947-3580(00)70906-X 10.1016/j.asoc.2017.04.056 10.1109/9.940937 10.1109/ICMLC.2006.258357 10.1137/0111030 10.1109/TNNLS.2020.3007259 10.1109/CDC.2001.914683 10.3182/20110828-6-IT-1002.01502 10.1109/NEUREL.2008.4685619 10.1016/j.cirp.2012.05.001 10.1017/S0022112092003501 10.3182/20020721-6-ES-1901.00728 10.1016/j.compchemeng.2008.09.002 10.1109/CCDC.2013.6561509 10.1109/TNN.2006.882371 10.1109/ICAMechS.2014.6911660 10.1142/S0218127499000973 10.23919/ECC.2003.7085293 10.1016/j.conengprac.2003.12.019 10.1016/j.neucom.2016.09.101 10.1080/21693277.2016.1192517 10.1109/TCST.2009.2028549 10.1109/TMECH.2017.2767085 10.1109/CONTROL.2012.6334628 10.1016/0005-1098(71)90059-8 10.1016/j.sysconle.2005.09.019 10.1109/IHMSC.2010.123 10.1109/IJCNN.1992.227257 10.1017/S0022112075000171  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Günther et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Günther et al 2020 Günther et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Günther et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Günther et al 2020 Günther et al  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0243320 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Engineering  | 
    
| DocumentTitleAlternate | Interpretable PID parameter tuning for control engineering using general dynamic neural networks | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 2469056615 oai_doaj_org_article_581501cc65c1493587fec4387bc0a925 10.1371/journal.pone.0243320 PMC7728174 A644514465 33301494 10_1371_journal_pone_0243320  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Canada Bavaria Germany Edmonton Alberta Canada Germany  | 
    
| GeographicLocations_xml | – name: Canada – name: Bavaria Germany – name: Germany – name: Edmonton Alberta Canada  | 
    
| GrantInformation_xml | – fundername: ; | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c692t-5f4ae734c87f0acc01b6a7b20e78f7a5defc82759246287c6c46029490a64b483 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Sun Dec 05 00:11:35 EST 2021 Fri Oct 03 12:45:19 EDT 2025 Sun Oct 26 04:08:16 EDT 2025 Tue Sep 30 16:58:16 EDT 2025 Fri Sep 05 08:36:04 EDT 2025 Tue Oct 07 09:07:49 EDT 2025 Mon Oct 20 22:23:33 EDT 2025 Mon Oct 20 16:36:46 EDT 2025 Thu Oct 16 14:30:51 EDT 2025 Thu Oct 16 15:23:56 EDT 2025 Thu May 22 21:20:37 EDT 2025 Wed Feb 19 02:29:44 EST 2025 Thu Apr 24 23:00:49 EDT 2025 Wed Oct 01 03:11:42 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c692t-5f4ae734c87f0acc01b6a7b20e78f7a5defc82759246287c6c46029490a64b483 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0003-4926-312X | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243320&type=printable | 
    
| PMID | 33301494 | 
    
| PQID | 2469056615 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0243320 | 
    
| ParticipantIDs | plos_journals_2469056615 doaj_primary_oai_doaj_org_article_581501cc65c1493587fec4387bc0a925 unpaywall_primary_10_1371_journal_pone_0243320 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7728174 proquest_miscellaneous_2470898489 proquest_journals_2469056615 gale_infotracmisc_A644514465 gale_infotracacademiconefile_A644514465 gale_incontextgauss_ISR_A644514465 gale_incontextgauss_IOV_A644514465 gale_healthsolutions_A644514465 pubmed_primary_33301494 crossref_citationtrail_10_1371_journal_pone_0243320 crossref_primary_10_1371_journal_pone_0243320  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-12-10 | 
    
| PublicationDateYYYYMMDD | 2020-12-10 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2020 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | pone.0243320.ref032 C Sandner (pone.0243320.ref022) 2017 pone.0243320.ref033 K Pirabakaran (pone.0243320.ref011) 2002; 35 L Lui (pone.0243320.ref043) 2020; 7 pone.0243320.ref031 pone.0243320.ref034 pone.0243320.ref013 pone.0243320.ref019 pone.0243320.ref016 pone.0243320.ref038 pone.0243320.ref017 KJ Åström (pone.0243320.ref002) 2000; 6 S Kim (pone.0243320.ref030) 2017; 22 J de Jesús Rubio (pone.0243320.ref007) 2018; 68 KH Ang (pone.0243320.ref005) 2005; 13 S Mascolo (pone.0243320.ref042) 1999; 9 OJM Smith (pone.0243320.ref041) 1957; 53 M Deflorian (pone.0243320.ref023) 2011; 44 DW Marquardt (pone.0243320.ref020) 1963; 11 MR Stojic (pone.0243320.ref035) 2001; 46 H Liang (pone.0243320.ref044) 2020 J Bergstra (pone.0243320.ref010) 2013 W ElMaraghy (pone.0243320.ref001) 2012; 61 H Creveling (pone.0243320.ref036) 1975; 67 R Vazquez (pone.0243320.ref040) 2010; 18 N Leveson (pone.0243320.ref012) 2003 DE Rumelhart (pone.0243320.ref018) 1995 pone.0243320.ref024 KU Klatt (pone.0243320.ref003) 2009; 33 pone.0243320.ref008 pone.0243320.ref027 pone.0243320.ref028 JJ Wang (pone.0243320.ref029) 2011; 19 pone.0243320.ref009 F Berkenkamp (pone.0243320.ref015) 2017 KJ Åström (pone.0243320.ref025) 1971; 7 J de Jesús Rubio (pone.0243320.ref006) 2017; 227 AW Yu (pone.0243320.ref014) 2014 H Pan (pone.0243320.ref026) 2005; 13 T Wuest (pone.0243320.ref004) 2016; 4 R Vazquez (pone.0243320.ref039) 2006; 55 O De Jesus (pone.0243320.ref021) 2007; 18 Y Wang (pone.0243320.ref037) 1992; 237  | 
    
| References_xml | – year: 2017 ident: pone.0243320.ref022 article-title: Automated optimization of dynamic neural network structure using genetic algorithms publication-title: Technical Report – start-page: 1350 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: pone.0243320.ref014 – volume: 7 start-page: 1335 issue: 05 year: 2020 ident: pone.0243320.ref043 article-title: Time-varying asymmetrical BLFs based adaptive finite-time neural control of nonlinear systems with full state constraints publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2020.1003213 – volume: 13 start-page: 559 issue: 4 year: 2005 ident: pone.0243320.ref005 article-title: PID control system analysis, design, and technology publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2005.847331 – volume: 19 start-page: 440 issue: 1 year: 2011 ident: pone.0243320.ref029 article-title: Simulation studies of inverted pendulum based on PID controllers publication-title: Simulation Modelling Practice and Theory doi: 10.1016/j.simpat.2010.08.003 – volume: 6 start-page: 2 issue: 1 year: 2000 ident: pone.0243320.ref002 article-title: Limitations on control system performance publication-title: European Journal of Control doi: 10.1016/S0947-3580(00)70906-X – start-page: 16 year: 2003 ident: pone.0243320.ref012 article-title: A systems theoretic approach to safety engineering publication-title: Dept of Aeronautics and Astronautics, Massachusetts Inst of Technology, Cambridge – ident: pone.0243320.ref019 – year: 2020 ident: pone.0243320.ref044 article-title: Event-Triggered Fuzzy Bipartite Tracking Control for Network Systems Based on Distributed Reduced-Order Observers (Revised manuscript of TFS-2019-1049) publication-title: IEEE Transactions on Fuzzy Systems – volume: 68 start-page: 821 year: 2018 ident: pone.0243320.ref007 article-title: Discrete time control based in neural networks for pendulums publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.04.056 – volume: 46 start-page: 1293 issue: 8 year: 2001 ident: pone.0243320.ref035 article-title: A robust Smith predictor modified by internal models for integrating process with dead time publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.940937 – ident: pone.0243320.ref031 – ident: pone.0243320.ref008 doi: 10.1109/ICMLC.2006.258357 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: pone.0243320.ref020 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the society for Industrial and Applied Mathematics doi: 10.1137/0111030 – ident: pone.0243320.ref013 doi: 10.1109/TNNLS.2020.3007259 – ident: pone.0243320.ref038 doi: 10.1109/CDC.2001.914683 – volume: 44 start-page: 13179 issue: 1 year: 2011 ident: pone.0243320.ref023 article-title: Design of experiments for nonlinear dynamic system identification publication-title: IFAC Proceedings Volumes doi: 10.3182/20110828-6-IT-1002.01502 – ident: pone.0243320.ref027 doi: 10.1109/NEUREL.2008.4685619 – volume: 61 start-page: 793 issue: 2 year: 2012 ident: pone.0243320.ref001 article-title: Complexity in engineering design and manufacturing publication-title: CIRP annals doi: 10.1016/j.cirp.2012.05.001 – start-page: 908 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: pone.0243320.ref015 article-title: Safe model-based reinforcement learning with stability guarantees – volume: 237 start-page: 479 year: 1992 ident: pone.0243320.ref037 article-title: Controlling chaos in a thermal convection loop publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112092003501 – volume: 35 start-page: 451 issue: 1 year: 2002 ident: pone.0243320.ref011 article-title: PID autotuning using neural networks and model reference adaptive control publication-title: IFAC Proceedings Volumes doi: 10.3182/20020721-6-ES-1901.00728 – volume: 33 start-page: 536 issue: 3 year: 2009 ident: pone.0243320.ref003 article-title: Perspectives for process systems engineering—Personal views from academia and industry publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2008.09.002 – year: 2013 ident: pone.0243320.ref010 article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures publication-title: JMLR – ident: pone.0243320.ref033 doi: 10.1109/CCDC.2013.6561509 – ident: pone.0243320.ref024 – volume: 18 start-page: 14 issue: 1 year: 2007 ident: pone.0243320.ref021 article-title: Backpropagation algorithms for a broad class of dynamic networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.882371 – ident: pone.0243320.ref028 doi: 10.1109/ICAMechS.2014.6911660 – volume: 9 start-page: 1425 issue: 07 year: 1999 ident: pone.0243320.ref042 article-title: Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit publication-title: International Journal of Bifurcation and Chaos doi: 10.1142/S0218127499000973 – ident: pone.0243320.ref034 doi: 10.23919/ECC.2003.7085293 – ident: pone.0243320.ref016 – volume: 53 start-page: 217 issue: 5 year: 1957 ident: pone.0243320.ref041 article-title: Closed control of loops with dead time publication-title: Chemical Engineering Progress – volume: 13 start-page: 27 issue: 1 year: 2005 ident: pone.0243320.ref026 article-title: Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2003.12.019 – volume: 227 start-page: 113 year: 2017 ident: pone.0243320.ref006 article-title: Modeling and control with neural networks for a magnetic levitation system publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.101 – volume: 4 start-page: 23 issue: 1 year: 2016 ident: pone.0243320.ref004 article-title: Machine learning in manufacturing: advantages, challenges, and applications publication-title: Production & Manufacturing Research doi: 10.1080/21693277.2016.1192517 – volume: 18 start-page: 789 issue: 4 year: 2010 ident: pone.0243320.ref040 article-title: Boundary Observer for Output-Feedback Stabilization of Thermal-Fluid Convection Loop publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2009.2028549 – volume: 22 start-page: 2803 issue: 6 year: 2017 ident: pone.0243320.ref030 article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2767085 – ident: pone.0243320.ref032 doi: 10.1109/CONTROL.2012.6334628 – volume: 7 start-page: 123 issue: 2 year: 1971 ident: pone.0243320.ref025 article-title: System identification—a survey publication-title: Automatica doi: 10.1016/0005-1098(71)90059-8 – volume: 55 start-page: 624 issue: 8 year: 2006 ident: pone.0243320.ref039 article-title: Explicit integral operator feedback for local stabilization of nonlinear thermal convection loop PDEs publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2005.09.019 – ident: pone.0243320.ref009 doi: 10.1109/IHMSC.2010.123 – ident: pone.0243320.ref017 doi: 10.1109/IJCNN.1992.227257 – start-page: 1 volume-title: Backpropagation: Theory, architectures and applications year: 1995 ident: pone.0243320.ref018 – volume: 67 start-page: 65 issue: 1 year: 1975 ident: pone.0243320.ref036 article-title: Stability characteristics of a single-phase free convection loop publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112075000171  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.3980315 | 
    
| Snippet | Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations.... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0243320 | 
    
| SubjectTerms | Artificial intelligence Artificial neural networks Automation Benchmarks Biology and Life Sciences Closed loops Computer and Information Sciences Computer engineering Computer Simulation Control engineering Control stability Control systems Controllers Design Design and construction Engineering Engineering and Technology Engineers Evaluation Feedback control systems Learning algorithms Linear control Linear systems Machine learning Methods Models, Theoretical Neural networks Neural Networks, Computer Parameters Process engineering Proportional integral derivative Recurrent neural networks Research and Analysis Methods Robust control Stability analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4fjB7flUbVIPAQU9WY5jrMgheyK7Ar13zMTe9ONqNQeOCaeWMo8nBnn8zeEPHM2raqsSmOnnIxZWvFYSlPGrKpMlZS5cj1PwYeP_OiEvT8tTrdafSEmzNMDe8UdFBJSltRaXlhI5vNCitpZlktR2sSorGcvTaTaFFN-DYYo5jwclMtFehDsMl0uWjdFDr4c-3tvfYh6vv5hVZ4sm0V3Ucr5L3Ly-rpdmrM_pmm2PkuHt8jNkE_SmX-PHXLNtbfJTojYjr4ItNIv75Czc3xh2Tj6-fgtRd7vX4iHoas17o9QyGBpAK9Td85USBEdP6dzPxetfBd7ilyYcNl6JHn3is5a2m-qIySe2qHD4V1ycvju25ujODReiC1X2SouamacyJkFZSfG2iQtuRFlljgha2GKytVWZqKA2o1DxWW5ZTzJFFOJ4axkMr9HJi2oepdQJLwvC8jCZG2YgnlNUUtmbAUmKExaRyTfWEHbwEqOzTEa3f9qE1CdeEVqtJ0OtotIPDy19Kwcl8i_RgMPssip3d8AT9PB0_RlnhaRx-ge2h9QHVYGPeNI8obEcxF52ksgr0aLwJ25WXedPv70_QpCX7-MhJ4HoXoB6rAmHJaAd0K-rpHk_kgSVgc7Gt5FZ95opdMZ7odADp_ikxsHv3j4yTCMkyIYr3WLNcoIiDjJpIrIfR8Pg2bzHGt0xSIiRpEyUv14pP35o6c1hzpPQn0ckekQU1cy7t7_MO4DciPDnZQ0g8Rkn0xWv9fuIaSbq_JRv7L8BUmTfzY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdPmwHQcJoQ42bUiMabBpb5FjOwWpJGVphfbfc5c46SIm2GPriyXf-S53zs-_I-Sl1aExkQl9m1rps9AIX0qV-8wYZYI8Tm3DU_D5UOyfsE9n_GyNHHZ3YRBW2cXEJlCbSuMZ-XaEdRzkHiF_P__lY9co_LratdBQrrWCeddQjN0g6xEyY43I-s7u4dFxF5vBu4VwF-jiJNx29hrPq9KOkZsvxr7fl15QDY9_H61H81lVX5WK_o2ovLks5-rit5rNLr2u9u6Q2y7PpJN2Y2yQNVveJRvOk2v62tFNv7lHLla4w3xm6dHBR4p84D8RJ0MXSzw3oZDZUgdqp3bFYEgRNT-l03Yuatru9hQ5MuFn2SLM67d0UtLmsB2h8lT3nQ_vk5O93W8f9n3XkMHXIo0WPi-YsknMtEyKAFQehLlQSR4FNpFForixhZZRwqGmE1CJaaGZCKKUpYESLGcyfkBGJah6k1Akws85ZGeyUCyFeRUvJFPagAm4CguPxJ0VMu3YyrFpxixrPsElULW0iszQdpmznUf8_ql5y9bxH_kdNHAvi1zbzR_V-TRzrptxCUlzqLXgGsrJmMPirWaxTHIdqDTiHnmG2yNrL672ESObCCR_Q0I6j7xoJJBvo0RAz1Qt6zo7-HJ6DaGvxwOhV06oqEAdWrlLFLAm5PEaSG4NJCFq6MHwJm7mTit1tvIveLLb4FcPP--HcVIE6ZW2WqJMEshUMpl65GHrD71m4xhr95R5JBl4ykD1w5Hyx_eG7hzqPwl1s0fGvU9dy7iP_r2Ox-RWhGcnYQSpyBYZLc6X9gkkmIv8qYsafwCAc345 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImjiO43BbHlWLRKmAVuWAIsdxloptdsUmQsuB385M4qQEiigHbtl4bK0_PzIznvlMyAOjgzxneeCaxEiXB7lwpVSZy_Nc5X4WJqbhKXi9K7b3-avD6HCFfOxyYSyCYCNOZ4vmJB8fZqXZtEhuIl9Re3rqBWEcdDW8OQh5yK8XMv9hwziEnrEKE5DOkVURgao-Iqv7u3vjD-1JM3MF80ObTvenlgafq4bVv9-7R_jPTlNMf4-vPF-Xc7X8qqbTnz5eW5fI967bbczKZ6-uMk9_-4UR8r_hcplctGovHbetrJEVU14ha3ZjWdDHlv36yVWyPAmDhLp0b-cFRXryYwzboVWNbhwKija1MfbUnBAqUgzin9BJ2xbNl6U6PtIUKTvhZ9kGvC-e0nFJG98_Ru5T3V_EeI3sb718_3zbtfdDuFokrHKjgisTh1zLuPCV1n6QCRVnzDexLGIV5abQksURmJgCDEMtNBc-S3jiK8EzLsPrZFQCOuuEIi9_FoGyKAvFE2hXRYXkSueAWqSCwiFhNw1SbcnT8Q6PadqcCMZgRLVApgh3auF2iNvXmrfkIX-Rf4YzrJdF6u_mBYx3asc5jSTo8IHWItJg3YYRdN5oHso4075KWOSQuzg_0zaPtt_A0rFALjrkx3PI_UYC6T9KjC-aqHqxSHfeHJxB6N3bgdAjK1TMAA6tbE4H9Amn40ByYyAJm5geFK_jfO5QWaQM3TZgagRYs1thpxff64uxUYwZLM2sRpnYl4nkMnHIjXZB9siGIboSEu6QeLBUB9APS8qjTw37OpijEsx4h3j9oj7T4N781wq3yAWGzp2Aga60QUbVl9rcBg24yu7YfewHRAa3Sw priority: 102 providerName: Unpaywall  | 
    
| Title | Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33301494 https://www.proquest.com/docview/2469056615 https://www.proquest.com/docview/2470898489 https://pubmed.ncbi.nlm.nih.gov/PMC7728174 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243320&type=printable https://doaj.org/article/581501cc65c1493587fec4387bc0a925 http://dx.doi.org/10.1371/journal.pone.0243320  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wCgGIQEPqfLhxA4SQt1Y2ZBWqkFReYocxylIIS1NK-h_z13iZkQU0ZdIic-Wcuez787n3xHyTCs3Tb3UtXWkhc3cNLSFkInN0lSmTuJHusIpuBiGZ2P2fhJM9simZqthYLnVtcN6UuNF3vv1Y_0GFP51VbWBu5tOvfms0D1E2PM9cOL3Ya-KsJjDBWvOFUC7q9NLtFrs0HN8c5nuX6O0NqsK079ZuTvzfFZuM0v_zq68virmcv1T5vkfW9fgFrlpbE7aryfJAdnTxW1yYLS6pC8M9PTLO2R9lYOY5JqOzt9SxAb_jjkzdLnCGAoFK5eaBHeqr9AMKWbQT-m0HoumdaV7iniZ8FrU2eblK9ovaBV4x7R5qpoqiHfJeHD66eTMNsUZbBVG3tIOMiY195kSPHOkUo6bhJInnqO5yLgMUp0p4fEA_LsQvDIVKhY6XsQiR4YsYcK_RzoFsPqQUATFTwKw1EQmWQTjyiATTKoURBBIN7OIv5FCrAxyORbQyOPqOI6DB1MzMkbZxUZ2FrGbXvMaueM_9Mco4IYWcberD7PFNDZqHAcCDGhXqTBQ4Fr6Afy8VswXPFGOjLzAIo9xesT1JdZm9Yj7IQLBITidRZ5WFIi9UWByz1SuyjI-__B5B6KPly2i54YomwE7lDQXKuCfENOrRXnUooQVRLWaD3Eyb7hSxh7GTMDOd7HnZoJvb37SNOOgmLBX6NkKabgjIsFEZJH7tT40nPV99OMjZhHe0pQW69stxbevFfQ5-IICfGiL9Bqd2km4D3bh-kNyw8NoiuuBcXJEOsvFSj8Ck3OZdMk1PuHwFCcuPgfvumT_-HQ4uuxWQZxutcrAt_Fw1P_yG2BkiCw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHdPlwYgcJocKYWvYBYhvqW3Acp0zqkrK0mvpP8Tdyl7jpIibYyx4TXyz57ny-u5x_R8gLrdw09VLX1pEWNnPT0BZCJjZLU5k6iR_pCqdg_yDsH7PPw2C4Qn4v7sJgWeXCJlaGOi0U5si3PIzjwPdwg_eTXzZ2jcK_q4sWGrVa7Or5OYRs5bvBNsj3peftfDr62LdNVwFbhZE3tYOMSc19pgTPHKmU4yah5InnaC4yLoNUZ0p4PIDAJIRwQoWKhY4XsciRIUuY8GHeG-Qm88GWwP7hwybAA9sRhuZ6ns_dLaMN3UmR6y4i__nYVfzC8Vd1CWjOgs5kXJSXObp_12uuzvKJnJ_L8fjCYbhzh9w2Xizt1Wq3RlZ0fpesGTtR0tcGzPrNPTJfVjUmY02_DrYpoo2fYhUOnc4wK0PBb6amZJ7qJT4ixZr8ER3Vc9F0nsvTE0URgRMe87p-vXxLezmtUvlYiE9V01fxPjm-FsE8IJ0cWL1OKMLsJwH4fiKTLIJ5ZZAJJlUKIgikm1nEX0ghVgYLHVtyjOPqBx-HmKhmZIyyi43sLGI3X01qLJD_0H9AATe0iORdvSjORrExDHEgwCV3lQoDBcGqH8DitWK-4IlyZOQFFtlE9Yjra7GNPYp7IULLIdydRZ5XFIjmkWO50EjOyjIefPl-BaLDby2iV4YoK4AdSporGrAmRAlrUW60KMEmqdbwOirzgitlvNy98OVCwS8fftYM46RYApjrYoY03BGRYCKyyMN6PzSc9X3MDETMIry1U1qsb4_kJz8rMHWILgVE5RbpNnvqSsJ99O91bJLV_tH-Xrw3ONh9TG55mKVxPXB6NkhnejbTT8CVnSZPK_tByY_rNlh_AJ9Gs7Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2nw4sYOEUGFUK4MxDYb6FhzHKZO6tCytpv5r_HXcJU66iAn2ssfWF0u5O5_vnJ9_R8gzrdw09VLX1pEWNnPT0BZCJjZLU5k6iR_pkqfg8164c8g-joLRGvld34VBWGUdE8tAnU4VnpH3PKzjIPdwg15mYBH724O3s182dpDCL611O43KRXb18hTKt-LNcBts_dzzBh--vd-xTYcBW4WRN7eDjEnNfaYEzxyplOMmoeSJ52guMi6DVGdKeDyAIiWE0kKFioWOF7HIkSFLmPBh3ivkKvf9COGEfNQUexBHwtBc1fO52zOe0Z1Nc91FFkAfO4yf2QrLjgHNvtCZTabFeUnv39jN64t8JpencjI5szEObpGbJqOl_coF18mazm-TdRMzCvrSEFu_ukOWK4RjMtF0f7hNkXn8GBE5dL7AExoKOTQ18HmqV1yJFPH5Yzqu5qLpMpfHR4oiGyf8zCsse_Ga9nNaHusjKJ-qpsfiXXJ4KYa5Rzo5qHqDUKTcTwLIA0UmWQTzyiATTKoUTBBIN7OIX1shVoYXHdtzTOLyYx-H-qhSZIy2i43tLGI3T80qXpD_yL9DAzeyyOpd_jE9GccmSMSBgPTcVSoMFBSufgAvrxXzBU-UIyMvsMgWukdcXZFtYlPcD5FmDqnvLPK0lEBmjxzXyFguiiIefvl-AaGvBy2hF0Yom4I6lDTXNeCdkDGsJbnZkoT4pFrDG-jMtVaKeLWS4cnawc8fftIM46QIB8z1dIEy3BGRYCKyyP1qPTSa9X08JYiYRXhrpbRU3x7Jj36WxOpQaQqo0C3SbdbUhYz74N_vsUWuQaiKPw33dh-SGx4e2Lge5D-bpDM_WehHkNXOk8dl-KDkx2XHqz9R6rf3 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImjiO43BbHlWLRKmAVuWAIsdxloptdsUmQsuB385M4qQEiigHbtl4bK0_PzIznvlMyAOjgzxneeCaxEiXB7lwpVSZy_Nc5X4WJqbhKXi9K7b3-avD6HCFfOxyYSyCYCNOZ4vmJB8fZqXZtEhuIl9Re3rqBWEcdDW8OQh5yK8XMv9hwziEnrEKE5DOkVURgao-Iqv7u3vjD-1JM3MF80ObTvenlgafq4bVv9-7R_jPTlNMf4-vPF-Xc7X8qqbTnz5eW5fI967bbczKZ6-uMk9_-4UR8r_hcplctGovHbetrJEVU14ha3ZjWdDHlv36yVWyPAmDhLp0b-cFRXryYwzboVWNbhwKija1MfbUnBAqUgzin9BJ2xbNl6U6PtIUKTvhZ9kGvC-e0nFJG98_Ru5T3V_EeI3sb718_3zbtfdDuFokrHKjgisTh1zLuPCV1n6QCRVnzDexLGIV5abQksURmJgCDEMtNBc-S3jiK8EzLsPrZFQCOuuEIi9_FoGyKAvFE2hXRYXkSueAWqSCwiFhNw1SbcnT8Q6PadqcCMZgRLVApgh3auF2iNvXmrfkIX-Rf4YzrJdF6u_mBYx3asc5jSTo8IHWItJg3YYRdN5oHso4075KWOSQuzg_0zaPtt_A0rFALjrkx3PI_UYC6T9KjC-aqHqxSHfeHJxB6N3bgdAjK1TMAA6tbE4H9Amn40ByYyAJm5geFK_jfO5QWaQM3TZgagRYs1thpxff64uxUYwZLM2sRpnYl4nkMnHIjXZB9siGIboSEu6QeLBUB9APS8qjTw37OpijEsx4h3j9oj7T4N781wq3yAWGzp2Aga60QUbVl9rcBg24yu7YfewHRAa3Sw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+PID+parameter+tuning+for+control+engineering+using+general+dynamic+neural+networks%3A+An+extensive+comparison&rft.jtitle=PloS+one&rft.au=G%C3%BCnther%2C+Johannes&rft.au=Reichensd%C3%B6rfer%2C+Elias&rft.au=Pilarski%2C+Patrick+M&rft.au=Diepold%2C+Klaus&rft.date=2020-12-10&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0243320&rft_id=info:doi/10.1371%2Fjournal.pone.0243320&rft.externalDBID=IOV&rft.externalDocID=A644514465 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |