Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable

The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 6; p. e0198122
Main Authors Gruginskie, Lúcia Adriana dos Santos, Vaccaro, Guilherme Luís Roehe
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0198122

Cover

Abstract The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.
AbstractList The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4.sup.a Região-a federal court in southern Brazil, corresponding to the 2.sup.nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2.sup.nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.
The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.
The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.
Audience Academic
Author Gruginskie, Lúcia Adriana dos Santos
Vaccaro, Guilherme Luís Roehe
AuthorAffiliation 2 Graduate Program in Business and Management, Unisinos, Porto Alegre, Rio Grande do Sul, Brazil
1 Graduate Program in Production Engineering and Systems, Unisinos, São Leopoldo, Rio Grande do Sul, Brazil
Northwestern University, UNITED STATES
AuthorAffiliation_xml – name: Northwestern University, UNITED STATES
– name: 2 Graduate Program in Business and Management, Unisinos, Porto Alegre, Rio Grande do Sul, Brazil
– name: 1 Graduate Program in Production Engineering and Systems, Unisinos, São Leopoldo, Rio Grande do Sul, Brazil
Author_xml – sequence: 1
  givenname: Lúcia Adriana dos Santos
  orcidid: 0000-0003-0251-1405
  surname: Gruginskie
  fullname: Gruginskie, Lúcia Adriana dos Santos
– sequence: 2
  givenname: Guilherme Luís Roehe
  surname: Vaccaro
  fullname: Vaccaro, Guilherme Luís Roehe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29856787$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tr3DAQhU1JaS7tPyitoVDah93auviSh0IIvSwsBHp7FWN5vKsgS1tJTpp_X7nrhN0QSvCDzfg7R2dm7OPkwFiDSfIyz-Y5LfMPl3ZwBvR8E8vzLK-rnJAnyVFeUzIrSEYPdp4Pk2PvL7OM06ooniWHpK54UVblUaKWcO0HFVKN0KZB9ZhuHLZKBmXNaXpu-w045a1JbZe2ECDtlVFmlQaUa6N-D-jTBjy2aUQkBFxZpyTo1KGPyTymV1EPjcbnydMOtMcX0_0k-fn504_zr7PlxZfF-dlyJouahBnHtugqpJwRKSWjGZI6L4E3yKsYuy0klUXelLIlJaEyL-umq1gGXQU18lg6SV5vfTfaejFNyQuSsZrnNScjsdgSrYVLsXGqB3cjLCjxr2DdSoALSmoUsmJAaNUUWU4YKRmwBkvWZFRyyVhLoxffeg1mAzfXoPWdYZ6JcVG3EcS4KDEtKuo-TimHpsdWogkO9F6Y_TdGrcXKXgleV5TR0eDdZODsuIUgeuUlag0G7TD1yyNdRfTNPfThqUzUCmLjynQ2nitHU3HGWZ6VrKZFpOYPUPFqsVcydtipWN8TvN8TRCbgn7CCwXux-P7t8ezFr3327Q67RtBh7a0exu_W74Ovdid9N-LbfyACbAtIZ7132D12g6f3ZFIFGI-PE1H6_-K_L9ou-g
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2999522
crossref_primary_10_1080_09540091_2023_2283394
crossref_primary_10_1007_s10439_022_02930_3
crossref_primary_10_56215_naia_chasopis_4_2023_31
crossref_primary_10_1007_s10489_020_01912_z
crossref_primary_10_1007_s44257_024_00015_0
crossref_primary_10_1142_S0219622022500304
crossref_primary_10_7769_gesec_v13i4_1474
Cites_doi 10.1371/journal.pone.0094137
10.1371/journal.pone.0120455
10.18352/ijca.88
10.1016/j.physa.2012.04.011
10.1561/1500000011
10.1002/bsl.2187
10.1209/epl/i2002-00528-3
10.1515/rle-2015-0023
10.58948/2331-3528.1869
10.2307/2532373
10.1515/1555-5879.1637
10.1016/S2212-5671(14)00884-3
10.18352/ijca.50
10.1007/s11192-015-1637-z
10.1145/261618.261642
10.1017/CBO9781139924801
10.1371/journal.pone.0136076
10.18352/ijca.38
10.2307/1143594
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Gruginskie, Vaccaro. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Gruginskie, Vaccaro 2018 Gruginskie, Vaccaro
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Gruginskie, Vaccaro. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Gruginskie, Vaccaro 2018 Gruginskie, Vaccaro
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0198122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (Proquest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Comparison of data mining techniques based on categorical response variable
EISSN 1932-6203
ExternalDocumentID 2049519522
oai_doaj_org_article_c84a238b60124274a4be74b03c5c44d3
10.1371/journal.pone.0198122
PMC5983432
A541074936
29856787
10_1371_journal_pone_0198122
Genre Journal Article
Comparative Study
GeographicLocations Brazil
Europe
New York
Rio Grande do Sul Brazil
United States--US
GeographicLocations_xml – name: Brazil
– name: Europe
– name: New York
– name: Rio Grande do Sul Brazil
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-5ed6f8e3542ccc430e2917a5be58298d6c3c61b7cd2723c179bf840af8a9e5723
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 25 14:37:35 EST 2021
Tue Oct 14 19:02:33 EDT 2025
Sun Oct 26 03:40:37 EDT 2025
Tue Sep 30 16:50:25 EDT 2025
Mon Sep 08 05:07:37 EDT 2025
Tue Oct 07 07:44:43 EDT 2025
Mon Oct 20 22:04:33 EDT 2025
Mon Oct 20 16:26:23 EDT 2025
Thu Oct 16 14:00:22 EDT 2025
Thu Oct 16 14:15:26 EDT 2025
Thu May 22 21:22:38 EDT 2025
Wed Feb 19 02:34:03 EST 2025
Wed Oct 01 04:31:48 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-5ed6f8e3542ccc430e2917a5be58298d6c3c61b7cd2723c179bf840af8a9e5723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0251-1405
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0198122
PMID 29856787
PQID 2049519522
PQPubID 1436336
PageCount e0198122
ParticipantIDs plos_journals_2049519522
doaj_primary_oai_doaj_org_article_c84a238b60124274a4be74b03c5c44d3
unpaywall_primary_10_1371_journal_pone_0198122
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983432
proquest_miscellaneous_2049555988
proquest_journals_2049519522
gale_infotracmisc_A541074936
gale_infotracacademiconefile_A541074936
gale_incontextgauss_ISR_A541074936
gale_incontextgauss_IOV_A541074936
gale_healthsolutions_A541074936
pubmed_primary_29856787
crossref_primary_10_1371_journal_pone_0198122
crossref_citationtrail_10_1371_journal_pone_0198122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T Kirat (ref17) 2010; 2
F Provost (ref41) 2013
E Noam (ref28) 1982; 2
T Hastie (ref34) 2009
S Bielen (ref26) 2015; 11
B Everitt (ref44) 1992
K Hornik (ref37) 2006; 15
B Ripley (ref48) 2011; 7
ref16
ref18
N Zumel (ref42) 2014
L Lepore (ref20) 2012; 4
ref46
C Tobias (ref23) 2000; 51
PA Barbetta (ref45) 2002
ref47
ref43
D Amancio (ref12) 2015; 10
M Lorizio (ref1) 2014; 17
R Hanson (ref19) 2010; 3
ref8
SJ Spurr (ref11) 2000
D Amancio (ref13) 2012; 391
ref4
ref5
D Amancio (ref15) 2015; 105
ref40
FdS di Nicola (ref29) 2011; 18
ref31
M Ortuno (ref14) 2002; 57
ref32
MJ Zaki (ref36) 2006
ref2
M Hall (ref49) 2011
DF Tubino (ref22) 2004
J Shamir (ref3) 2012; 8
J Han (ref35) 2011
ML Luskin (ref30) 1986; 77
K Economides (ref10) 2015; 41
J Leskovec (ref38) 2014
T Dalton (ref7) 2014; 34
ref21
DR Amancio (ref33) 2014; 9
ref27
MB Couto (ref24) 2017; 2
X Zhang (ref39) 2015; 10
JD Zhou (ref6) 2008
WA Walsh (ref9) 2015; 33
L Loevinger (ref25) 1948; 33
26313921 - PLoS One. 2015 Aug 27;10(8):e0136076
24763312 - PLoS One. 2014 Apr 24;9(4):e94137
25893896 - PLoS One. 2015 Apr 20;10(3):e0120455
26206709 - Behav Sci Law. 2015 Aug;33(4):528-45
References_xml – volume: 9
  start-page: e94137
  issue: 4
  year: 2014
  ident: ref33
  article-title: A systematic comparison of supervised classifiers
  publication-title: PloS one
  doi: 10.1371/journal.pone.0094137
– volume: 10
  start-page: e0120455
  issue: 4
  year: 2015
  ident: ref39
  article-title: A multi-label learning based kernel automatic recommendation method for Support Vector Machine
  publication-title: PloS one
  doi: 10.1371/journal.pone.0120455
– ident: ref5
– volume: 4
  start-page: 82
  issue: 3
  year: 2012
  ident: ref20
  article-title: Evaluating court performance: Findings from two Italian courts
  publication-title: International Journal for Court Administration
  doi: 10.18352/ijca.88
– volume: 18
  issue: 1
  year: 2011
  ident: ref29
  article-title: Principle of Subsidiarity and’Embeddedness’ of the European Convention on Human Rights in the Field of the Reasonable-Time Requirement: The Italian Case
  publication-title: Jurisprudencija
– year: 2004
  ident: ref22
  article-title: Sistemas de produção: a produtividade no chão de fábrica
– volume: 391
  start-page: 4406
  issue: 18
  year: 2012
  ident: ref13
  article-title: Structure–semantics interplay in complex networks and its effects on the predictability of similarity in texts
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2012.04.011
– volume: 15
  start-page: 1
  issue: 9
  year: 2006
  ident: ref37
  article-title: Support vector machines in R
  publication-title: Journal of statistical software
– ident: ref43
– ident: ref16
  doi: 10.1561/1500000011
– start-page: 223
  year: 2000
  ident: ref11
  article-title: Research in Law and Economics
– volume: 51
  start-page: 235
  year: 2000
  ident: ref23
  article-title: Civil Justice Delay and Empirical Data: A Response to Professor Heise
  publication-title: Case W Res L Rev
– year: 2011
  ident: ref49
  article-title: Data mining: Practical machine learning tools and techniques
– year: 2011
  ident: ref35
  article-title: Data mining: concepts and techniques
– year: 2009
  ident: ref34
  article-title: The elements of statistics learning: data mining, inference and prediction
– ident: ref2
– volume: 33
  start-page: 528
  issue: 4
  year: 2015
  ident: ref9
  article-title: Length of Time to Resolve Criminal Charges of Child Sexual Abuse: A Three-County Case Study
  publication-title: Behavioral sciences & the law
  doi: 10.1002/bsl.2187
– volume: 57
  start-page: 759
  issue: 5
  year: 2002
  ident: ref14
  article-title: Keyword detection in natural languages and DNA
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/epl/i2002-00528-3
– ident: ref40
– year: 2014
  ident: ref42
  article-title: Practical data science with R
– ident: ref47
– volume: 11
  start-page: 293
  issue: 2
  year: 2015
  ident: ref26
  article-title: An empirical analysis of case disposition time in Belgium
  publication-title: Review of Law & Economics
  doi: 10.1515/rle-2015-0023
– volume: 34
  start-page: 1169
  issue: 3
  year: 2014
  ident: ref7
  article-title: Bigger Isn’t Always Beter: An Analysis of Court Efficiency Using Hierarchical Linear Modeling
  publication-title: Pace Law Review
  doi: 10.58948/2331-3528.1869
– year: 1992
  ident: ref44
  article-title: The analysis of contingency tables
  doi: 10.2307/2532373
– volume: 8
  start-page: 579
  issue: 3
  year: 2012
  ident: ref3
  article-title: The Role of Prosecutor’s Incentives in Creating Congestion in Criminal Courts
  publication-title: Review of Law & Economics
  doi: 10.1515/1555-5879.1637
– volume: 2
  start-page: 771
  issue: 43
  year: 2017
  ident: ref24
  article-title: Gestão da justiça e do conhecimento: a contribuição da jurimetria para a administração da justiça
  publication-title: Revista Jurídica
– volume: 17
  start-page: 104
  year: 2014
  ident: ref1
  article-title: Efficiency of Justice and Economic Systems
  publication-title: Procedia Economics and Finance
  doi: 10.1016/S2212-5671(14)00884-3
– volume: 3
  start-page: 2
  issue: 1
  year: 2010
  ident: ref19
  article-title: The pursuit of high performance
  publication-title: International Journal for Court Administration
  doi: 10.18352/ijca.50
– volume: 41
  start-page: 414
  year: 2015
  ident: ref10
  article-title: Toward Timelessness in Civil Justice
  publication-title: Monash UL Rev
– year: 2013
  ident: ref41
  article-title: Data Science for Business: What you need to know about data mining and data-analytic thinking
– volume: 105
  start-page: 1763
  issue: 3
  year: 2015
  ident: ref15
  article-title: Comparing the topological properties of real and artificially generated scientific manuscripts
  publication-title: Scientometrics
  doi: 10.1007/s11192-015-1637-z
– volume: 2
  start-page: 208
  year: 1982
  ident: ref28
  article-title: Resource Allocation and Access to Criminal Courts: An Economic Model
  publication-title: Windsor YB Access Just
– year: 2002
  ident: ref45
  article-title: Estatística Aplicada as Ciências Sociais
– ident: ref32
– ident: ref27
  doi: 10.1145/261618.261642
– year: 2006
  ident: ref36
  article-title: Data mining and analysis: fundamental concepts and algorithms
– year: 2014
  ident: ref38
  article-title: Mining of massive datasets
  doi: 10.1017/CBO9781139924801
– ident: ref4
– volume: 33
  start-page: 455
  year: 1948
  ident: ref25
  article-title: Jurimetrics–The Next Step Forward
  publication-title: Minn L Rev
– ident: ref46
– ident: ref21
– volume: 10
  start-page: e0136076
  issue: 8
  year: 2015
  ident: ref12
  article-title: A complex network approach to stylometry
  publication-title: PloS one
  doi: 10.1371/journal.pone.0136076
– volume: 2
  start-page: 12
  issue: 2
  year: 2010
  ident: ref17
  article-title: Performance-Based Budgeting and Management of Judicial Courts in France: an Assessment
  publication-title: International Association for Court Administration
  doi: 10.18352/ijca.38
– start-page: 21
  year: 2008
  ident: ref6
  article-title: American Law & Economics Association Annual Meetings
– ident: ref8
– ident: ref18
– volume: 77
  start-page: 190
  year: 1986
  ident: ref30
  article-title: Why so fast, why so slow: Explaining case processing time
  publication-title: J Crim L & Criminology
  doi: 10.2307/1143594
– volume: 7
  issue: 5
  year: 2011
  ident: ref48
  article-title: nnet: Feed-forward NNs and multinomial log-linear models
  publication-title: R package version
– ident: ref31
– reference: 24763312 - PLoS One. 2014 Apr 24;9(4):e94137
– reference: 26206709 - Behav Sci Law. 2015 Aug;33(4):528-45
– reference: 26313921 - PLoS One. 2015 Aug 27;10(8):e0136076
– reference: 25893896 - PLoS One. 2015 Apr 20;10(3):e0120455
SSID ssj0053866
Score 2.3320055
Snippet The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0198122
SubjectTerms Analysis
Artificial intelligence
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Brazil
Comparative analysis
Computer and Information Sciences
Criminal Law - statistics & numerical data
Data mining
Data Mining - methods
Data processing
Databases, Factual
Engineering and Technology
Human rights
Humans
Judicial system
Judiciary
Jurisprudence
Lead time
Litigation
Mathematical models
Model accuracy
Neural networks
Neural Networks (Computer)
People and places
Physical Sciences
Prediction models
Regression Analysis
Research and Analysis Methods
Social Sciences
Support Vector Machine
Support vector machines
Time Factors
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mLGAQEnDIdhM7ccKtVFQF8ZCAot4iv1JWCkm02VDx75mJvVEjKrUHrvEkkufhmYlnviHkhTJCRiqJQlbi3yoR5WGW8jQsbZpZGwnlZhF8-pwen_APp8nphVFfWBPm4IEd4_Z1xiW4FQWJA3gTwSVXVnC1ZDrRnJsB53OZ5dtkyp3BYMVp6hvlmIj2vVwWbVPbBQQ14NXiiSMa8PrHU3nWVk13Wcj5b-Xkzb5u5Z9zWVUX3NLRHXLbx5P0wO1jh9yw9V2y4y22o688rPTre2T1UZ53_WpDKxArxZnytF3jNQ2K5g09HAcS0qakWDhKfw3DI-gI89pR9HmGAgnWUZ05eBG6dmW2lv6G97ET6z45OXr3_fA49IMWQp3m8SZMrEnLzLKEx1przpY2hixOJsomWZxnJtVMp5ES2sQiZhpsWJWQGMoyk7lN4NEDMquBtbuESogwjAHhK8jDLOTesWLSGqNLJRmkSwFhW64X2qOQ4zCMqhiu1gRkI45xBcqq8LIKSDi-1ToUjivo36JAR1rE0B4egGYVXrOKqzQrIE9RHQrXkDqeBMVBwrGKNWewmecDBeJo1Fiocyb7rivef_lxDaJvXydELz1R2QA7tPTNEbAnxOeaUM4nlHAa6MnyLirvlitdEUMKiAhCyJT5VqEvX342LuNHsfiutk3vaRDIPwvIQ6f_I2dBPRKId0RAxMQyJqyfrtSrnwOMOXwQu5oDshht6FrC3fsfwn1EbkHom7mivzmZbda9fQzh5UY9GU6Sv_RZePo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEN_U64O-GOtXsVVXY6I-cBZ2YcHEmLZpU42eptqmb2S_OC-5Ah53Nv73zsCCEhvtKztLwnztDDvzG0KeKSNkoKLAZzn-rRJB6icxj_3cxom1gVDtLIKPk_johL8_i87WyKTrhcGyys4nNo7alBr_kUOSDqF8kEK48Lb67uPUKLxd7UZoSDdawbxpIMaukfUQkbFGZH3vYPL5uPPNYN1x7BromAheOXmNq7KwYwh24LQLBwdUg-Pfe-tRNS_ry0LRvysqr6-KSv68kPP5H8fV4S1y08WZdLdVjA2yZovbZMNZck1fOLjpl3fI7IO8qFezJZ2DuCnOmqfVAq9vUGSv6X4_qJCWOcWCUnreDJWgPfxrTfEsNBRIsL5q2sKO0EVbfmvpD9iPHVp3ycnhwdf9I98NYPB1nIZLP7ImzhPLIh5qrTnbsSFkdzJSNkrCNDGxZjoOlNAmFCHTYNsqh4RR5olMbQSP7pFRAazdJFRC5GEMKIWC_MxCTh4qJq0xOleSQRrlEdZxPdMOnRyHZMyz5spNQJbSMi5DWWVOVh7x-11Vi87xH_o9FGhPi9jazYNyMc2cqWY64RICGQWpKsQvgkuurOBqh-lIc26YRx6jOmRto2rvIbLdiGN1a8rgY542FIivUWABz1Su6jp79-n0CkRfjgdEzx1RXgI7tHRNE_BNiNs1oNweUIKX0IPlTVTejit19tueYGen0JcvP-mX8aVYlFfYcuVoEOA_8cj9Vv97zoJ6RBAHCY-IgWUMWD9cKWbfGnhzeCF2O3tk3NvQlYT74N_fsUVuQLCbtGV-22S0XKzsQwgol-qR8xK_AML0d8M
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1QAGDkACJlCa245S3MjENxAYCisZTZDvOqChp1TRM8NdzF7vRAkOU1_hsyee781189ztCHupcqkiLKGQF_q2S0ShME56EhU1SayOpXS-Cw6PkYMJfH4vjLfJ0XQtz9v2eyeiZ5-hgMS_tANwRuI_A4G4nAjzvHtmeHL0bf3YPx3GYxEPmq-P-NrVz-zQg_a0p7i1m8-o8P_PPdMkLdblQP07VbHbmLtq_TA7Xu3ApKF8H9UoPzM_fAB433eYVcsk7pXTspGiHbNnyKtnxal_Rxx6b-sk1Mn2jTqt6uqIzkA2KjenpYolvPXi-z-le29WQzguK2af0W9OBgrZYsRXFizOnQILJWCcOo4QuXa6upd9hPpZzXSeT_Zcf9w5C360hNMkoXoXC5kmRWiZ4bIzhbGhjCAWV0Fak8SjNE8NMEmlp8ljGzIAh0AVEl6pI1cgK-HSD9ErY_i6hCtyUPAcJ0hDMWQjgY82UzXNTaMUg5goIW59iZjyUOXbUmGXN-5yEkMYxLkN-Zp6fAQnbWQsH5fEP-hcoIC0tAnE3H-DgMq_XmUm5Aq9HQ1wLzo7kimsruR4yIwznOQvIPRSvzFW1tuYkGwuOqbAjBpt50FAgGEeJ2T4nqq6q7NXbTxsQfXjfIXrkiYo5sMMoX2EBe0KQrw5lv0MJJsV0hndRGdZcqbIY4kiEIUKm9NcKcv7w_XYYF8UMvtLOa0-D3QDSgNx0-tRyFsRDgNMkAyI7mtZhfXeknH5psNBhQSyNDsig1cmNDvfW_064TS6Cr5y6LME-6a2Wtb0D_uhK3_Vm6Bekpoo6
  priority: 102
  providerName: Unpaywall
Title Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable
URI https://www.ncbi.nlm.nih.gov/pubmed/29856787
https://www.proquest.com/docview/2049519522
https://www.proquest.com/docview/2049555988
https://pubmed.ncbi.nlm.nih.gov/PMC5983432
https://doi.org/10.1371/journal.pone.0198122
https://doaj.org/article/c84a238b60124274a4be74b03c5c44d3
http://dx.doi.org/10.1371/journal.pone.0198122
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1QCkGIQEPqZrYiRMkhLpqZSBWpkFReYpsxymVQlKalrH_nrskjYgoYi95sM-Wch_2nX3-HSHPVCykozzHZgmeVgkntAOf-3Zi_MAYR6iqFsHpxD-Z8vczb7ZHtjVbawYWO0M7rCc1XaX9Xz8u34DBvy6rNghnO6i_zDPTB5cF9ixYlPdhrwqxmMMpb-4VwLrL20v0WmzfHbD6Md2_ZmltViWmf7Nyd5ZpXuxyS__Orry-yZby8kKm6R9b1_gWuVn7nHRYKckB2TPZbXJQW3VBX9TQ0y_vkMUHeVFsFmuagugp1p2nyxVe5aD4XtFRU7SQ5gnF5FL6vSwwQRso2ILivhhTIMFcq3kFQUJXVSquoT9hPL7Wukum4-PPoxO7LsZgaz9017ZnYj8JDPO4q7XmbGBciPSkp4wXuGEQ-5pp31FCx65wmQY7VwkEjzIJZGg8aLpHOhmw9pBQCV5IHIOCKIjVDMTnrmLSxLFOlGQQUlmEbbke6RqpHAtmpFF5_SYgYqkYF6GsolpWFrGbUcsKqeM_9Eco0IYWcbbLhnw1j2qzjXTAJTg1CsJW8GUEl1wZwdWAaU9zHjOLPEZ1iKpHq81qEQ09jpmuIYOfeVpSINZGhsk8c7kpiujdxy9XIPp03iJ6XhMlObBDy_oBBfwTYni1KLstSlgxdKv7EJV3y5UiciFMRJQhZEp3q9C7u5803TgpJuhlJt_UNAj2H1jkfqX_DWdBPTzwiYRFRMsyWqxv92SLbyXUOUyIL58t0m9s6ErCfXBlXj0kN8AHDqrsvy7prFcb8wj8zLXqkWtiJuAbjBz8jt_2yP7R8eTsvFee3PTKpQXappOz4dffimKD4Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8jBeEONrgcEMAgEPKU2cxAkSQmMwtawbEmyob8F2nFKpJKFpqfZP8TdylziBiAn2stf4bMl3P5_v4vsg5LFMuHCk79gsxb9V3InsMPACO9VBqLXDZd2L4Og4GJ567yf-ZIP8bHJhMKyy0YmVok5yhf_IwUkHU96JwFx4XXy3sWsUvq42LTRqWBzqszW4bOWr0VuQ7xPXPXh3sj-0TVcBWwWRu7R9nQRpqJnvuUopjw20Cy6L8KX2QzcKk0AxFTiSq8TlLlMAWJmCFyTSUETa51joAFT-FZg4wI4JfNI6eKA7gsCk5zHuvDBo6Bd5pvtgSsFd6nauv6pLQHsX9Ip5Xp5n6P4dr7m5ygpxthbz-R-X4cF1cs1YsXSvht0W2dDZDbJl9ERJn5li1s9vktlYrMvVbEnnACaKnexpscDHIQTES7rftkGkeUoxXJV-q1pW0La4bEnxpk0okGD01rQuakIXdXCvpj9gPuZ_3SKnlyKI26SXAWu3CRVg1yQJQE6C96fB43clEzpJVCoFAyfNIqzheqxM7XNswTGPqwc9Dj5QzbgYZRUbWVnEbmcVde2P_9C_QYG2tFi5u_qQL6axUQSxCj0BZpIERxisI-4JT2ruyQFTvvK8hFlkF-EQ12mwrf6J93wPY2cjBpt5VFFg9Y4Mw4OmYlWW8ejD5wsQffrYIXpqiNIc2KGEScmAPWFVsA7lTocSdJDqDG8jeBuulPHv0wozG0CfP_ywHcZFMeQv0_nK0GD7gNAid2r8t5wFePhgZXGL8M7J6LC-O5LNvlbF02FBzKW2SL89QxcS7t1_72OXbA5PjsbxeHR8eI9cBbM6rAMKd0hvuVjp-2C6LuWDSl9Q8uWyFdQv2dWuBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIgEviPG1jMEMAgEP6ZY4iRMkhMZGtbIxEGOob8F2nK5SSULTUu1f46_jLnECERPsZa_x2ZLvfj7fxfdByBOZcOFI37FZin-ruBPZYeAFdqqDUGuHy7oXwfujYP_EezfyRyvkZ5MLg2GVjU6sFHWSK_xHDk46mPJOBObCVmrCIj7uDV4X323sIIUvrU07jRoiB_psCe5b-Wq4B7J-6rqDt593923TYcBWQeTObV8nQRpq5nuuUspj29oF90X4UvuhG4VJoJgKHMlV4nKXKQCvTMEjEmkoIu1zLHoA6v8KZyzCcEI-ap090CNBYFL1GHe2DDL6RZ7pPphVcK-6nauw6hjQ3gu9YpqX5xm9f8duXltkhThbiun0j4txcJPcMBYt3akhuEpWdHaLrBqdUdLnprD1i9tkciiW5WIyp1MAFsWu9rSY4UMRguMl3W1bItI8pRi6Sr9V7StoW2i2pHjrJhRIMJJrXBc4obM60FfTHzAfc8HukJNLEcRd0suAtWuECrBxkgTgJ8ET1OD9u5IJnSQqlYKBw2YR1nA9VqYOOrbjmMbV4x4Hf6hmXIyyio2sLGK3s4q6Dsh_6N-gQFtarOJdfchn49gohViFngCTSYJTDJYS94QnNffkNlO-8ryEWWQT4RDXKbGtLop3fA_jaCMGm3lcUWAljwzPxFgsyjIefvhyAaLjTx2iZ4YozYEdSpj0DNgTVgjrUG50KEEfqc7wGoK34UoZ_z65MLMB9PnDj9phXBTD_zKdLwwNthIILXKvxn_LWYCHDxYXtwjvnIwO67sj2eS0KqQOC2JetUX67Rm6kHDX_72PTXIVVFN8ODw6uE-ug4Ud1rGFG6Q3ny30A7Bi5_JhpS4o-XrZ-ukXOwKyRw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1QAGDkACJlCa245S3MjENxAYCisZTZDvOqChp1TRM8NdzF7vRAkOU1_hsyee781189ztCHupcqkiLKGQF_q2S0ShME56EhU1SayOpXS-Cw6PkYMJfH4vjLfJ0XQtz9v2eyeiZ5-hgMS_tANwRuI_A4G4nAjzvHtmeHL0bf3YPx3GYxEPmq-P-NrVz-zQg_a0p7i1m8-o8P_PPdMkLdblQP07VbHbmLtq_TA7Xu3ApKF8H9UoPzM_fAB433eYVcsk7pXTspGiHbNnyKtnxal_Rxx6b-sk1Mn2jTqt6uqIzkA2KjenpYolvPXi-z-le29WQzguK2af0W9OBgrZYsRXFizOnQILJWCcOo4QuXa6upd9hPpZzXSeT_Zcf9w5C360hNMkoXoXC5kmRWiZ4bIzhbGhjCAWV0Fak8SjNE8NMEmlp8ljGzIAh0AVEl6pI1cgK-HSD9ErY_i6hCtyUPAcJ0hDMWQjgY82UzXNTaMUg5goIW59iZjyUOXbUmGXN-5yEkMYxLkN-Zp6fAQnbWQsH5fEP-hcoIC0tAnE3H-DgMq_XmUm5Aq9HQ1wLzo7kimsruR4yIwznOQvIPRSvzFW1tuYkGwuOqbAjBpt50FAgGEeJ2T4nqq6q7NXbTxsQfXjfIXrkiYo5sMMoX2EBe0KQrw5lv0MJJsV0hndRGdZcqbIY4kiEIUKm9NcKcv7w_XYYF8UMvtLOa0-D3QDSgNx0-tRyFsRDgNMkAyI7mtZhfXeknH5psNBhQSyNDsig1cmNDvfW_064TS6Cr5y6LME-6a2Wtb0D_uhK3_Vm6Bekpoo6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lawsuit+lead+time+prediction%3A+Comparison+of+data+mining+techniques+based+on+categorical+response+variable&rft.jtitle=PloS+one&rft.au=Gruginskie%2C+L%C3%BAcia+Adriana+dos+Santos&rft.au=Vaccaro%2C+Guilherme+Lu%C3%ADs+Roehe&rft.date=2018-06-01&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=6&rft.spage=e0198122&rft_id=info:doi/10.1371%2Fjournal.pone.0198122&rft.externalDocID=A541074936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon