Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable
The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there...
Saved in:
| Published in | PloS one Vol. 13; no. 6; p. e0198122 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.06.2018
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0198122 |
Cover
| Abstract | The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models. |
|---|---|
| AbstractList | The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4.sup.a Região-a federal court in southern Brazil, corresponding to the 2.sup.nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2.sup.nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models. The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models. The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models. |
| Audience | Academic |
| Author | Gruginskie, Lúcia Adriana dos Santos Vaccaro, Guilherme Luís Roehe |
| AuthorAffiliation | 2 Graduate Program in Business and Management, Unisinos, Porto Alegre, Rio Grande do Sul, Brazil 1 Graduate Program in Production Engineering and Systems, Unisinos, São Leopoldo, Rio Grande do Sul, Brazil Northwestern University, UNITED STATES |
| AuthorAffiliation_xml | – name: Northwestern University, UNITED STATES – name: 2 Graduate Program in Business and Management, Unisinos, Porto Alegre, Rio Grande do Sul, Brazil – name: 1 Graduate Program in Production Engineering and Systems, Unisinos, São Leopoldo, Rio Grande do Sul, Brazil |
| Author_xml | – sequence: 1 givenname: Lúcia Adriana dos Santos orcidid: 0000-0003-0251-1405 surname: Gruginskie fullname: Gruginskie, Lúcia Adriana dos Santos – sequence: 2 givenname: Guilherme Luís Roehe surname: Vaccaro fullname: Vaccaro, Guilherme Luís Roehe |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29856787$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tr3DAQhU1JaS7tPyitoVDah93auviSh0IIvSwsBHp7FWN5vKsgS1tJTpp_X7nrhN0QSvCDzfg7R2dm7OPkwFiDSfIyz-Y5LfMPl3ZwBvR8E8vzLK-rnJAnyVFeUzIrSEYPdp4Pk2PvL7OM06ooniWHpK54UVblUaKWcO0HFVKN0KZB9ZhuHLZKBmXNaXpu-w045a1JbZe2ECDtlVFmlQaUa6N-D-jTBjy2aUQkBFxZpyTo1KGPyTymV1EPjcbnydMOtMcX0_0k-fn504_zr7PlxZfF-dlyJouahBnHtugqpJwRKSWjGZI6L4E3yKsYuy0klUXelLIlJaEyL-umq1gGXQU18lg6SV5vfTfaejFNyQuSsZrnNScjsdgSrYVLsXGqB3cjLCjxr2DdSoALSmoUsmJAaNUUWU4YKRmwBkvWZFRyyVhLoxffeg1mAzfXoPWdYZ6JcVG3EcS4KDEtKuo-TimHpsdWogkO9F6Y_TdGrcXKXgleV5TR0eDdZODsuIUgeuUlag0G7TD1yyNdRfTNPfThqUzUCmLjynQ2nitHU3HGWZ6VrKZFpOYPUPFqsVcydtipWN8TvN8TRCbgn7CCwXux-P7t8ezFr3327Q67RtBh7a0exu_W74Ovdid9N-LbfyACbAtIZ7132D12g6f3ZFIFGI-PE1H6_-K_L9ou-g |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2999522 crossref_primary_10_1080_09540091_2023_2283394 crossref_primary_10_1007_s10439_022_02930_3 crossref_primary_10_56215_naia_chasopis_4_2023_31 crossref_primary_10_1007_s10489_020_01912_z crossref_primary_10_1007_s44257_024_00015_0 crossref_primary_10_1142_S0219622022500304 crossref_primary_10_7769_gesec_v13i4_1474 |
| Cites_doi | 10.1371/journal.pone.0094137 10.1371/journal.pone.0120455 10.18352/ijca.88 10.1016/j.physa.2012.04.011 10.1561/1500000011 10.1002/bsl.2187 10.1209/epl/i2002-00528-3 10.1515/rle-2015-0023 10.58948/2331-3528.1869 10.2307/2532373 10.1515/1555-5879.1637 10.1016/S2212-5671(14)00884-3 10.18352/ijca.50 10.1007/s11192-015-1637-z 10.1145/261618.261642 10.1017/CBO9781139924801 10.1371/journal.pone.0136076 10.18352/ijca.38 10.2307/1143594 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Gruginskie, Vaccaro. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Gruginskie, Vaccaro 2018 Gruginskie, Vaccaro |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Gruginskie, Vaccaro. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Gruginskie, Vaccaro 2018 Gruginskie, Vaccaro |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0198122 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (Proquest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Comparison of data mining techniques based on categorical response variable |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2049519522 oai_doaj_org_article_c84a238b60124274a4be74b03c5c44d3 10.1371/journal.pone.0198122 PMC5983432 A541074936 29856787 10_1371_journal_pone_0198122 |
| Genre | Journal Article Comparative Study |
| GeographicLocations | Brazil Europe New York Rio Grande do Sul Brazil United States--US |
| GeographicLocations_xml | – name: Brazil – name: Europe – name: New York – name: Rio Grande do Sul Brazil – name: United States--US |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c692t-5ed6f8e3542ccc430e2917a5be58298d6c3c61b7cd2723c179bf840af8a9e5723 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Nov 25 14:37:35 EST 2021 Tue Oct 14 19:02:33 EDT 2025 Sun Oct 26 03:40:37 EDT 2025 Tue Sep 30 16:50:25 EDT 2025 Mon Sep 08 05:07:37 EDT 2025 Tue Oct 07 07:44:43 EDT 2025 Mon Oct 20 22:04:33 EDT 2025 Mon Oct 20 16:26:23 EDT 2025 Thu Oct 16 14:00:22 EDT 2025 Thu Oct 16 14:15:26 EDT 2025 Thu May 22 21:22:38 EDT 2025 Wed Feb 19 02:34:03 EST 2025 Wed Oct 01 04:31:48 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-5ed6f8e3542ccc430e2917a5be58298d6c3c61b7cd2723c179bf840af8a9e5723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-0251-1405 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0198122 |
| PMID | 29856787 |
| PQID | 2049519522 |
| PQPubID | 1436336 |
| PageCount | e0198122 |
| ParticipantIDs | plos_journals_2049519522 doaj_primary_oai_doaj_org_article_c84a238b60124274a4be74b03c5c44d3 unpaywall_primary_10_1371_journal_pone_0198122 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983432 proquest_miscellaneous_2049555988 proquest_journals_2049519522 gale_infotracmisc_A541074936 gale_infotracacademiconefile_A541074936 gale_incontextgauss_ISR_A541074936 gale_incontextgauss_IOV_A541074936 gale_healthsolutions_A541074936 pubmed_primary_29856787 crossref_primary_10_1371_journal_pone_0198122 crossref_citationtrail_10_1371_journal_pone_0198122 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | T Kirat (ref17) 2010; 2 F Provost (ref41) 2013 E Noam (ref28) 1982; 2 T Hastie (ref34) 2009 S Bielen (ref26) 2015; 11 B Everitt (ref44) 1992 K Hornik (ref37) 2006; 15 B Ripley (ref48) 2011; 7 ref16 ref18 N Zumel (ref42) 2014 L Lepore (ref20) 2012; 4 ref46 C Tobias (ref23) 2000; 51 PA Barbetta (ref45) 2002 ref47 ref43 D Amancio (ref12) 2015; 10 M Lorizio (ref1) 2014; 17 R Hanson (ref19) 2010; 3 ref8 SJ Spurr (ref11) 2000 D Amancio (ref13) 2012; 391 ref4 ref5 D Amancio (ref15) 2015; 105 ref40 FdS di Nicola (ref29) 2011; 18 ref31 M Ortuno (ref14) 2002; 57 ref32 MJ Zaki (ref36) 2006 ref2 M Hall (ref49) 2011 DF Tubino (ref22) 2004 J Shamir (ref3) 2012; 8 J Han (ref35) 2011 ML Luskin (ref30) 1986; 77 K Economides (ref10) 2015; 41 J Leskovec (ref38) 2014 T Dalton (ref7) 2014; 34 ref21 DR Amancio (ref33) 2014; 9 ref27 MB Couto (ref24) 2017; 2 X Zhang (ref39) 2015; 10 JD Zhou (ref6) 2008 WA Walsh (ref9) 2015; 33 L Loevinger (ref25) 1948; 33 26313921 - PLoS One. 2015 Aug 27;10(8):e0136076 24763312 - PLoS One. 2014 Apr 24;9(4):e94137 25893896 - PLoS One. 2015 Apr 20;10(3):e0120455 26206709 - Behav Sci Law. 2015 Aug;33(4):528-45 |
| References_xml | – volume: 9 start-page: e94137 issue: 4 year: 2014 ident: ref33 article-title: A systematic comparison of supervised classifiers publication-title: PloS one doi: 10.1371/journal.pone.0094137 – volume: 10 start-page: e0120455 issue: 4 year: 2015 ident: ref39 article-title: A multi-label learning based kernel automatic recommendation method for Support Vector Machine publication-title: PloS one doi: 10.1371/journal.pone.0120455 – ident: ref5 – volume: 4 start-page: 82 issue: 3 year: 2012 ident: ref20 article-title: Evaluating court performance: Findings from two Italian courts publication-title: International Journal for Court Administration doi: 10.18352/ijca.88 – volume: 18 issue: 1 year: 2011 ident: ref29 article-title: Principle of Subsidiarity and’Embeddedness’ of the European Convention on Human Rights in the Field of the Reasonable-Time Requirement: The Italian Case publication-title: Jurisprudencija – year: 2004 ident: ref22 article-title: Sistemas de produção: a produtividade no chão de fábrica – volume: 391 start-page: 4406 issue: 18 year: 2012 ident: ref13 article-title: Structure–semantics interplay in complex networks and its effects on the predictability of similarity in texts publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2012.04.011 – volume: 15 start-page: 1 issue: 9 year: 2006 ident: ref37 article-title: Support vector machines in R publication-title: Journal of statistical software – ident: ref43 – ident: ref16 doi: 10.1561/1500000011 – start-page: 223 year: 2000 ident: ref11 article-title: Research in Law and Economics – volume: 51 start-page: 235 year: 2000 ident: ref23 article-title: Civil Justice Delay and Empirical Data: A Response to Professor Heise publication-title: Case W Res L Rev – year: 2011 ident: ref49 article-title: Data mining: Practical machine learning tools and techniques – year: 2011 ident: ref35 article-title: Data mining: concepts and techniques – year: 2009 ident: ref34 article-title: The elements of statistics learning: data mining, inference and prediction – ident: ref2 – volume: 33 start-page: 528 issue: 4 year: 2015 ident: ref9 article-title: Length of Time to Resolve Criminal Charges of Child Sexual Abuse: A Three-County Case Study publication-title: Behavioral sciences & the law doi: 10.1002/bsl.2187 – volume: 57 start-page: 759 issue: 5 year: 2002 ident: ref14 article-title: Keyword detection in natural languages and DNA publication-title: EPL (Europhysics Letters) doi: 10.1209/epl/i2002-00528-3 – ident: ref40 – year: 2014 ident: ref42 article-title: Practical data science with R – ident: ref47 – volume: 11 start-page: 293 issue: 2 year: 2015 ident: ref26 article-title: An empirical analysis of case disposition time in Belgium publication-title: Review of Law & Economics doi: 10.1515/rle-2015-0023 – volume: 34 start-page: 1169 issue: 3 year: 2014 ident: ref7 article-title: Bigger Isn’t Always Beter: An Analysis of Court Efficiency Using Hierarchical Linear Modeling publication-title: Pace Law Review doi: 10.58948/2331-3528.1869 – year: 1992 ident: ref44 article-title: The analysis of contingency tables doi: 10.2307/2532373 – volume: 8 start-page: 579 issue: 3 year: 2012 ident: ref3 article-title: The Role of Prosecutor’s Incentives in Creating Congestion in Criminal Courts publication-title: Review of Law & Economics doi: 10.1515/1555-5879.1637 – volume: 2 start-page: 771 issue: 43 year: 2017 ident: ref24 article-title: Gestão da justiça e do conhecimento: a contribuição da jurimetria para a administração da justiça publication-title: Revista Jurídica – volume: 17 start-page: 104 year: 2014 ident: ref1 article-title: Efficiency of Justice and Economic Systems publication-title: Procedia Economics and Finance doi: 10.1016/S2212-5671(14)00884-3 – volume: 3 start-page: 2 issue: 1 year: 2010 ident: ref19 article-title: The pursuit of high performance publication-title: International Journal for Court Administration doi: 10.18352/ijca.50 – volume: 41 start-page: 414 year: 2015 ident: ref10 article-title: Toward Timelessness in Civil Justice publication-title: Monash UL Rev – year: 2013 ident: ref41 article-title: Data Science for Business: What you need to know about data mining and data-analytic thinking – volume: 105 start-page: 1763 issue: 3 year: 2015 ident: ref15 article-title: Comparing the topological properties of real and artificially generated scientific manuscripts publication-title: Scientometrics doi: 10.1007/s11192-015-1637-z – volume: 2 start-page: 208 year: 1982 ident: ref28 article-title: Resource Allocation and Access to Criminal Courts: An Economic Model publication-title: Windsor YB Access Just – year: 2002 ident: ref45 article-title: Estatística Aplicada as Ciências Sociais – ident: ref32 – ident: ref27 doi: 10.1145/261618.261642 – year: 2006 ident: ref36 article-title: Data mining and analysis: fundamental concepts and algorithms – year: 2014 ident: ref38 article-title: Mining of massive datasets doi: 10.1017/CBO9781139924801 – ident: ref4 – volume: 33 start-page: 455 year: 1948 ident: ref25 article-title: Jurimetrics–The Next Step Forward publication-title: Minn L Rev – ident: ref46 – ident: ref21 – volume: 10 start-page: e0136076 issue: 8 year: 2015 ident: ref12 article-title: A complex network approach to stylometry publication-title: PloS one doi: 10.1371/journal.pone.0136076 – volume: 2 start-page: 12 issue: 2 year: 2010 ident: ref17 article-title: Performance-Based Budgeting and Management of Judicial Courts in France: an Assessment publication-title: International Association for Court Administration doi: 10.18352/ijca.38 – start-page: 21 year: 2008 ident: ref6 article-title: American Law & Economics Association Annual Meetings – ident: ref8 – ident: ref18 – volume: 77 start-page: 190 year: 1986 ident: ref30 article-title: Why so fast, why so slow: Explaining case processing time publication-title: J Crim L & Criminology doi: 10.2307/1143594 – volume: 7 issue: 5 year: 2011 ident: ref48 article-title: nnet: Feed-forward NNs and multinomial log-linear models publication-title: R package version – ident: ref31 – reference: 24763312 - PLoS One. 2014 Apr 24;9(4):e94137 – reference: 26206709 - Behav Sci Law. 2015 Aug;33(4):528-45 – reference: 26313921 - PLoS One. 2015 Aug 27;10(8):e0136076 – reference: 25893896 - PLoS One. 2015 Apr 20;10(3):e0120455 |
| SSID | ssj0053866 |
| Score | 2.3320055 |
| Snippet | The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0198122 |
| SubjectTerms | Analysis Artificial intelligence Bayes Theorem Bayesian analysis Biology and Life Sciences Brazil Comparative analysis Computer and Information Sciences Criminal Law - statistics & numerical data Data mining Data Mining - methods Data processing Databases, Factual Engineering and Technology Human rights Humans Judicial system Judiciary Jurisprudence Lead time Litigation Mathematical models Model accuracy Neural networks Neural Networks (Computer) People and places Physical Sciences Prediction models Regression Analysis Research and Analysis Methods Social Sciences Support Vector Machine Support vector machines Time Factors Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mLGAQEnDIdhM7ccKtVFQF8ZCAot4iv1JWCkm02VDx75mJvVEjKrUHrvEkkufhmYlnviHkhTJCRiqJQlbi3yoR5WGW8jQsbZpZGwnlZhF8-pwen_APp8nphVFfWBPm4IEd4_Z1xiW4FQWJA3gTwSVXVnC1ZDrRnJsB53OZ5dtkyp3BYMVp6hvlmIj2vVwWbVPbBQQ14NXiiSMa8PrHU3nWVk13Wcj5b-Xkzb5u5Z9zWVUX3NLRHXLbx5P0wO1jh9yw9V2y4y22o688rPTre2T1UZ53_WpDKxArxZnytF3jNQ2K5g09HAcS0qakWDhKfw3DI-gI89pR9HmGAgnWUZ05eBG6dmW2lv6G97ET6z45OXr3_fA49IMWQp3m8SZMrEnLzLKEx1przpY2hixOJsomWZxnJtVMp5ES2sQiZhpsWJWQGMoyk7lN4NEDMquBtbuESogwjAHhK8jDLOTesWLSGqNLJRmkSwFhW64X2qOQ4zCMqhiu1gRkI45xBcqq8LIKSDi-1ToUjivo36JAR1rE0B4egGYVXrOKqzQrIE9RHQrXkDqeBMVBwrGKNWewmecDBeJo1Fiocyb7rivef_lxDaJvXydELz1R2QA7tPTNEbAnxOeaUM4nlHAa6MnyLirvlitdEUMKiAhCyJT5VqEvX342LuNHsfiutk3vaRDIPwvIQ6f_I2dBPRKId0RAxMQyJqyfrtSrnwOMOXwQu5oDshht6FrC3fsfwn1EbkHom7mivzmZbda9fQzh5UY9GU6Sv_RZePo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEN_U64O-GOtXsVVXY6I-cBZ2YcHEmLZpU42eptqmb2S_OC-5Ah53Nv73zsCCEhvtKztLwnztDDvzG0KeKSNkoKLAZzn-rRJB6icxj_3cxom1gVDtLIKPk_johL8_i87WyKTrhcGyys4nNo7alBr_kUOSDqF8kEK48Lb67uPUKLxd7UZoSDdawbxpIMaukfUQkbFGZH3vYPL5uPPNYN1x7BromAheOXmNq7KwYwh24LQLBwdUg-Pfe-tRNS_ry0LRvysqr6-KSv68kPP5H8fV4S1y08WZdLdVjA2yZovbZMNZck1fOLjpl3fI7IO8qFezJZ2DuCnOmqfVAq9vUGSv6X4_qJCWOcWCUnreDJWgPfxrTfEsNBRIsL5q2sKO0EVbfmvpD9iPHVp3ycnhwdf9I98NYPB1nIZLP7ImzhPLIh5qrTnbsSFkdzJSNkrCNDGxZjoOlNAmFCHTYNsqh4RR5olMbQSP7pFRAazdJFRC5GEMKIWC_MxCTh4qJq0xOleSQRrlEdZxPdMOnRyHZMyz5spNQJbSMi5DWWVOVh7x-11Vi87xH_o9FGhPi9jazYNyMc2cqWY64RICGQWpKsQvgkuurOBqh-lIc26YRx6jOmRto2rvIbLdiGN1a8rgY542FIivUWABz1Su6jp79-n0CkRfjgdEzx1RXgI7tHRNE_BNiNs1oNweUIKX0IPlTVTejit19tueYGen0JcvP-mX8aVYlFfYcuVoEOA_8cj9Vv97zoJ6RBAHCY-IgWUMWD9cKWbfGnhzeCF2O3tk3NvQlYT74N_fsUVuQLCbtGV-22S0XKzsQwgol-qR8xK_AML0d8M priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1QAGDkACJlCa245S3MjENxAYCisZTZDvOqChp1TRM8NdzF7vRAkOU1_hsyee781189ztCHupcqkiLKGQF_q2S0ShME56EhU1SayOpXS-Cw6PkYMJfH4vjLfJ0XQtz9v2eyeiZ5-hgMS_tANwRuI_A4G4nAjzvHtmeHL0bf3YPx3GYxEPmq-P-NrVz-zQg_a0p7i1m8-o8P_PPdMkLdblQP07VbHbmLtq_TA7Xu3ApKF8H9UoPzM_fAB433eYVcsk7pXTspGiHbNnyKtnxal_Rxx6b-sk1Mn2jTqt6uqIzkA2KjenpYolvPXi-z-le29WQzguK2af0W9OBgrZYsRXFizOnQILJWCcOo4QuXa6upd9hPpZzXSeT_Zcf9w5C360hNMkoXoXC5kmRWiZ4bIzhbGhjCAWV0Fak8SjNE8NMEmlp8ljGzIAh0AVEl6pI1cgK-HSD9ErY_i6hCtyUPAcJ0hDMWQjgY82UzXNTaMUg5goIW59iZjyUOXbUmGXN-5yEkMYxLkN-Zp6fAQnbWQsH5fEP-hcoIC0tAnE3H-DgMq_XmUm5Aq9HQ1wLzo7kimsruR4yIwznOQvIPRSvzFW1tuYkGwuOqbAjBpt50FAgGEeJ2T4nqq6q7NXbTxsQfXjfIXrkiYo5sMMoX2EBe0KQrw5lv0MJJsV0hndRGdZcqbIY4kiEIUKm9NcKcv7w_XYYF8UMvtLOa0-D3QDSgNx0-tRyFsRDgNMkAyI7mtZhfXeknH5psNBhQSyNDsig1cmNDvfW_064TS6Cr5y6LME-6a2Wtb0D_uhK3_Vm6Bekpoo6 priority: 102 providerName: Unpaywall |
| Title | Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29856787 https://www.proquest.com/docview/2049519522 https://www.proquest.com/docview/2049555988 https://pubmed.ncbi.nlm.nih.gov/PMC5983432 https://doi.org/10.1371/journal.pone.0198122 https://doaj.org/article/c84a238b60124274a4be74b03c5c44d3 http://dx.doi.org/10.1371/journal.pone.0198122 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1QCkGIQEPqZrYiRMkhLpqZSBWpkFReYpsxymVQlKalrH_nrskjYgoYi95sM-Wch_2nX3-HSHPVCykozzHZgmeVgkntAOf-3Zi_MAYR6iqFsHpxD-Z8vczb7ZHtjVbawYWO0M7rCc1XaX9Xz8u34DBvy6rNghnO6i_zDPTB5cF9ixYlPdhrwqxmMMpb-4VwLrL20v0WmzfHbD6Md2_ZmltViWmf7Nyd5ZpXuxyS__Orry-yZby8kKm6R9b1_gWuVn7nHRYKckB2TPZbXJQW3VBX9TQ0y_vkMUHeVFsFmuagugp1p2nyxVe5aD4XtFRU7SQ5gnF5FL6vSwwQRso2ILivhhTIMFcq3kFQUJXVSquoT9hPL7Wukum4-PPoxO7LsZgaz9017ZnYj8JDPO4q7XmbGBciPSkp4wXuGEQ-5pp31FCx65wmQY7VwkEjzIJZGg8aLpHOhmw9pBQCV5IHIOCKIjVDMTnrmLSxLFOlGQQUlmEbbke6RqpHAtmpFF5_SYgYqkYF6GsolpWFrGbUcsKqeM_9Eco0IYWcbbLhnw1j2qzjXTAJTg1CsJW8GUEl1wZwdWAaU9zHjOLPEZ1iKpHq81qEQ09jpmuIYOfeVpSINZGhsk8c7kpiujdxy9XIPp03iJ6XhMlObBDy_oBBfwTYni1KLstSlgxdKv7EJV3y5UiciFMRJQhZEp3q9C7u5803TgpJuhlJt_UNAj2H1jkfqX_DWdBPTzwiYRFRMsyWqxv92SLbyXUOUyIL58t0m9s6ErCfXBlXj0kN8AHDqrsvy7prFcb8wj8zLXqkWtiJuAbjBz8jt_2yP7R8eTsvFee3PTKpQXappOz4dffimKD4Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8jBeEONrgcEMAgEPKU2cxAkSQmMwtawbEmyob8F2nFKpJKFpqfZP8TdylziBiAn2stf4bMl3P5_v4vsg5LFMuHCk79gsxb9V3InsMPACO9VBqLXDZd2L4Og4GJ567yf-ZIP8bHJhMKyy0YmVok5yhf_IwUkHU96JwFx4XXy3sWsUvq42LTRqWBzqszW4bOWr0VuQ7xPXPXh3sj-0TVcBWwWRu7R9nQRpqJnvuUopjw20Cy6L8KX2QzcKk0AxFTiSq8TlLlMAWJmCFyTSUETa51joAFT-FZg4wI4JfNI6eKA7gsCk5zHuvDBo6Bd5pvtgSsFd6nauv6pLQHsX9Ip5Xp5n6P4dr7m5ygpxthbz-R-X4cF1cs1YsXSvht0W2dDZDbJl9ERJn5li1s9vktlYrMvVbEnnACaKnexpscDHIQTES7rftkGkeUoxXJV-q1pW0La4bEnxpk0okGD01rQuakIXdXCvpj9gPuZ_3SKnlyKI26SXAWu3CRVg1yQJQE6C96fB43clEzpJVCoFAyfNIqzheqxM7XNswTGPqwc9Dj5QzbgYZRUbWVnEbmcVde2P_9C_QYG2tFi5u_qQL6axUQSxCj0BZpIERxisI-4JT2ruyQFTvvK8hFlkF-EQ12mwrf6J93wPY2cjBpt5VFFg9Y4Mw4OmYlWW8ejD5wsQffrYIXpqiNIc2KGEScmAPWFVsA7lTocSdJDqDG8jeBuulPHv0wozG0CfP_ywHcZFMeQv0_nK0GD7gNAid2r8t5wFePhgZXGL8M7J6LC-O5LNvlbF02FBzKW2SL89QxcS7t1_72OXbA5PjsbxeHR8eI9cBbM6rAMKd0hvuVjp-2C6LuWDSl9Q8uWyFdQv2dWuBA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIgEviPG1jMEMAgEP6ZY4iRMkhMZGtbIxEGOob8F2nK5SSULTUu1f46_jLnECERPsZa_x2ZLvfj7fxfdByBOZcOFI37FZin-ruBPZYeAFdqqDUGuHy7oXwfujYP_EezfyRyvkZ5MLg2GVjU6sFHWSK_xHDk46mPJOBObCVmrCIj7uDV4X323sIIUvrU07jRoiB_psCe5b-Wq4B7J-6rqDt593923TYcBWQeTObV8nQRpq5nuuUspj29oF90X4UvuhG4VJoJgKHMlV4nKXKQCvTMEjEmkoIu1zLHoA6v8KZyzCcEI-ap090CNBYFL1GHe2DDL6RZ7pPphVcK-6nauw6hjQ3gu9YpqX5xm9f8duXltkhThbiun0j4txcJPcMBYt3akhuEpWdHaLrBqdUdLnprD1i9tkciiW5WIyp1MAFsWu9rSY4UMRguMl3W1bItI8pRi6Sr9V7StoW2i2pHjrJhRIMJJrXBc4obM60FfTHzAfc8HukJNLEcRd0suAtWuECrBxkgTgJ8ET1OD9u5IJnSQqlYKBw2YR1nA9VqYOOrbjmMbV4x4Hf6hmXIyyio2sLGK3s4q6Dsh_6N-gQFtarOJdfchn49gohViFngCTSYJTDJYS94QnNffkNlO-8ryEWWQT4RDXKbGtLop3fA_jaCMGm3lcUWAljwzPxFgsyjIefvhyAaLjTx2iZ4YozYEdSpj0DNgTVgjrUG50KEEfqc7wGoK34UoZ_z65MLMB9PnDj9phXBTD_zKdLwwNthIILXKvxn_LWYCHDxYXtwjvnIwO67sj2eS0KqQOC2JetUX67Rm6kHDX_72PTXIVVFN8ODw6uE-ug4Ud1rGFG6Q3ny30A7Bi5_JhpS4o-XrZ-ukXOwKyRw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1QAGDkACJlCa245S3MjENxAYCisZTZDvOqChp1TRM8NdzF7vRAkOU1_hsyee781189ztCHupcqkiLKGQF_q2S0ShME56EhU1SayOpXS-Cw6PkYMJfH4vjLfJ0XQtz9v2eyeiZ5-hgMS_tANwRuI_A4G4nAjzvHtmeHL0bf3YPx3GYxEPmq-P-NrVz-zQg_a0p7i1m8-o8P_PPdMkLdblQP07VbHbmLtq_TA7Xu3ApKF8H9UoPzM_fAB433eYVcsk7pXTspGiHbNnyKtnxal_Rxx6b-sk1Mn2jTqt6uqIzkA2KjenpYolvPXi-z-le29WQzguK2af0W9OBgrZYsRXFizOnQILJWCcOo4QuXa6upd9hPpZzXSeT_Zcf9w5C360hNMkoXoXC5kmRWiZ4bIzhbGhjCAWV0Fak8SjNE8NMEmlp8ljGzIAh0AVEl6pI1cgK-HSD9ErY_i6hCtyUPAcJ0hDMWQjgY82UzXNTaMUg5goIW59iZjyUOXbUmGXN-5yEkMYxLkN-Zp6fAQnbWQsH5fEP-hcoIC0tAnE3H-DgMq_XmUm5Aq9HQ1wLzo7kimsruR4yIwznOQvIPRSvzFW1tuYkGwuOqbAjBpt50FAgGEeJ2T4nqq6q7NXbTxsQfXjfIXrkiYo5sMMoX2EBe0KQrw5lv0MJJsV0hndRGdZcqbIY4kiEIUKm9NcKcv7w_XYYF8UMvtLOa0-D3QDSgNx0-tRyFsRDgNMkAyI7mtZhfXeknH5psNBhQSyNDsig1cmNDvfW_064TS6Cr5y6LME-6a2Wtb0D_uhK3_Vm6Bekpoo6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lawsuit+lead+time+prediction%3A+Comparison+of+data+mining+techniques+based+on+categorical+response+variable&rft.jtitle=PloS+one&rft.au=Gruginskie%2C+L%C3%BAcia+Adriana+dos+Santos&rft.au=Vaccaro%2C+Guilherme+Lu%C3%ADs+Roehe&rft.date=2018-06-01&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=6&rft.spage=e0198122&rft_id=info:doi/10.1371%2Fjournal.pone.0198122&rft.externalDocID=A541074936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |