Analysis of the pattern recognition algorithm of broadband satellite modulation signal under deformable convolutional neural networks
This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband...
        Saved in:
      
    
          | Published in | PloS one Vol. 15; no. 7; p. e0234068 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        13.07.2020
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0234068 | 
Cover
| Abstract | This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals. | 
    
|---|---|
| AbstractList | This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals. This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T.sub.1 and T.sub.2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T.sub.1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T.sub.2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals. This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.  | 
    
| Audience | Academic | 
    
| Author | Li, Hui Li, Ming  | 
    
| AuthorAffiliation | University College London, UNITED KINGDOM National Intellectual Property Administration, Beijing, China  | 
    
| AuthorAffiliation_xml | – name: National Intellectual Property Administration, Beijing, China – name: University College London, UNITED KINGDOM  | 
    
| Author_xml | – sequence: 1 givenname: Hui surname: Li fullname: Li, Hui – sequence: 2 givenname: Ming orcidid: 0000-0002-0012-261X surname: Li fullname: Li, Ming  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32658924$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5lyZKtXhSW0EMgEOjpVsg6eJXK0laSk-YB-t7V7johG0IJvpAZffPP6B_psNhz3qmieF6BeYWa6t25H4Pjdr7K4TmAqAakfVQcVBTBGYEA7d363y8OYzwHAKOWkCfFPoIEtxTWB8XfRda4iiaWXpdpqcoVT0kFVwYlfO9MMt6V3PY-mLQc1lAXPJcdd7KMPClrTVLl4OVo-YaNps-K5eikCqVU2oeBd1aVwrsLb8c1k7edGsNmSZc-_IpPi8ea26ieTetR8ePTx-_HX2anZ59PjhenM0EoTDMsOG0IabXUHQGyRa2mWEtAiYJKSVzDtpZcdFhD2QANRQ0qiYQgNUQtrxp0VLzc6q6sj2xyMDKY9zHA2cBMnGwJ6fk5WwUz8HDFPDdsE_ChZzwkI6xiECuIJO4A5bIGWHNFRFcjkhskuRzNWnirNboVv7rk1t4IVoCth3jdAlsPkU1DzHkfpi7HblBSKJcCtzvN7O44s2S9v2ANwk2DqyzwZhII_veoYmKDiSLPijvlx-15G0opXtd6dQe935WJ6nk-uHHa57piLcoWBFKEa0Jxpub3UPmTajB5_kqbHN9JeLuTkJmk_qSejzGyk29fH86e_dxlX99il4rbtIzT5Yu74IvbTt9YfP0-MlBvARF8jEHph07w_Z00YdLmfWRHjP1_8j9SNTuV | 
    
| CitedBy_id | crossref_primary_10_1109_TAES_2023_3322971 crossref_primary_10_1186_s13638_022_02091_w crossref_primary_10_1371_journal_pone_0319596 crossref_primary_10_32604_cmc_2022_024490 crossref_primary_10_32604_csse_2022_024239  | 
    
| Cites_doi | 10.1016/j.wear.2018.12.087 10.1109/ACCESS.2019.2934976 10.1109/TSIPN.2019.2900201 10.1016/j.adhoc.2018.12.004 10.1007/s00477-019-01738-3 10.1016/j.future.2019.07.054 10.1109/ACCESS.2019.2907159 10.1007/978-981-10-8944-2_21 10.1145/3295748 10.7498/aps.68.20190123 10.1109/TVT.2019.2900460 10.1145/3285029 10.1109/LGRS.2018.2830403 10.1016/j.neucom.2019.10.007 10.1049/el.2018.6851 10.1007/s00521-018-3924-0 10.1016/j.ymssp.2019.04.036 10.1088/1741-2552/ab0ab5 10.3390/sym11010001 10.1109/TWC.2019.2906185 10.3389/fpsyt.2019.00205 10.1080/23322039.2019.1710970 10.1016/j.sbi.2018.10.008 10.1016/j.bspc.2020.101872 10.1109/ACCESS.2018.2890810 10.1002/dac.3942 10.1109/ACCESS.2019.2917257 10.1109/LWC.2019.2904956 10.1080/24751839.2019.1660845  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Li, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Li, Li 2020 Li, Li  | 
    
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Li, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Li, Li 2020 Li, Li  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0234068 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ - Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Pattern recognition of wideband satellite modulation signal | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 2423505068 oai_doaj_org_article_25e23d5b09ad405fae6cb436668638a9 10.1371/journal.pone.0234068 PMC7357751 A629354695 32658924 10_1371_journal_pone_0234068  | 
    
| Genre | Retracted Publication Journal Article Comparative Study  | 
    
| GeographicLocations | China Beijing China  | 
    
| GeographicLocations_xml | – name: China – name: Beijing China  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c692t-5ca97668fdfb60d838f95fd096e2eed54284dacb5f2d70f2c401d3cc64238a173 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:53:06 EST 2021 Tue Oct 14 19:05:12 EDT 2025 Sun Oct 26 02:08:40 EDT 2025 Tue Sep 30 15:52:26 EDT 2025 Thu Oct 02 04:09:34 EDT 2025 Tue Oct 07 07:39:08 EDT 2025 Mon Oct 20 22:19:06 EDT 2025 Mon Oct 20 16:33:18 EDT 2025 Thu Oct 16 15:01:47 EDT 2025 Thu Oct 16 15:01:34 EDT 2025 Thu May 22 21:16:11 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Wed Oct 01 04:42:03 EDT 2025 Thu Apr 24 22:53:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c692t-5ca97668fdfb60d838f95fd096e2eed54284dacb5f2d70f2c401d3cc64238a173 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Correction/Retraction-3 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0002-0012-261X | 
    
| OpenAccessLink | https://doaj.org/article/25e23d5b09ad405fae6cb436668638a9 | 
    
| PMID | 32658924 | 
    
| PQID | 2423505068 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0234068 | 
    
| ParticipantIDs | plos_journals_2423505068 doaj_primary_oai_doaj_org_article_25e23d5b09ad405fae6cb436668638a9 unpaywall_primary_10_1371_journal_pone_0234068 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7357751 proquest_miscellaneous_2423799958 proquest_journals_2423505068 gale_infotracmisc_A629354695 gale_infotracacademiconefile_A629354695 gale_incontextgauss_ISR_A629354695 gale_incontextgauss_IOV_A629354695 gale_healthsolutions_A629354695 pubmed_primary_32658924 crossref_primary_10_1371_journal_pone_0234068 crossref_citationtrail_10_1371_journal_pone_0234068  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-07-13 | 
    
| PublicationDateYYYYMMDD | 2020-07-13 | 
    
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2020 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | M. Z. Hossain (pone.0234068.ref005) 2019; 51 D. Jiang (pone.0234068.ref030) 2019 E. Guarnera (pone.0234068.ref003) 2019; 56 S. Zhang (pone.0234068.ref004) 2019; 52 T. Tuncer (pone.0234068.ref006) 2020; 58 A. Craik (pone.0234068.ref026) 2019; 16 S. Wang (pone.0234068.ref022) 2019; 426 P. H. Huynh (pone.0234068.ref023) 2019; 3 M. Mateen (pone.0234068.ref031) 2019; 11 I. F. Akyildiz (pone.0234068.ref001) 2019; 86 M. B. Seitshiro (pone.0234068.ref029) 2020; 8 F. Wang (pone.0234068.ref015) 2019; 130 I. F. Akyildiz (pone.0234068.ref020) 2019; 86 M. Al-Nahhal (pone.0234068.ref025) 2019; 32 A. Rehman (pone.0234068.ref033) 2019; 7 H. Chen (pone.0234068.ref010); 7 W. Jiang (pone.0234068.ref028); 102 A. P. Hermawan (pone.0234068.ref018) 2020 Y. Wang (pone.0234068.ref012) 2019; 68 E. Kazikli (pone.0234068.ref017) 2019; 18 P. Ma (pone.0234068.ref009) 2018; 54 S. Hong (pone.0234068.ref011) 2019; 7 Y. Huang (pone.0234068.ref016) 2019; 7 M. Rathinasamy (pone.0234068.ref019) 2019; 33 D. Cao (pone.0234068.ref008); 10 S. H. Wang (pone.0234068.ref032) 2019; 10 S. Huang (pone.0234068.ref014) 2019; 8 B. Ma (pone.0234068.ref021) 2020; 379 Z. Zhang (pone.0234068.ref013) 2019; 5 S. H. Wang (pone.0234068.ref027); 32 J. Zhu (pone.0234068.ref007) 2018; 15 X. Zhou (pone.0234068.ref024) 2019 X. Y. Liu (pone.0234068.ref002) 2019; 68 40043021 - PLoS One. 2025 Mar 5;20(3):e0319596. doi: 10.1371/journal.pone.0319596.  | 
    
| References_xml | – volume: 426 start-page: 1761 year: 2019 ident: pone.0234068.ref022 article-title: Integrated model of BP neural network and CNN algorithm for automatic wear debris classification publication-title: Wear doi: 10.1016/j.wear.2018.12.087 – start-page: 275 year: 2019 ident: pone.0234068.ref024 article-title: Wireless Signal Recognition Based on Deep Learning for LEO Constellation Satellite. In International Conference on Space Information Network publication-title: Space Information Networks – volume: 7 start-page: 114631 year: 2019 ident: pone.0234068.ref011 article-title: Deep learning-based signal modulation identification in OFDM systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934976 – volume: 5 start-page: 469 issue: 3 year: 2019 ident: pone.0234068.ref013 article-title: Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2019.2900201 – volume: 86 start-page: 166 year: 2019 ident: pone.0234068.ref020 article-title: A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2018.12.004 – volume: 10 start-page: 1 issue: 1 ident: pone.0234068.ref008 article-title: An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks publication-title: Human-centric Computing and Information Sciences – volume: 33 start-page: 2053 issue: 11–12 year: 2019 ident: pone.0234068.ref019 article-title: Wavelet analysis of precipitation extremes over India and teleconnections to climate indices publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-019-01738-3 – volume: 102 start-page: 210 ident: pone.0234068.ref028 article-title: Exploiting potential of deep neural networks by layer-wise fine-grained parallelism publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.054 – volume: 7 start-page: 41193 year: 2019 ident: pone.0234068.ref016 article-title: Automatic modulation recognition of radar signals based on manhattan distance-based features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907159 – start-page: 173 volume-title: Recent Developments in Intelligent Computing, Communication and Devices” year: 2019 ident: pone.0234068.ref030 doi: 10.1007/978-981-10-8944-2_21 – volume: 51 start-page: 1 issue: 6 year: 2019 ident: pone.0234068.ref005 article-title: A comprehensive survey of deep learning for image captioning publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3295748 – start-page: 1 year: 2020 ident: pone.0234068.ref018 article-title: CNN-Based Automatic Modulation Classification for Beyond 5G Communications publication-title: IEEE Communications Letters – volume: 68 start-page: 128401 issue: 12 year: 2019 ident: pone.0234068.ref002 article-title: Average symbol error rate for integrated satellite-terrestrial cooperative transmission with interference publication-title: Acta Physica Sinica doi: 10.7498/aps.68.20190123 – volume: 68 start-page: 4074 issue: 4 year: 2019 ident: pone.0234068.ref012 article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2019.2900460 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: pone.0234068.ref004 article-title: Deep learning-based recommender system: A survey and new perspectives publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3285029 – volume: 15 start-page: 1254 issue: 8 year: 2018 ident: pone.0234068.ref007 article-title: Deformable convolutional neural networks for hyperspectral image classification publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2830403 – volume: 379 start-page: 152 year: 2020 ident: pone.0234068.ref021 article-title: Autonomous deep learning: a genetic DCNN designer for image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.007 – volume: 54 start-page: 1373 issue: 24 year: 2018 ident: pone.0234068.ref009 article-title: Deformable convolutional networks for multi-view 3D shape classification publication-title: Electronics Letters doi: 10.1049/el.2018.6851 – volume: 32 start-page: 665 issue: 3 ident: pone.0234068.ref027 article-title: Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3924-0 – volume: 130 start-page: 349 year: 2019 ident: pone.0234068.ref015 article-title: Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.04.036 – volume: 16 start-page: 031001 issue: 3 year: 2019 ident: pone.0234068.ref026 article-title: “Deep learning for electroencephalogram (EEG) classification tasks: a review” publication-title: Journal of neural engineering doi: 10.1088/1741-2552/ab0ab5 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: pone.0234068.ref031 article-title: Fundus image classification using VGG-19 architecture with PCA and SVD publication-title: Symmetry doi: 10.3390/sym11010001 – volume: 18 start-page: 2623 issue: 5 year: 2019 ident: pone.0234068.ref017 article-title: Optimal Joint Modulation Classification and Symbol Decoding publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2019.2906185 – volume: 10 start-page: 205 year: 2019 ident: pone.0234068.ref032 article-title: Alcoholism identification based on an AlexNet transfer learning model publication-title: Frontiers in Psychiatry doi: 10.3389/fpsyt.2019.00205 – volume: 8 start-page: 1710970 issue: 1 year: 2020 ident: pone.0234068.ref029 article-title: Assessment of model risk due to the use of an inappropriate parameter estimator publication-title: Cogent Economics & Finance doi: 10.1080/23322039.2019.1710970 – volume: 56 start-page: 18 year: 2019 ident: pone.0234068.ref003 article-title: On the perturbation nature of allostery: sites, mutations, and signal modulation publication-title: Curr. Opin. Struct. Biol doi: 10.1016/j.sbi.2018.10.008 – volume: 58 start-page: 101872 year: 2020 ident: pone.0234068.ref006 article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.101872 – volume: 7 start-page: 17149 year: 2019 ident: pone.0234068.ref033 article-title: Automatic visual features for writer identification: A deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890810 – volume: 86 start-page: 166 year: 2019 ident: pone.0234068.ref001 article-title: A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2018.12.004 – volume: 32 start-page: e3942 issue: 9 year: 2019 ident: pone.0234068.ref025 article-title: Enhancing spectral efficiency of FSO system using adaptive SIM/M‐PSK and SIMO in the presence of atmospheric turbulence and pointing errors publication-title: International Journal of Communication Systems doi: 10.1002/dac.3942 – volume: 7 start-page: 66347 ident: pone.0234068.ref010 article-title: Deformable Convolutional Matrix Factorization for Document Context-Aware Recommendation in Social Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917257 – volume: 8 start-page: 1044 issue: 4 year: 2019 ident: pone.0234068.ref014 article-title: Automatic modulation classification using contrastive fully convolutional network publication-title: IEEE Wireless Communications Letters doi: 10.1109/LWC.2019.2904956 – volume: 3 start-page: 533 issue: 4 year: 2019 ident: pone.0234068.ref023 article-title: Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data publication-title: Journal of Information and Telecommunication doi: 10.1080/24751839.2019.1660845 – reference: 40043021 - PLoS One. 2025 Mar 5;20(3):e0319596. doi: 10.1371/journal.pone.0319596.  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.3625684 | 
    
| SecondaryResourceType | retracted_publication | 
    
| Snippet | This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0234068 | 
    
| SubjectTerms | Accuracy Algorithms Artificial neural networks Binary phase shift keying Biology and Life Sciences Broadband Classification Computer and Information Sciences Computer simulation Deep Learning Deformation effects Engineering and Technology Feature extraction Formability Intellectual property Machine learning Medicine and Health Sciences Methods Neural networks Neural Networks, Computer Observations Parameter estimation Pattern analysis Pattern recognition Pattern recognition (Computers) Pattern Recognition, Automated - methods Phase shift Phase shift keying Physical Sciences Quadrature amplitude modulation Quadrature phase shift keying Research and Analysis Methods Satellite Communications Satellite constellations Satellites Satellites (Spacecraft) Signal Processing, Computer-Assisted Signal to noise ratio Technology application  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NWcAgJOCQbTaO7eRYEFVBAiSgqLfI8UdbKU2iza4QP4D_zYzjjRpRqT1wWil-ySozY_vN7swzIa9QAjzRooitsDzOgODHCntlXFXkJkMBd4XdyJ-_iKPj7NMJP7l01BfWhA3ywIPh9lNuU2Z4lRQK7uVOWaGrjAHrziF0lG_dS_Jim0wNazDMYiFCoxyTy_3gl0XXNnYBuxTsYvlkI_J6_eOqPOvqtr-Kcv5bOXl703Tq9y9V15e2pcN75G7gk_RgeI8dcss298lOmLE9fRNkpd8-IH-2-iO0dRRoH-28tGZDxxqitqGqPm1X5-uzCwRVq1aZSjWG9soLd64tvWhNOPCLYukHfDV2oa2osZ79VrWlWMgeAhqGUTDTf_hy8_4hOT788OP9URwOYYjBg-k65loBYxG5M64SiclZ7gruDGQ-NoX9lUP6khmlK-5SIxOXakjYDNMa8hpwz1KyR2TWgNl3CRVKJkJpzY0DD3CjpLMstUUKPIIBkYsI23qk1EGhHA_KqEv_t5uETGUwaol-LIMfIxKPd3WDQsc1-Hfo7BGL-tr-AkRdGaKuvC7qIvIcQ6UcmlXHVaI8EECfeCYKHpGXHoEaGw0W8ZyqTd-XH7_-vAHo-7cJ6HUAuRbMoVVonIB3Qu2uCXI-QcJKoSfDuxjYW6v0JXJpYMDeKPNtsF89_GIcxodiYV5j282AkZBkcMA8HubGaFnIDHgO-X1E5GTWTEw_HWnOz7zEuWRcSr6MyGKcXzdy7t7_cO4TcifFX1VQPpXNyWy92tinQD3X1TO_yvwFAKuFPA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvE-NrgQEGIQEP6dI4dpIHhDa0aSBR0GBob5ET2x1SloSmFeIP4P_mznECERPsqVJ9aZX7vuTud4Q8QwjwoBCpr4XmfgQJvi9xVsbkaaIiBHCXOI38fi6OT6N3Z_xsg8z7WRhsq-x9onXUqi7wGfkexn2I1oFIXjfffNwahW9X-xUa0q1WUK8sxNg1shkiMtaEbB4czj-e9L4ZrFsIN0DH4tmek9e0qSs9hegF0S0ZBSiL4z9460lT1u1lqejfHZXX11Ujf3yXZflHuDq6SbZcnkn3O8XYJhu6ukW2nSW39IWDm355m_zscUlobSikg7SxkJsVHXqL6orKcgHMWJ1fIFG-rKXKZaVoKy2g50rTi1q5RWAUW0Lgr3E6bUmVtllxXmqKDe5O0eEYgTTth21Db--Q06PDz2-OfbecwQfJhiufFxIyGZEYZXIRqIQlJuVGQUWkQ4i7HMqaSMki5yZUcWDCAgo5xYoC6h2WyFnM7pJJBWzfIVTIOBAgQa4MSIArGRvNQp2GkF8wSPA8wnqJZIVDLscFGmVmX8fFUMF0TM1QjpmTo0f84aqmQ-74D_0BCnugRdxt-0W9XGTOjLOQ65ApngepBE3mRmpR5BGDGjABRyZTjzxGVcm6IdbBe2T7AtIqHomUe-SppUDsjQqbexZy3bbZ2w9frkD06WRE9NwRmRrYUUg3UAH3hJheI8rdESV4kGJ0vIOK3XOlzX7bGlzZK_vlx0-GY_xRbNirdL3uaGIoPjjQ3OtsY-AsVAw8gbrfI_HIakasH59UX88t9HnMeBzzmUemg31dSbj3_30fD8iNEJ-jIGAq2yWT1XKtH0KyucofOQ_yC-hIg28 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6sIBBiMchadaO8zguiKogURBQ1B5Q5NhOW7FNVpusEBy48b-ZcZyIQBHlwGlX67E3-fz6Jp75QsgDlAAPVJR6JjLCC4HgexJzZYo8TXSIAu4Ss5Ff7UY7e-HLfbG_Rj52uTAOQfAR51VtT_LxS1WaLYfkFuoVtaen_pTH066GvwAjH3Yg2KGSh1ZxCJ-MNZiAdI6sRwKo-ois7-2-mR20J83Mi1jAXTrdn1oabFdW1b9fu0d4ZacR09_jK8-vyoX88lnO5z9tXtuXyLfuttuYlU_-qsl99fUXRcj_hstlctHRXjprW9kga6a8QjbcwlLTx079-slV8r2TSaFVQYGd0oVVAC1pH-pUlVTOD6vlcXN0gkb5spI6l6WmtbT6oo2hJ5V27yWjGKECf43JckuqjSXpcFUU4-3dvINi1PW0HzYqvr5G9rafv3-247l3RXgw0FjjCSWBWEVJoYs8CnTCkyIVhQYHzTCgAQK8rFBLlYuC6TgomAK_UnOlwP3iiZzG_DoZlYDUJqGRjINIKiV0AaAJLePCcGZSBnSHA98cE94NiUw5IXV8n8c8s6eDMThULagZQp856MfE62stWiGRv9g_xdHW26IMuP0B-j5zfZ4xYRjXIg9SCRNLFNJEKg85uKQJrKsyHZO7OFazNqe2X8yyWQQsT4RRKsbkvrVAKZASY40O5aqusxevP5zB6N3bgdEjZ1RUAIeSLr8D7gmH5sByMrCEBU0NijdxbHeo1BlSfiDqFpRJN9tOL77XF2OjGD9YmmrV2sTgCwmwudFOzh5ZcGBEkrJwTOLBtB1APywpj4-sEnvMRRyL6Zj4_QQ_U-fe_NcKt8gFhg96UNGVT8ioWa7MbWDDTX7HrWk_ACv0vK4 priority: 102 providerName: Unpaywall  | 
    
| Title | Analysis of the pattern recognition algorithm of broadband satellite modulation signal under deformable convolutional neural networks | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32658924 https://www.proquest.com/docview/2423505068 https://www.proquest.com/docview/2423799958 https://pubmed.ncbi.nlm.nih.gov/PMC7357751 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234068&type=printable https://doaj.org/article/25e23d5b09ad405fae6cb436668638a9 http://dx.doi.org/10.1371/journal.pone.0234068  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqUYhAQ8pEqTOE4eEOqmlYG0Mg2KxlPkxE43KUtK0gr2B_B_c-c6ERFF9CWV4kui3vns75K77wh5iRTgThpEtgoUs30A-LbAWpksiULpI4G7wGrk02lwMvM_XrCLHdL0bDUKrDeGdthPalblw5_fb96Bw7_VXRv4qLlouCgLNYQ9CPaocJfswV4VYTOHU7_9rgDerb9eImqxA9fxTDHdv-7S2aw0p3-7cvcWeVlvgqV_Z1feWhULcfND5PkfW9fkLrljMCcdryfJPtlRxT2yb7y6pq8N9fSb--RXw1FCy4wCNKQLTb9Z0DbPqCyoyOdldbW8vEahpCqFTEQhaS00uedS0etSmqZgFNND4NFYqVZRqTRCTnJFMdndTHoYRlJN_aNT0usHZDY5_nJ0YptGDTZY2V3aLBWAaoIwk1kSODL0wiximYToSLmwBzMIcXwp0oRlruRO5qYQ1EkvTSH28UIx4t5D0itA7QeEBoI7gUhTJjOwAJOCZ8pzVeQC1vAA7FnEaywSp4bFHJtp5LH-NMchmlkrNUY7xsaOFrHbqxZrFo__yB-isVtZ5ODWJ8pqHhuXjl2mXE-yxIkEzGqWCRWkie9BPBjCoiYiizzDqRKvC1rblSQeBwCxmB9EzCIvtATycBSY6DMXq7qOP3z6uoXQ5_OO0CsjlJWgjlSY4gr4T8jv1ZHsdyRhNUk7wwc4sRut1DHibUDJWin9ZrJvHn7eDuNNMXmvUOVqLcMhEGEg82jtG61mIXpgYeT6FuEdr-movjtSXF1qGnTuMc7ZyCLD1r-2Mu7jbbT-hNx28c0KUqh6fdJbViv1FODnMhmQXX7B4RgejfA4eT8ge4fH07PzgX6hM9ArDpybTc_G334DDJ2Nhw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBqeP1ru0DQuVRJfSBBG2Vm1nvrlMk1w5xoqo_gL_Db2TGXhssKuilJ0vZsR3P7LzsmW8IeYYQ4K4SkWOE4Y4PAb4jsVcmTaJQ-wjgLrEbef9AjI78jxM-WSE_m14YLKtsbGJlqHWh8B35Fvp98NauCN_Mvjs4NQq_rjYjNOptsWvOzyBlK1-P34N8n3vezofDdyPHThVw4C95C4crCS5YhKlOE-HqkIVpxFMNobzxwGFwiMd9LVXCU08HbuopyEA0UwoCdRbKYcDgutfIdZ-BLQH9CSZtgge2QwjbnseC4ZbdDYNZkZsB-EbwnWHH_VVTAlpf0JtlRXlRoPt3vebqMp_J8zOZZX84w51b5KaNYul2ve3WyIrJb5M1aydK-tKCWb-6Q340qCe0SCkEm3RWAXrmtK1cKnIqsymwenFyikTJvJA6kbmmpazgQheGnhbajhmjWHACt8betznVpoq5k8xQLJ-3agTLCNNZHaoi9_IuOboSId0jvRzYvk6okIErpFJcpyABrmWQGuaZyIPohUH42CeskUisLC46jufI4upjXwD5Uc3UGOUYWzn2idOeNatxQf5D_xaF3dIiqnf1QzGfxtZIxB43HtM8cSMJesJTaYRKfAYZZghmUkZ9solbJa5bZFvbFG8LCNq4LyLeJ08rCkT2yLF0aCqXZRmPPx1fgujL5w7RC0uUFsAOJW27BjwTIoZ1KDc6lGCfVGd5HTd2w5Uy_q3JcGaz2S9eftIu40WxHDA3xbKmCSC14UBzv9aNlrOQj_Aw8vw-CTpa02F9dyX_dlIBqweMBwEf9smg1a9LCffBv59jk6yODvf34r3xwe5DcsPDNzYIzco2SG8xX5pHENYukseVLaHk61Ubr1-nBbps | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXRHk1UOiCQMDBaer17toHhAolaigUBBTlZtb7aJFSO8SJqv4A_hS_jhl7bbCooJeeLGXHdjyz87JnviHkEUKAD7RIAissDyII8AOFvTIuS2ITIYC7wm7kd3tiZz96M-bjJfKz6YXBssrGJlaG2hQa35FvoN8Hbz0Q8YbzZREftocvpt8DnCCFX1qbcRr1Ftm1J8eQvpXPR9sg68dhOHz9-dVO4CcMBPD3wnnAtQJ3LGJnXCYGJmaxS7gzENbbEJwHh9g8Mkpn3IVGDlyoIRsxTGsI2lmsNiWD614gFyVjCZYTynGb7IEdEcK36jG5ueF3Rn9a5LYPfhL8aNxxhdXEgNYvLE8nRXla0Pt37eblRT5VJ8dqMvnDMQ6vkas-oqVb9RZcIUs2v05WvM0o6VMPbP3sBvnRIKDQwlEIPOm0AvfMaVvFVORUTQ6A1fPDIyTKZoUymcoNLVUFHTq39KgwfuQYxeITuDX2wc2osVX8nU0sxVJ6r1KwjJCd1aEqeC9vkv1zEdItspwD21cJFUoOhNKaGwcS4EZJZ1lokxAiGQahZI-wRiKp9hjpOKpjklYf_iTkSjVTU5Rj6uXYI0F71rTGCPkP_UsUdkuLCN_VD8XsIPUGIw25DZnh2SBRoDPcKSt0FjHINmMwmSrpkXXcKmndLtvaqXRLQADHI5HwHnlYUSDKR476cqAWZZmO3n85A9Gnjx2iJ57IFcAOrXzrBjwTood1KNc6lGCrdGd5FTd2w5Uy_a3VcGaz2U9fftAu40WxNDC3xaKmkZDmcKC5XetGy1nITXichFGPyI7WdFjfXcm_HVYg65JxKflmj_Rb_TqTcO_8-znWySUwW-nb0d7uXXIlxJc3iNLK1sjyfLaw9yDCnWf3K1NCydfztl2_AHsxvq8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6sIBBiMchadaO8zguiKogURBQ1B5Q5NhOW7FNVpusEBy48b-ZcZyIQBHlwGlX67E3-fz6Jp75QsgDlAAPVJR6JjLCC4HgexJzZYo8TXSIAu4Ss5Ff7UY7e-HLfbG_Rj52uTAOQfAR51VtT_LxS1WaLYfkFuoVtaen_pTH066GvwAjH3Yg2KGSh1ZxCJ-MNZiAdI6sRwKo-ois7-2-mR20J83Mi1jAXTrdn1oabFdW1b9fu0d4ZacR09_jK8-vyoX88lnO5z9tXtuXyLfuttuYlU_-qsl99fUXRcj_hstlctHRXjprW9kga6a8QjbcwlLTx079-slV8r2TSaFVQYGd0oVVAC1pH-pUlVTOD6vlcXN0gkb5spI6l6WmtbT6oo2hJ5V27yWjGKECf43JckuqjSXpcFUU4-3dvINi1PW0HzYqvr5G9rafv3-247l3RXgw0FjjCSWBWEVJoYs8CnTCkyIVhQYHzTCgAQK8rFBLlYuC6TgomAK_UnOlwP3iiZzG_DoZlYDUJqGRjINIKiV0AaAJLePCcGZSBnSHA98cE94NiUw5IXV8n8c8s6eDMThULagZQp856MfE62stWiGRv9g_xdHW26IMuP0B-j5zfZ4xYRjXIg9SCRNLFNJEKg85uKQJrKsyHZO7OFazNqe2X8yyWQQsT4RRKsbkvrVAKZASY40O5aqusxevP5zB6N3bgdEjZ1RUAIeSLr8D7gmH5sByMrCEBU0NijdxbHeo1BlSfiDqFpRJN9tOL77XF2OjGD9YmmrV2sTgCwmwudFOzh5ZcGBEkrJwTOLBtB1APywpj4-sEnvMRRyL6Zj4_QQ_U-fe_NcKt8gFhg96UNGVT8ioWa7MbWDDTX7HrWk_ACv0vK4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+pattern+recognition+algorithm+of+broadband+satellite+modulation+signal+under+deformable+convolutional+neural+networks&rft.jtitle=PloS+one&rft.au=Li%2C+Hui&rft.au=Li%2C+Ming&rft.date=2020-07-13&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=7&rft.spage=e0234068&rft_id=info:doi/10.1371%2Fjournal.pone.0234068&rft.externalDBID=IOV&rft.externalDocID=A629354695 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |