Analysis of the pattern recognition algorithm of broadband satellite modulation signal under deformable convolutional neural networks

This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 7; p. e0234068
Main Authors Li, Hui, Li, Ming
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.07.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0234068

Cover

Abstract This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.
AbstractList This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.
This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T.sub.1 and T.sub.2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T.sub.1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T.sub.2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.
This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep learning (DL) under low signal to noise ratio (SNR) or channel non-ideal conditions. In this study, first, the common characteristics of broadband satellite modulation signal and the commonly used signal feature extraction algorithm are introduced. Then, the broadband satellite modulation signal pattern recognition model based on deformable convolutional neural networks (DCNN) is built, and the broadband satellite signal simulation is conducted based on Matlab software. Next, the signal characteristics of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (PSK), 16 quadratic amplitude modulation (QAM), 64QAM, and 32 absolute phase shift keying (APSK) are extracted by the constellation map, and the ratio changes of T1 and T2 with SNR are compared. When SNR is given, it is compared with VGG model, AlexNet model, and ResNe model. The results show that the constellation points of satellite signals with different modulations are evenly distributed. T1 of PSK modulation signals increases significantly with the increase of SNR. When SNR is greater than 10, PSK modulation signals can be identified. When T2 is set and SNR is greater than 15dB, 16QAM and 32APSK signals can be distinguished. In the model, the Relu activation function, mini-batch gradient descent (MBGD) algorithm, and Softmax classifier have the best recognition accuracy. PSK modulation signals have the best recognition rate when the SNR is 0dB, and the recognition accuracy of different modulation signals at 20dB is over 98%. When the data length reaches 4000, the recognition accuracy of different modulation signals is higher than 97%. Compared with other algorithms, this algorithm has the highest recognition accuracy (99.83%) and shorter training time (3960s). In conclusion, the broadband satellite modulation signal pattern recognition algorithm of DCNN constructed in this study can effectively identify the patterns of different modulation signals.
Audience Academic
Author Li, Hui
Li, Ming
AuthorAffiliation University College London, UNITED KINGDOM
National Intellectual Property Administration, Beijing, China
AuthorAffiliation_xml – name: National Intellectual Property Administration, Beijing, China
– name: University College London, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Hui
  surname: Li
  fullname: Li, Hui
– sequence: 2
  givenname: Ming
  orcidid: 0000-0002-0012-261X
  surname: Li
  fullname: Li, Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32658924$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5lyZKtXhSW0EMgEOjpVsg6eJXK0laSk-YB-t7V7johG0IJvpAZffPP6B_psNhz3qmieF6BeYWa6t25H4Pjdr7K4TmAqAakfVQcVBTBGYEA7d363y8OYzwHAKOWkCfFPoIEtxTWB8XfRda4iiaWXpdpqcoVT0kFVwYlfO9MMt6V3PY-mLQc1lAXPJcdd7KMPClrTVLl4OVo-YaNps-K5eikCqVU2oeBd1aVwrsLb8c1k7edGsNmSZc-_IpPi8ea26ieTetR8ePTx-_HX2anZ59PjhenM0EoTDMsOG0IabXUHQGyRa2mWEtAiYJKSVzDtpZcdFhD2QANRQ0qiYQgNUQtrxp0VLzc6q6sj2xyMDKY9zHA2cBMnGwJ6fk5WwUz8HDFPDdsE_ChZzwkI6xiECuIJO4A5bIGWHNFRFcjkhskuRzNWnirNboVv7rk1t4IVoCth3jdAlsPkU1DzHkfpi7HblBSKJcCtzvN7O44s2S9v2ANwk2DqyzwZhII_veoYmKDiSLPijvlx-15G0opXtd6dQe935WJ6nk-uHHa57piLcoWBFKEa0Jxpub3UPmTajB5_kqbHN9JeLuTkJmk_qSejzGyk29fH86e_dxlX99il4rbtIzT5Yu74IvbTt9YfP0-MlBvARF8jEHph07w_Z00YdLmfWRHjP1_8j9SNTuV
CitedBy_id crossref_primary_10_1109_TAES_2023_3322971
crossref_primary_10_1186_s13638_022_02091_w
crossref_primary_10_1371_journal_pone_0319596
crossref_primary_10_32604_cmc_2022_024490
crossref_primary_10_32604_csse_2022_024239
Cites_doi 10.1016/j.wear.2018.12.087
10.1109/ACCESS.2019.2934976
10.1109/TSIPN.2019.2900201
10.1016/j.adhoc.2018.12.004
10.1007/s00477-019-01738-3
10.1016/j.future.2019.07.054
10.1109/ACCESS.2019.2907159
10.1007/978-981-10-8944-2_21
10.1145/3295748
10.7498/aps.68.20190123
10.1109/TVT.2019.2900460
10.1145/3285029
10.1109/LGRS.2018.2830403
10.1016/j.neucom.2019.10.007
10.1049/el.2018.6851
10.1007/s00521-018-3924-0
10.1016/j.ymssp.2019.04.036
10.1088/1741-2552/ab0ab5
10.3390/sym11010001
10.1109/TWC.2019.2906185
10.3389/fpsyt.2019.00205
10.1080/23322039.2019.1710970
10.1016/j.sbi.2018.10.008
10.1016/j.bspc.2020.101872
10.1109/ACCESS.2018.2890810
10.1002/dac.3942
10.1109/ACCESS.2019.2917257
10.1109/LWC.2019.2904956
10.1080/24751839.2019.1660845
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Li, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Li, Li 2020 Li, Li
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Li, Li. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Li, Li 2020 Li, Li
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0234068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Agricultural Science Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pattern recognition of wideband satellite modulation signal
EISSN 1932-6203
ExternalDocumentID 2423505068
oai_doaj_org_article_25e23d5b09ad405fae6cb436668638a9
10.1371/journal.pone.0234068
PMC7357751
A629354695
32658924
10_1371_journal_pone_0234068
Genre Retracted Publication
Journal Article
Comparative Study
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c692t-5ca97668fdfb60d838f95fd096e2eed54284dacb5f2d70f2c401d3cc64238a173
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:53:06 EST 2021
Tue Oct 14 19:05:12 EDT 2025
Sun Oct 26 02:08:40 EDT 2025
Tue Sep 30 15:52:26 EDT 2025
Thu Oct 02 04:09:34 EDT 2025
Tue Oct 07 07:39:08 EDT 2025
Mon Oct 20 22:19:06 EDT 2025
Mon Oct 20 16:33:18 EDT 2025
Thu Oct 16 15:01:47 EDT 2025
Thu Oct 16 15:01:34 EDT 2025
Thu May 22 21:16:11 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Wed Oct 01 04:42:03 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-5ca97668fdfb60d838f95fd096e2eed54284dacb5f2d70f2c401d3cc64238a173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Correction/Retraction-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-0012-261X
OpenAccessLink https://doaj.org/article/25e23d5b09ad405fae6cb436668638a9
PMID 32658924
PQID 2423505068
PQPubID 1436336
PageCount e0234068
ParticipantIDs plos_journals_2423505068
doaj_primary_oai_doaj_org_article_25e23d5b09ad405fae6cb436668638a9
unpaywall_primary_10_1371_journal_pone_0234068
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7357751
proquest_miscellaneous_2423799958
proquest_journals_2423505068
gale_infotracmisc_A629354695
gale_infotracacademiconefile_A629354695
gale_incontextgauss_ISR_A629354695
gale_incontextgauss_IOV_A629354695
gale_healthsolutions_A629354695
pubmed_primary_32658924
crossref_primary_10_1371_journal_pone_0234068
crossref_citationtrail_10_1371_journal_pone_0234068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-13
PublicationDateYYYYMMDD 2020-07-13
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M. Z. Hossain (pone.0234068.ref005) 2019; 51
D. Jiang (pone.0234068.ref030) 2019
E. Guarnera (pone.0234068.ref003) 2019; 56
S. Zhang (pone.0234068.ref004) 2019; 52
T. Tuncer (pone.0234068.ref006) 2020; 58
A. Craik (pone.0234068.ref026) 2019; 16
S. Wang (pone.0234068.ref022) 2019; 426
P. H. Huynh (pone.0234068.ref023) 2019; 3
M. Mateen (pone.0234068.ref031) 2019; 11
I. F. Akyildiz (pone.0234068.ref001) 2019; 86
M. B. Seitshiro (pone.0234068.ref029) 2020; 8
F. Wang (pone.0234068.ref015) 2019; 130
I. F. Akyildiz (pone.0234068.ref020) 2019; 86
M. Al-Nahhal (pone.0234068.ref025) 2019; 32
A. Rehman (pone.0234068.ref033) 2019; 7
H. Chen (pone.0234068.ref010); 7
W. Jiang (pone.0234068.ref028); 102
A. P. Hermawan (pone.0234068.ref018) 2020
Y. Wang (pone.0234068.ref012) 2019; 68
E. Kazikli (pone.0234068.ref017) 2019; 18
P. Ma (pone.0234068.ref009) 2018; 54
S. Hong (pone.0234068.ref011) 2019; 7
Y. Huang (pone.0234068.ref016) 2019; 7
M. Rathinasamy (pone.0234068.ref019) 2019; 33
D. Cao (pone.0234068.ref008); 10
S. H. Wang (pone.0234068.ref032) 2019; 10
S. Huang (pone.0234068.ref014) 2019; 8
B. Ma (pone.0234068.ref021) 2020; 379
Z. Zhang (pone.0234068.ref013) 2019; 5
S. H. Wang (pone.0234068.ref027); 32
J. Zhu (pone.0234068.ref007) 2018; 15
X. Zhou (pone.0234068.ref024) 2019
X. Y. Liu (pone.0234068.ref002) 2019; 68
40043021 - PLoS One. 2025 Mar 5;20(3):e0319596. doi: 10.1371/journal.pone.0319596.
References_xml – volume: 426
  start-page: 1761
  year: 2019
  ident: pone.0234068.ref022
  article-title: Integrated model of BP neural network and CNN algorithm for automatic wear debris classification
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.087
– start-page: 275
  year: 2019
  ident: pone.0234068.ref024
  article-title: Wireless Signal Recognition Based on Deep Learning for LEO Constellation Satellite. In International Conference on Space Information Network
  publication-title: Space Information Networks
– volume: 7
  start-page: 114631
  year: 2019
  ident: pone.0234068.ref011
  article-title: Deep learning-based signal modulation identification in OFDM systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934976
– volume: 5
  start-page: 469
  issue: 3
  year: 2019
  ident: pone.0234068.ref013
  article-title: Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2019.2900201
– volume: 86
  start-page: 166
  year: 2019
  ident: pone.0234068.ref020
  article-title: A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2018.12.004
– volume: 10
  start-page: 1
  issue: 1
  ident: pone.0234068.ref008
  article-title: An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks
  publication-title: Human-centric Computing and Information Sciences
– volume: 33
  start-page: 2053
  issue: 11–12
  year: 2019
  ident: pone.0234068.ref019
  article-title: Wavelet analysis of precipitation extremes over India and teleconnections to climate indices
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-019-01738-3
– volume: 102
  start-page: 210
  ident: pone.0234068.ref028
  article-title: Exploiting potential of deep neural networks by layer-wise fine-grained parallelism
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.054
– volume: 7
  start-page: 41193
  year: 2019
  ident: pone.0234068.ref016
  article-title: Automatic modulation recognition of radar signals based on manhattan distance-based features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907159
– start-page: 173
  volume-title: Recent Developments in Intelligent Computing, Communication and Devices”
  year: 2019
  ident: pone.0234068.ref030
  doi: 10.1007/978-981-10-8944-2_21
– volume: 51
  start-page: 1
  issue: 6
  year: 2019
  ident: pone.0234068.ref005
  article-title: A comprehensive survey of deep learning for image captioning
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3295748
– start-page: 1
  year: 2020
  ident: pone.0234068.ref018
  article-title: CNN-Based Automatic Modulation Classification for Beyond 5G Communications
  publication-title: IEEE Communications Letters
– volume: 68
  start-page: 128401
  issue: 12
  year: 2019
  ident: pone.0234068.ref002
  article-title: Average symbol error rate for integrated satellite-terrestrial cooperative transmission with interference
  publication-title: Acta Physica Sinica
  doi: 10.7498/aps.68.20190123
– volume: 68
  start-page: 4074
  issue: 4
  year: 2019
  ident: pone.0234068.ref012
  article-title: Data-driven deep learning for automatic modulation recognition in cognitive radios
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2019.2900460
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0234068.ref004
  article-title: Deep learning-based recommender system: A survey and new perspectives
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3285029
– volume: 15
  start-page: 1254
  issue: 8
  year: 2018
  ident: pone.0234068.ref007
  article-title: Deformable convolutional neural networks for hyperspectral image classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2830403
– volume: 379
  start-page: 152
  year: 2020
  ident: pone.0234068.ref021
  article-title: Autonomous deep learning: a genetic DCNN designer for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.007
– volume: 54
  start-page: 1373
  issue: 24
  year: 2018
  ident: pone.0234068.ref009
  article-title: Deformable convolutional networks for multi-view 3D shape classification
  publication-title: Electronics Letters
  doi: 10.1049/el.2018.6851
– volume: 32
  start-page: 665
  issue: 3
  ident: pone.0234068.ref027
  article-title: Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3924-0
– volume: 130
  start-page: 349
  year: 2019
  ident: pone.0234068.ref015
  article-title: Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.04.036
– volume: 16
  start-page: 031001
  issue: 3
  year: 2019
  ident: pone.0234068.ref026
  article-title: “Deep learning for electroencephalogram (EEG) classification tasks: a review”
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2552/ab0ab5
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0234068.ref031
  article-title: Fundus image classification using VGG-19 architecture with PCA and SVD
  publication-title: Symmetry
  doi: 10.3390/sym11010001
– volume: 18
  start-page: 2623
  issue: 5
  year: 2019
  ident: pone.0234068.ref017
  article-title: Optimal Joint Modulation Classification and Symbol Decoding
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2019.2906185
– volume: 10
  start-page: 205
  year: 2019
  ident: pone.0234068.ref032
  article-title: Alcoholism identification based on an AlexNet transfer learning model
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2019.00205
– volume: 8
  start-page: 1710970
  issue: 1
  year: 2020
  ident: pone.0234068.ref029
  article-title: Assessment of model risk due to the use of an inappropriate parameter estimator
  publication-title: Cogent Economics & Finance
  doi: 10.1080/23322039.2019.1710970
– volume: 56
  start-page: 18
  year: 2019
  ident: pone.0234068.ref003
  article-title: On the perturbation nature of allostery: sites, mutations, and signal modulation
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2018.10.008
– volume: 58
  start-page: 101872
  year: 2020
  ident: pone.0234068.ref006
  article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.101872
– volume: 7
  start-page: 17149
  year: 2019
  ident: pone.0234068.ref033
  article-title: Automatic visual features for writer identification: A deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890810
– volume: 86
  start-page: 166
  year: 2019
  ident: pone.0234068.ref001
  article-title: A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2018.12.004
– volume: 32
  start-page: e3942
  issue: 9
  year: 2019
  ident: pone.0234068.ref025
  article-title: Enhancing spectral efficiency of FSO system using adaptive SIM/M‐PSK and SIMO in the presence of atmospheric turbulence and pointing errors
  publication-title: International Journal of Communication Systems
  doi: 10.1002/dac.3942
– volume: 7
  start-page: 66347
  ident: pone.0234068.ref010
  article-title: Deformable Convolutional Matrix Factorization for Document Context-Aware Recommendation in Social Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917257
– volume: 8
  start-page: 1044
  issue: 4
  year: 2019
  ident: pone.0234068.ref014
  article-title: Automatic modulation classification using contrastive fully convolutional network
  publication-title: IEEE Wireless Communications Letters
  doi: 10.1109/LWC.2019.2904956
– volume: 3
  start-page: 533
  issue: 4
  year: 2019
  ident: pone.0234068.ref023
  article-title: Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data
  publication-title: Journal of Information and Telecommunication
  doi: 10.1080/24751839.2019.1660845
– reference: 40043021 - PLoS One. 2025 Mar 5;20(3):e0319596. doi: 10.1371/journal.pone.0319596.
SSID ssj0053866
Score 2.3625684
SecondaryResourceType retracted_publication
Snippet This research aims to analyze the effects of different parameter estimation on the recognition performance of satellite modulation signals based on deep...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0234068
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Binary phase shift keying
Biology and Life Sciences
Broadband
Classification
Computer and Information Sciences
Computer simulation
Deep Learning
Deformation effects
Engineering and Technology
Feature extraction
Formability
Intellectual property
Machine learning
Medicine and Health Sciences
Methods
Neural networks
Neural Networks, Computer
Observations
Parameter estimation
Pattern analysis
Pattern recognition
Pattern recognition (Computers)
Pattern Recognition, Automated - methods
Phase shift
Phase shift keying
Physical Sciences
Quadrature amplitude modulation
Quadrature phase shift keying
Research and Analysis Methods
Satellite Communications
Satellite constellations
Satellites
Satellites (Spacecraft)
Signal Processing, Computer-Assisted
Signal to noise ratio
Technology application
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NWcAgJOCQbTaO7eRYEFVBAiSgqLfI8UdbKU2iza4QP4D_zYzjjRpRqT1wWil-ySozY_vN7swzIa9QAjzRooitsDzOgODHCntlXFXkJkMBd4XdyJ-_iKPj7NMJP7l01BfWhA3ywIPh9lNuU2Z4lRQK7uVOWaGrjAHrziF0lG_dS_Jim0wNazDMYiFCoxyTy_3gl0XXNnYBuxTsYvlkI_J6_eOqPOvqtr-Kcv5bOXl703Tq9y9V15e2pcN75G7gk_RgeI8dcss298lOmLE9fRNkpd8-IH-2-iO0dRRoH-28tGZDxxqitqGqPm1X5-uzCwRVq1aZSjWG9soLd64tvWhNOPCLYukHfDV2oa2osZ79VrWlWMgeAhqGUTDTf_hy8_4hOT788OP9URwOYYjBg-k65loBYxG5M64SiclZ7gruDGQ-NoX9lUP6khmlK-5SIxOXakjYDNMa8hpwz1KyR2TWgNl3CRVKJkJpzY0DD3CjpLMstUUKPIIBkYsI23qk1EGhHA_KqEv_t5uETGUwaol-LIMfIxKPd3WDQsc1-Hfo7BGL-tr-AkRdGaKuvC7qIvIcQ6UcmlXHVaI8EECfeCYKHpGXHoEaGw0W8ZyqTd-XH7_-vAHo-7cJ6HUAuRbMoVVonIB3Qu2uCXI-QcJKoSfDuxjYW6v0JXJpYMDeKPNtsF89_GIcxodiYV5j282AkZBkcMA8HubGaFnIDHgO-X1E5GTWTEw_HWnOz7zEuWRcSr6MyGKcXzdy7t7_cO4TcifFX1VQPpXNyWy92tinQD3X1TO_yvwFAKuFPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvE-NrgQEGIQEP6dI4dpIHhDa0aSBR0GBob5ET2x1SloSmFeIP4P_mznECERPsqVJ9aZX7vuTud4Q8QwjwoBCpr4XmfgQJvi9xVsbkaaIiBHCXOI38fi6OT6N3Z_xsg8z7WRhsq-x9onXUqi7wGfkexn2I1oFIXjfffNwahW9X-xUa0q1WUK8sxNg1shkiMtaEbB4czj-e9L4ZrFsIN0DH4tmek9e0qSs9hegF0S0ZBSiL4z9460lT1u1lqejfHZXX11Ujf3yXZflHuDq6SbZcnkn3O8XYJhu6ukW2nSW39IWDm355m_zscUlobSikg7SxkJsVHXqL6orKcgHMWJ1fIFG-rKXKZaVoKy2g50rTi1q5RWAUW0Lgr3E6bUmVtllxXmqKDe5O0eEYgTTth21Db--Q06PDz2-OfbecwQfJhiufFxIyGZEYZXIRqIQlJuVGQUWkQ4i7HMqaSMki5yZUcWDCAgo5xYoC6h2WyFnM7pJJBWzfIVTIOBAgQa4MSIArGRvNQp2GkF8wSPA8wnqJZIVDLscFGmVmX8fFUMF0TM1QjpmTo0f84aqmQ-74D_0BCnugRdxt-0W9XGTOjLOQ65ApngepBE3mRmpR5BGDGjABRyZTjzxGVcm6IdbBe2T7AtIqHomUe-SppUDsjQqbexZy3bbZ2w9frkD06WRE9NwRmRrYUUg3UAH3hJheI8rdESV4kGJ0vIOK3XOlzX7bGlzZK_vlx0-GY_xRbNirdL3uaGIoPjjQ3OtsY-AsVAw8gbrfI_HIakasH59UX88t9HnMeBzzmUemg31dSbj3_30fD8iNEJ-jIGAq2yWT1XKtH0KyucofOQ_yC-hIg28
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6sIBBiMchadaO8zguiKogURBQ1B5Q5NhOW7FNVpusEBy48b-ZcZyIQBHlwGlX67E3-fz6Jp75QsgDlAAPVJR6JjLCC4HgexJzZYo8TXSIAu4Ss5Ff7UY7e-HLfbG_Rj52uTAOQfAR51VtT_LxS1WaLYfkFuoVtaen_pTH066GvwAjH3Yg2KGSh1ZxCJ-MNZiAdI6sRwKo-ois7-2-mR20J83Mi1jAXTrdn1oabFdW1b9fu0d4ZacR09_jK8-vyoX88lnO5z9tXtuXyLfuttuYlU_-qsl99fUXRcj_hstlctHRXjprW9kga6a8QjbcwlLTx079-slV8r2TSaFVQYGd0oVVAC1pH-pUlVTOD6vlcXN0gkb5spI6l6WmtbT6oo2hJ5V27yWjGKECf43JckuqjSXpcFUU4-3dvINi1PW0HzYqvr5G9rafv3-247l3RXgw0FjjCSWBWEVJoYs8CnTCkyIVhQYHzTCgAQK8rFBLlYuC6TgomAK_UnOlwP3iiZzG_DoZlYDUJqGRjINIKiV0AaAJLePCcGZSBnSHA98cE94NiUw5IXV8n8c8s6eDMThULagZQp856MfE62stWiGRv9g_xdHW26IMuP0B-j5zfZ4xYRjXIg9SCRNLFNJEKg85uKQJrKsyHZO7OFazNqe2X8yyWQQsT4RRKsbkvrVAKZASY40O5aqusxevP5zB6N3bgdEjZ1RUAIeSLr8D7gmH5sByMrCEBU0NijdxbHeo1BlSfiDqFpRJN9tOL77XF2OjGD9YmmrV2sTgCwmwudFOzh5ZcGBEkrJwTOLBtB1APywpj4-sEnvMRRyL6Zj4_QQ_U-fe_NcKt8gFhg96UNGVT8ioWa7MbWDDTX7HrWk_ACv0vK4
  priority: 102
  providerName: Unpaywall
Title Analysis of the pattern recognition algorithm of broadband satellite modulation signal under deformable convolutional neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/32658924
https://www.proquest.com/docview/2423505068
https://www.proquest.com/docview/2423799958
https://pubmed.ncbi.nlm.nih.gov/PMC7357751
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234068&type=printable
https://doaj.org/article/25e23d5b09ad405fae6cb436668638a9
http://dx.doi.org/10.1371/journal.pone.0234068
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqUYhAQ8pEqTOE4eEOqmlYG0Mg2KxlPkxE43KUtK0gr2B_B_c-c6ERFF9CWV4kui3vns75K77wh5iRTgThpEtgoUs30A-LbAWpksiULpI4G7wGrk02lwMvM_XrCLHdL0bDUKrDeGdthPalblw5_fb96Bw7_VXRv4qLlouCgLNYQ9CPaocJfswV4VYTOHU7_9rgDerb9eImqxA9fxTDHdv-7S2aw0p3-7cvcWeVlvgqV_Z1feWhULcfND5PkfW9fkLrljMCcdryfJPtlRxT2yb7y6pq8N9fSb--RXw1FCy4wCNKQLTb9Z0DbPqCyoyOdldbW8vEahpCqFTEQhaS00uedS0etSmqZgFNND4NFYqVZRqTRCTnJFMdndTHoYRlJN_aNT0usHZDY5_nJ0YptGDTZY2V3aLBWAaoIwk1kSODL0wiximYToSLmwBzMIcXwp0oRlruRO5qYQ1EkvTSH28UIx4t5D0itA7QeEBoI7gUhTJjOwAJOCZ8pzVeQC1vAA7FnEaywSp4bFHJtp5LH-NMchmlkrNUY7xsaOFrHbqxZrFo__yB-isVtZ5ODWJ8pqHhuXjl2mXE-yxIkEzGqWCRWkie9BPBjCoiYiizzDqRKvC1rblSQeBwCxmB9EzCIvtATycBSY6DMXq7qOP3z6uoXQ5_OO0CsjlJWgjlSY4gr4T8jv1ZHsdyRhNUk7wwc4sRut1DHibUDJWin9ZrJvHn7eDuNNMXmvUOVqLcMhEGEg82jtG61mIXpgYeT6FuEdr-movjtSXF1qGnTuMc7ZyCLD1r-2Mu7jbbT-hNx28c0KUqh6fdJbViv1FODnMhmQXX7B4RgejfA4eT8ge4fH07PzgX6hM9ArDpybTc_G334DDJ2Nhw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBqeP1ru0DQuVRJfSBBG2Vm1nvrlMk1w5xoqo_gL_Db2TGXhssKuilJ0vZsR3P7LzsmW8IeYYQ4K4SkWOE4Y4PAb4jsVcmTaJQ-wjgLrEbef9AjI78jxM-WSE_m14YLKtsbGJlqHWh8B35Fvp98NauCN_Mvjs4NQq_rjYjNOptsWvOzyBlK1-P34N8n3vezofDdyPHThVw4C95C4crCS5YhKlOE-HqkIVpxFMNobzxwGFwiMd9LVXCU08HbuopyEA0UwoCdRbKYcDgutfIdZ-BLQH9CSZtgge2QwjbnseC4ZbdDYNZkZsB-EbwnWHH_VVTAlpf0JtlRXlRoPt3vebqMp_J8zOZZX84w51b5KaNYul2ve3WyIrJb5M1aydK-tKCWb-6Q340qCe0SCkEm3RWAXrmtK1cKnIqsymwenFyikTJvJA6kbmmpazgQheGnhbajhmjWHACt8betznVpoq5k8xQLJ-3agTLCNNZHaoi9_IuOboSId0jvRzYvk6okIErpFJcpyABrmWQGuaZyIPohUH42CeskUisLC46jufI4upjXwD5Uc3UGOUYWzn2idOeNatxQf5D_xaF3dIiqnf1QzGfxtZIxB43HtM8cSMJesJTaYRKfAYZZghmUkZ9solbJa5bZFvbFG8LCNq4LyLeJ08rCkT2yLF0aCqXZRmPPx1fgujL5w7RC0uUFsAOJW27BjwTIoZ1KDc6lGCfVGd5HTd2w5Uy_q3JcGaz2S9eftIu40WxHDA3xbKmCSC14UBzv9aNlrOQj_Aw8vw-CTpa02F9dyX_dlIBqweMBwEf9smg1a9LCffBv59jk6yODvf34r3xwe5DcsPDNzYIzco2SG8xX5pHENYukseVLaHk61Ubr1-nBbps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXRHk1UOiCQMDBaer17toHhAolaigUBBTlZtb7aJFSO8SJqv4A_hS_jhl7bbCooJeeLGXHdjyz87JnviHkEUKAD7RIAissDyII8AOFvTIuS2ITIYC7wm7kd3tiZz96M-bjJfKz6YXBssrGJlaG2hQa35FvoN8Hbz0Q8YbzZREftocvpt8DnCCFX1qbcRr1Ftm1J8eQvpXPR9sg68dhOHz9-dVO4CcMBPD3wnnAtQJ3LGJnXCYGJmaxS7gzENbbEJwHh9g8Mkpn3IVGDlyoIRsxTGsI2lmsNiWD614gFyVjCZYTynGb7IEdEcK36jG5ueF3Rn9a5LYPfhL8aNxxhdXEgNYvLE8nRXla0Pt37eblRT5VJ8dqMvnDMQ6vkas-oqVb9RZcIUs2v05WvM0o6VMPbP3sBvnRIKDQwlEIPOm0AvfMaVvFVORUTQ6A1fPDIyTKZoUymcoNLVUFHTq39KgwfuQYxeITuDX2wc2osVX8nU0sxVJ6r1KwjJCd1aEqeC9vkv1zEdItspwD21cJFUoOhNKaGwcS4EZJZ1lokxAiGQahZI-wRiKp9hjpOKpjklYf_iTkSjVTU5Rj6uXYI0F71rTGCPkP_UsUdkuLCN_VD8XsIPUGIw25DZnh2SBRoDPcKSt0FjHINmMwmSrpkXXcKmndLtvaqXRLQADHI5HwHnlYUSDKR476cqAWZZmO3n85A9Gnjx2iJ57IFcAOrXzrBjwTood1KNc6lGCrdGd5FTd2w5Uy_a3VcGaz2U9fftAu40WxNDC3xaKmkZDmcKC5XetGy1nITXichFGPyI7WdFjfXcm_HVYg65JxKflmj_Rb_TqTcO_8-znWySUwW-nb0d7uXXIlxJc3iNLK1sjyfLaw9yDCnWf3K1NCydfztl2_AHsxvq8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6sIBBiMchadaO8zguiKogURBQ1B5Q5NhOW7FNVpusEBy48b-ZcZyIQBHlwGlX67E3-fz6Jp75QsgDlAAPVJR6JjLCC4HgexJzZYo8TXSIAu4Ss5Ff7UY7e-HLfbG_Rj52uTAOQfAR51VtT_LxS1WaLYfkFuoVtaen_pTH066GvwAjH3Yg2KGSh1ZxCJ-MNZiAdI6sRwKo-ois7-2-mR20J83Mi1jAXTrdn1oabFdW1b9fu0d4ZacR09_jK8-vyoX88lnO5z9tXtuXyLfuttuYlU_-qsl99fUXRcj_hstlctHRXjprW9kga6a8QjbcwlLTx079-slV8r2TSaFVQYGd0oVVAC1pH-pUlVTOD6vlcXN0gkb5spI6l6WmtbT6oo2hJ5V27yWjGKECf43JckuqjSXpcFUU4-3dvINi1PW0HzYqvr5G9rafv3-247l3RXgw0FjjCSWBWEVJoYs8CnTCkyIVhQYHzTCgAQK8rFBLlYuC6TgomAK_UnOlwP3iiZzG_DoZlYDUJqGRjINIKiV0AaAJLePCcGZSBnSHA98cE94NiUw5IXV8n8c8s6eDMThULagZQp856MfE62stWiGRv9g_xdHW26IMuP0B-j5zfZ4xYRjXIg9SCRNLFNJEKg85uKQJrKsyHZO7OFazNqe2X8yyWQQsT4RRKsbkvrVAKZASY40O5aqusxevP5zB6N3bgdEjZ1RUAIeSLr8D7gmH5sByMrCEBU0NijdxbHeo1BlSfiDqFpRJN9tOL77XF2OjGD9YmmrV2sTgCwmwudFOzh5ZcGBEkrJwTOLBtB1APywpj4-sEnvMRRyL6Zj4_QQ_U-fe_NcKt8gFhg96UNGVT8ioWa7MbWDDTX7HrWk_ACv0vK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+pattern+recognition+algorithm+of+broadband+satellite+modulation+signal+under+deformable+convolutional+neural+networks&rft.jtitle=PloS+one&rft.au=Li%2C+Hui&rft.au=Li%2C+Ming&rft.date=2020-07-13&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=7&rft.spage=e0234068&rft_id=info:doi/10.1371%2Fjournal.pone.0234068&rft.externalDBID=IOV&rft.externalDocID=A629354695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon