Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data

Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the sy...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 1; p. e0244233
Main Authors Bae, Wan D., Kim, Sungroul, Park, Choon-Sik, Alkobaisi, Shayma, Lee, Jongwon, Seo, Wonseok, Park, Jong Sook, Park, Sujung, Lee, Sangwoon, Lee, Jong Wook
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.01.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0244233

Cover

Abstract Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients’ peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
AbstractList Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 [mu]m and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
Audience Academic
Author Alkobaisi, Shayma
Bae, Wan D.
Lee, Sangwoon
Lee, Jong Wook
Park, Choon-Sik
Lee, Jongwon
Park, Jong Sook
Seo, Wonseok
Park, Sujung
Kim, Sungroul
AuthorAffiliation 3 Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea
2 Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea
4 College of Information Technology, United Arab Emirates University, Abu Dhabi, UAE
Newcastle University, UNITED KINGDOM
5 Department of Informatics, Technical University of Munich, Munich, Germany
1 Department of Computer Science, Seattle University, Seattle, Washington, United States of America
AuthorAffiliation_xml – name: 5 Department of Informatics, Technical University of Munich, Munich, Germany
– name: Newcastle University, UNITED KINGDOM
– name: 2 Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea
– name: 1 Department of Computer Science, Seattle University, Seattle, Washington, United States of America
– name: 4 College of Information Technology, United Arab Emirates University, Abu Dhabi, UAE
– name: 3 Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea
Author_xml – sequence: 1
  givenname: Wan D.
  surname: Bae
  fullname: Bae, Wan D.
– sequence: 2
  givenname: Sungroul
  orcidid: 0000-0001-8726-9288
  surname: Kim
  fullname: Kim, Sungroul
– sequence: 3
  givenname: Choon-Sik
  surname: Park
  fullname: Park, Choon-Sik
– sequence: 4
  givenname: Shayma
  surname: Alkobaisi
  fullname: Alkobaisi, Shayma
– sequence: 5
  givenname: Jongwon
  surname: Lee
  fullname: Lee, Jongwon
– sequence: 6
  givenname: Wonseok
  surname: Seo
  fullname: Seo, Wonseok
– sequence: 7
  givenname: Jong Sook
  surname: Park
  fullname: Park, Jong Sook
– sequence: 8
  givenname: Sujung
  surname: Park
  fullname: Park, Sujung
– sequence: 9
  givenname: Sangwoon
  surname: Lee
  fullname: Lee, Sangwoon
– sequence: 10
  givenname: Jong Wook
  surname: Lee
  fullname: Lee, Jong Wook
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33411771$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaZq0b1BaQaG0F7u1ZcuHXhRC6CEQSOnpVozl0VqpLG0kOcm-ap-mcnYTsiGU4Avbo2_-OWov2THWYJK8yNJ5llfZ-1M7OgN6vozmeUqLgub5o-Rp1uR0VtI037n1vZvseX-apiyvy_JJspvnRZZVVfY0-fsNnbRuACOQqGHp7DkOaAKxkgwgemWQaARnlFmQgKI36mxET5YOOyXClbVHAt5boSAoayZPvASBrr35XyL8icalchCsWxGp7QVx0zG5UKEnvrcuRHk3TJT1o5uinqMmwRJlOmsdAeXI2QhahRUZ_RQYulGHGDr0Q5QSngg9-iiCHekgwLPksQTt8fnmvZ_8-vzp5-HX2fHJl6PDg-OZKBsaZkWDLWTYNW2bs4pKBljXDETNClrSFqksQaQNK1omu4bWbd5VNBeZkCClaKt8P3m11l1q6_lmLJ7ToippnEBVROJoTXQWTvnSqQHciltQ_Mpg3YKDixVo5GWaYVNT2qZCFCLLayaRMlm3XcvKtqVRi621RrOE1QVofSOYpXzajOsU-LQZfLMZ0e_jJsuxHbATccYO9FYy2ydG9Xxhz3lVNWkR69hP3m4EnJ1WIPBBeYFag0E7rutlZV2yCX19B72_KxtqAbFwZaSNccUkyg9KltYZS4tJa34PFZ8OByVihVJF-5bDuy2HyAS8DAsYvedHP74_nD35vc2-ucX2CDr03upx2nG_Db683embFl9fuggUa0A4671D-dAJfrjjJlS4umKxI0r_3_kfqTpchg
CitedBy_id crossref_primary_10_3390_technologies13030122
crossref_primary_10_3390_life12101631
crossref_primary_10_1016_j_jclinepi_2024_111636
crossref_primary_10_1109_ACCESS_2025_3532222
crossref_primary_10_1016_j_dche_2022_100040
crossref_primary_10_1016_j_jaip_2022_01_047
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_1109_ACCESS_2024_3440502
crossref_primary_10_1111_all_15667
crossref_primary_10_3390_ijerph20156441
Cites_doi 10.1023/A:1008074223811
10.1111/j.1532-5415.2008.02005.x
10.1002/9781118646106.ch3
10.1542/peds.2016-2589
10.1542/peds.105.5.1029
10.1186/s40733-016-0029-3
10.1016/S0091-6749(99)70468-9
10.1007/978-3-319-47617-9
10.1016/j.ins.2013.07.007
10.1109/ACCESS.2019.2960551
10.1109/HICSS.2016.488
10.1111/j.1365-2648.2005.03591.x
10.3390/app9091947
10.1109/ISBI.2017.7950523
10.1016/j.jfma.2011.07.003
10.3233/AIS-190540
10.1097/MCP.0b013e32834db288
10.1016/S0895-4356(96)00002-9
10.1002/alr.21547
10.1109/ICMEW.2015.7169780
10.1016/j.cmpb.2010.04.016
10.1186/s12911-015-0208-9
10.1016/j.puhe.2008.11.001
10.5322/JESI.2020.29.1.109
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Bae et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Bae et al 2021 Bae et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Bae et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Bae et al 2021 Bae et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0244233
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Computer Science
DocumentTitleAlternate Comparison of performance of machine-learning techniques
EISSN 1932-6203
ExternalDocumentID 2476219374
oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2
10.1371/journal.pone.0244233
PMC7790419
A650815049
33411771
10_1371_journal_pone_0244233
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations South Korea
United States--US
GeographicLocations_xml – name: South Korea
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: Brain Korea 21
– fundername: ;
  grantid: 2016001360002
– fundername: ;
  grantid: CSE-01-2019
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-49eba1ed9bb3572f5ae885ac854262be2f6ac0954b5fd928b3d723c1cfaffcb73
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:59 EDT 2023
Fri Oct 03 12:50:58 EDT 2025
Sun Oct 26 04:09:15 EDT 2025
Tue Sep 30 16:44:15 EDT 2025
Fri Sep 05 14:29:33 EDT 2025
Tue Oct 07 07:45:17 EDT 2025
Mon Oct 20 21:55:35 EDT 2025
Mon Oct 20 16:45:26 EDT 2025
Thu Oct 16 14:30:19 EDT 2025
Thu Oct 16 14:52:32 EDT 2025
Thu May 22 21:06:21 EDT 2025
Wed Feb 19 02:28:38 EST 2025
Thu Apr 24 23:11:34 EDT 2025
Wed Oct 01 01:16:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-49eba1ed9bb3572f5ae885ac854262be2f6ac0954b5fd928b3d723c1cfaffcb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have read the journal’s policy, and the authors of this manuscript have no competing interests.
ORCID 0000-0001-8726-9288
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0244233
PMID 33411771
PQID 2476219374
PQPubID 1436336
PageCount e0244233
ParticipantIDs plos_journals_2476219374
doaj_primary_oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2
unpaywall_primary_10_1371_journal_pone_0244233
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790419
proquest_miscellaneous_2476568659
proquest_journals_2476219374
gale_infotracmisc_A650815049
gale_infotracacademiconefile_A650815049
gale_incontextgauss_ISR_A650815049
gale_incontextgauss_IOV_A650815049
gale_healthsolutions_A650815049
pubmed_primary_33411771
crossref_primary_10_1371_journal_pone_0244233
crossref_citationtrail_10_1371_journal_pone_0244233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-07
PublicationDateYYYYMMDD 2021-01-07
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T Lisa (pone.0244233.ref027) 2010
E Forno (pone.0244233.ref012) 2012; 18
pone.0244233.ref031
C Nunes (pone.0244233.ref003) 2017; 3
S Levine (pone.0244233.ref007) 2011
DA Dorr (pone.0244233.ref009) 2008; 56
pone.0244233.ref018
PA Loftus (pone.0244233.ref001) 2015; 5
S Purdy (pone.0244233.ref004) 2009; 123
R Axelrod (pone.0244233.ref010) 2001; 8
C-H Lee (pone.0244233.ref029) 2011; 101
C Thuemmler (pone.0244233.ref006) 2017
P SuJung (pone.0244233.ref013) 2020; 29
Y Jie (pone.0244233.ref014) 2011; 110
S Kim (pone.0244233.ref020) 2019; 9
pone.0244233.ref024
V López (pone.0244233.ref017) 2013; 250
CS Kelly (pone.0244233.ref011) 2000; 105
DJ Livingstone (pone.0244233.ref026) 1997; 11
pone.0244233.ref022
pone.0244233.ref021
DK Greineder (pone.0244233.ref008) 1999; 103
S Alkobaisi (pone.0244233.ref023) 2019; 11
NB Johnson (pone.0244233.ref002) 2014; 63
pone.0244233.ref028
pone.0244233.ref005
JV Tu (pone.0244233.ref025) 1996; 49
EC Matsui (pone.0244233.ref015) 2016; 138
G Luo (pone.0244233.ref030) 2015; 15
D Kim (pone.0244233.ref032) 2020; 8
G Richardson (pone.0244233.ref016) 2005; 52
J Woo (pone.0244233.ref019) 2020; 1
References_xml – volume: 11
  start-page: 135
  issue: 2
  year: 1997
  ident: pone.0244233.ref026
  article-title: Data modelling with neural networks: advantages and limitations
  publication-title: Journal of computer-aided molecular design
  doi: 10.1023/A:1008074223811
– volume: 56
  start-page: 2195
  issue: 12
  year: 2008
  ident: pone.0244233.ref009
  article-title: The effect of technology-supported, multidisease care management on the mortality and hospitalization of seniors
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/j.1532-5415.2008.02005.x
– ident: pone.0244233.ref024
  doi: 10.1002/9781118646106.ch3
– volume: 138
  issue: 5
  year: 2016
  ident: pone.0244233.ref015
  article-title: Indoor Environmental Control Practices and Asthma Management
  publication-title: Pediatrics
  doi: 10.1542/peds.2016-2589
– volume: 105
  start-page: 1029
  issue: 5
  year: 2000
  ident: pone.0244233.ref011
  article-title: Outcomes evaluation of a comprehensive intervention program for asthmatic children enrolled in medicaid
  publication-title: Pediatrics
  doi: 10.1542/peds.105.5.1029
– volume: 3
  year: 2017
  ident: pone.0244233.ref003
  article-title: Asthma costs and social impact
  publication-title: Asthma Research and Practice
  doi: 10.1186/s40733-016-0029-3
– volume: 103
  start-page: 436
  issue: 3 Pt 1
  year: 1999
  ident: pone.0244233.ref008
  article-title: A randomized controlled trial of a pediatric asthma outreach program
  publication-title: The Journal of allergy and clinical immunology
  doi: 10.1016/S0091-6749(99)70468-9
– volume: 1
  start-page: 159
  year: 2020
  ident: pone.0244233.ref019
  article-title: Assessment of Daily Personal PM2.5 Exposure Level According to Four Major Activities among Children
  publication-title: Appl Sci
– volume: 63
  start-page: 3
  issue: 4
  year: 2014
  ident: pone.0244233.ref002
  article-title: CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013
  publication-title: MMWR supplements
– start-page: 1
  volume-title: Health 4.0: How virtualization and big data are revolutionizing healthcare
  year: 2017
  ident: pone.0244233.ref006
  doi: 10.1007/978-3-319-47617-9
– volume: 250
  start-page: 113
  year: 2013
  ident: pone.0244233.ref017
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.07.007
– volume: 8
  start-page: 8791
  year: 2020
  ident: pone.0244233.ref032
  article-title: Predicting Asthma Attacks: Effects of Indoor PM Concentrations on Peak Expiratory Flow Rates of Asthmatic Children
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960551
– ident: pone.0244233.ref005
  doi: 10.1109/HICSS.2016.488
– volume: 8
  start-page: 38
  year: 2001
  ident: pone.0244233.ref010
  article-title: A disease management program utilising life coaches for children with asthma
  publication-title: J Clin Outcomes Manag
– volume: 52
  start-page: 328
  year: 2005
  ident: pone.0244233.ref016
  article-title: How is the indoor environment related to asthma?: Literature review
  publication-title: Journal of Advance Nursing
  doi: 10.1111/j.1365-2648.2005.03591.x
– volume: 9
  start-page: 1947
  year: 2019
  ident: pone.0244233.ref020
  article-title: Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea
  publication-title: Applied Sciences
  doi: 10.3390/app9091947
– ident: pone.0244233.ref022
– ident: pone.0244233.ref028
  doi: 10.1109/ISBI.2017.7950523
– volume: 110
  start-page: 555
  issue: 9
  year: 2011
  ident: pone.0244233.ref014
  article-title: Do indoor environments influence asthma and asthma-related symptoms among adults in homes?: a review of the literature
  publication-title: Journal of the Formosan Medical Association = Taiwan yi zhi
  doi: 10.1016/j.jfma.2011.07.003
– ident: pone.0244233.ref018
  doi: 10.1109/ISBI.2017.7950523
– volume: 11
  start-page: 1
  year: 2019
  ident: pone.0244233.ref023
  article-title: Predictive and exposome analytics: A case study of asthma exacerbation management
  publication-title: Journal of Ambient Intelligence and Smart Environments
  doi: 10.3233/AIS-190540
– volume: 18
  start-page: 63
  issue: 1
  year: 2012
  ident: pone.0244233.ref012
  article-title: Predicting asthma exacerbations in children
  publication-title: Current opinion in pulmonary medicine
  doi: 10.1097/MCP.0b013e32834db288
– volume: 49
  start-page: 1225
  issue: 11
  year: 1996
  ident: pone.0244233.ref025
  article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(96)00002-9
– volume: 5
  start-page: S7
  issue: Suppl 1
  year: 2015
  ident: pone.0244233.ref001
  article-title: Epidemiology and economic burden of asthma
  publication-title: International forum of allergy & rhinology
  doi: 10.1002/alr.21547
– ident: pone.0244233.ref031
  doi: 10.1109/ICMEW.2015.7169780
– volume: 101
  start-page: 44
  issue: 1
  year: 2011
  ident: pone.0244233.ref029
  article-title: A novel data mining mechanism considering bio-signal and environmental data with applications on asthma monitoring
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2010.04.016
– volume: 15
  start-page: 84
  issue: 1
  year: 2015
  ident: pone.0244233.ref030
  article-title: Predicting asthma control deterioration in children
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-015-0208-9
– volume: 123
  start-page: 169
  issue: 2
  year: 2009
  ident: pone.0244233.ref004
  article-title: Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians
  publication-title: Public health
  doi: 10.1016/j.puhe.2008.11.001
– volume-title: Predicting the Financial Risks of Seriously Ill Patients
  year: 2011
  ident: pone.0244233.ref007
– volume: 29
  start-page: 109
  issue: 1
  year: 2020
  ident: pone.0244233.ref013
  article-title: Impact of Indoor Pan-frying cooking activity on Change of Indoor PM2.5 Concentration Level in Asthmatics’ Homes
  publication-title: Journal of Environmental Science International
  doi: 10.5322/JESI.2020.29.1.109
– start-page: 242
  volume-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
  year: 2010
  ident: pone.0244233.ref027
– ident: pone.0244233.ref021
SSID ssj0053866
Score 2.4511733
Snippet Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently,...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0244233
SubjectTerms Accuracy
Adult
Aged
Air Pollution, Indoor - adverse effects
Air quality
Air quality control
Algorithms
Asthma
Asthma - chemically induced
Asthma - physiopathology
Biology and Life Sciences
Computer and Information Sciences
Computer science
Deep learning
Diagnosis
Drafting software
Earth Sciences
Ecology and Environmental Sciences
Editing
Electronic mail
Environmental aspects
Environmental Exposure - adverse effects
Environmental health
Exposure
Female
Graduate schools
Graduate studies
Health aspects
Health risks
Hospitals
Humans
Indoor air
Indoor air pollution
Indoor air quality
Indoor environments
Informatics
Information technology
Internal medicine
Learning algorithms
Machine Learning
Male
Medical screening
Medicine
Medicine and Health Sciences
Methods
Middle Aged
Outdoor air quality
Patients
Peak Expiratory Flow Rate - drug effects
Physical Sciences
Pulmonary function tests
Quality control
Remote sensing
Research and Analysis Methods
Risk factors
Time Factors
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8uFDAICTik3SR2nBwLoipIPAQU9RbZjr27IiTRJkvpX-XXMON400ZUag8cY08cxfP0ePyZkOdZoqJMgyJxplUAHjoLJDjqgEkhTBarUFnMd3z4mBwesffH_PjcVV9YE9bDA_cTtwcLBoMYc2qmNdNhnHJrIm5TVSieKOWs7yzNNoup3gaDFieJPygXi3DP82W3qSuzC14JYoh45IgcXv9glSdNWbcXhZz_Vk5eX1eNPD2RZXnOLR3cIjd9PEn3-__YItdMdZtseY1t6UsPK_3qDvnz-eyMAF26XIJLDdLa0p-upNJQf4fEnA7Qri1tVriX07nWhaHyjJ_4pvktNXBmeG6M_AGNm-17asv6hDopo5jype0C4n2K_gCpasxPwld_mZJ2NV1WRV2vqFyuaH_Y85RiXf6cOpQQ-HS3cAizLdXlGhEeTEGxxPUuOTp4--3NYeBvdgh0kkVdwDKjZGiKTKmYi8hyadKUS51yBMhXJrKJ1BD8McVtkUWpigsRxTrUVlqrlYjvkUkFvNwmVAqQjhAGYRBoWF2AdBV2VkgGQ4CtKaYk3rA51x72HG_fKHO3lydg-dNzKkfhyL1wTEkwvNX0sB-X0L9GCRpoEbTbNYAo516U88tEeUqeoPzl_QnYwfTk-xhFQ-DOsil55igQuKPCyqC5XLdt_u7T9ysQff0yInrhiWwN06GlP40B_4SAYCPKnRElmB896t5GbdnMSptHDPwrLAsEgzc3GnRx99OhGwfFar_K1OuehidpwmH0-73CDTMbQ9gVChFOiRip4mjqxz3VcuFw0xFak4Uw5u6gtFdi7oP_wdyH5EaE5VCYvRM7ZNKt1uYRxLOdeuxM11-WRaeC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_GTQJegI2PHQwICAl46G39TPuA0IY2DaSNaTC0typJk7sTpS3XO8b-Vf4a7DTtUTHBHpu4qZrYjuPYPxPyIomEl0gQpDCQwoEdOnE4bNROwBlTiS9codHfcXgUHZwGH87CsxVy1ObCYFhlqxONos5KiT7yLS8AsQVrgwVvq-8OVo3C29W2hAa3pRWyNwZi7BpZ9RAZa0BWd_eOjk9a3QzSHUU2gc5n7pZdr1FVFmoEuxXYFn5vgzI4_p22HlR5WV9miv4dUXljUVT84pzn-R_b1f4dcsvamXSnYYw1sqKKdXK7reFArUivk-uH9nJ9nazZxpq-smDUr--SX8fLzAI6NR4I41CkpabfTCCmorbyxJh2gLA1rWY47ty0ThTlSy7AN9VPLmE9u-dK8a_Q2F76U52X59TwJkVHMa0ncEqguIsgVYleTfjqD5XTeUmnRVaWM8qnM9qkiF5QjOYfU4MtAp-eTwwubU1lvkBcCJVRDIy9R0739z6_O3BsPQhHRok3d4JECe6qLBHCD5mnQ67iOOQyDhFWXyhPR1yCyRiIUGeJFws_Y54vXam51lIw_z4ZFLDSG4RylsRg7DBE0wu0zIAnM72d8QCGAA2VDYnfMkEqLVg61uzIU3MDyODQ1KxjiqyTWtYZEqd7q2rAQv5Dv4v81dEi1LdpKGfj1GqOFE7MCkEWxbaUgXT9ONTKC3UsMhFGQnhD8hS5M23yZjuFle6g7Q3mfpAMyXNDgXAfBcYTjfmirtP3H79cgejTSY_opSXSJUyH5DaHA_4JYcR6lJs9SlBaste9gbLUzkqdLsUb3mzl6_LuZ103DooxgoUqFw1NGMVRCKM_aMSxm1kfjDWXMXdIWE9Qe1Pf7ymmE4O2joCcgQtjjjqRvtLiPvz3fzwiNz0Mj0JvHtskg_lsoR6DfTsXT6zS-g0q_K6m
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQbfN0clwQVUGiVMCickCR7djdVUOy2mQp5cAP5dcw4zgpgSLKgdtuPHaS8cx4PJ75QsiDJBJeIkGRwkAKB1boxOGwUDsBZ0wlvnCFxnjHq91oZxK83A_3V8jHthbGchD2iHlZmZN8_FEWatNychPxiprT05HrM7ftMZoD0QhWHPAP_IcGcQgjYzUWIJ0jq1EIrvqArE5298YfmpNmz4m8Ld-W0_1ppN5yZVD9O9s9wCc7zTH9Pb_y_LKY8-Mjnuc_LV7bl8i39rWbnJXD0bIWI_n1F0TI_8aXy-SidXvpuBlljayo4gpZs4aloo8t-vWTq-T73kkpA52ZkIeJYNJS008m81NR-6mLA9oh0FZ0vsAjp9pcnSrKT8QOe6ovXIIAdf_nih_CxTbLgOq8PKJGGShGpmk1hW0JxWULqUoMo8JdP6uc1iWdFVlZLiifLWhTk3pMsXzggBowE7h1PTVAuBWV-RKBKFRGMRP3GplsP3_3bMexH6BwZJR4tRMkSnBXZYkQfsg8HXIVxyGXcYg4_kJ5OuISfNRAhDpLvFj4GfN86UrNtZaC-dfJoAD2rxPKWRKDd8UQvi_QMgMlyPRWxgMYAkxiNiR-K2eptOjs-JGQPDVHjgx2ac1MpTifqZ3PIXG6XvMGneQv9E9RhDtaxBY3F0CgUitIKWzRFaI6ii0pA-n6caiVF-pYZCKMhPCG5C4qQNoU6nYWMh2jsw_7iyAZkvuGAvFFCkxgOuDLqkpfvH5_BqK3b3pEjyyRLoEdktuiEXgnlPce5UaPEqyk7DWvo8K0XKlSLwA3AKwAC6Bnq8KnN9_rmnFQTEosVLlsaMIoBtMyJDcaje8464N36DLmDgnr2YIe6_stxWxq4N0RATRwYcxRZzXONLk3_7XDLXLBwwwtDCiyDTKoF0t1G1zsWtyxhvIH-snePQ
  priority: 102
  providerName: Unpaywall
Title Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data
URI https://www.ncbi.nlm.nih.gov/pubmed/33411771
https://www.proquest.com/docview/2476219374
https://www.proquest.com/docview/2476568659
https://pubmed.ncbi.nlm.nih.gov/PMC7790419
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244233&type=printable
https://doaj.org/article/601e9822b0cc4c1385fe25f8bdb56bb2
http://dx.doi.org/10.1371/journal.pone.0244233
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf28QAviPG1wigGIQEPqZbEiZMHhLZpZSCtTIOi8RTZjt1WhKQ0LVv_Vf4a7pw0I2KIPfASqfHZUX13vvP5_DtCnseh9GIFihQwJR2w0LEjwFA7THCuY1-60mC843gQHg3Z-7PgbI2sarbWE1heubXDelLDWda7-L58Awr_2lZt4O6qU29a5LoHNgc8BH-dbIKtirGYwzFrzhVAu8OwvkD3t54tA2Vx_JvVemOaFeVVruifGZU3FvlULM9Flv1mrvq3ya3az6R7lWBskTWd3yFbtSaX9GUNN_3qLvl5cnl3gE5sjMGGDGlh6DebaqlpXVtiRBvI15JOZ3jGM7dvx5qKSz5jT30hFHCs-T3V4iu8XB3rU5MV59RKH8VQMC3HwAKKdgKpCoxbwld_6IzOCzrJ06KYUTGZ0eoS6JJivv6IWvQQ-PR8bJFnS6qyBSI_6JRi6us9Muwffjo4cuqKD44KY2_usFhL4eo0ltIPuGcCoaMoECoKEDhfas-EQoFTyGRg0tiLpJ9yz1euMsIYJbl_n2zkwMttQgWPI3BnOOLlMaNSkLrU7KaCwRCwBqUd4q_YnKgaDh2rcmSJPePjsC2qOJWgcCS1cHSI0_SaVnAg_6DfRwlqaBHM274oZqOkXhsS2BNrhFGUu0ox5fpRYLQXmEimMgil9DrkCcpfUt2MbZakZA-9a3DoWdwhzywFAnrkmDE0EouyTN59-HwNoo-nLaIXNZEpYDqUqG9pwH9CoLAW5U6LEpYl1WreRm1ZzUqZeAzsLmwXOIOeKw26uvlp04yDYhZgrotFRROEURjA6A8qhWtm1gd3zOXc7RDeUsXW1Ldb8snY4qkj5CZzYcxeo7TXYu7D_8HcR-Smh2lSGNXjO2RjPlvox-DnzmWXrPMzDs_owMVn_22XbO4fDk5OuzZy1LVLG7wbDk72vvwCZ364bg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXoOXRhUINAgGHtM3TyQGh8qha-gCVFvUWbMfeXRGSZbNL6Z_iB_FrmHGclIgKeulx7YlXseflycw3hDxOIuElEgQpDKRwwEInDgdD7QScMZX4whUa4x27e9HmYfDuKDyaIT-bWhhMq2x0olHUWSkxRr7qBSC24G2w4OXom4Ndo_DratNCo2aLbXVyDFe26sXWGzjfJ5638fbg9aZjuwo4Mkq8iRMkSnBXZYkQfsg8HXIVxyGXcYjg7EJ5OuISHI9AhDpLvFj4GfN86UrNtZaC-bDuJXI58EGXgPywo_aCB7ojimx5ns_cVcsNK6OyUCtgC8Fz8Tvmz3QJaG3B7Cgvq7Mc3b_zNeemxYifHPM8_8MYbtwg16wXS9drtpsnM6pYINebDhHUKowFcmXXfrpfIPN2sKLPLNT185vk14fTugU6NPENE66kpaZfTZqnoravRZ-2cLMVHY1x3YkZHSjKT3kMn1Q_uARuaX-PFP8Cg01KAdV5eUwN51MMQ9NqAHcQijYKqUqMmcK_flc5nZR0WGRlOaZ8OKZ1AeoJxVqBPjXIJfDXk4FBva2ozKeIOqEyimm3t8jhhfDFbTJbwEkvEspZEoMrxRCrL9AyA47P9FrGA1gC9F_WI37DBKm0UOzYESRPzfdFBley-hxTZJ3Usk6POO1ToxqK5D_0r5C_WloEEjcD5bifWr2Uwn1cIYSjWJMykK4fh1p5oY5FJsJICK9HlpE707oqt1WH6Tp69nCZCJIeeWQoEEykwGylPp9WVbr1_tM5iD7ud4ieWiJdwnZIbitE4J0QpKxDudShBJUoO9OLKEvNrlTpqfKAJxv5Onv6YTuNi2IGYqHKaU0TRnEUwup3anFsd9YHV9BlzO0R1hHUztZ3Z4rhwGC5I9xn4MKaK61In-tw7_77PZbJ3ObB7k66s7W3fY9c9TARC-OGbInMTsZTdR886Yl4YNQXJZ8vWl_-BhsD5xM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dU9QwEM8gzqAvKvjBKUp0dNSHAv1M--A4KDIgggyKw1tN0uTuxrOt1zuRf80_xb_G3TQtdmSUFx4v2eamyX5lu_tbQh4nkfASCYIUBlI4YKETh4OhdgLOmEp84QqN8Y7dvWjrMHh7FB7NkJ9NLQymVTY60SjqrJAYI1_1AhBb8DZYsKptWsT-xubL8puDHaTwS2vTTqNmkR11cgzXt-rF9gac9RPP23zz8fWWYzsMODJKvIkTJEpwV2WJEH7IPB1yFcchl3GIQO1CeTriEpyQQIQ6S7xY-BnzfOlKzbWWgvmw7iVymfl-gumE7Ki97IEeiSJbquczd9VyxkpZ5GoF7CJ4MX7HFJqOAa1dmC1HRXWW0_t37uaVaV7yk2M-Gv1hGDdvkGvWo6XrNQvOkxmVL5DrTbcIapXHApnbtZ_xF8i8HazoMwt7_fwm-bV_WsNAhybWYUKXtND0q0n5VNT2uOjTFnq2ouUY152Y0YGi_JTf8En1g0vgnPZ3qfgXGGzSC6geFcfUSAHFkDStBnAfoWivkKrA-Cn863c1opOCDvOsKMaUD8e0LkY9oVg30KcGxQT-ejIwCLgVlaMpIlCojGIK7i1yeCF8cZvM5nDSi4RylsTgVjHE7Qu0zID7M72W8QCWAF2Y9YjfMEEqLSw7dgcZpeZbI4PrWX2OKbJOalmnR5z2qbKGJfkP_Svkr5YWQcXNQDHup1ZHpXA3VwjnKNakDKTrx6FWXqhjkYkwEsLrkWXkzrSu0G1VY7qOXj5cLIKkRx4ZCgQWyVFE-3xaVen2-0_nIPpw0CF6aol0Adshua0WgXdCwLIO5VKHEtSj7Ewvoiw1u1Klp4oEnmzk6-zph-00LorZiLkqpjVNGMVRCKvfqcWx3Vkf3EKXMbdHWEdQO1vfncmHA4PrjtCfgQtrrrQifa7Dvfvv91gmc6Ap03fbezv3yFUPc7IwhMiWyOxkPFX3wameiAdGe1Hy-aLV5W_Z0utW
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQbfN0clwQVUGiVMCickCR7djdVUOy2mQp5cAP5dcw4zgpgSLKgdtuPHaS8cx4PJ75QsiDJBJeIkGRwkAKB1boxOGwUDsBZ0wlvnCFxnjHq91oZxK83A_3V8jHthbGchD2iHlZmZN8_FEWatNychPxiprT05HrM7ftMZoD0QhWHPAP_IcGcQgjYzUWIJ0jq1EIrvqArE5298YfmpNmz4m8Ld-W0_1ppN5yZVD9O9s9wCc7zTH9Pb_y_LKY8-Mjnuc_LV7bl8i39rWbnJXD0bIWI_n1F0TI_8aXy-SidXvpuBlljayo4gpZs4aloo8t-vWTq-T73kkpA52ZkIeJYNJS008m81NR-6mLA9oh0FZ0vsAjp9pcnSrKT8QOe6ovXIIAdf_nih_CxTbLgOq8PKJGGShGpmk1hW0JxWULqUoMo8JdP6uc1iWdFVlZLiifLWhTk3pMsXzggBowE7h1PTVAuBWV-RKBKFRGMRP3GplsP3_3bMexH6BwZJR4tRMkSnBXZYkQfsg8HXIVxyGXcYg4_kJ5OuISfNRAhDpLvFj4GfN86UrNtZaC-dfJoAD2rxPKWRKDd8UQvi_QMgMlyPRWxgMYAkxiNiR-K2eptOjs-JGQPDVHjgx2ac1MpTifqZ3PIXG6XvMGneQv9E9RhDtaxBY3F0CgUitIKWzRFaI6ii0pA-n6caiVF-pYZCKMhPCG5C4qQNoU6nYWMh2jsw_7iyAZkvuGAvFFCkxgOuDLqkpfvH5_BqK3b3pEjyyRLoEdktuiEXgnlPce5UaPEqyk7DWvo8K0XKlSLwA3AKwAC6Bnq8KnN9_rmnFQTEosVLlsaMIoBtMyJDcaje8464N36DLmDgnr2YIe6_stxWxq4N0RATRwYcxRZzXONLk3_7XDLXLBwwwtDCiyDTKoF0t1G1zsWtyxhvIH-snePQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+machine+learning+techniques+predicting+the+association+of+exacerbation+of+peak+expiratory+flow+ratio+with+short+term+exposure+level+to+indoor+air+quality+using+adult+asthmatics+clustered+data&rft.jtitle=PloS+one&rft.au=Wan+D+Bae&rft.au=Sungroul+Kim&rft.au=Choon-Sik+Park&rft.au=Shayma+Alkobaisi&rft.date=2021-01-07&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=16&rft.issue=1&rft.spage=e0244233&rft_id=info:doi/10.1371%2Fjournal.pone.0244233&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon