Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data
Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the sy...
Saved in:
| Published in | PloS one Vol. 16; no. 1; p. e0244233 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.01.2021
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0244233 |
Cover
| Abstract | Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients’ peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting. |
|---|---|
| AbstractList | Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting. Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 [mu]m and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting. Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients' peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting. |
| Audience | Academic |
| Author | Alkobaisi, Shayma Bae, Wan D. Lee, Sangwoon Lee, Jong Wook Park, Choon-Sik Lee, Jongwon Park, Jong Sook Seo, Wonseok Park, Sujung Kim, Sungroul |
| AuthorAffiliation | 3 Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea 2 Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea 4 College of Information Technology, United Arab Emirates University, Abu Dhabi, UAE Newcastle University, UNITED KINGDOM 5 Department of Informatics, Technical University of Munich, Munich, Germany 1 Department of Computer Science, Seattle University, Seattle, Washington, United States of America |
| AuthorAffiliation_xml | – name: 5 Department of Informatics, Technical University of Munich, Munich, Germany – name: Newcastle University, UNITED KINGDOM – name: 2 Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea – name: 1 Department of Computer Science, Seattle University, Seattle, Washington, United States of America – name: 4 College of Information Technology, United Arab Emirates University, Abu Dhabi, UAE – name: 3 Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea |
| Author_xml | – sequence: 1 givenname: Wan D. surname: Bae fullname: Bae, Wan D. – sequence: 2 givenname: Sungroul orcidid: 0000-0001-8726-9288 surname: Kim fullname: Kim, Sungroul – sequence: 3 givenname: Choon-Sik surname: Park fullname: Park, Choon-Sik – sequence: 4 givenname: Shayma surname: Alkobaisi fullname: Alkobaisi, Shayma – sequence: 5 givenname: Jongwon surname: Lee fullname: Lee, Jongwon – sequence: 6 givenname: Wonseok surname: Seo fullname: Seo, Wonseok – sequence: 7 givenname: Jong Sook surname: Park fullname: Park, Jong Sook – sequence: 8 givenname: Sujung surname: Park fullname: Park, Sujung – sequence: 9 givenname: Sangwoon surname: Lee fullname: Lee, Sangwoon – sequence: 10 givenname: Jong Wook surname: Lee fullname: Lee, Jong Wook |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33411771$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaZq0b1BaQaG0F7u1ZcuHXhRC6CEQSOnpVozl0VqpLG0kOcm-ap-mcnYTsiGU4Avbo2_-OWov2THWYJK8yNJ5llfZ-1M7OgN6vozmeUqLgub5o-Rp1uR0VtI037n1vZvseX-apiyvy_JJspvnRZZVVfY0-fsNnbRuACOQqGHp7DkOaAKxkgwgemWQaARnlFmQgKI36mxET5YOOyXClbVHAt5boSAoayZPvASBrr35XyL8icalchCsWxGp7QVx0zG5UKEnvrcuRHk3TJT1o5uinqMmwRJlOmsdAeXI2QhahRUZ_RQYulGHGDr0Q5QSngg9-iiCHekgwLPksQTt8fnmvZ_8-vzp5-HX2fHJl6PDg-OZKBsaZkWDLWTYNW2bs4pKBljXDETNClrSFqksQaQNK1omu4bWbd5VNBeZkCClaKt8P3m11l1q6_lmLJ7ToippnEBVROJoTXQWTvnSqQHciltQ_Mpg3YKDixVo5GWaYVNT2qZCFCLLayaRMlm3XcvKtqVRi621RrOE1QVofSOYpXzajOsU-LQZfLMZ0e_jJsuxHbATccYO9FYy2ydG9Xxhz3lVNWkR69hP3m4EnJ1WIPBBeYFag0E7rutlZV2yCX19B72_KxtqAbFwZaSNccUkyg9KltYZS4tJa34PFZ8OByVihVJF-5bDuy2HyAS8DAsYvedHP74_nD35vc2-ucX2CDr03upx2nG_Db683embFl9fuggUa0A4671D-dAJfrjjJlS4umKxI0r_3_kfqTpchg |
| CitedBy_id | crossref_primary_10_3390_technologies13030122 crossref_primary_10_3390_life12101631 crossref_primary_10_1016_j_jclinepi_2024_111636 crossref_primary_10_1109_ACCESS_2025_3532222 crossref_primary_10_1016_j_dche_2022_100040 crossref_primary_10_1016_j_jaip_2022_01_047 crossref_primary_10_1371_journal_pdig_0000014 crossref_primary_10_1109_ACCESS_2024_3440502 crossref_primary_10_1111_all_15667 crossref_primary_10_3390_ijerph20156441 |
| Cites_doi | 10.1023/A:1008074223811 10.1111/j.1532-5415.2008.02005.x 10.1002/9781118646106.ch3 10.1542/peds.2016-2589 10.1542/peds.105.5.1029 10.1186/s40733-016-0029-3 10.1016/S0091-6749(99)70468-9 10.1007/978-3-319-47617-9 10.1016/j.ins.2013.07.007 10.1109/ACCESS.2019.2960551 10.1109/HICSS.2016.488 10.1111/j.1365-2648.2005.03591.x 10.3390/app9091947 10.1109/ISBI.2017.7950523 10.1016/j.jfma.2011.07.003 10.3233/AIS-190540 10.1097/MCP.0b013e32834db288 10.1016/S0895-4356(96)00002-9 10.1002/alr.21547 10.1109/ICMEW.2015.7169780 10.1016/j.cmpb.2010.04.016 10.1186/s12911-015-0208-9 10.1016/j.puhe.2008.11.001 10.5322/JESI.2020.29.1.109 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Bae et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Bae et al 2021 Bae et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Bae et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Bae et al 2021 Bae et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0244233 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine Computer Science |
| DocumentTitleAlternate | Comparison of performance of machine-learning techniques |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2476219374 oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2 10.1371/journal.pone.0244233 PMC7790419 A650815049 33411771 10_1371_journal_pone_0244233 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | South Korea United States--US |
| GeographicLocations_xml | – name: South Korea – name: United States--US |
| GrantInformation_xml | – fundername: ; grantid: Brain Korea 21 – fundername: ; grantid: 2016001360002 – fundername: ; grantid: CSE-01-2019 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c692t-49eba1ed9bb3572f5ae885ac854262be2f6ac0954b5fd928b3d723c1cfaffcb73 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Nov 05 00:20:59 EDT 2023 Fri Oct 03 12:50:58 EDT 2025 Sun Oct 26 04:09:15 EDT 2025 Tue Sep 30 16:44:15 EDT 2025 Fri Sep 05 14:29:33 EDT 2025 Tue Oct 07 07:45:17 EDT 2025 Mon Oct 20 21:55:35 EDT 2025 Mon Oct 20 16:45:26 EDT 2025 Thu Oct 16 14:30:19 EDT 2025 Thu Oct 16 14:52:32 EDT 2025 Thu May 22 21:06:21 EDT 2025 Wed Feb 19 02:28:38 EST 2025 Thu Apr 24 23:11:34 EDT 2025 Wed Oct 01 01:16:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-49eba1ed9bb3572f5ae885ac854262be2f6ac0954b5fd928b3d723c1cfaffcb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have read the journal’s policy, and the authors of this manuscript have no competing interests. |
| ORCID | 0000-0001-8726-9288 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0244233 |
| PMID | 33411771 |
| PQID | 2476219374 |
| PQPubID | 1436336 |
| PageCount | e0244233 |
| ParticipantIDs | plos_journals_2476219374 doaj_primary_oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2 unpaywall_primary_10_1371_journal_pone_0244233 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790419 proquest_miscellaneous_2476568659 proquest_journals_2476219374 gale_infotracmisc_A650815049 gale_infotracacademiconefile_A650815049 gale_incontextgauss_ISR_A650815049 gale_incontextgauss_IOV_A650815049 gale_healthsolutions_A650815049 pubmed_primary_33411771 crossref_primary_10_1371_journal_pone_0244233 crossref_citationtrail_10_1371_journal_pone_0244233 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-07 |
| PublicationDateYYYYMMDD | 2021-01-07 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | T Lisa (pone.0244233.ref027) 2010 E Forno (pone.0244233.ref012) 2012; 18 pone.0244233.ref031 C Nunes (pone.0244233.ref003) 2017; 3 S Levine (pone.0244233.ref007) 2011 DA Dorr (pone.0244233.ref009) 2008; 56 pone.0244233.ref018 PA Loftus (pone.0244233.ref001) 2015; 5 S Purdy (pone.0244233.ref004) 2009; 123 R Axelrod (pone.0244233.ref010) 2001; 8 C-H Lee (pone.0244233.ref029) 2011; 101 C Thuemmler (pone.0244233.ref006) 2017 P SuJung (pone.0244233.ref013) 2020; 29 Y Jie (pone.0244233.ref014) 2011; 110 S Kim (pone.0244233.ref020) 2019; 9 pone.0244233.ref024 V López (pone.0244233.ref017) 2013; 250 CS Kelly (pone.0244233.ref011) 2000; 105 DJ Livingstone (pone.0244233.ref026) 1997; 11 pone.0244233.ref022 pone.0244233.ref021 DK Greineder (pone.0244233.ref008) 1999; 103 S Alkobaisi (pone.0244233.ref023) 2019; 11 NB Johnson (pone.0244233.ref002) 2014; 63 pone.0244233.ref028 pone.0244233.ref005 JV Tu (pone.0244233.ref025) 1996; 49 EC Matsui (pone.0244233.ref015) 2016; 138 G Luo (pone.0244233.ref030) 2015; 15 D Kim (pone.0244233.ref032) 2020; 8 G Richardson (pone.0244233.ref016) 2005; 52 J Woo (pone.0244233.ref019) 2020; 1 |
| References_xml | – volume: 11 start-page: 135 issue: 2 year: 1997 ident: pone.0244233.ref026 article-title: Data modelling with neural networks: advantages and limitations publication-title: Journal of computer-aided molecular design doi: 10.1023/A:1008074223811 – volume: 56 start-page: 2195 issue: 12 year: 2008 ident: pone.0244233.ref009 article-title: The effect of technology-supported, multidisease care management on the mortality and hospitalization of seniors publication-title: Journal of the American Geriatrics Society doi: 10.1111/j.1532-5415.2008.02005.x – ident: pone.0244233.ref024 doi: 10.1002/9781118646106.ch3 – volume: 138 issue: 5 year: 2016 ident: pone.0244233.ref015 article-title: Indoor Environmental Control Practices and Asthma Management publication-title: Pediatrics doi: 10.1542/peds.2016-2589 – volume: 105 start-page: 1029 issue: 5 year: 2000 ident: pone.0244233.ref011 article-title: Outcomes evaluation of a comprehensive intervention program for asthmatic children enrolled in medicaid publication-title: Pediatrics doi: 10.1542/peds.105.5.1029 – volume: 3 year: 2017 ident: pone.0244233.ref003 article-title: Asthma costs and social impact publication-title: Asthma Research and Practice doi: 10.1186/s40733-016-0029-3 – volume: 103 start-page: 436 issue: 3 Pt 1 year: 1999 ident: pone.0244233.ref008 article-title: A randomized controlled trial of a pediatric asthma outreach program publication-title: The Journal of allergy and clinical immunology doi: 10.1016/S0091-6749(99)70468-9 – volume: 1 start-page: 159 year: 2020 ident: pone.0244233.ref019 article-title: Assessment of Daily Personal PM2.5 Exposure Level According to Four Major Activities among Children publication-title: Appl Sci – volume: 63 start-page: 3 issue: 4 year: 2014 ident: pone.0244233.ref002 article-title: CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013 publication-title: MMWR supplements – start-page: 1 volume-title: Health 4.0: How virtualization and big data are revolutionizing healthcare year: 2017 ident: pone.0244233.ref006 doi: 10.1007/978-3-319-47617-9 – volume: 250 start-page: 113 year: 2013 ident: pone.0244233.ref017 article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics publication-title: Information Sciences doi: 10.1016/j.ins.2013.07.007 – volume: 8 start-page: 8791 year: 2020 ident: pone.0244233.ref032 article-title: Predicting Asthma Attacks: Effects of Indoor PM Concentrations on Peak Expiratory Flow Rates of Asthmatic Children publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960551 – ident: pone.0244233.ref005 doi: 10.1109/HICSS.2016.488 – volume: 8 start-page: 38 year: 2001 ident: pone.0244233.ref010 article-title: A disease management program utilising life coaches for children with asthma publication-title: J Clin Outcomes Manag – volume: 52 start-page: 328 year: 2005 ident: pone.0244233.ref016 article-title: How is the indoor environment related to asthma?: Literature review publication-title: Journal of Advance Nursing doi: 10.1111/j.1365-2648.2005.03591.x – volume: 9 start-page: 1947 year: 2019 ident: pone.0244233.ref020 article-title: Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea publication-title: Applied Sciences doi: 10.3390/app9091947 – ident: pone.0244233.ref022 – ident: pone.0244233.ref028 doi: 10.1109/ISBI.2017.7950523 – volume: 110 start-page: 555 issue: 9 year: 2011 ident: pone.0244233.ref014 article-title: Do indoor environments influence asthma and asthma-related symptoms among adults in homes?: a review of the literature publication-title: Journal of the Formosan Medical Association = Taiwan yi zhi doi: 10.1016/j.jfma.2011.07.003 – ident: pone.0244233.ref018 doi: 10.1109/ISBI.2017.7950523 – volume: 11 start-page: 1 year: 2019 ident: pone.0244233.ref023 article-title: Predictive and exposome analytics: A case study of asthma exacerbation management publication-title: Journal of Ambient Intelligence and Smart Environments doi: 10.3233/AIS-190540 – volume: 18 start-page: 63 issue: 1 year: 2012 ident: pone.0244233.ref012 article-title: Predicting asthma exacerbations in children publication-title: Current opinion in pulmonary medicine doi: 10.1097/MCP.0b013e32834db288 – volume: 49 start-page: 1225 issue: 11 year: 1996 ident: pone.0244233.ref025 article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(96)00002-9 – volume: 5 start-page: S7 issue: Suppl 1 year: 2015 ident: pone.0244233.ref001 article-title: Epidemiology and economic burden of asthma publication-title: International forum of allergy & rhinology doi: 10.1002/alr.21547 – ident: pone.0244233.ref031 doi: 10.1109/ICMEW.2015.7169780 – volume: 101 start-page: 44 issue: 1 year: 2011 ident: pone.0244233.ref029 article-title: A novel data mining mechanism considering bio-signal and environmental data with applications on asthma monitoring publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2010.04.016 – volume: 15 start-page: 84 issue: 1 year: 2015 ident: pone.0244233.ref030 article-title: Predicting asthma control deterioration in children publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-015-0208-9 – volume: 123 start-page: 169 issue: 2 year: 2009 ident: pone.0244233.ref004 article-title: Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians publication-title: Public health doi: 10.1016/j.puhe.2008.11.001 – volume-title: Predicting the Financial Risks of Seriously Ill Patients year: 2011 ident: pone.0244233.ref007 – volume: 29 start-page: 109 issue: 1 year: 2020 ident: pone.0244233.ref013 article-title: Impact of Indoor Pan-frying cooking activity on Change of Indoor PM2.5 Concentration Level in Asthmatics’ Homes publication-title: Journal of Environmental Science International doi: 10.5322/JESI.2020.29.1.109 – start-page: 242 volume-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques year: 2010 ident: pone.0244233.ref027 – ident: pone.0244233.ref021 |
| SSID | ssj0053866 |
| Score | 2.4511733 |
| Snippet | Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently,... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0244233 |
| SubjectTerms | Accuracy Adult Aged Air Pollution, Indoor - adverse effects Air quality Air quality control Algorithms Asthma Asthma - chemically induced Asthma - physiopathology Biology and Life Sciences Computer and Information Sciences Computer science Deep learning Diagnosis Drafting software Earth Sciences Ecology and Environmental Sciences Editing Electronic mail Environmental aspects Environmental Exposure - adverse effects Environmental health Exposure Female Graduate schools Graduate studies Health aspects Health risks Hospitals Humans Indoor air Indoor air pollution Indoor air quality Indoor environments Informatics Information technology Internal medicine Learning algorithms Machine Learning Male Medical screening Medicine Medicine and Health Sciences Methods Middle Aged Outdoor air quality Patients Peak Expiratory Flow Rate - drug effects Physical Sciences Pulmonary function tests Quality control Remote sensing Research and Analysis Methods Risk factors Time Factors Visualization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8uFDAICTik3SR2nBwLoipIPAQU9RbZjr27IiTRJkvpX-XXMON400ZUag8cY08cxfP0ePyZkOdZoqJMgyJxplUAHjoLJDjqgEkhTBarUFnMd3z4mBwesffH_PjcVV9YE9bDA_cTtwcLBoMYc2qmNdNhnHJrIm5TVSieKOWs7yzNNoup3gaDFieJPygXi3DP82W3qSuzC14JYoh45IgcXv9glSdNWbcXhZz_Vk5eX1eNPD2RZXnOLR3cIjd9PEn3-__YItdMdZtseY1t6UsPK_3qDvnz-eyMAF26XIJLDdLa0p-upNJQf4fEnA7Qri1tVriX07nWhaHyjJ_4pvktNXBmeG6M_AGNm-17asv6hDopo5jype0C4n2K_gCpasxPwld_mZJ2NV1WRV2vqFyuaH_Y85RiXf6cOpQQ-HS3cAizLdXlGhEeTEGxxPUuOTp4--3NYeBvdgh0kkVdwDKjZGiKTKmYi8hyadKUS51yBMhXJrKJ1BD8McVtkUWpigsRxTrUVlqrlYjvkUkFvNwmVAqQjhAGYRBoWF2AdBV2VkgGQ4CtKaYk3rA51x72HG_fKHO3lydg-dNzKkfhyL1wTEkwvNX0sB-X0L9GCRpoEbTbNYAo516U88tEeUqeoPzl_QnYwfTk-xhFQ-DOsil55igQuKPCyqC5XLdt_u7T9ysQff0yInrhiWwN06GlP40B_4SAYCPKnRElmB896t5GbdnMSptHDPwrLAsEgzc3GnRx99OhGwfFar_K1OuehidpwmH0-73CDTMbQ9gVChFOiRip4mjqxz3VcuFw0xFak4Uw5u6gtFdi7oP_wdyH5EaE5VCYvRM7ZNKt1uYRxLOdeuxM11-WRaeC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_GTQJegI2PHQwICAl46G39TPuA0IY2DaSNaTC0typJk7sTpS3XO8b-Vf4a7DTtUTHBHpu4qZrYjuPYPxPyIomEl0gQpDCQwoEdOnE4bNROwBlTiS9codHfcXgUHZwGH87CsxVy1ObCYFhlqxONos5KiT7yLS8AsQVrgwVvq-8OVo3C29W2hAa3pRWyNwZi7BpZ9RAZa0BWd_eOjk9a3QzSHUU2gc5n7pZdr1FVFmoEuxXYFn5vgzI4_p22HlR5WV9miv4dUXljUVT84pzn-R_b1f4dcsvamXSnYYw1sqKKdXK7reFArUivk-uH9nJ9nazZxpq-smDUr--SX8fLzAI6NR4I41CkpabfTCCmorbyxJh2gLA1rWY47ty0ThTlSy7AN9VPLmE9u-dK8a_Q2F76U52X59TwJkVHMa0ncEqguIsgVYleTfjqD5XTeUmnRVaWM8qnM9qkiF5QjOYfU4MtAp-eTwwubU1lvkBcCJVRDIy9R0739z6_O3BsPQhHRok3d4JECe6qLBHCD5mnQ67iOOQyDhFWXyhPR1yCyRiIUGeJFws_Y54vXam51lIw_z4ZFLDSG4RylsRg7DBE0wu0zIAnM72d8QCGAA2VDYnfMkEqLVg61uzIU3MDyODQ1KxjiqyTWtYZEqd7q2rAQv5Dv4v81dEi1LdpKGfj1GqOFE7MCkEWxbaUgXT9ONTKC3UsMhFGQnhD8hS5M23yZjuFle6g7Q3mfpAMyXNDgXAfBcYTjfmirtP3H79cgejTSY_opSXSJUyH5DaHA_4JYcR6lJs9SlBaste9gbLUzkqdLsUb3mzl6_LuZ103DooxgoUqFw1NGMVRCKM_aMSxm1kfjDWXMXdIWE9Qe1Pf7ymmE4O2joCcgQtjjjqRvtLiPvz3fzwiNz0Mj0JvHtskg_lsoR6DfTsXT6zS-g0q_K6m priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQbfN0clwQVUGiVMCickCR7djdVUOy2mQp5cAP5dcw4zgpgSLKgdtuPHaS8cx4PJ75QsiDJBJeIkGRwkAKB1boxOGwUDsBZ0wlvnCFxnjHq91oZxK83A_3V8jHthbGchD2iHlZmZN8_FEWatNychPxiprT05HrM7ftMZoD0QhWHPAP_IcGcQgjYzUWIJ0jq1EIrvqArE5298YfmpNmz4m8Ld-W0_1ppN5yZVD9O9s9wCc7zTH9Pb_y_LKY8-Mjnuc_LV7bl8i39rWbnJXD0bIWI_n1F0TI_8aXy-SidXvpuBlljayo4gpZs4aloo8t-vWTq-T73kkpA52ZkIeJYNJS008m81NR-6mLA9oh0FZ0vsAjp9pcnSrKT8QOe6ovXIIAdf_nih_CxTbLgOq8PKJGGShGpmk1hW0JxWULqUoMo8JdP6uc1iWdFVlZLiifLWhTk3pMsXzggBowE7h1PTVAuBWV-RKBKFRGMRP3GplsP3_3bMexH6BwZJR4tRMkSnBXZYkQfsg8HXIVxyGXcYg4_kJ5OuISfNRAhDpLvFj4GfN86UrNtZaC-dfJoAD2rxPKWRKDd8UQvi_QMgMlyPRWxgMYAkxiNiR-K2eptOjs-JGQPDVHjgx2ac1MpTifqZ3PIXG6XvMGneQv9E9RhDtaxBY3F0CgUitIKWzRFaI6ii0pA-n6caiVF-pYZCKMhPCG5C4qQNoU6nYWMh2jsw_7iyAZkvuGAvFFCkxgOuDLqkpfvH5_BqK3b3pEjyyRLoEdktuiEXgnlPce5UaPEqyk7DWvo8K0XKlSLwA3AKwAC6Bnq8KnN9_rmnFQTEosVLlsaMIoBtMyJDcaje8464N36DLmDgnr2YIe6_stxWxq4N0RATRwYcxRZzXONLk3_7XDLXLBwwwtDCiyDTKoF0t1G1zsWtyxhvIH-snePQ priority: 102 providerName: Unpaywall |
| Title | Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33411771 https://www.proquest.com/docview/2476219374 https://www.proquest.com/docview/2476568659 https://pubmed.ncbi.nlm.nih.gov/PMC7790419 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244233&type=printable https://doaj.org/article/601e9822b0cc4c1385fe25f8bdb56bb2 http://dx.doi.org/10.1371/journal.pone.0244233 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf28QAviPG1wigGIQEPqZbEiZMHhLZpZSCtTIOi8RTZjt1WhKQ0LVv_Vf4a7pw0I2KIPfASqfHZUX13vvP5_DtCnseh9GIFihQwJR2w0LEjwFA7THCuY1-60mC843gQHg3Z-7PgbI2sarbWE1heubXDelLDWda7-L58Awr_2lZt4O6qU29a5LoHNgc8BH-dbIKtirGYwzFrzhVAu8OwvkD3t54tA2Vx_JvVemOaFeVVruifGZU3FvlULM9Flv1mrvq3ya3az6R7lWBskTWd3yFbtSaX9GUNN_3qLvl5cnl3gE5sjMGGDGlh6DebaqlpXVtiRBvI15JOZ3jGM7dvx5qKSz5jT30hFHCs-T3V4iu8XB3rU5MV59RKH8VQMC3HwAKKdgKpCoxbwld_6IzOCzrJ06KYUTGZ0eoS6JJivv6IWvQQ-PR8bJFnS6qyBSI_6JRi6us9Muwffjo4cuqKD44KY2_usFhL4eo0ltIPuGcCoaMoECoKEDhfas-EQoFTyGRg0tiLpJ9yz1euMsIYJbl_n2zkwMttQgWPI3BnOOLlMaNSkLrU7KaCwRCwBqUd4q_YnKgaDh2rcmSJPePjsC2qOJWgcCS1cHSI0_SaVnAg_6DfRwlqaBHM274oZqOkXhsS2BNrhFGUu0ox5fpRYLQXmEimMgil9DrkCcpfUt2MbZakZA-9a3DoWdwhzywFAnrkmDE0EouyTN59-HwNoo-nLaIXNZEpYDqUqG9pwH9CoLAW5U6LEpYl1WreRm1ZzUqZeAzsLmwXOIOeKw26uvlp04yDYhZgrotFRROEURjA6A8qhWtm1gd3zOXc7RDeUsXW1Ldb8snY4qkj5CZzYcxeo7TXYu7D_8HcR-Smh2lSGNXjO2RjPlvox-DnzmWXrPMzDs_owMVn_22XbO4fDk5OuzZy1LVLG7wbDk72vvwCZ364bg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXoOXRhUINAgGHtM3TyQGh8qha-gCVFvUWbMfeXRGSZbNL6Z_iB_FrmHGclIgKeulx7YlXseflycw3hDxOIuElEgQpDKRwwEInDgdD7QScMZX4whUa4x27e9HmYfDuKDyaIT-bWhhMq2x0olHUWSkxRr7qBSC24G2w4OXom4Ndo_DratNCo2aLbXVyDFe26sXWGzjfJ5638fbg9aZjuwo4Mkq8iRMkSnBXZYkQfsg8HXIVxyGXcYjg7EJ5OuISHI9AhDpLvFj4GfN86UrNtZaC-bDuJXI58EGXgPywo_aCB7ojimx5ns_cVcsNK6OyUCtgC8Fz8Tvmz3QJaG3B7Cgvq7Mc3b_zNeemxYifHPM8_8MYbtwg16wXS9drtpsnM6pYINebDhHUKowFcmXXfrpfIPN2sKLPLNT185vk14fTugU6NPENE66kpaZfTZqnoravRZ-2cLMVHY1x3YkZHSjKT3kMn1Q_uARuaX-PFP8Cg01KAdV5eUwN51MMQ9NqAHcQijYKqUqMmcK_flc5nZR0WGRlOaZ8OKZ1AeoJxVqBPjXIJfDXk4FBva2ozKeIOqEyimm3t8jhhfDFbTJbwEkvEspZEoMrxRCrL9AyA47P9FrGA1gC9F_WI37DBKm0UOzYESRPzfdFBley-hxTZJ3Usk6POO1ToxqK5D_0r5C_WloEEjcD5bifWr2Uwn1cIYSjWJMykK4fh1p5oY5FJsJICK9HlpE707oqt1WH6Tp69nCZCJIeeWQoEEykwGylPp9WVbr1_tM5iD7ud4ieWiJdwnZIbitE4J0QpKxDudShBJUoO9OLKEvNrlTpqfKAJxv5Onv6YTuNi2IGYqHKaU0TRnEUwup3anFsd9YHV9BlzO0R1hHUztZ3Z4rhwGC5I9xn4MKaK61In-tw7_77PZbJ3ObB7k66s7W3fY9c9TARC-OGbInMTsZTdR886Yl4YNQXJZ8vWl_-BhsD5xM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dU9QwEM8gzqAvKvjBKUp0dNSHAv1M--A4KDIgggyKw1tN0uTuxrOt1zuRf80_xb_G3TQtdmSUFx4v2eamyX5lu_tbQh4nkfASCYIUBlI4YKETh4OhdgLOmEp84QqN8Y7dvWjrMHh7FB7NkJ9NLQymVTY60SjqrJAYI1_1AhBb8DZYsKptWsT-xubL8puDHaTwS2vTTqNmkR11cgzXt-rF9gac9RPP23zz8fWWYzsMODJKvIkTJEpwV2WJEH7IPB1yFcchl3GIQO1CeTriEpyQQIQ6S7xY-BnzfOlKzbWWgvmw7iVymfl-gumE7Ki97IEeiSJbquczd9VyxkpZ5GoF7CJ4MX7HFJqOAa1dmC1HRXWW0_t37uaVaV7yk2M-Gv1hGDdvkGvWo6XrNQvOkxmVL5DrTbcIapXHApnbtZ_xF8i8HazoMwt7_fwm-bV_WsNAhybWYUKXtND0q0n5VNT2uOjTFnq2ouUY152Y0YGi_JTf8En1g0vgnPZ3qfgXGGzSC6geFcfUSAHFkDStBnAfoWivkKrA-Cn863c1opOCDvOsKMaUD8e0LkY9oVg30KcGxQT-ejIwCLgVlaMpIlCojGIK7i1yeCF8cZvM5nDSi4RylsTgVjHE7Qu0zID7M72W8QCWAF2Y9YjfMEEqLSw7dgcZpeZbI4PrWX2OKbJOalmnR5z2qbKGJfkP_Svkr5YWQcXNQDHup1ZHpXA3VwjnKNakDKTrx6FWXqhjkYkwEsLrkWXkzrSu0G1VY7qOXj5cLIKkRx4ZCgQWyVFE-3xaVen2-0_nIPpw0CF6aol0Adshua0WgXdCwLIO5VKHEtSj7Ewvoiw1u1Klp4oEnmzk6-zph-00LorZiLkqpjVNGMVRCKvfqcWx3Vkf3EKXMbdHWEdQO1vfncmHA4PrjtCfgQtrrrQifa7Dvfvv91gmc6Ap03fbezv3yFUPc7IwhMiWyOxkPFX3wameiAdGe1Hy-aLV5W_Z0utW |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQbfN0clwQVUGiVMCickCR7djdVUOy2mQp5cAP5dcw4zgpgSLKgdtuPHaS8cx4PJ75QsiDJBJeIkGRwkAKB1boxOGwUDsBZ0wlvnCFxnjHq91oZxK83A_3V8jHthbGchD2iHlZmZN8_FEWatNychPxiprT05HrM7ftMZoD0QhWHPAP_IcGcQgjYzUWIJ0jq1EIrvqArE5298YfmpNmz4m8Ld-W0_1ppN5yZVD9O9s9wCc7zTH9Pb_y_LKY8-Mjnuc_LV7bl8i39rWbnJXD0bIWI_n1F0TI_8aXy-SidXvpuBlljayo4gpZs4aloo8t-vWTq-T73kkpA52ZkIeJYNJS008m81NR-6mLA9oh0FZ0vsAjp9pcnSrKT8QOe6ovXIIAdf_nih_CxTbLgOq8PKJGGShGpmk1hW0JxWULqUoMo8JdP6uc1iWdFVlZLiifLWhTk3pMsXzggBowE7h1PTVAuBWV-RKBKFRGMRP3GplsP3_3bMexH6BwZJR4tRMkSnBXZYkQfsg8HXIVxyGXcYg4_kJ5OuISfNRAhDpLvFj4GfN86UrNtZaC-dfJoAD2rxPKWRKDd8UQvi_QMgMlyPRWxgMYAkxiNiR-K2eptOjs-JGQPDVHjgx2ac1MpTifqZ3PIXG6XvMGneQv9E9RhDtaxBY3F0CgUitIKWzRFaI6ii0pA-n6caiVF-pYZCKMhPCG5C4qQNoU6nYWMh2jsw_7iyAZkvuGAvFFCkxgOuDLqkpfvH5_BqK3b3pEjyyRLoEdktuiEXgnlPce5UaPEqyk7DWvo8K0XKlSLwA3AKwAC6Bnq8KnN9_rmnFQTEosVLlsaMIoBtMyJDcaje8464N36DLmDgnr2YIe6_stxWxq4N0RATRwYcxRZzXONLk3_7XDLXLBwwwtDCiyDTKoF0t1G1zsWtyxhvIH-snePQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+machine+learning+techniques+predicting+the+association+of+exacerbation+of+peak+expiratory+flow+ratio+with+short+term+exposure+level+to+indoor+air+quality+using+adult+asthmatics+clustered+data&rft.jtitle=PloS+one&rft.au=Wan+D+Bae&rft.au=Sungroul+Kim&rft.au=Choon-Sik+Park&rft.au=Shayma+Alkobaisi&rft.date=2021-01-07&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=16&rft.issue=1&rft.spage=e0244233&rft_id=info:doi/10.1371%2Fjournal.pone.0244233&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_601e9822b0cc4c1385fe25f8bdb56bb2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |