Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations

Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 2; p. e0281922
Main Authors Huang, Alexander A., Huang, Samuel Y.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.02.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0281922

Cover

Abstract Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset.
AbstractList Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset.
Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset.Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset.
Audience Academic
Author Huang, Samuel Y.
Huang, Alexander A.
AuthorAffiliation 3 Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
2 Department of MD Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, ITALY
1 Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
AuthorAffiliation_xml – name: 3 Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
– name: 2 Department of MD Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
– name: 1 Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
– name: Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, ITALY
Author_xml – sequence: 1
  givenname: Alexander A.
  orcidid: 0000-0003-4970-4968
  surname: Huang
  fullname: Huang, Alexander A.
– sequence: 2
  givenname: Samuel Y.
  orcidid: 0000-0003-3663-004X
  surname: Huang
  fullname: Huang, Samuel Y.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36821544$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tr3DAQhU1JaS7tPyitoVDah91aliXLfSiE0MtCINDbqxjLsq1FllzJTrP_vtpdJ6xDoEEPNuNvjnTOyKfRkbFGRtFLlCwRztGHtR2dAb3sQ3mZpAwVafokOkEFThc0TfDRwftxdOr9OkkIZpQ-i44xZSkiWXYSrVdGOAlemSYeHBjfg5NGbGJl4g5Eq4yMtQRndkDr7Ni0cWnt4APdx151o4ZBWRODqWLfQi_1JoaqUoO6lrG86TWYHeCfR09r0F6-mJ5n0a8vn39efFtcXn1dXZxfLgQt0mGRkbrCtEgYKxkTuCzztMaYVHmZEZEkRUIIrQmiOcWSCSBQEYkRrfMiq4tA4bPo9V6319bzKSbP0zwQYSVFIFZ7orKw5r1THbgNt6D4rmBdw8ENSmjJGUWEIRw2kCzLJStCnIilBEiJsYQsaJG91mh62PwFre8EUcK3k7o9At9Oik-TCn2fplOOZScrIU0IVM8OM_9iVMsbe82L4IGmWxPvJgFn_4zSD7xTXkgd8pZ23PvFGclyHNA399CHU5moBoJxZWob9hVbUX6eY4ZRjtBWa_kAFVYlOyWCw1qF-qzh_awhMIO8GRoYveerH98fz179nrNvD9hWgh5ab_W4u2tz8NVh0ncR3_4EAfi4B4Sz3jtZc6GG3Z0N1pT-3xyze82PGv8_wQUvZA
CitedBy_id crossref_primary_10_1038_s41598_025_85707_7
crossref_primary_10_1371_journal_pone_0306359
crossref_primary_10_1371_journal_pone_0312915
crossref_primary_10_1002_hsr2_1635
crossref_primary_10_1186_s12889_025_22245_x
crossref_primary_10_1002_hsr2_1416
crossref_primary_10_1186_s12944_024_02204_y
crossref_primary_10_7759_cureus_46549
crossref_primary_10_7759_cureus_51581
crossref_primary_10_1016_j_advnut_2024_100264
crossref_primary_10_1111_trf_17582
crossref_primary_10_1371_journal_pone_0288819
crossref_primary_10_3390_jimaging10110290
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107991
crossref_primary_10_1186_s12902_025_01831_5
crossref_primary_10_3390_fractalfract7090670
crossref_primary_10_1038_s41598_025_92518_3
crossref_primary_10_1002_cpt_3053
crossref_primary_10_1371_journal_pone_0304509
crossref_primary_10_3389_fendo_2023_1292167
crossref_primary_10_3389_fnetp_2024_1361915
crossref_primary_10_1371_journal_pone_0319297
crossref_primary_10_1002_jcla_25109
crossref_primary_10_1002_osp4_697
crossref_primary_10_1371_journal_pone_0308922
crossref_primary_10_3390_app142411652
crossref_primary_10_1038_s41598_025_88156_4
crossref_primary_10_1371_journal_pone_0309830
crossref_primary_10_7759_cureus_80734
crossref_primary_10_1186_s12877_025_05837_5
crossref_primary_10_1371_journal_pone_0307952
crossref_primary_10_3389_fnut_2024_1519782
crossref_primary_10_1007_s10845_024_02482_4
crossref_primary_10_7759_cureus_69818
crossref_primary_10_1186_s12880_025_01555_x
crossref_primary_10_2147_IJGM_S498965
crossref_primary_10_1186_s12944_024_02231_9
crossref_primary_10_3389_fmed_2025_1480931
crossref_primary_10_1186_s12874_025_02457_w
crossref_primary_10_1186_s12944_024_02299_3
crossref_primary_10_3389_fpubh_2025_1526360
crossref_primary_10_7759_cureus_69680
crossref_primary_10_7759_cureus_59507
crossref_primary_10_1371_journal_pone_0288903
Cites_doi 10.1007/s43546-022-00328-w
10.1002/jrsm.1471
10.1007/s10519-020-09993-9
10.1093/jn/130.10.2619
10.1021/acsomega.2c05952
10.1080/10543406.2011.611082
10.1007/s40200-022-01076-2
10.1016/j.aca.2022.339834
10.3389/frai.2022.1015660
10.1016/j.phymed.2022.154525
10.3389/frai.2021.752558
10.1111/bmsp.12105
10.3389/fimmu.2022.1037318
10.1038/s41598-022-24562-2
10.1093/molbev/msg028
10.1007/s10928-017-9554-9
10.1371/journal.pcbi.1009736
10.1109/TBME.2008.919718
10.3389/fimmu.2022.1001070
10.1016/j.chemosphere.2022.137039
10.1590/S0034-71082000000300006
10.3389/fonc.2022.897596
10.1007/s12553-022-00712-4
10.1016/j.ijcard.2021.07.024
10.3389/fphar.2021.761811
10.7717/peerj-cs.880
10.1080/10635150050207465
10.3389/fphar.2022.1000476
10.1016/j.jor.2022.11.004
10.3389/fpsyg.2022.948612
10.1016/j.jclinepi.2007.11.014
10.1007/s10928-013-9343-z
10.1038/s41598-022-22948-w
10.1155/2022/6356399
10.1186/1472-6963-4-33
10.1016/j.ajp.2022.103316
10.1016/j.clnu.2021.11.006
10.3390/ma15186261
10.3389/fmed.2022.1001801
10.1037/1082-989X.9.3.369
10.1002/psp4.12613
10.1111/ina.12984
10.3155/1047-3289.61.7.755
10.1038/s41598-022-24118-4
10.3758/BF03193885
ContentType Journal Article
Copyright Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Huang, Huang 2023 Huang, Huang
2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Huang, Huang 2023 Huang, Huang
– notice: 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0281922
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database

MEDLINE



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
DocumentTitleAlternate Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations
EISSN 1932-6203
ExternalDocumentID 2779494909
oai_doaj_org_article_8615813316e847e896201825a5b33ea4
10.1371/journal.pone.0281922
PMC9949629
A738317113
36821544
10_1371_journal_pone_0281922
Genre Journal Article
GeographicLocations United States
United Kingdom--UK
England
GeographicLocations_xml – name: United States
– name: England
– name: United Kingdom--UK
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T35 DK126628
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c692t-45fd369088b88c3bb72f335d7b45c0090556f516763e8ca5ad5e316f794f9d7b3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:01 EDT 2023
Fri Oct 03 12:44:03 EDT 2025
Sun Oct 26 03:59:45 EDT 2025
Tue Sep 30 17:17:12 EDT 2025
Fri Sep 05 06:41:05 EDT 2025
Tue Oct 07 07:56:06 EDT 2025
Mon Oct 20 22:16:10 EDT 2025
Mon Oct 20 16:50:37 EDT 2025
Thu Oct 16 16:15:48 EDT 2025
Thu Oct 16 16:23:45 EDT 2025
Thu May 22 21:24:21 EDT 2025
Mon Jul 21 05:53:59 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Wed Oct 01 04:47:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-45fd369088b88c3bb72f335d7b45c0090556f516763e8ca5ad5e316f794f9d7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-3663-004X
0000-0003-4970-4968
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0281922
PMID 36821544
PQID 2779494909
PQPubID 1436336
PageCount e0281922
ParticipantIDs plos_journals_2779494909
doaj_primary_oai_doaj_org_article_8615813316e847e896201825a5b33ea4
unpaywall_primary_10_1371_journal_pone_0281922
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9949629
proquest_miscellaneous_2779345473
proquest_journals_2779494909
gale_infotracmisc_A738317113
gale_infotracacademiconefile_A738317113
gale_incontextgauss_ISR_A738317113
gale_incontextgauss_IOV_A738317113
gale_healthsolutions_A738317113
pubmed_primary_36821544
crossref_citationtrail_10_1371_journal_pone_0281922
crossref_primary_10_1371_journal_pone_0281922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-23
PublicationDateYYYYMMDD 2023-02-23
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Xu (pone.0281922.ref021) 2022; 859
JJ Scott-Fordsmand (pone.0281922.ref056) 2022
M Farajtabar (pone.0281922.ref006) 2022
L Zhang (pone.0281922.ref020) 2022
JW Collins (pone.0281922.ref067) 2017; 44
O Saleh (pone.0281922.ref057) 2022
R Cau (pone.0281922.ref001) 2022
TN Flynn (pone.0281922.ref044) 2004; 4
Y Yang (pone.0281922.ref063) 2022; 32
G Smania (pone.0281922.ref062) 2021; 10
Y Zhu (pone.0281922.ref023) 2022; 13
HT Thai (pone.0281922.ref034) 2014; 41
SM Hosseini Sarkhosh (pone.0281922.ref003) 2022; 21
Q Dickinson (pone.0281922.ref011) 2022; 18
P O’Keefe (pone.0281922.ref049) 2020; 50
N Nordin (pone.0281922.ref068) 2022; 79
Y Shi (pone.0281922.ref045) 2022; 12
F Wei (pone.0281922.ref050) 2021; 12
H Shi (pone.0281922.ref038) 2022; 41
Y Zhou (pone.0281922.ref039) 2021; 339
D Cordes (pone.0281922.ref054) 2022; 2
H Liu (pone.0281922.ref046) 2022; 13
I Betto (pone.0281922.ref065) 2022
S Lu (pone.0281922.ref015) 2021; 2021
T Kennet-Cohen (pone.0281922.ref042) 2018; 71
A Chatterjee (pone.0281922.ref061) 2022; 12
CS Wu (pone.0281922.ref009) 2022
M Anjum (pone.0281922.ref026) 2022; 15
DO Oyewola (pone.0281922.ref027) 2022; 12
W Chan (pone.0281922.ref053) 2004; 9
M Hu (pone.0281922.ref013) 2022; 12
CM Scavuzzo (pone.0281922.ref064) 2022; 7
F Ahmadi (pone.0281922.ref055) 2022
R Malheiro (pone.0281922.ref018) 2022
R Bhowmik (pone.0281922.ref030) 2022
A Jalali (pone.0281922.ref029) 2022
Y Wang (pone.0281922.ref019) 2022
TT Le (pone.0281922.ref047) 2022; 22
ME Alfaro (pone.0281922.ref052) 2003; 20
EA Geng (pone.0281922.ref007) 2023; 35
pone.0281922.ref037
SC Lee (pone.0281922.ref060) 2022; 76
M Feng (pone.0281922.ref012) 2022; 2022
DE Huber (pone.0281922.ref066) 2006; 38
Y Cheng (pone.0281922.ref005) 2022; 316
TD Shultz (pone.0281922.ref032) 2000; 130
J Peng (pone.0281922.ref058) 2022; 108
JM Zambrano Chaves (pone.0281922.ref040) 2021
J Li (pone.0281922.ref059) 2022; 13
PC Austin (pone.0281922.ref051) 2008; 61
D Pareto (pone.0281922.ref033) 2008; 55
E Kanda (pone.0281922.ref004) 2022; 12
J Sun (pone.0281922.ref035) 2011; 21
FA Orji (pone.0281922.ref008) 2022; 5
M Zarei Ghobadi (pone.0281922.ref024) 2022; 13
A Gramegna (pone.0281922.ref025) 2021; 4
NP Kazmierczak (pone.0281922.ref028) 2022; 1227
Y Xu (pone.0281922.ref010) 2022; 9
M Montero-Diaz (pone.0281922.ref017) 2022; 24
F Weber (pone.0281922.ref031) 2021; 12
X Shi (pone.0281922.ref016) 2022; 7
M Davies (pone.0281922.ref002) 2022
X Li (pone.0281922.ref014) 2023; 311
AJ Manzato (pone.0281922.ref036) 2000; 60
G Obaido (pone.0281922.ref041) 2022
H Tian (pone.0281922.ref048) 2011; 61
R Mitchell (pone.0281922.ref022) 2022; 8
RW DeBry (pone.0281922.ref043) 2000; 49
References_xml – volume: 2
  start-page: 184
  issue: 12
  year: 2022
  ident: pone.0281922.ref054
  article-title: Systematic literature review of the performance characteristics of Chebyshev polynomials in machine learning applications for economic forecasting in low-income communities in sub-Saharan Africa
  publication-title: SN Bus Econ
  doi: 10.1007/s43546-022-00328-w
– volume: 12
  start-page: 291
  issue: 3
  year: 2021
  ident: pone.0281922.ref031
  article-title: Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1471
– year: 2022
  ident: pone.0281922.ref041
  article-title: An Interpretable Machine Learning Approach for Hepatitis B Diagnosis
  publication-title: Applied Sciences
– volume: 316
  start-page: 120685
  issue: Pt 2
  year: 2022
  ident: pone.0281922.ref005
  article-title: A novel machine learning method for evaluating the impact of emission sources on ozone formation
  publication-title: Environ Pollut
– volume: 50
  start-page: 127
  issue: 2
  year: 2020
  ident: pone.0281922.ref049
  article-title: A Simulation Study of Bootstrap Approaches to Estimate Confidence Intervals in DeFries-Fulker Regression Models (with Application to the Heritability of BMI Changes in the NLSY)
  publication-title: Behav Genet
  doi: 10.1007/s10519-020-09993-9
– volume: 130
  start-page: 2619
  issue: 10
  year: 2000
  ident: pone.0281922.ref032
  article-title: Response to use of bootstrap procedure and monte carlo simulation
  publication-title: J Nutr
  doi: 10.1093/jn/130.10.2619
– volume: 7
  start-page: 41732
  issue: 45
  year: 2022
  ident: pone.0281922.ref016
  article-title: Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05952
– volume: 21
  start-page: 1079
  issue: 6
  year: 2011
  ident: pone.0281922.ref035
  article-title: A bootstrap test for comparing two variances: simulation of size and power in small samples
  publication-title: J Biopharm Stat
  doi: 10.1080/10543406.2011.611082
– volume: 21
  start-page: 1433
  issue: 2
  year: 2022
  ident: pone.0281922.ref003
  article-title: Predicting diabetic nephropathy in type 2 diabetic patients using machine learning algorithms
  publication-title: J Diabetes Metab Disord
  doi: 10.1007/s40200-022-01076-2
– volume: 859
  start-page: 160173
  issue: Pt 1
  year: 2022
  ident: pone.0281922.ref021
  article-title: Impacts of aquaculture on the area and soil carbon stocks of mangrove: A machine learning study in China
  publication-title: Sci Total Environ
– year: 2022
  ident: pone.0281922.ref002
  article-title: Elucidating lipid conformations in the ripple phase: Machine learning reveals four lipid populations
  publication-title: Biophys J
– volume: 1227
  start-page: 339834
  year: 2022
  ident: pone.0281922.ref028
  article-title: Bootstrap methods for quantifying the uncertainty of binding constants in the hard modeling of spectrophotometric titration data
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2022.339834
– year: 2022
  ident: pone.0281922.ref029
  article-title: Econometric Issues in Prospective Economic Evaluations Alongside Clinical Trials: Combining the Nonparametric Bootstrap with Methods that Address Missing Data
  publication-title: Epidemiol Rev
– volume: 5
  start-page: 1015660
  year: 2022
  ident: pone.0281922.ref008
  article-title: Automatic modeling of student characteristics with interaction and physiological data using machine learning: A review
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.1015660
– year: 2022
  ident: pone.0281922.ref019
  article-title: The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study
  publication-title: Eur Radiol
– volume: 2021
  start-page: 813
  year: 2021
  ident: pone.0281922.ref015
  article-title: Understanding Heart Failure Patients EHR Clinical Features via SHAP Interpretation of Tree-Based Machine Learning Model Predictions
  publication-title: AMIA Annu Symp Proc
– volume: 108
  start-page: 154525
  year: 2022
  ident: pone.0281922.ref058
  article-title: The mechanisms of Qizhu Tangshen formula in the treatment of diabetic kidney disease: Network pharmacology, machine learning, molecular docking and experimental assessment
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2022.154525
– volume: 4
  start-page: 752558
  year: 2021
  ident: pone.0281922.ref025
  article-title: SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2021.752558
– volume: 71
  start-page: 39
  issue: 1
  year: 2018
  ident: pone.0281922.ref042
  article-title: Standard errors and confidence intervals for correlations corrected for indirect range restriction: A simulation study comparing analytic and bootstrap methods
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/bmsp.12105
– volume: 13
  start-page: 1037318
  year: 2022
  ident: pone.0281922.ref059
  article-title: Identification of diagnostic genes for both Alzheimer’s disease and Metabolic syndrome by the machine learning algorithm
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1037318
– volume: 12
  start-page: 20012
  issue: 1
  year: 2022
  ident: pone.0281922.ref004
  article-title: Machine learning models for prediction of HF and CKD development in early-stage type 2 diabetes patients
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-24562-2
– start-page: 1
  year: 2022
  ident: pone.0281922.ref065
  article-title: Distraction detection of lectures in e-learning using machine learning based on human facial features and postural information
  publication-title: Artif Life Robot
– volume: 20
  start-page: 255
  issue: 2
  year: 2003
  ident: pone.0281922.ref052
  article-title: Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msg028
– volume: 44
  start-page: 631
  issue: 6
  year: 2017
  ident: pone.0281922.ref067
  article-title: Comparison of tenofovir plasma and tissue exposure using a population pharmacokinetic model and bootstrap: a simulation study from observed data
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-017-9554-9
– volume: 18
  start-page: e1009736
  issue: 1
  year: 2022
  ident: pone.0281922.ref011
  article-title: Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1009736
– volume: 55
  start-page: 1849
  issue: 7
  year: 2008
  ident: pone.0281922.ref033
  article-title: Assessment of SPM in perfusion brain SPECT studies. A numerical simulation study using bootstrap resampling methods
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.919718
– ident: pone.0281922.ref037
– year: 2022
  ident: pone.0281922.ref020
  article-title: Noninvasive Prediction of Ki-67 Expression in Hepatocellular Carcinoma Using Machine Learning-Based Ultrasomics: A Multicenter Study
  publication-title: J Ultrasound Med
– volume: 13
  start-page: 1001070
  year: 2022
  ident: pone.0281922.ref024
  article-title: Exploration of blood-derived coding and non-coding RNA diagnostic immunological panels for COVID-19 through a co-expressed-based machine learning procedure
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1001070
– year: 2022
  ident: pone.0281922.ref056
  article-title: Using Machine Learning to make nanomaterials sustainable
  publication-title: Sci Total Environ
– volume: 311
  start-page: 137039
  issue: Pt 1
  year: 2023
  ident: pone.0281922.ref014
  article-title: Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137039
– volume: 60
  start-page: 415
  issue: 3
  year: 2000
  ident: pone.0281922.ref036
  article-title: Estimation of population profiles of two strains of the fly Megaselia scalaris (Diptera: Phoridae) by bootstrap simulation
  publication-title: Rev Bras Biol
  doi: 10.1590/S0034-71082000000300006
– volume: 12
  start-page: 897596
  year: 2022
  ident: pone.0281922.ref045
  article-title: Ultrasound-based radiomics XGBoost model to assess the risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual application of SHAP
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.897596
– volume: 12
  start-page: 1277
  issue: 6
  year: 2022
  ident: pone.0281922.ref027
  article-title: Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the pandemic
  publication-title: Health Technol (Berl)
  doi: 10.1007/s12553-022-00712-4
– volume: 339
  start-page: 21
  year: 2021
  ident: pone.0281922.ref039
  article-title: Prediction of 1-year mortality after heart transplantation using machine learning approaches: A single-center study from China
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2021.07.024
– volume: 12
  start-page: 761811
  year: 2021
  ident: pone.0281922.ref050
  article-title: Traditional Uses, Chemistry, Pharmacology, Toxicology and Quality Control of Alhagi sparsifolia Shap.: A Review
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2021.761811
– year: 2022
  ident: pone.0281922.ref055
  article-title: Integrating machine learning and digital microfluidics for screening experimental conditions
  publication-title: Lab Chip
– year: 2022
  ident: pone.0281922.ref001
  article-title: Machine learning approach in diagnosing Takotsubo cardiomyopathy: The role of the combined evaluation of atrial and ventricular strain, and parametric mapping
  publication-title: Int J Cardiol
– volume: 24
  start-page: 36
  issue: 3–4
  year: 2022
  ident: pone.0281922.ref017
  article-title: Adjusting Iron Deficiency for Inflammation in Cuban Children Aged Under Five Years: New Approaches Using Quadratic and Quantile Regression
  publication-title: MEDICC Rev
– volume: 8
  start-page: e880
  year: 2022
  ident: pone.0281922.ref022
  article-title: GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.880
– volume: 49
  start-page: 171
  issue: 1
  year: 2000
  ident: pone.0281922.ref043
  article-title: A simulation study of reduced tree-search effort in bootstrap resampling analysis
  publication-title: Syst Biol
  doi: 10.1080/10635150050207465
– volume: 22
  issue: 3
  year: 2022
  ident: pone.0281922.ref047
  article-title: Classification and Explanation for Intrusion Detection System Based on Ensemble Trees and SHAP Method
  publication-title: Sensors (Basel)
– volume: 13
  start-page: 1000476
  year: 2022
  ident: pone.0281922.ref023
  article-title: Commentary: Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.1000476
– volume: 35
  start-page: 74
  year: 2023
  ident: pone.0281922.ref007
  article-title: Development of a machine learning algorithm to identify total and reverse shoulder arthroplasty implants from X-ray images
  publication-title: J Orthop
  doi: 10.1016/j.jor.2022.11.004
– volume: 13
  start-page: 948612
  year: 2022
  ident: pone.0281922.ref046
  article-title: Factors influencing secondary school students’ reading literacy: An analysis based on XGBoost and SHAP methods
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2022.948612
– volume: 61
  start-page: 1009
  issue: 10
  year: 2008
  ident: pone.0281922.ref051
  article-title: Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2007.11.014
– year: 2022
  ident: pone.0281922.ref057
  article-title: Emergence angle: Comprehensive analysis and machine learning prediction for clinical application
  publication-title: J Prosthodont Res
– volume: 41
  start-page: 15
  issue: 1
  year: 2014
  ident: pone.0281922.ref034
  article-title: Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: a simulation study in population pharmacokinetics
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-013-9343-z
– volume: 7
  start-page: 262
  issue: 1
  year: 2022
  ident: pone.0281922.ref064
  article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP
  publication-title: Infect Dis Model
– year: 2022
  ident: pone.0281922.ref006
  article-title: Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality
  publication-title: J Cardiovasc Transl Res
– year: 2022
  ident: pone.0281922.ref018
  article-title: Hospital context in surgical site infection following colorectal surgery: a multi-level logistic regression analysis
  publication-title: J Hosp Infect
– volume: 12
  start-page: 18226
  issue: 1
  year: 2022
  ident: pone.0281922.ref013
  article-title: Interpretable predictive model for shield attitude control performance based on XGboost and SHAP
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-22948-w
– volume: 2022
  start-page: 6356399
  year: 2022
  ident: pone.0281922.ref012
  article-title: Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma
  publication-title: J Oncol
  doi: 10.1155/2022/6356399
– volume: 4
  start-page: 33
  issue: 1
  year: 2004
  ident: pone.0281922.ref044
  article-title: Use of the bootstrap in analysing cost data from cluster randomised trials: some simulation results
  publication-title: BMC Health Serv Res
  doi: 10.1186/1472-6963-4-33
– volume: 79
  start-page: 103316
  year: 2022
  ident: pone.0281922.ref068
  article-title: An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach
  publication-title: Asian J Psychiatr
  doi: 10.1016/j.ajp.2022.103316
– start-page: 1
  year: 2022
  ident: pone.0281922.ref009
  article-title: Use of machine learning to diagnose somatic symptom disorder: Are the biomarkers beneficial for the diagnosis?
  publication-title: World J Biol Psychiatry
– volume: 41
  start-page: 202
  issue: 1
  year: 2022
  ident: pone.0281922.ref038
  article-title: Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2021.11.006
– volume: 76
  issue: 6
  year: 2022
  ident: pone.0281922.ref060
  article-title: Development of a Short-Form Stroke Impact Scale Using a Machine Learning Algorithm for Patients at the Subacute Stage
  publication-title: Am J Occup Ther
– volume: 15
  issue: 18
  year: 2022
  ident: pone.0281922.ref026
  article-title: New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
  publication-title: Materials (Basel)
  doi: 10.3390/ma15186261
– year: 2021
  ident: pone.0281922.ref040
  article-title: Opportunistic Assessment of Ischemic Heart Disease Risk Using Abdominopelvic Computed Tomography and Medical Record Data: a Multimodal Explainable Artificial Intelligence Approach
  publication-title: medRxiv
– volume: 9
  start-page: 1001801
  year: 2022
  ident: pone.0281922.ref010
  article-title: Using machine learning models to predict the duration of the recovery of COVID-19 patients hospitalized in Fangcang shelter hospital during the Omicron BA. 2.2 pandemic
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2022.1001801
– volume: 9
  start-page: 369
  issue: 3
  year: 2004
  ident: pone.0281922.ref053
  article-title: Bootstrap standard error and confidence intervals for the correlation corrected for range restriction: a simulation study
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.9.3.369
– volume: 10
  start-page: 330
  issue: 4
  year: 2021
  ident: pone.0281922.ref062
  article-title: Conditional distribution modeling as an alternative method for covariates simulation: Comparison with joint multivariate normal and bootstrap techniques
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12613
– year: 2022
  ident: pone.0281922.ref030
  article-title: Does sectoral energy consumption depend on trade, monetary, and fiscal policy uncertainty? Policy recommendations using novel bootstrap ARDL approach
  publication-title: Environ Sci Pollut Res Int
– volume: 32
  start-page: e12984
  issue: 2
  year: 2022
  ident: pone.0281922.ref063
  article-title: Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach
  publication-title: Indoor Air
  doi: 10.1111/ina.12984
– volume: 61
  start-page: 755
  issue: 7
  year: 2011
  ident: pone.0281922.ref048
  article-title: Quantitative assessment of variability and uncertainty of hazardous trace element (Cd, Cr, and Pb) contents in Chinese coals by using bootstrap simulation
  publication-title: J Air Waste Manag Assoc
  doi: 10.3155/1047-3289.61.7.755
– volume: 12
  start-page: 19825
  issue: 1
  year: 2022
  ident: pone.0281922.ref061
  article-title: Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-24118-4
– volume: 38
  start-page: 557
  issue: 4
  year: 2006
  ident: pone.0281922.ref066
  article-title: Computer simulations of the ROUSE model: an analytic simulation technique and a comparison between the error variance-covariance and bootstrap methods for estimating parameter confidence
  publication-title: Behav Res Methods
  doi: 10.3758/BF03193885
SSID ssj0053866
Score 2.6181836
Snippet Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0281922
SubjectTerms Accuracy
Age
Algorithms
Angina
Angina pectoris
Artificial neural networks
Biology and Life Sciences
Blood pressure
Bootstrapping (Statistics)
Cardiovascular disease
Cardiovascular diseases
Choice learning
Cholesterol
Computer and Information Sciences
Computer Simulation
Datasets
Diagnosis
Electrocardiography
Evaluation
Fasting
Health services
Heart diseases
Heart rate
Humans
Learning algorithms
Machine Learning
Males
Medicine and Health Sciences
Methods
Model accuracy
Modelling
Neural networks
Neural Networks, Computer
Physical Sciences
Regression analysis
Reliability analysis
Reproducibility of Results
Research and Analysis Methods
Simulation
Simulation methods
Statistical methods
Statistics
Transparency
Variables
Variance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTeLEdo4FURUkQAKKeotsr9MuSrMRyQr23zNje6NGVGoPKLd4kijznmT8DSEvDVRVguUmLoSBAgUS5linXMdGC6MgP4KghBucP33mR8f5x5Pi5MKoL-wJ8_DAnnH7EkKuhEIq5RYcqZUlh5AFZY0qNGNWOSTQRJbbYsr7YLBizsNGOSbS_SCXebdq7TzBf0dZNglEDq9_9Mqzrln1l6Wc_3ZO3ly3ndr8Vk1zISwd3iG3Qz5JD_x77JAbtr1LdoLF9vR1gJV-c4_8BFeAHegQq-jgIM1xH5jZ0GVLz11LpaVhhgQQ-PE9FHLwAT-GdLRfnodJX1S1C9qfYePUhmI_EnpMav90jfKfFvv75Pjw_fd3R3GYtBAbXmZDnBf1gnFsedJSGqa1yGrGioXQeWEgC0PEnbpIOTgjK40q1KKwIJEajLkugYo9ILMWeLtLqJRWQRJUWMSpMZKXOmFW15ZrKQxL8oiwLdsrE2DIcRpGU7l_awLKEc-5CoVVBWFFJB6v6jwMxxX0b1GiIy2CaLsToFpVUK3qKtWKyDPUh8rvSB1dQXUgoKxPRZqyiLxwFAik0WKnzqla93314cuPaxB9-zohehWI6hWww6iwOwLeCQG6JpR7E0pwB2ayvIvau-VKX2UCpARHUsKVW42-fPn5uIw3xe671q7WnoYh8hvc_aE3gJGzjMsMEZ0iIiamMWH9dKVdnjkc8xIeyzN47nw0omsJ99H_EO5jciuDfNWhE7A9Mht-re0TyC8H_dS5kr_05Hey
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7YG9IDY-djAgICTgobdrc03SB4Q2tGkgcaDB0N6qJE23Q11b1p7g_nvsNi1UTDDd28X9smPHTuyfCXluIKoSbGa8UBgIUMBh9rTPtWe0MAr8I1iUsMD5w5wfnczen4ana2Te1cJgWmVnExtDnRQG98h3AwEzB37T6E353cOuUXi62rXQUK61QvK6gRi7QdYDRMYakfX9g_mn4842g3Zz7gromPB3nbwmZZHbyRTPlIJgsEA1OP69tR6VWVFd5Yr-nVF5c5mXavVDZdkfy9XhbXLL-Zl0r50Ym2TN5ltk02lyRV86uOlXW2QD_c0WrvkO-Qb2AtPUYUGjdYN7jsViZkUXOb1o8i4tdY0mgKDt8UPBUa9xx6Sk1eLCtQOjKk9odY7ZVSuKSUtoVqn9WWaq3X-s7pKTw4Mvb488147BMzwKam8WpgnjmBelpTRMaxGkjIWJ0LPQgKuGsDxp6HOwWFYaFaoktMznKcgtjYCK3SOjHBi9TaiUVoGnFFoEszGSR3rKrE4t11IYNp2NCetkEBuHVY4tM7K4OYATELO0bIxRcrGT3Jh4_VVli9XxH_p9FG9Pi0jbzR_F5VnsFDeW4PJJCOR9bmEhtzLi4DJBWK1CzZhV8KpPcHLEbdlqby_iPQGxvy98n43Js4YC0TZyTOc5U8uqit99_HoNos_HA6IXjigtgB1GuRIK-CZE8RpQ7gwowWaYwfA2TuWOK1X8W7vgym56Xz38tB_Gm2KKXm6LZUvDEB4O7n6_1Yaes4zLAGGfxkQM9GTA-uFIvjhvwM4jeCwP4LmTXqOuJdwH__6Oh2QjAHe1ASdgO2RUXy7tI3Ava_3Y2Yxfv098Ow
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlCauP_JYENNA2kBA0XiKbNdhhS6NSCIofz13iRMtMERR3uJzEp9955_ju58JeWhhVSXZxAZcWligAGAOTChMYI20GvARTEqY4Hx4JA5mk9fH_HiLPG1zYc7u3zMZPvMaHeWrzI3GuOsTgcPdFhyQ94Bsz47eTj81G8dRIKIx89lxf6vam31qkv7OFQ_y5ao4D2f-GS55ocpyvf6ul8szc9H-ZXLYtqIJQfk6qkozsj9_I3jctJlXyCUPSum0GUU7ZMtlV8mON_uCPvbc1E-ukS_gTzCMHSY8Wta86JhMZtd0kdHTOi7TUX8QBQg0ZwBRAPIl_lHJabE49ceFUZ3NaXGC0VdrikFN6Hap-5EvdfN_srhOZvsvP7w4CPxxDYEVcVQGE57OmcC4KaOUZcbIKGWMz6WZcAtQDml7Uh4K8GhOWc31nDsWihQ8QhqDFLtBBhm0f5dQpZwGJMUdkt1YJWIzZs6kThglLRtPhoS13ZhYz2WOR2osk3qDTsKaptFcggpNvEKHJOhq5Q2Xxz_kn-MI6WSRibu-AT2XeMNOFEBCBQv9UDiY6J2KYRTCmo1rbhhzGj71Ho6vpElr7fxJMpVMAXYLQzYkD2oJZOPIMNzns66KInn15uMGQu_f9YQeeaF0Beqw2qdYQJuQ5asnudeTBJ9ie8W7aA2tVookktBLcI1jqNlayPnF97tifCiG8GVuVTUyDOnj4Ok3G4PqNMuEipAWakhkz9R6qu-XZIuTmgw9hteKCN476oxyo8699b8VbpOLEQDcms6A7ZFB-a1ydwCQluau90O_ANlyikM
  priority: 102
  providerName: Unpaywall
Title Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations
URI https://www.ncbi.nlm.nih.gov/pubmed/36821544
https://www.proquest.com/docview/2779494909
https://www.proquest.com/docview/2779345473
https://pubmed.ncbi.nlm.nih.gov/PMC9949629
https://doi.org/10.1371/journal.pone.0281922
https://doaj.org/article/8615813316e847e896201825a5b33ea4
http://dx.doi.org/10.1371/journal.pone.0281922
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98BeEBsfK4xiEBLwkKqJEzt5QKibVgbSyjQo6p4i23W2oiwNTSvW_567xI2I6MRUKQ_xOWnOvi_7_DtC3miIqgTztRMIDQEKOMyOcrlytBJagn8ERgkPOJ8O-cnI_zIOxltkXbPVMrDYGNphPanRPO3e_Fp9BIH_UFZtEO66UzefZabbw50hD5TyNtiqCIs5nPr1vgJIN-f2AN1tPRsGqsTxr7V1K09nxSZX9N-MyvvLLJer3zJN_zJXg4fkgfUzab-aGLtky2R7ZNdKckHfWbjp93tkB_3NCq75EfkJ-gLT1MGg0UWJe46HxfSKTjN6XeZdGmoLTQBBVeOHgqO-wBWTnBbTa1sOjMpsQosrzK5aUUxaQrVKzU2eymr9sXhMRoPj70cnji3H4GgeeQvHD5IJ45gXpcJQM6WElzAWTITyAw2uGsLyJIHLQWOZUMtATgLDXJ6AxCcRULEnpJUBo_cJDUMjwVMKDILZ6JBHqseMSgxXodCs57cJW49BrC1WOZbMSONyA05AzFKxMcaRi-3ItYlT98orrI7_0B_i8Na0iLRd3pjNL2MruHEILl8IgbzLDRhyE0YcXCYIq2WgGDMS_upLnBxxdWy11hdxX0Ds7wrXZW3yuqRAtI0M03ku5bIo4s9ff9yB6Nt5g-itJUpmwA4t7REK-CZE8WpQHjQoQWfoRvM-TuU1V4rYEzBK8OtF0HM9vTc3v6qb8aGYopeZ2bKiYQgPB09_WklDzVnGQw9hn9pENOSkwfpmSza9KsHOI3gt9-C93Vqi7jS4z27_xOdkxwNXtQQmYAektZgvzQtwLReqQ-6JsYBreOTidfCpQ7YPj4dn551ysaZTahO4Nxqe9S_-AEdwgIM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGedheEBsfKwxmEAh4SNfEie08IDQ-ppZ9IME29S3ErrMVdUlYWo3-U_yN3CVOIGKCvUx9qy9O7Duff5ecf0fIMw1RlWC-dgKhIUABwOwolytHK6FjwEewKeEB5_0DPjjyP46C0RL5WZ-FwbTK2ieWjnqcaXxHvuUJsBz49cM3-XcHq0bh19W6hEZlFrtmcQEhW_F6-B70-9zzdj4cvhs4tqqAo3nozRw_SMaMY3qPklIzpYSXMBaMhfIDDYgD2WWSwOWw8IzUcRCPA8NcnsDtkxCkGPR7g9z0GfgSWD9i1AR44Ds4t8fzmHC3rDX08iw1vT5-sfK81vZXVglo9oJOPs2Ky4Du3_may_M0jxcX8XT6x2a4c5vcsiiWbldmt0qWTLpGVq2fKOhLS2b9ao2sIJqtyKDvkG_gjTAJHrZLOitZ1fEoml7QSUrPyqxOQ20ZCxCoKghRCANm-D4mp8XkzBYbo3E6psUp5m4tKKZEodOm5kc-jau3m8VdcnQtarlHOilM9DqhUpoYcFhgkCpHSx6qPjMqMVxJoVnf7xJW6yDSlgkdC3JMo_LznoCIqJrGCDUXWc11idNclVdMIP-Rf4vqbWSRx7v8Izs_iaxbiCQASukyGIgBmGBkyAGQQdAeB4oxE8OjbqJxRNWh2MYbRduCSUB-rsu65GkpgVweKSYLncTzooiGn46vIPTlc0vohRVKMpgOHdsDGjAm5AhrSW60JMEj6VbzOppyPStF9HvtwpW1eV_e_KRpxk4xATA12bySYUg-B73fr1ZDM7OMSw9JpbpEtNZJa-rbLenktKRSD-G23IP79poVdSXlPvj3ODbJ8uBwfy_aGx7sPiQrHgDjkgaBbZDO7HxuHgGQnanHpfeg5Ot1u6tfoquxeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkWAviI0fKwxmEAh4SNvEje08IDQY1cpgIGCob8F2na2oS8LSavRf46_jLnEDERPsZepbfXFi3_n8XXL-jpBHBqIqwfrGC4WBAAUAs6d9rj2jhVGAj2BTwgPO7_b57kH_zSgcrZCfy7MwmFa59Imlox5nBt-RdwMBlgO_XtRNXFrEh53Bi_y7hxWk8EvrspxGZSJ7dnEK4VvxfLgDun4cBIPXn1_teq7CgGd4FMy8fpiMGcdUHy2lYVqLIGEsHAvdDw2gD2SaSUKfwyK00qhQjUPLfJ7AoyQRSDHo9xK5LBiLMJ1QjOpgD_wI5-6oHhN-11lGJ89S2-nh16sgaGyFZcWAel9o5dOsOAv0_p27eXWe5mpxqqbTPzbGwXVyzSFaul2Z4BpZsek6WXM-o6BPHbH1s3Wyisi2Ioa-Qb6BZ8KEeNg66axkWMdjaWZBJyk9LjM8LXUlLUCgqiZEISSY4buZnBaTY1d4jKp0TIsjzONaUEyPQgdO7Y98qqo3ncVNcnAharlFWilM9AahUloFmCy0SJtjJI90j1mdWK6lMKzXbxO21EFsHCs6FueYxuWnPgHRUTWNMWoudpprE6--Kq9YQf4j_xLVW8sip3f5R3ZyGDsXEUsAl9JnMBALkMHKiAM4gwBehZoxq-BRt9A44uqAbO2Z4m3BJKBA32dt8rCUQF6PFFfIoZoXRTx8_-UcQp8-NoSeOKEkg-kwyh3WgDEhX1hDcrMhCd7JNJo30JSXs1LEv9cxXLk077ObH9TN2CkmA6Y2m1cyDInooPfb1WqoZ5ZxGSDBVJuIxjppTH2zJZ0clbTqEdyWB3DfTr2izqXcO_8exxa5Ao4qfjvc37tLVgPAyCUjAtskrdnJ3N4DTDvT90vnQcnXi_ZWvwBDwLW7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlCauP_JYENNA2kBA0XiKbNdhhS6NSCIofz13iRMtMERR3uJzEp9955_ju58JeWhhVSXZxAZcWligAGAOTChMYI20GvARTEqY4Hx4JA5mk9fH_HiLPG1zYc7u3zMZPvMaHeWrzI3GuOsTgcPdFhyQ94Bsz47eTj81G8dRIKIx89lxf6vam31qkv7OFQ_y5ao4D2f-GS55ocpyvf6ul8szc9H-ZXLYtqIJQfk6qkozsj9_I3jctJlXyCUPSum0GUU7ZMtlV8mON_uCPvbc1E-ukS_gTzCMHSY8Wta86JhMZtd0kdHTOi7TUX8QBQg0ZwBRAPIl_lHJabE49ceFUZ3NaXGC0VdrikFN6Hap-5EvdfN_srhOZvsvP7w4CPxxDYEVcVQGE57OmcC4KaOUZcbIKGWMz6WZcAtQDml7Uh4K8GhOWc31nDsWihQ8QhqDFLtBBhm0f5dQpZwGJMUdkt1YJWIzZs6kThglLRtPhoS13ZhYz2WOR2osk3qDTsKaptFcggpNvEKHJOhq5Q2Xxz_kn-MI6WSRibu-AT2XeMNOFEBCBQv9UDiY6J2KYRTCmo1rbhhzGj71Ho6vpElr7fxJMpVMAXYLQzYkD2oJZOPIMNzns66KInn15uMGQu_f9YQeeaF0Beqw2qdYQJuQ5asnudeTBJ9ie8W7aA2tVookktBLcI1jqNlayPnF97tifCiG8GVuVTUyDOnj4Ok3G4PqNMuEipAWakhkz9R6qu-XZIuTmgw9hteKCN476oxyo8699b8VbpOLEQDcms6A7ZFB-a1ydwCQluau90O_ANlyikM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+transparency+in+machine+learning+through+bootstrap+simulation+and+shapely+additive+explanations&rft.jtitle=PloS+one&rft.au=Huang%2C+Alexander&rft.au=Huang%2C+Samuel&rft.date=2023-02-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0281922&rft.externalDocID=2779494909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon