Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations
Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model...
Saved in:
| Published in | PloS one Vol. 18; no. 2; p. e0281922 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
23.02.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0281922 |
Cover
| Abstract | Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset. |
|---|---|
| AbstractList | Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset. Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset.Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it difficult for researchers to identify which machine-learning model to apply to their dataset. We assessed whether variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model transparency and improve model selection. Data from the England National Health Services Heart Disease Prediction Cohort was used. After comparison of model metrics for XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost was used as the machine-learning model of choice in this study. Boost-strap simulation (N = 10,000) was used to empirically derive the distribution of model metrics and covariate Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to machine-learning output and simulation to evaluate the variance of model accuracy metrics. For the XGBoost modeling method, we observed (through 10,000 completed simulations) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference. Among 10,000 simulations completed, we observed that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to 0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to 0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use of simulations to empirically evaluate the variability of model metrics and explanatory algorithms to observe if covariates match the literature are necessary for increased transparency, reliability, and utility of machine learning methods. These variance statistics, combined with model accuracy statistics can help researchers identify the best model for a given dataset. |
| Audience | Academic |
| Author | Huang, Samuel Y. Huang, Alexander A. |
| AuthorAffiliation | 3 Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America 2 Department of MD Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, ITALY 1 Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America |
| AuthorAffiliation_xml | – name: 3 Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America – name: 2 Department of MD Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America – name: 1 Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America – name: Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, ITALY |
| Author_xml | – sequence: 1 givenname: Alexander A. orcidid: 0000-0003-4970-4968 surname: Huang fullname: Huang, Alexander A. – sequence: 2 givenname: Samuel Y. orcidid: 0000-0003-3663-004X surname: Huang fullname: Huang, Samuel Y. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36821544$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tr3DAQhU1JaS7tPyitoVDah91aliXLfSiE0MtCINDbqxjLsq1FllzJTrP_vtpdJ6xDoEEPNuNvjnTOyKfRkbFGRtFLlCwRztGHtR2dAb3sQ3mZpAwVafokOkEFThc0TfDRwftxdOr9OkkIZpQ-i44xZSkiWXYSrVdGOAlemSYeHBjfg5NGbGJl4g5Eq4yMtQRndkDr7Ni0cWnt4APdx151o4ZBWRODqWLfQi_1JoaqUoO6lrG86TWYHeCfR09r0F6-mJ5n0a8vn39efFtcXn1dXZxfLgQt0mGRkbrCtEgYKxkTuCzztMaYVHmZEZEkRUIIrQmiOcWSCSBQEYkRrfMiq4tA4bPo9V6319bzKSbP0zwQYSVFIFZ7orKw5r1THbgNt6D4rmBdw8ENSmjJGUWEIRw2kCzLJStCnIilBEiJsYQsaJG91mh62PwFre8EUcK3k7o9At9Oik-TCn2fplOOZScrIU0IVM8OM_9iVMsbe82L4IGmWxPvJgFn_4zSD7xTXkgd8pZ23PvFGclyHNA399CHU5moBoJxZWob9hVbUX6eY4ZRjtBWa_kAFVYlOyWCw1qF-qzh_awhMIO8GRoYveerH98fz179nrNvD9hWgh5ab_W4u2tz8NVh0ncR3_4EAfi4B4Sz3jtZc6GG3Z0N1pT-3xyze82PGv8_wQUvZA |
| CitedBy_id | crossref_primary_10_1038_s41598_025_85707_7 crossref_primary_10_1371_journal_pone_0306359 crossref_primary_10_1371_journal_pone_0312915 crossref_primary_10_1002_hsr2_1635 crossref_primary_10_1186_s12889_025_22245_x crossref_primary_10_1002_hsr2_1416 crossref_primary_10_1186_s12944_024_02204_y crossref_primary_10_7759_cureus_46549 crossref_primary_10_7759_cureus_51581 crossref_primary_10_1016_j_advnut_2024_100264 crossref_primary_10_1111_trf_17582 crossref_primary_10_1371_journal_pone_0288819 crossref_primary_10_3390_jimaging10110290 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107991 crossref_primary_10_1186_s12902_025_01831_5 crossref_primary_10_3390_fractalfract7090670 crossref_primary_10_1038_s41598_025_92518_3 crossref_primary_10_1002_cpt_3053 crossref_primary_10_1371_journal_pone_0304509 crossref_primary_10_3389_fendo_2023_1292167 crossref_primary_10_3389_fnetp_2024_1361915 crossref_primary_10_1371_journal_pone_0319297 crossref_primary_10_1002_jcla_25109 crossref_primary_10_1002_osp4_697 crossref_primary_10_1371_journal_pone_0308922 crossref_primary_10_3390_app142411652 crossref_primary_10_1038_s41598_025_88156_4 crossref_primary_10_1371_journal_pone_0309830 crossref_primary_10_7759_cureus_80734 crossref_primary_10_1186_s12877_025_05837_5 crossref_primary_10_1371_journal_pone_0307952 crossref_primary_10_3389_fnut_2024_1519782 crossref_primary_10_1007_s10845_024_02482_4 crossref_primary_10_7759_cureus_69818 crossref_primary_10_1186_s12880_025_01555_x crossref_primary_10_2147_IJGM_S498965 crossref_primary_10_1186_s12944_024_02231_9 crossref_primary_10_3389_fmed_2025_1480931 crossref_primary_10_1186_s12874_025_02457_w crossref_primary_10_1186_s12944_024_02299_3 crossref_primary_10_3389_fpubh_2025_1526360 crossref_primary_10_7759_cureus_69680 crossref_primary_10_7759_cureus_59507 crossref_primary_10_1371_journal_pone_0288903 |
| Cites_doi | 10.1007/s43546-022-00328-w 10.1002/jrsm.1471 10.1007/s10519-020-09993-9 10.1093/jn/130.10.2619 10.1021/acsomega.2c05952 10.1080/10543406.2011.611082 10.1007/s40200-022-01076-2 10.1016/j.aca.2022.339834 10.3389/frai.2022.1015660 10.1016/j.phymed.2022.154525 10.3389/frai.2021.752558 10.1111/bmsp.12105 10.3389/fimmu.2022.1037318 10.1038/s41598-022-24562-2 10.1093/molbev/msg028 10.1007/s10928-017-9554-9 10.1371/journal.pcbi.1009736 10.1109/TBME.2008.919718 10.3389/fimmu.2022.1001070 10.1016/j.chemosphere.2022.137039 10.1590/S0034-71082000000300006 10.3389/fonc.2022.897596 10.1007/s12553-022-00712-4 10.1016/j.ijcard.2021.07.024 10.3389/fphar.2021.761811 10.7717/peerj-cs.880 10.1080/10635150050207465 10.3389/fphar.2022.1000476 10.1016/j.jor.2022.11.004 10.3389/fpsyg.2022.948612 10.1016/j.jclinepi.2007.11.014 10.1007/s10928-013-9343-z 10.1038/s41598-022-22948-w 10.1155/2022/6356399 10.1186/1472-6963-4-33 10.1016/j.ajp.2022.103316 10.1016/j.clnu.2021.11.006 10.3390/ma15186261 10.3389/fmed.2022.1001801 10.1037/1082-989X.9.3.369 10.1002/psp4.12613 10.1111/ina.12984 10.3155/1047-3289.61.7.755 10.1038/s41598-022-24118-4 10.3758/BF03193885 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Huang, Huang 2023 Huang, Huang 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Huang, Huang 2023 Huang, Huang – notice: 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0281922 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Statistics |
| DocumentTitleAlternate | Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2779494909 oai_doaj_org_article_8615813316e847e896201825a5b33ea4 10.1371/journal.pone.0281922 PMC9949629 A738317113 36821544 10_1371_journal_pone_0281922 |
| Genre | Journal Article |
| GeographicLocations | United States United Kingdom--UK England |
| GeographicLocations_xml | – name: United States – name: England – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: T35 DK126628 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c692t-45fd369088b88c3bb72f335d7b45c0090556f516763e8ca5ad5e316f794f9d7b3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 02 11:04:01 EDT 2023 Fri Oct 03 12:44:03 EDT 2025 Sun Oct 26 03:59:45 EDT 2025 Tue Sep 30 17:17:12 EDT 2025 Fri Sep 05 06:41:05 EDT 2025 Tue Oct 07 07:56:06 EDT 2025 Mon Oct 20 22:16:10 EDT 2025 Mon Oct 20 16:50:37 EDT 2025 Thu Oct 16 16:15:48 EDT 2025 Thu Oct 16 16:23:45 EDT 2025 Thu May 22 21:24:21 EDT 2025 Mon Jul 21 05:53:59 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Oct 01 04:47:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Copyright: © 2023 Huang, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-45fd369088b88c3bb72f335d7b45c0090556f516763e8ca5ad5e316f794f9d7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3663-004X 0000-0003-4970-4968 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0281922 |
| PMID | 36821544 |
| PQID | 2779494909 |
| PQPubID | 1436336 |
| PageCount | e0281922 |
| ParticipantIDs | plos_journals_2779494909 doaj_primary_oai_doaj_org_article_8615813316e847e896201825a5b33ea4 unpaywall_primary_10_1371_journal_pone_0281922 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9949629 proquest_miscellaneous_2779345473 proquest_journals_2779494909 gale_infotracmisc_A738317113 gale_infotracacademiconefile_A738317113 gale_incontextgauss_ISR_A738317113 gale_incontextgauss_IOV_A738317113 gale_healthsolutions_A738317113 pubmed_primary_36821544 crossref_citationtrail_10_1371_journal_pone_0281922 crossref_primary_10_1371_journal_pone_0281922 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-23 |
| PublicationDateYYYYMMDD | 2023-02-23 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Xu (pone.0281922.ref021) 2022; 859 JJ Scott-Fordsmand (pone.0281922.ref056) 2022 M Farajtabar (pone.0281922.ref006) 2022 L Zhang (pone.0281922.ref020) 2022 JW Collins (pone.0281922.ref067) 2017; 44 O Saleh (pone.0281922.ref057) 2022 R Cau (pone.0281922.ref001) 2022 TN Flynn (pone.0281922.ref044) 2004; 4 Y Yang (pone.0281922.ref063) 2022; 32 G Smania (pone.0281922.ref062) 2021; 10 Y Zhu (pone.0281922.ref023) 2022; 13 HT Thai (pone.0281922.ref034) 2014; 41 SM Hosseini Sarkhosh (pone.0281922.ref003) 2022; 21 Q Dickinson (pone.0281922.ref011) 2022; 18 P O’Keefe (pone.0281922.ref049) 2020; 50 N Nordin (pone.0281922.ref068) 2022; 79 Y Shi (pone.0281922.ref045) 2022; 12 F Wei (pone.0281922.ref050) 2021; 12 H Shi (pone.0281922.ref038) 2022; 41 Y Zhou (pone.0281922.ref039) 2021; 339 D Cordes (pone.0281922.ref054) 2022; 2 H Liu (pone.0281922.ref046) 2022; 13 I Betto (pone.0281922.ref065) 2022 S Lu (pone.0281922.ref015) 2021; 2021 T Kennet-Cohen (pone.0281922.ref042) 2018; 71 A Chatterjee (pone.0281922.ref061) 2022; 12 CS Wu (pone.0281922.ref009) 2022 M Anjum (pone.0281922.ref026) 2022; 15 DO Oyewola (pone.0281922.ref027) 2022; 12 W Chan (pone.0281922.ref053) 2004; 9 M Hu (pone.0281922.ref013) 2022; 12 CM Scavuzzo (pone.0281922.ref064) 2022; 7 F Ahmadi (pone.0281922.ref055) 2022 R Malheiro (pone.0281922.ref018) 2022 R Bhowmik (pone.0281922.ref030) 2022 A Jalali (pone.0281922.ref029) 2022 Y Wang (pone.0281922.ref019) 2022 TT Le (pone.0281922.ref047) 2022; 22 ME Alfaro (pone.0281922.ref052) 2003; 20 EA Geng (pone.0281922.ref007) 2023; 35 pone.0281922.ref037 SC Lee (pone.0281922.ref060) 2022; 76 M Feng (pone.0281922.ref012) 2022; 2022 DE Huber (pone.0281922.ref066) 2006; 38 Y Cheng (pone.0281922.ref005) 2022; 316 TD Shultz (pone.0281922.ref032) 2000; 130 J Peng (pone.0281922.ref058) 2022; 108 JM Zambrano Chaves (pone.0281922.ref040) 2021 J Li (pone.0281922.ref059) 2022; 13 PC Austin (pone.0281922.ref051) 2008; 61 D Pareto (pone.0281922.ref033) 2008; 55 E Kanda (pone.0281922.ref004) 2022; 12 J Sun (pone.0281922.ref035) 2011; 21 FA Orji (pone.0281922.ref008) 2022; 5 M Zarei Ghobadi (pone.0281922.ref024) 2022; 13 A Gramegna (pone.0281922.ref025) 2021; 4 NP Kazmierczak (pone.0281922.ref028) 2022; 1227 Y Xu (pone.0281922.ref010) 2022; 9 M Montero-Diaz (pone.0281922.ref017) 2022; 24 F Weber (pone.0281922.ref031) 2021; 12 X Shi (pone.0281922.ref016) 2022; 7 M Davies (pone.0281922.ref002) 2022 X Li (pone.0281922.ref014) 2023; 311 AJ Manzato (pone.0281922.ref036) 2000; 60 G Obaido (pone.0281922.ref041) 2022 H Tian (pone.0281922.ref048) 2011; 61 R Mitchell (pone.0281922.ref022) 2022; 8 RW DeBry (pone.0281922.ref043) 2000; 49 |
| References_xml | – volume: 2 start-page: 184 issue: 12 year: 2022 ident: pone.0281922.ref054 article-title: Systematic literature review of the performance characteristics of Chebyshev polynomials in machine learning applications for economic forecasting in low-income communities in sub-Saharan Africa publication-title: SN Bus Econ doi: 10.1007/s43546-022-00328-w – volume: 12 start-page: 291 issue: 3 year: 2021 ident: pone.0281922.ref031 article-title: Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods publication-title: Res Synth Methods doi: 10.1002/jrsm.1471 – year: 2022 ident: pone.0281922.ref041 article-title: An Interpretable Machine Learning Approach for Hepatitis B Diagnosis publication-title: Applied Sciences – volume: 316 start-page: 120685 issue: Pt 2 year: 2022 ident: pone.0281922.ref005 article-title: A novel machine learning method for evaluating the impact of emission sources on ozone formation publication-title: Environ Pollut – volume: 50 start-page: 127 issue: 2 year: 2020 ident: pone.0281922.ref049 article-title: A Simulation Study of Bootstrap Approaches to Estimate Confidence Intervals in DeFries-Fulker Regression Models (with Application to the Heritability of BMI Changes in the NLSY) publication-title: Behav Genet doi: 10.1007/s10519-020-09993-9 – volume: 130 start-page: 2619 issue: 10 year: 2000 ident: pone.0281922.ref032 article-title: Response to use of bootstrap procedure and monte carlo simulation publication-title: J Nutr doi: 10.1093/jn/130.10.2619 – volume: 7 start-page: 41732 issue: 45 year: 2022 ident: pone.0281922.ref016 article-title: Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction publication-title: ACS Omega doi: 10.1021/acsomega.2c05952 – volume: 21 start-page: 1079 issue: 6 year: 2011 ident: pone.0281922.ref035 article-title: A bootstrap test for comparing two variances: simulation of size and power in small samples publication-title: J Biopharm Stat doi: 10.1080/10543406.2011.611082 – volume: 21 start-page: 1433 issue: 2 year: 2022 ident: pone.0281922.ref003 article-title: Predicting diabetic nephropathy in type 2 diabetic patients using machine learning algorithms publication-title: J Diabetes Metab Disord doi: 10.1007/s40200-022-01076-2 – volume: 859 start-page: 160173 issue: Pt 1 year: 2022 ident: pone.0281922.ref021 article-title: Impacts of aquaculture on the area and soil carbon stocks of mangrove: A machine learning study in China publication-title: Sci Total Environ – year: 2022 ident: pone.0281922.ref002 article-title: Elucidating lipid conformations in the ripple phase: Machine learning reveals four lipid populations publication-title: Biophys J – volume: 1227 start-page: 339834 year: 2022 ident: pone.0281922.ref028 article-title: Bootstrap methods for quantifying the uncertainty of binding constants in the hard modeling of spectrophotometric titration data publication-title: Anal Chim Acta doi: 10.1016/j.aca.2022.339834 – year: 2022 ident: pone.0281922.ref029 article-title: Econometric Issues in Prospective Economic Evaluations Alongside Clinical Trials: Combining the Nonparametric Bootstrap with Methods that Address Missing Data publication-title: Epidemiol Rev – volume: 5 start-page: 1015660 year: 2022 ident: pone.0281922.ref008 article-title: Automatic modeling of student characteristics with interaction and physiological data using machine learning: A review publication-title: Front Artif Intell doi: 10.3389/frai.2022.1015660 – year: 2022 ident: pone.0281922.ref019 article-title: The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study publication-title: Eur Radiol – volume: 2021 start-page: 813 year: 2021 ident: pone.0281922.ref015 article-title: Understanding Heart Failure Patients EHR Clinical Features via SHAP Interpretation of Tree-Based Machine Learning Model Predictions publication-title: AMIA Annu Symp Proc – volume: 108 start-page: 154525 year: 2022 ident: pone.0281922.ref058 article-title: The mechanisms of Qizhu Tangshen formula in the treatment of diabetic kidney disease: Network pharmacology, machine learning, molecular docking and experimental assessment publication-title: Phytomedicine doi: 10.1016/j.phymed.2022.154525 – volume: 4 start-page: 752558 year: 2021 ident: pone.0281922.ref025 article-title: SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk publication-title: Front Artif Intell doi: 10.3389/frai.2021.752558 – volume: 71 start-page: 39 issue: 1 year: 2018 ident: pone.0281922.ref042 article-title: Standard errors and confidence intervals for correlations corrected for indirect range restriction: A simulation study comparing analytic and bootstrap methods publication-title: Br J Math Stat Psychol doi: 10.1111/bmsp.12105 – volume: 13 start-page: 1037318 year: 2022 ident: pone.0281922.ref059 article-title: Identification of diagnostic genes for both Alzheimer’s disease and Metabolic syndrome by the machine learning algorithm publication-title: Front Immunol doi: 10.3389/fimmu.2022.1037318 – volume: 12 start-page: 20012 issue: 1 year: 2022 ident: pone.0281922.ref004 article-title: Machine learning models for prediction of HF and CKD development in early-stage type 2 diabetes patients publication-title: Sci Rep doi: 10.1038/s41598-022-24562-2 – start-page: 1 year: 2022 ident: pone.0281922.ref065 article-title: Distraction detection of lectures in e-learning using machine learning based on human facial features and postural information publication-title: Artif Life Robot – volume: 20 start-page: 255 issue: 2 year: 2003 ident: pone.0281922.ref052 article-title: Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence publication-title: Mol Biol Evol doi: 10.1093/molbev/msg028 – volume: 44 start-page: 631 issue: 6 year: 2017 ident: pone.0281922.ref067 article-title: Comparison of tenofovir plasma and tissue exposure using a population pharmacokinetic model and bootstrap: a simulation study from observed data publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-017-9554-9 – volume: 18 start-page: e1009736 issue: 1 year: 2022 ident: pone.0281922.ref011 article-title: Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1009736 – volume: 55 start-page: 1849 issue: 7 year: 2008 ident: pone.0281922.ref033 article-title: Assessment of SPM in perfusion brain SPECT studies. A numerical simulation study using bootstrap resampling methods publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.919718 – ident: pone.0281922.ref037 – year: 2022 ident: pone.0281922.ref020 article-title: Noninvasive Prediction of Ki-67 Expression in Hepatocellular Carcinoma Using Machine Learning-Based Ultrasomics: A Multicenter Study publication-title: J Ultrasound Med – volume: 13 start-page: 1001070 year: 2022 ident: pone.0281922.ref024 article-title: Exploration of blood-derived coding and non-coding RNA diagnostic immunological panels for COVID-19 through a co-expressed-based machine learning procedure publication-title: Front Immunol doi: 10.3389/fimmu.2022.1001070 – year: 2022 ident: pone.0281922.ref056 article-title: Using Machine Learning to make nanomaterials sustainable publication-title: Sci Total Environ – volume: 311 start-page: 137039 issue: Pt 1 year: 2023 ident: pone.0281922.ref014 article-title: Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.137039 – volume: 60 start-page: 415 issue: 3 year: 2000 ident: pone.0281922.ref036 article-title: Estimation of population profiles of two strains of the fly Megaselia scalaris (Diptera: Phoridae) by bootstrap simulation publication-title: Rev Bras Biol doi: 10.1590/S0034-71082000000300006 – volume: 12 start-page: 897596 year: 2022 ident: pone.0281922.ref045 article-title: Ultrasound-based radiomics XGBoost model to assess the risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual application of SHAP publication-title: Front Oncol doi: 10.3389/fonc.2022.897596 – volume: 12 start-page: 1277 issue: 6 year: 2022 ident: pone.0281922.ref027 article-title: Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the pandemic publication-title: Health Technol (Berl) doi: 10.1007/s12553-022-00712-4 – volume: 339 start-page: 21 year: 2021 ident: pone.0281922.ref039 article-title: Prediction of 1-year mortality after heart transplantation using machine learning approaches: A single-center study from China publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2021.07.024 – volume: 12 start-page: 761811 year: 2021 ident: pone.0281922.ref050 article-title: Traditional Uses, Chemistry, Pharmacology, Toxicology and Quality Control of Alhagi sparsifolia Shap.: A Review publication-title: Front Pharmacol doi: 10.3389/fphar.2021.761811 – year: 2022 ident: pone.0281922.ref055 article-title: Integrating machine learning and digital microfluidics for screening experimental conditions publication-title: Lab Chip – year: 2022 ident: pone.0281922.ref001 article-title: Machine learning approach in diagnosing Takotsubo cardiomyopathy: The role of the combined evaluation of atrial and ventricular strain, and parametric mapping publication-title: Int J Cardiol – volume: 24 start-page: 36 issue: 3–4 year: 2022 ident: pone.0281922.ref017 article-title: Adjusting Iron Deficiency for Inflammation in Cuban Children Aged Under Five Years: New Approaches Using Quadratic and Quantile Regression publication-title: MEDICC Rev – volume: 8 start-page: e880 year: 2022 ident: pone.0281922.ref022 article-title: GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.880 – volume: 49 start-page: 171 issue: 1 year: 2000 ident: pone.0281922.ref043 article-title: A simulation study of reduced tree-search effort in bootstrap resampling analysis publication-title: Syst Biol doi: 10.1080/10635150050207465 – volume: 22 issue: 3 year: 2022 ident: pone.0281922.ref047 article-title: Classification and Explanation for Intrusion Detection System Based on Ensemble Trees and SHAP Method publication-title: Sensors (Basel) – volume: 13 start-page: 1000476 year: 2022 ident: pone.0281922.ref023 article-title: Commentary: Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence publication-title: Front Pharmacol doi: 10.3389/fphar.2022.1000476 – volume: 35 start-page: 74 year: 2023 ident: pone.0281922.ref007 article-title: Development of a machine learning algorithm to identify total and reverse shoulder arthroplasty implants from X-ray images publication-title: J Orthop doi: 10.1016/j.jor.2022.11.004 – volume: 13 start-page: 948612 year: 2022 ident: pone.0281922.ref046 article-title: Factors influencing secondary school students’ reading literacy: An analysis based on XGBoost and SHAP methods publication-title: Front Psychol doi: 10.3389/fpsyg.2022.948612 – volume: 61 start-page: 1009 issue: 10 year: 2008 ident: pone.0281922.ref051 article-title: Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.11.014 – year: 2022 ident: pone.0281922.ref057 article-title: Emergence angle: Comprehensive analysis and machine learning prediction for clinical application publication-title: J Prosthodont Res – volume: 41 start-page: 15 issue: 1 year: 2014 ident: pone.0281922.ref034 article-title: Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: a simulation study in population pharmacokinetics publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-013-9343-z – volume: 7 start-page: 262 issue: 1 year: 2022 ident: pone.0281922.ref064 article-title: Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP publication-title: Infect Dis Model – year: 2022 ident: pone.0281922.ref006 article-title: Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality publication-title: J Cardiovasc Transl Res – year: 2022 ident: pone.0281922.ref018 article-title: Hospital context in surgical site infection following colorectal surgery: a multi-level logistic regression analysis publication-title: J Hosp Infect – volume: 12 start-page: 18226 issue: 1 year: 2022 ident: pone.0281922.ref013 article-title: Interpretable predictive model for shield attitude control performance based on XGboost and SHAP publication-title: Sci Rep doi: 10.1038/s41598-022-22948-w – volume: 2022 start-page: 6356399 year: 2022 ident: pone.0281922.ref012 article-title: Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma publication-title: J Oncol doi: 10.1155/2022/6356399 – volume: 4 start-page: 33 issue: 1 year: 2004 ident: pone.0281922.ref044 article-title: Use of the bootstrap in analysing cost data from cluster randomised trials: some simulation results publication-title: BMC Health Serv Res doi: 10.1186/1472-6963-4-33 – volume: 79 start-page: 103316 year: 2022 ident: pone.0281922.ref068 article-title: An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach publication-title: Asian J Psychiatr doi: 10.1016/j.ajp.2022.103316 – start-page: 1 year: 2022 ident: pone.0281922.ref009 article-title: Use of machine learning to diagnose somatic symptom disorder: Are the biomarkers beneficial for the diagnosis? publication-title: World J Biol Psychiatry – volume: 41 start-page: 202 issue: 1 year: 2022 ident: pone.0281922.ref038 article-title: Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease publication-title: Clin Nutr doi: 10.1016/j.clnu.2021.11.006 – volume: 76 issue: 6 year: 2022 ident: pone.0281922.ref060 article-title: Development of a Short-Form Stroke Impact Scale Using a Machine Learning Algorithm for Patients at the Subacute Stage publication-title: Am J Occup Ther – volume: 15 issue: 18 year: 2022 ident: pone.0281922.ref026 article-title: New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete publication-title: Materials (Basel) doi: 10.3390/ma15186261 – year: 2021 ident: pone.0281922.ref040 article-title: Opportunistic Assessment of Ischemic Heart Disease Risk Using Abdominopelvic Computed Tomography and Medical Record Data: a Multimodal Explainable Artificial Intelligence Approach publication-title: medRxiv – volume: 9 start-page: 1001801 year: 2022 ident: pone.0281922.ref010 article-title: Using machine learning models to predict the duration of the recovery of COVID-19 patients hospitalized in Fangcang shelter hospital during the Omicron BA. 2.2 pandemic publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2022.1001801 – volume: 9 start-page: 369 issue: 3 year: 2004 ident: pone.0281922.ref053 article-title: Bootstrap standard error and confidence intervals for the correlation corrected for range restriction: a simulation study publication-title: Psychol Methods doi: 10.1037/1082-989X.9.3.369 – volume: 10 start-page: 330 issue: 4 year: 2021 ident: pone.0281922.ref062 article-title: Conditional distribution modeling as an alternative method for covariates simulation: Comparison with joint multivariate normal and bootstrap techniques publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.12613 – year: 2022 ident: pone.0281922.ref030 article-title: Does sectoral energy consumption depend on trade, monetary, and fiscal policy uncertainty? Policy recommendations using novel bootstrap ARDL approach publication-title: Environ Sci Pollut Res Int – volume: 32 start-page: e12984 issue: 2 year: 2022 ident: pone.0281922.ref063 article-title: Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach publication-title: Indoor Air doi: 10.1111/ina.12984 – volume: 61 start-page: 755 issue: 7 year: 2011 ident: pone.0281922.ref048 article-title: Quantitative assessment of variability and uncertainty of hazardous trace element (Cd, Cr, and Pb) contents in Chinese coals by using bootstrap simulation publication-title: J Air Waste Manag Assoc doi: 10.3155/1047-3289.61.7.755 – volume: 12 start-page: 19825 issue: 1 year: 2022 ident: pone.0281922.ref061 article-title: Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation publication-title: Sci Rep doi: 10.1038/s41598-022-24118-4 – volume: 38 start-page: 557 issue: 4 year: 2006 ident: pone.0281922.ref066 article-title: Computer simulations of the ROUSE model: an analytic simulation technique and a comparison between the error variance-covariance and bootstrap methods for estimating parameter confidence publication-title: Behav Res Methods doi: 10.3758/BF03193885 |
| SSID | ssj0053866 |
| Score | 2.6181836 |
| Snippet | Machine learning methods are widely used within the medical field. However, the reliability and efficacy of these models is difficult to assess, making it... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0281922 |
| SubjectTerms | Accuracy Age Algorithms Angina Angina pectoris Artificial neural networks Biology and Life Sciences Blood pressure Bootstrapping (Statistics) Cardiovascular disease Cardiovascular diseases Choice learning Cholesterol Computer and Information Sciences Computer Simulation Datasets Diagnosis Electrocardiography Evaluation Fasting Health services Heart diseases Heart rate Humans Learning algorithms Machine Learning Males Medicine and Health Sciences Methods Model accuracy Modelling Neural networks Neural Networks, Computer Physical Sciences Regression analysis Reliability analysis Reproducibility of Results Research and Analysis Methods Simulation Simulation methods Statistical methods Statistics Transparency Variables Variance |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyTeLEdo4FURUkQAKKeotsr9MuSrMRyQr23zNje6NGVGoPKLd4kijznmT8DSEvDVRVguUmLoSBAgUS5linXMdGC6MgP4KghBucP33mR8f5x5Pi5MKoL-wJ8_DAnnH7EkKuhEIq5RYcqZUlh5AFZY0qNGNWOSTQRJbbYsr7YLBizsNGOSbS_SCXebdq7TzBf0dZNglEDq9_9Mqzrln1l6Wc_3ZO3ly3ndr8Vk1zISwd3iG3Qz5JD_x77JAbtr1LdoLF9vR1gJV-c4_8BFeAHegQq-jgIM1xH5jZ0GVLz11LpaVhhgQQ-PE9FHLwAT-GdLRfnodJX1S1C9qfYePUhmI_EnpMav90jfKfFvv75Pjw_fd3R3GYtBAbXmZDnBf1gnFsedJSGqa1yGrGioXQeWEgC0PEnbpIOTgjK40q1KKwIJEajLkugYo9ILMWeLtLqJRWQRJUWMSpMZKXOmFW15ZrKQxL8oiwLdsrE2DIcRpGU7l_awLKEc-5CoVVBWFFJB6v6jwMxxX0b1GiIy2CaLsToFpVUK3qKtWKyDPUh8rvSB1dQXUgoKxPRZqyiLxwFAik0WKnzqla93314cuPaxB9-zohehWI6hWww6iwOwLeCQG6JpR7E0pwB2ayvIvau-VKX2UCpARHUsKVW42-fPn5uIw3xe671q7WnoYh8hvc_aE3gJGzjMsMEZ0iIiamMWH9dKVdnjkc8xIeyzN47nw0omsJ99H_EO5jciuDfNWhE7A9Mht-re0TyC8H_dS5kr_05Hey priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7YG9IDY-djAgICTgobdrc03SB4Q2tGkgcaDB0N6qJE23Q11b1p7g_nvsNi1UTDDd28X9smPHTuyfCXluIKoSbGa8UBgIUMBh9rTPtWe0MAr8I1iUsMD5w5wfnczen4ana2Te1cJgWmVnExtDnRQG98h3AwEzB37T6E353cOuUXi62rXQUK61QvK6gRi7QdYDRMYakfX9g_mn4842g3Zz7gromPB3nbwmZZHbyRTPlIJgsEA1OP69tR6VWVFd5Yr-nVF5c5mXavVDZdkfy9XhbXLL-Zl0r50Ym2TN5ltk02lyRV86uOlXW2QD_c0WrvkO-Qb2AtPUYUGjdYN7jsViZkUXOb1o8i4tdY0mgKDt8UPBUa9xx6Sk1eLCtQOjKk9odY7ZVSuKSUtoVqn9WWaq3X-s7pKTw4Mvb488147BMzwKam8WpgnjmBelpTRMaxGkjIWJ0LPQgKuGsDxp6HOwWFYaFaoktMznKcgtjYCK3SOjHBi9TaiUVoGnFFoEszGSR3rKrE4t11IYNp2NCetkEBuHVY4tM7K4OYATELO0bIxRcrGT3Jh4_VVli9XxH_p9FG9Pi0jbzR_F5VnsFDeW4PJJCOR9bmEhtzLi4DJBWK1CzZhV8KpPcHLEbdlqby_iPQGxvy98n43Js4YC0TZyTOc5U8uqit99_HoNos_HA6IXjigtgB1GuRIK-CZE8RpQ7gwowWaYwfA2TuWOK1X8W7vgym56Xz38tB_Gm2KKXm6LZUvDEB4O7n6_1Yaes4zLAGGfxkQM9GTA-uFIvjhvwM4jeCwP4LmTXqOuJdwH__6Oh2QjAHe1ASdgO2RUXy7tI3Ava_3Y2Yxfv098Ow priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlCauP_JYENNA2kBA0XiKbNdhhS6NSCIofz13iRMtMERR3uJzEp9955_ju58JeWhhVSXZxAZcWligAGAOTChMYI20GvARTEqY4Hx4JA5mk9fH_HiLPG1zYc7u3zMZPvMaHeWrzI3GuOsTgcPdFhyQ94Bsz47eTj81G8dRIKIx89lxf6vam31qkv7OFQ_y5ao4D2f-GS55ocpyvf6ul8szc9H-ZXLYtqIJQfk6qkozsj9_I3jctJlXyCUPSum0GUU7ZMtlV8mON_uCPvbc1E-ukS_gTzCMHSY8Wta86JhMZtd0kdHTOi7TUX8QBQg0ZwBRAPIl_lHJabE49ceFUZ3NaXGC0VdrikFN6Hap-5EvdfN_srhOZvsvP7w4CPxxDYEVcVQGE57OmcC4KaOUZcbIKGWMz6WZcAtQDml7Uh4K8GhOWc31nDsWihQ8QhqDFLtBBhm0f5dQpZwGJMUdkt1YJWIzZs6kThglLRtPhoS13ZhYz2WOR2osk3qDTsKaptFcggpNvEKHJOhq5Q2Xxz_kn-MI6WSRibu-AT2XeMNOFEBCBQv9UDiY6J2KYRTCmo1rbhhzGj71Ho6vpElr7fxJMpVMAXYLQzYkD2oJZOPIMNzns66KInn15uMGQu_f9YQeeaF0Beqw2qdYQJuQ5asnudeTBJ9ie8W7aA2tVookktBLcI1jqNlayPnF97tifCiG8GVuVTUyDOnj4Ok3G4PqNMuEipAWakhkz9R6qu-XZIuTmgw9hteKCN476oxyo8699b8VbpOLEQDcms6A7ZFB-a1ydwCQluau90O_ANlyikM priority: 102 providerName: Unpaywall |
| Title | Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36821544 https://www.proquest.com/docview/2779494909 https://www.proquest.com/docview/2779345473 https://pubmed.ncbi.nlm.nih.gov/PMC9949629 https://doi.org/10.1371/journal.pone.0281922 https://doaj.org/article/8615813316e847e896201825a5b33ea4 http://dx.doi.org/10.1371/journal.pone.0281922 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98BeEBsfK4xiEBLwkKqJEzt5QKibVgbSyjQo6p4i23W2oiwNTSvW_567xI2I6MRUKQ_xOWnOvi_7_DtC3miIqgTztRMIDQEKOMyOcrlytBJagn8ERgkPOJ8O-cnI_zIOxltkXbPVMrDYGNphPanRPO3e_Fp9BIH_UFZtEO66UzefZabbw50hD5TyNtiqCIs5nPr1vgJIN-f2AN1tPRsGqsTxr7V1K09nxSZX9N-MyvvLLJer3zJN_zJXg4fkgfUzab-aGLtky2R7ZNdKckHfWbjp93tkB_3NCq75EfkJ-gLT1MGg0UWJe46HxfSKTjN6XeZdGmoLTQBBVeOHgqO-wBWTnBbTa1sOjMpsQosrzK5aUUxaQrVKzU2eymr9sXhMRoPj70cnji3H4GgeeQvHD5IJ45gXpcJQM6WElzAWTITyAw2uGsLyJIHLQWOZUMtATgLDXJ6AxCcRULEnpJUBo_cJDUMjwVMKDILZ6JBHqseMSgxXodCs57cJW49BrC1WOZbMSONyA05AzFKxMcaRi-3ItYlT98orrI7_0B_i8Na0iLRd3pjNL2MruHEILl8IgbzLDRhyE0YcXCYIq2WgGDMS_upLnBxxdWy11hdxX0Ds7wrXZW3yuqRAtI0M03ku5bIo4s9ff9yB6Nt5g-itJUpmwA4t7REK-CZE8WpQHjQoQWfoRvM-TuU1V4rYEzBK8OtF0HM9vTc3v6qb8aGYopeZ2bKiYQgPB09_WklDzVnGQw9hn9pENOSkwfpmSza9KsHOI3gt9-C93Vqi7jS4z27_xOdkxwNXtQQmYAektZgvzQtwLReqQ-6JsYBreOTidfCpQ7YPj4dn551ysaZTahO4Nxqe9S_-AEdwgIM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGedheEBsfKwxmEAh4SNfEie08IDQ-ppZ9IME29S3ErrMVdUlYWo3-U_yN3CVOIGKCvUx9qy9O7Duff5ecf0fIMw1RlWC-dgKhIUABwOwolytHK6FjwEewKeEB5_0DPjjyP46C0RL5WZ-FwbTK2ieWjnqcaXxHvuUJsBz49cM3-XcHq0bh19W6hEZlFrtmcQEhW_F6-B70-9zzdj4cvhs4tqqAo3nozRw_SMaMY3qPklIzpYSXMBaMhfIDDYgD2WWSwOWw8IzUcRCPA8NcnsDtkxCkGPR7g9z0GfgSWD9i1AR44Ds4t8fzmHC3rDX08iw1vT5-sfK81vZXVglo9oJOPs2Ky4Du3_may_M0jxcX8XT6x2a4c5vcsiiWbldmt0qWTLpGVq2fKOhLS2b9ao2sIJqtyKDvkG_gjTAJHrZLOitZ1fEoml7QSUrPyqxOQ20ZCxCoKghRCANm-D4mp8XkzBYbo3E6psUp5m4tKKZEodOm5kc-jau3m8VdcnQtarlHOilM9DqhUpoYcFhgkCpHSx6qPjMqMVxJoVnf7xJW6yDSlgkdC3JMo_LznoCIqJrGCDUXWc11idNclVdMIP-Rf4vqbWSRx7v8Izs_iaxbiCQASukyGIgBmGBkyAGQQdAeB4oxE8OjbqJxRNWh2MYbRduCSUB-rsu65GkpgVweKSYLncTzooiGn46vIPTlc0vohRVKMpgOHdsDGjAm5AhrSW60JMEj6VbzOppyPStF9HvtwpW1eV_e_KRpxk4xATA12bySYUg-B73fr1ZDM7OMSw9JpbpEtNZJa-rbLenktKRSD-G23IP79poVdSXlPvj3ODbJ8uBwfy_aGx7sPiQrHgDjkgaBbZDO7HxuHgGQnanHpfeg5Ot1u6tfoquxeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkWAviI0fKwxmEAh4SNvEje08IDQY1cpgIGCob8F2na2oS8LSavRf46_jLnEDERPsZepbfXFi3_n8XXL-jpBHBqIqwfrGC4WBAAUAs6d9rj2jhVGAj2BTwgPO7_b57kH_zSgcrZCfy7MwmFa59Imlox5nBt-RdwMBlgO_XtRNXFrEh53Bi_y7hxWk8EvrspxGZSJ7dnEK4VvxfLgDun4cBIPXn1_teq7CgGd4FMy8fpiMGcdUHy2lYVqLIGEsHAvdDw2gD2SaSUKfwyK00qhQjUPLfJ7AoyQRSDHo9xK5LBiLMJ1QjOpgD_wI5-6oHhN-11lGJ89S2-nh16sgaGyFZcWAel9o5dOsOAv0_p27eXWe5mpxqqbTPzbGwXVyzSFaul2Z4BpZsek6WXM-o6BPHbH1s3Wyisi2Ioa-Qb6BZ8KEeNg66axkWMdjaWZBJyk9LjM8LXUlLUCgqiZEISSY4buZnBaTY1d4jKp0TIsjzONaUEyPQgdO7Y98qqo3ncVNcnAharlFWilM9AahUloFmCy0SJtjJI90j1mdWK6lMKzXbxO21EFsHCs6FueYxuWnPgHRUTWNMWoudpprE6--Kq9YQf4j_xLVW8sip3f5R3ZyGDsXEUsAl9JnMBALkMHKiAM4gwBehZoxq-BRt9A44uqAbO2Z4m3BJKBA32dt8rCUQF6PFFfIoZoXRTx8_-UcQp8-NoSeOKEkg-kwyh3WgDEhX1hDcrMhCd7JNJo30JSXs1LEv9cxXLk077ObH9TN2CkmA6Y2m1cyDInooPfb1WqoZ5ZxGSDBVJuIxjppTH2zJZ0clbTqEdyWB3DfTr2izqXcO_8exxa5Ao4qfjvc37tLVgPAyCUjAtskrdnJ3N4DTDvT90vnQcnXi_ZWvwBDwLW7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlCauP_JYENNA2kBA0XiKbNdhhS6NSCIofz13iRMtMERR3uJzEp9955_ju58JeWhhVSXZxAZcWligAGAOTChMYI20GvARTEqY4Hx4JA5mk9fH_HiLPG1zYc7u3zMZPvMaHeWrzI3GuOsTgcPdFhyQ94Bsz47eTj81G8dRIKIx89lxf6vam31qkv7OFQ_y5ao4D2f-GS55ocpyvf6ul8szc9H-ZXLYtqIJQfk6qkozsj9_I3jctJlXyCUPSum0GUU7ZMtlV8mON_uCPvbc1E-ukS_gTzCMHSY8Wta86JhMZtd0kdHTOi7TUX8QBQg0ZwBRAPIl_lHJabE49ceFUZ3NaXGC0VdrikFN6Hap-5EvdfN_srhOZvsvP7w4CPxxDYEVcVQGE57OmcC4KaOUZcbIKGWMz6WZcAtQDml7Uh4K8GhOWc31nDsWihQ8QhqDFLtBBhm0f5dQpZwGJMUdkt1YJWIzZs6kThglLRtPhoS13ZhYz2WOR2osk3qDTsKaptFcggpNvEKHJOhq5Q2Xxz_kn-MI6WSRibu-AT2XeMNOFEBCBQv9UDiY6J2KYRTCmo1rbhhzGj71Ho6vpElr7fxJMpVMAXYLQzYkD2oJZOPIMNzns66KInn15uMGQu_f9YQeeaF0Beqw2qdYQJuQ5asnudeTBJ9ie8W7aA2tVookktBLcI1jqNlayPnF97tifCiG8GVuVTUyDOnj4Ok3G4PqNMuEipAWakhkz9R6qu-XZIuTmgw9hteKCN476oxyo8699b8VbpOLEQDcms6A7ZFB-a1ydwCQluau90O_ANlyikM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+transparency+in+machine+learning+through+bootstrap+simulation+and+shapely+additive+explanations&rft.jtitle=PloS+one&rft.au=Huang%2C+Alexander&rft.au=Huang%2C+Samuel&rft.date=2023-02-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0281922&rft.externalDocID=2779494909 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |