ECG data compression using a neural network model based on multi-objective optimization

Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transfo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 10; p. e0182500
Main Authors Zhang, Bo, Zhao, Jiasheng, Chen, Xiao, Wu, Jianhuang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.10.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0182500

Cover

More Information
Summary:Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transformation is applied to the processing of signal wave for reducing computational time. For the lossless compression requirement, wavelet-transformation that is a coding algorithm can be used to avoid loss of data. In practice, compression is required to avoid storing redundant recording data that are not useful in the diagnosis platform. The obtained data can be preprocessed to remove noise by using wavelet transform, and then a multi-objective optimize neural network model is used to extract feature information. Compared with the existing traditional methods such as direct data processing method and transform method, our proposed compression model has self-learning ability to achieve high data compression ratio at 1:19 without losing important ECG information and compromising quality. Upon testing, we demonstrated that the proposed ECG data compression method based on multi-objective optimization neural network is effective and efficient in clinical practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0182500